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Focusing on Bethe-ansatz integrable models, robust to both time-reversal
symmetry breaking and disorder, we consider the Russian Doll Model (RDM)
for finite system sizes and energy levels. Suggested as a time-reversal-symmetry
breaking deformation of Richardson’s model, the well-known and simplest model
of superconductivity, RDM revealed an unusual cyclic renormalization group
(RG) over the system size N, where the energy levels repeat themselves, shifted
by one after a finite period in In N, supplemented by a hierarchy of supercon-
ducting condensates, with the superconducting gaps following the so-called Efi-
mov (exponential) scaling. The equidistant single-particle spectrum of RDM
made the above Efimov scaling and cyclic RG to be asymptotically exact in the
wideband limit of the diagonal potential. Here, we generalize this observation
in various respects. We find that, beyond the wideband limit, when the entire
spectrum is considered, the periodicity of the spectrum is not constant, but
appears to be energy-dependent. Moreover, we resolve the apparent paradox
of shift in the spectrum by a single level after the RG period, despite the dis-
appearance of a finite fraction of energy levels. We also analyze the effects
of disorder in the diagonal potential on the above periodicity and show that
it survives only for high energies beyond the energy interval of the disorder
amplitude. Our analytic analysis is supported with exact diagonalization.
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1 Introduction

The Richardson model, suggested in [30, 31| is a widely known and simple toy model of
superconductivity with a fixed number of fermions/Cooper pairs in the condensate. Besides
the fact that it captures the main properties of superconductivity, this model is known to
be integrable via the Bethe ansatz (BA). Indeed, the spectrum of the Richardson’s model
can be obtained via BA equations, which moreover, coincide with those for another well-
known integrable model, namely, the twisted SU(2) Gaudin magnets [10]. Note that similar
all-to-all Hamiltonians have been used in the physics literature for the description of super-
conducting grains [22] and the disorder-induced superconductor-insulator transition [13].

As soon as any superconductor reveals itself not as a pure conductor, but as a pure
diamagnet, the magnetic-field effects, such as the Meissner and Aharonov-Bohm ones, are
most crucial manifestations of its superconducting properties. In the all-to-all coupled
(effectively zero-dimensional) Richarson’s model, the effects of the magnetic field were in-
vestigated via a simple time-reversal (T) symmetry breaking deformation of the Richardson
model — the so-called Russian Doll model (RDM) |20, 21], where the all-to-all constant cou-
pling g gets the odd imaginary part h. Already at that time, it appeared to be clear that
RDM is also BA integrable, equivalent to the so-called twisted inhomogeneous XXX SU(2)
spin chain in terms of the BA equations [11], and can also be related to Chern-Simons the-
ory when the excitations are represented by vertex operators |[3].

However, what was more surprising is that the RDM exhibits a rare property — it hosts
a cyclic renormalization group (RG) flow for the couplings via the system size N [20]. It
was shown that in the wideband regime of the single-particle diagonal spectrum, the entire
spectrum repeats itself over the finite period in In N. Another peculiarity of RDM was
that, unlike a single superconducting condensate in Richardson’s model, it demonstrates
an entire hierarchy of condensates with superconducting gaps, which are related to each
other via a fixed exponential Efimov scaling and repeat (shifted by one) after the same RG
period as the single-particle spectrum.

The above described RG cycle implies a nontrivial interplay between the ultraviolet-
(UV) and infrared-limit (IR) physics, and the underlying algebraic property was identified
as the anomalous breaking of scale invariance down to the discrete subgroup |2, 25]. It is
this remaining discrete scale invariance in the models with cyclic RG flows which is respon-
sible for the fact that some part of the spectrum obeys the so-called Efimov exponential
scaling F,, o« e*, which, in the case of RDM, stands behind the hierarchy and periodicity
of the superconducting gaps, see |9] for a review. Note that recently new examples of cyclic
RG [16], as well as examples of homoclinic RG orbits [15] and chaotic RG flows [7| have
been found.

One of the questions which we address in this paper is related to the following para-
dox: how is it possible that the spectrum repeats itself (including the superconducting




condensates) and shifts only by one level after the RG period Aln N = «/h, i.e., after the
disappearance of the finite fraction of levels (but not just one)? Where do the other levels
go? Another question is related to the robustness of both Richardson’s model and RDM
to diagonal disorder. Indeed, in both the models the BA equations are still applicable
for any (even disordered) diagonal potentials. However, this robustness of BA does not
guarantee the corresponding robustness of the eigenstates or of the cyclic RG properties.

Indeed, for the Richardson model with any strength of diagonal on-site disorder it is
shown in [19, 23, 27-29] to have all the excited eigenstates (except the superconducting
ground state) to be power-law localized, while the eigenvalue statistics still indicates level
repulsion. On the contrary, the corresponding eigenstates in RDM, considered in [26], show
non-ergodic, but extended properties. Thus, the violation of time-reversal symmetry breaks
the localization effects down and forms an entire fractal phase, similar to observations in
several other models |1, 6, 8, 12, 18, 19, 24, 26-28, 32-34|, with the Rosenzweig-Porter
model (RPM) being the most familiar example.

In this study, we address the same question of disorder effects in the context of the
cyclicity of RG. We generalize the cyclic RG of the couplings, developed in |20] for the case
of equidistant spectrum, in two respects. First, we make a refinement of the cyclic RG,
applicable for the entire spectrum beyond the wideband limit, both for equidistant and
non-equidistant spectra, and find that the cyclic RG structure survives but the period of
the RG becomes energy-dependent. Second, we incorporate the diagonal disorder into the
derivation of the RG for the random RDM. The analysis yields a similar result — the period
of the RG becomes energy- and disorder-dependent and for the disorder potential, which
reshuffles the order of the diagonal energies, the periodicity survives only in some parts
of the spectrum. We also comment on the fate of the Efimov tower and the incomplete
breaking of scale invariance in these cases. Thus, to summarize, the effects of disorder on
the cyclic RG in RDM is not as straightforward as on the eigenstates or BA: the hierarchy
of the condensates and, partially, the periodicity of RG survive, but the period depends
both on the considered energy and disorder (and its concrete realization).

Note that the T-breaking parameter is usually not renormalized perturbatively, but can
be renormalized however if some kind of non-perturbative effects are taken into account.
An example of RG in a disordered system with Anderson localization and T-breaking can
be found in [1].

2 Model

Here we introduce the Hamiltonian of the Russian Doll model. We consider the Ny x Ny
random matrix model of the following form

Hpn = €ndmn — Jmn, Jm#n = d(No) [g + ihsign (m —n)], 1<m,n<Nog, (1)

where we consider open boundary conditions and put the overall energy shift j,, to zero
without loss of generality. Here ¢, is a certain (might be random and non-monotonic)
potential of n on a finite support

len] <w/2 (2)

and the matrix-size-dependent constant 6(Np) is defined in the next section.




3 LeClair - Roman - Sierra’s Renormalization group (RG) for all energies.

3.1 RG for equidistant spectrum

In Ref. [20] the authors consider the model (1) in the bosonic setting for application to
superconductivity, with the following choice for the parameter
5(N0) = w/N() > (3)

with w = e, — &1 being the bandwidth ! of the diagonal potential. They focused on the
case with equidistant spectrum of the diagonal potential

en = (n—mnp)d (4)

with a certain energy shift ngd (if not mentioned otherwise, we will use ng = Ny/2), giving
the range of the diagonal energies as in (2). They derived the following renormalization

group (RG), see Eq. (15) in Ref. [20], removing the largest diagonal energy level at each
step:
2 2
+h
gN-1 =gnN + QNTN, hn—1=hn . (5)
In order to derive the above equations the authors of |20] did the following:

1. First, they start with the matrix of size Ny and at each step reduce its size by one.

2. For this, they take at each step the level with the largest diagonal energy in the
absolute value (ex or e7).

3. Assuming it to be large with respect to the rest of the levels (a so-called wideband
limit as we have mentioned it above), they resolve the eigenproblem with respect to

it (say en):
(en — E)¢¥p(N ZJNM/JE & Yp(N)= En#?;]ingE(n) (6a)

(e — E)b(m) — Y (jmn + L) o) =0 (6D)

Strictly speaking, the latter fraction was split into two terms with E replaced by &,
and e, respectively, but this was not important for them.

4. Next, they assumed ey — F ~ § - N and using the ratio w/d = N they end up with

Egs. (5).
The solution of Egs. (5) can be found in the continuous limit ds ~ As = —AN/N <« 1
hy =hn, =h , (7a)
gn = htan [hsN + arctan (gzo )] . (7b)

with AN =1 and sy = In (Ny/N). Strictly speaking the above RG works for the bottom
of the spectrum E ~ ¢1 if one takes the energies ey always from the top of the spectrum.

Physically, the solution (7) means that the T-symmetry breaking parameter h stays
intact within such an RG over the logarithm of the system size sy = In (Ny/N), while the
T-symmetric coupling gy changes periodically with the period As = 7/h, determined by
the T-breaking parameter h.

!Unlike [20], we use w for the total bandwidth, not its half and & for the level spacing, not its half.




3.2 Energy dependent RG periods

In order to go beyond applicability only for the bottom of the spectrum, mentioned in
the end of the previous section and apply the results to the entire spectrum, one should
replace the assumption in item 4 by the correct energy-dependent expression

g% +hi

S b =ha, (8)

gn-1=gn +0(No)
Now the renormalization variable sg should be defined as

5(No) & 5 AN No §5.dn

dSE(N):_sN—E < SE(N):Zen—EN N en—FE’
n=N

9)

where AN = 1 and one arrives at the same RG equations and solution as Egs.(15-16)
in [20]

g

=g*+h* & |g(sp)=htan [hsE + arctan (91\&))] . (10)
dsg h

The validity of the above equation (10) is limited by the conditions for the absence of
resonance

dsp(N)| < 1, —

1
e ¢ V- lfenrt] .y

The first condition |dsg(N)| < 1 ensures that the increment in the integral (9) is small,
while the second one limits the increment |dg(s)| in (10) to make the derivation from (8) to
it valid. Note that from Eq. (9) one can see that the monotonicity of the parameter s (9)
depends on the energy E and does not necessarily require the monotonicity of €,. Indeed,
for |[E| > w/2 > |e,|, even random &,, does not change the monotonic behavior of sg(N),
keeping the periodicity of the cyclic RG robust in this energy interval. In the following
two subsections, we apply the above considerations for equidistant and disordered diagonal
potentials.

3.3 Entire spectrum for equidistant potential
For equidistant diagonal potential (4), one can introduce the following parameter Mg =
E /6 + ng, for the energy shift, which gives:

(12)

sgp(N)=1In (NO]WE> .

N — Mg

As in Eq. (17) of [20] the result (10) is periodic with the period A = w/h in sg. The period
A in sg corresponds to the change ANp in the matrix size N given by

. N — Mg o _ A
)\_ln(N_ANT_ME), ANp = (N = M) (1-¢™). (13)

The number of periods before N — Mg = 1 goes as

However, unlike [20], here we see two peculiarities:




e First, the period ANy in N is energy FE-dependent, Eq. (13), and
e Second, there is the singularity at N = Mg, or equivalently, at £ = ey.

The latter is important for the understanding of the first question (or paradox), men-
tioned in the introduction. Indeed, according to [20] and Eq. (13), the matrix size shrinks
by ANp(N) after the period, when the spectrum repeats itself with the shift by one level.
However, on the way from Ny to N other ANy — 1 levels have also disappeared. Where
have they gone?

To answer this physical question, one should consider the continuity condition (11)
more closely. What happens when this condition is violated? In such a case, one cannot
transform the sum in Eq. (9) to the integral and, moreover, already at a single step, one of
the increments dsg(N) or dg(sg) is not small. This means that many periods can pass in
this region without being seen in the continuous equations (10) and the numerics. Strictly
speaking, each RG step (8) corresponds to the removal of one column and one row of the
matrix and can be considered as a rank-1 perturbation for the matrix [5]. As it is known
from Richardson’s model [23] and other works [17, 19], such a rank-1 perturbation can

move significantly only one (top or bottom) level E](VNfl), while the other N — 2 levels

E,(LN_U are bound in between the ones at the previous step

EM < EN-D < g1 (15)
This means that independently of the condition (11) only one level disappears from the
spectrum by going to the sink at £ = ey in the RG step. We will show the same in our
numerical results in Sec. 4.

3.4 Case of the diagonal disorder

Strictly speaking Eqgs. (8) and (9) work for any diagonal potential, not only for equidis-
tant or monotonic €,. Therefore in this subsection we consider disordered diagonal poten-
tial. In the case when the diagonal energies are not equidistant (4) but given by independent
random numbers, the derivation of RG equations from (6) is not completely trivial.

In order to make the derivation clear let’s consider separately the two effects of the
disorder:

1. Fluctuations of ¢,, around their mean value (4);
2. Re-shuffling of ¢,,.

Taking into account only the first effect, i.e., keeping the order €,, < e,,41, one can represent
€n, as a sum of independent non-negative increments

n—1 N-1
1 —x
en=c1+ Y dep, P{oer}) = [] Po(dex) , Po(x) = <e /0 (der)=46. (16)
k=1 k=1

For large enough ng =n—ng— E/d =n— Mg > 1, Eq. (4), of i.i.d. random elements in
the sum €, — F, can be approximated by a Gaussian random number with the following
mean and variance

(en—EB)=0-ng, o2p={(en—E)?)~(en—E) =06 ng, (17)
and thus can be represented as

en=E+4+0-ng+0-/ngGn=251n—ng)+0-/ngGn , (18)




with the standard Gaussian variable G,

(@) =0. (G)=1. (19)
The corresponding increment dsg(N), Eq. (9), is then given by
AN AN Gn
dsg = o~ 1— 20
B ng (1+Gn/\/nE) ng < n2/2> (20)

With the latter Taylor expansion this gives the result for sg(V) in terms of the central
limit theorem as

No— M Al 1 v
0 — Mg ~
sg(N)=1In () ~Gn | Y. ——
N — Mg n=N (n_ME)
1 (NO_ME> Gy 1 (N_ME)2 v (21)
~ In - = )
N — Mg \/i’N—ME‘ No — Mg

Here we used the central limit theorem for the sum of Gaussians G,/ n“j’E/Z with zero means
and variances 02 = nEg and introduced another standard Gaussian variable G, Eq. (19).

From the latter one can see that the additional summand ~ |N — Mg|~! to sy with
respect to the one in the disorder-free case, Eq. (12), is small compared to the period 7/h
for large enough N — Mg within the RG validity region, Eq. (11). Strictly speaking, in the
sum (21) one cannot keep the terms O(1) as the Euler-Mascheroni constant vg ~ 0.5772
is also neglected there.

At the same time, at the top of the spectrum (from where we take out £y) and close
to N & Mg, the fluctuations will be important already at the level of Eq. (20). In the
former region the central limit theorem in (18) does not hold, while in the latter the entire
validity of the RG (11) is broken. As a result, with this we show that the periodicity of
RG for the spectrum survives in the monotonic but disordered diagonal potential within
the same validity range away from the sink point E' = ey, i.e., at |EF —en| > E.

The reshuffling of the diagonal disorder has another effect. Indeed, as we mentioned in
Sec. 3.2, in this case, the monotonicity of the periodicity parameter sgp(N) is guaranteed
only for |E| > w/2. Otherwise, both the sign and the amplitude of the increment dsg (N in
Eq. (9) are random and the validity conditions (11) to derive the continuous equation (10)
cannot be satisfied. Therefore, the above periodicity (10) survives only in the above men-
tioned region |E| > w/2, while within the diagonal band, |E| < w/2, the parameter sg (V)
can be non-monotonic with N and random, and therefore no periodicity is expected.

To sum up this section, we showed that the effect of the diagonal potential fluctuations
without reshuffling affects only the vicinity of the sink point and the cyclic RG survives
in the same validity range as for the equidistant spectrum. At the same time, reshuffling
the diagonal elements ruins the periodicity of the RG in the entire range of the diagonal
potential |F| < w/2, keeping it intact only beyond it, including the condensate energies
(and the corresponding Efimov scaling, as we will see below).

3.5 Generalized Efimov scaling

Let us comment on the place of our study in the general context of the two-parametric
RG flows when one parameter induces T-symmetry breaking. It is useful to introduce the
following modular parameter [11]

T = x + iy, where = is T-symmetry breaking term and y is a some kind of disorder (22)




The real part is the chemical potential for the topological number of any nature, say,
winding, topological charge etc. On the other hand the imaginary part is any parameter
quantifying disorder, say, coupling constant, diffusion coefficient, boundary condition etc.
In our case one could have in mind 7 = h + ig while, for example , 7 = 0 4+ iD for the
Anderson model in 1d with T-symmetry breaking term 6 and the diffusion coefficient D
[1]. Before renormalization there is the natural action of SL(2,7Z) on modular domain of
T.

The pattern of RG orbits considered as trajectories of the dynamical systems depends
on the relative weights of the perturbative and non-perturbative contributions to the -
functions. The conventional cyclic RG occurs at stable fixed point for Re7 taking into
account only a first perturbative contribution to the Sy, . The Re 7 is finite at the stable
fixed point and it governs the period of the RG cycle (10). Generically both the §’s are
elliptic functions of the modular parameter and behave differently in the limiting cases.

The RG flow towards the stable fixed point can occur through the chain of unstable
fixed points for Re7. For instance, such behavior and interesting universality has been
observed in [14] in the limit y = Im 7 — 0 when the potential function for the RG flow
which yields the 5(z,y) function is the generalized Dedekind function.

Ulz,y) =log(yn(z +iy)| T=a+iy, (23)

where 7(z) is Dedekind function 7(z) = ez [[%,(1 — €2™"#). At small fixed y the RG
potential for T-breaking parameter gets reduced to U(x) whose minima z, exhibit the
interesting recurrence x,4+1 = f(x,) for the unstable critical points of the RG flow for
Im7. The recurrence is ruled by the free group I'y which is subgroup of SL(2,Z) and
involves three generators of the discrete RG flows [11]. At n — oo the RG flows to the
stable critical point while a topological parameter tends to the Golden ratio x, — @
This model example corresponds to the one-dimensional Penrose model which is a toy
model exhibiting cyclic RG cycle. In that case the Efimov scaling for the bound states
reads as

E, = Epexp(cn) (24)

with ¢ = ln(@). In the refined RG, once again we look at the stable fixed point of Rer
but the period of Im 7 is energy dependent

g(sp+A) =g(sEg) . (25)

A bit loosely we could say that the Re7 defining the period at the fixed point is E-
dependent. Instead of (24) we have scaling of the form

log(%2)

s(En) (26)

which reduces to Efimov scaling for equidistant spectrum. Note that the Efimov scaling
follows from the partial breaking of the scale invariance down to the discrete subgroup
[2, 25]. In the refined case the discrete subgroup is broken as well.

It is worth making one more remark. In [21], the set of resonances in the particular
(1 + 1) quantum field theory (QFT) with the scaling

M,, = 2m cosh(An) (27)

where the A\ = 7/h is a period of the peculiar RG flow, has been found. Certainly it does
not enjoy the Efimov scaling at low energy but the spectrum can be represented in the




form of the generalised Efimov scaling with the energy dependent RG period A(n)
(14 e=2)
2

Hence it seems that our finding in finite dimensional system has the clear QFT counterpart
however it would be nice to investigate this relation in more details.

M, = 2mexp(A(n)n), An) = A+ %log (28)

4  Numerics

In order to check the analytical predictions of the previous sections, we have performed
numerical simulations similar to [20]. Taking the initial Hamiltonian (1) of size Ny, we
compute the spectrum for the models, given by the first N rows and N columns of the
matrix. Then the spectrum of such models (normalized by the parameter §) has been
plotted versus the periodicity parameter sg(N), Eq. (9), see Figs. 1 — 3. For our numerics
we have chosen Ny = 256, g = 1, and h = 12, though the results are qualitatively the same
for other parameters as well.

In the case of the equidistant spectrum, Fig. 1, the periodicity parameter is given
by (12), sg(N) = In (]]\@%ﬂj\/g), with Mg = E/§ 4+ ng. One can see from Fig. 1 that the
period varies in different regions of the spectrum, but it is still given by the above formula.
At the spectral edges (see the first and last panels), the energy levels may disappear with
decreasing N (and increasing sg(INV)). In addition, close to the energies E/§d = N = en/J,
(see the bottom part of the last panel in Fig. 1), the periodicity is violated in full agreement
with the validity range, Eq. (11). Note that it is not just the discreteness of the spectrum
which matters as for smaller energies |E|/d < N even the discrete spectrum shows the
same periodicity, cf. left (|E|/0 < N) and right (|E|/é > N) bottom panels.

In the more physical and interesting case of disordered diagonal potential (17), one
has to modify the periodicity parameter to (9) or in the monotonic case to (21). In this
case, see Fig. 2, the periodicity is still clearly seen, but close to the interval of the diagonal
potential energies, |E| < w/2 (with ng = Ny/2) the periodic levels are not seen under the
ones with random shifts along sg(/N). The latter are those levels, which hit the resonance
E ~ ex and, thus, have non-monotonic sg(N) vs N.

In order to show clearly the range of random energies, we plot the entire spectrum of
the system in Fig. 3 versus the local periodicity parameter sp(N) = ZgiN §/(en — E).
From that figure the periodicity is hard to see due to the symbol sizes, but one can clearly
observe that in the interval |E|/0 < Ny/2 the random levels, corresponding to the above
hitting of resonances and non-monotonic sg(N), prevails over the the regular ones, so the
latter are not seen. Beyond the above mentioned energy interval, i.e. for |E|/é > Ny/2,
no such random levels are visible and the regular (periodic) behavior is present.

In addition, a random singular point of the spectrum appears at F = e, where the
regular spectral part changes behavior from sy > 0 at E < e to sy < 0 otherwise. These
are exactly the sink points which are random within the interval |en| < w/2 at each step
N where most of the levels disappear beyond RG periodicity.

5 Conclusion

In this paper we have generalized the periodic renormalization group (RG) for the
known Russian Doll model (RDM) in several respects.

Within the original RDM setting with the equidistant diagonal elements, we have
shown that the RG period depends significantly on the energy interval considered and
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Figure 1: Generalized F-dependent spectrum periodicity, Eq. (12), in the Russian Doll model
with equidistant diagonal potential, Eq. (4) in different spectral parts. Vertical lines correspond

to the periodicity in the parameter sg(N) = In (%) which perfectly matches the one in the

numerical spectrum in all those parts. The color of the data points varies from blue to red as the
system size is reduced from Ny = 256 to 64.

has a singularity at the sink point E = ep. It is this singularity which compensates the
disbalance of ANy — 1 energy levels that should disappear after the RG period ANy ~
and, according to the previous literature [20, 21|, shift the entire spectrum by one level
only.

In addition, we have considered the RDM with the disordered diagonal elements and
found two separate effects of disorder. First, the fluctuations of diagonal potential do not
affect the validity of the cyclic RG, while the second reshuffling contribution of the diagonal
potential allows the RG periodicity to survive only beyond the diagonal disorder amplitude.
For this, we derive a generalized RG parameter over which RG equations are still periodic
(at least in the spectral parts lying beyond the energy interval of the diagonal elements).
All the analytical predictions have been confirmed by the numerical simulations.

In the further investigations, it would be interesting to identify the limit cycle breaking
discussed in this study with the generic framework of breakdown of the limit cycle within
the bifurcation theory.

The effect of periodicity, suggested in the Russian Doll model and generically considered
in this work, is in some sense similar to the Aharonov-Bohm effect in the single-mode
superconducting ring pierced by a magnetic flux ¢, where the (all-to-all site) coupling also
has the real g and imaginary h parts, periodically changing with ¢, however, unlike the
latter, the cyclic RG in RDM shows periodicity over the logarithm In N of the system size
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Figure 2: Generalized F-dependent spectrum periodicity, Eq. (17), in the Russian Doll model
with random diagonal potential in different spectral parts. Vertical lines show the periodicity in the
parameter sg(N) (9), which provides reasonable match to the periodicity of the spectrum in the parts,
away from the diagonal potential bulk, |E| > w/2. The color of the data points varies from blue to red
as the system size is reduced from Ny = 256 to 64.

and this periodicity, as we have shown, is energy-dependent. In this sense, it will be of
particular interest to find similar periodicity effects in some physical short-range models.
Among possible candidates one can guess to have hierarchical structures like the so-called
random-regular or Erdés-Renyi graphs, where the dominant cycle size where the magnetic
field can penetrate is, indeed, proportional to In N and in this respect one can expect it to
show similar Aharonov-Bohm periodicity as the magnetic flux will contain the dominant
loop size ~ In V.
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reduced from Ny = 256 to 64.
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