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Abstract

The ultrafast conversion of coherent excitons into incoherent excitons, as well as the
subsequent exciton diffusion and thermalization, are central topics in current scientific
research due to their relevance in optoelectronics, photovoltaics and photocatalysis.
Current approaches to the exciton dynamics rely on model Hamiltonians that depend
on already screened electron-electron and electron-phonon couplings. In this work, we
subject the state-of-the-art methods to scrutiny using the ab initio Hamiltonian for elec-
trons and phonons. We offer a rigorous and intuitive proof demonstrating that the ex-
citon dynamics governed by model Hamiltonians is affected by an overscreening of the
electron-phonon interaction. The introduction of an auxiliary exciton species, termed
the irreducible exciton, enables us to formulate a theory free from overscreening and
derive the excitonic Bloch equations. These equations describe the time-evolution of co-
herent, irreducible, and incoherent excitons during and after the optical excitation. They
are applicable beyond the linear regime, and predict that the total number of excitons is
preserved when the external fields are switched off.
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1 Introduction

Transition-metal dichalcogenides, layered heterostructures, and other two-dimensional ma-
terials hold great promise for next-generation optoelectronic devices due to their rich exci-
tonic landscape [1-5]. The weak dielectric screening favors the existence (and coexistence)
of well defined optically bright zero-momentum singlet excitons [6-8] as well as dark inter-
valley and triplet excitons [9-12]. Understanding the fundamental laws governing the for-
mation and scattering of excitons is crucial for guiding researchers and accelerating progress.
The momentum-resolved exciton dynamics can be monitored using time-resolved photoemis-
sion techniques [13-26]. Laser pulses with subgap frequencies excite particle-hole pairs and
transfer the light’s coherence to them. During and shortly after the optical excitation, the
nonequilibrium state features coherent (or virtual) particle-hole pairs bound by the Coulomb
attraction, i.e., bright coherent excitons. For not too large excitation densities, this super-
fluid phase [27-31] is stable only at clamped nuclei [32]. The charge imbalance created
by the laser pulse sets the nuclear lattice in motion, and the macroscopic number of lattice
modes (or phonons) is responsible for destroying exciton coherence [33-38] and diffusing ex-
citons [39-41]. Bright coherent excitons are then converted into bright and dark incoherent
excitons, whose energy and momentum can be inferred from the measured time-resolved and
angle-resolved photocurrent.

The complex dynamics of coherent and incoherent excitons coupled to phonons has be-
come a central focus in current scientific research. A straightforward strategy to deal with
the problem consists of using model bosonic Hamiltonians for excitons and phonons. Built
on the pioneering works by Toyozawa and Hopfield [42-44], this approach dates back to
the early sixties [45-47]. Nonetheless, it faces important conceptual issues that remain to
be addressed [48-50]. The major issue pertains with the fact that model Hamiltonians are
written in terms of screened electron-electron (e-e¢) and electron-phonon (e-ph) interactions.
This leads to double counting and overscreening already at the leading order in perturbation
theory. Techniques based on the cluster expansion [51-55] suffer from the same conceptual
drawbacks, as the underlying Hamiltonian is affected by the same problems, i.e., a screened
e-e and e-ph coupling. The equivalence between the two approaches becomes evident when
expanding the e-ph interaction in terms of an interaction between (multiple) particle-holes
and phonons [56,57], which, to the lowest order, is equivalent to a bosonization.

Despite the conceptual issues, the equations of motion for the coupled dynamics of coher-
ent and incoherent excitons [52-54, 58,59] have a great appeal, and have been extensively
used in the literature. The fundamental question we address in this work is: Can these equa-
tions be derived from the ab initio Hamiltonian of electrons and phonons [60]? In this study,
we provide a conclusive negative answer, pinpointing the issue as rooted in the overscreen-
ing of the e-ph interaction, and derive the correct result. Our derivation is based on Green’s
function many-body theory, where screening, quasi-particle renormalization, and phonon fre-
quencies emerge naturally from the diagrammatic treatment of the ab initio Hamiltonian of
electrons and phonons. The developed theory contains correlation effects up to second-order
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in the excitation density and treats excitons and particle-hole pairs (plasma) on equal footing.

The paper is organized as follows. In Section 2 we introduce the connection between ex-
citons and two-particle Green’s function, and briefly go through the ab initio Hamiltonian for
electrons and phonons. We also present key properties of the Bethe-Salpeter equation for sys-
tems with e-e and e-ph interactions. In Sections 3 and 4 we discuss the minimal approximation
to the self-energy and exchange-correlation kernel leading to a coupled dynamics of coherent
and incoherent excitons. The inclusion of the inelastic exciton-phonon scattering is elaborated
in Section 5. The final outcome, summarized in Section 6, is the excitonic Bloch equations —
a comprehensive set of coupled equations for coherent, irreducible and incoherent excitons.
Finally, in Section 7 we provide a summary of our main findings and outline future avenues
for research and development.

2 Preliminaries

2.1 Excitons and two-particle Green’s function

We consider a semiconductor with quasiparticle energies € for conduction electrons in band
¢ with momentum k, and €, for valence electrons in band v with momentum k. The band
indices c, v are spin-orbital indices. If the system Hamiltonian is invariant under spin rotations
then ¢ = (a,0), v = (b, o) can be written as pairs of indices, the first describing the orbital
part and the second describing the spin-projection onto, say, the z axis. In the quasi-particle
basis the Coulomb amplitude for the scattering process (,uk+ Q,VK') - (WK +Q, vk) reads

v,uk+Q VK vk wk'+Q = (‘U,k + Q V/kll | — A/l |Vk ‘U,/k/ + Q) (1)

We normalize the quasiparticle wavefunctions to unity so that the Coulomb amplitude scales
like 1/Ny, Ny being the number of k-points in the first Brillouin zone. The exciton is a bound
electron-hole pair of the crystal with clamped nuclei, whose energy and eigenfunction satisfy
the eigenvalue equation
Q 4AQ HSEX,Q ,AQ _
Ecvacvk Kcvk ¢! v’k’A VK EAQAcvk’ )
vk

where Egk = €.k+0 — €k and

HSEX,Q __ _Q

vk, vk T ch+Q VK vke/K4Q — Vek+Qv/K ¢/K'+Qvk = chk,c’v’k’ — Vek+Qv/K /K’ +Qvk 3)
is the irreducible Hartree plus screened exchange (HSEX) kernel, W being the statically screened
interaction [61,62]. At any fixed Q the exciton wavefunctions are chosen orthonormal, i.e.,
chkA/clSjAcvk 0, . Henceforth we use the word excitons for all solutions (bound and
unbound) of Eq. (2). Thus, excitons and particle-hole pairs (plasma) are treated on equal

footing.
We define the exciton creation operator
AQ 5t 3
ZAcvk dck+Q vk> (4)
cvk

where the operators d,x annihilate an electron of momentum k in band u, and satisfy the

anticommutation relations {duk, d ,k,} = 8,0k - The number operator for excitons of type
A and momentum Q is then
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Looking at Eq. (2) it is tempting to construct an effective boson Hamiltonian for excitons, i.e.,
A* = > 2E AQXIQX 10- However, the eigenvalues E;q depend on the irreducible HSEX kernel
which, in turn, is the difference between screened and bare scattering amplitudes, see Eq. (3).
As we see below, avoiding the double counting of the (already incorporated) screening in
a perturbative theory of bosonized excitons and phonons is a complex and delicate task. We
therefore stick to the Green’s function many-body theory, from which Eq. (2) naturally emerges
when solving the Bethe-Salpeter equation in the HSEX approximation [62, 63].

The time-dependent average of I\AI;LQ can be calculated from the 2-particle Green’s func-
tion [64]

GZ(iZiJ ij; mzp, TlZn) =- <T{al(zl)a_](z_])&;(Zn)ar'n(zm)})i (6)

where the 2’s are times on the Keldysh contour C = C_UC, = (0,00)U (00,0) and T is the
contour ordering operator. The indices i, j, m, n carried by the electronic operators in Eq. (6)
specify band and momentum. Consider the two-time propagator

Ngk’c,v,k,(z,z’) = —G,(ck+ Qz,v'K'z"; vkzt, 'K’ + Qz'")
= (T{&Jk(z)&ck+Q(z)&:,k/+Q(z’)&v,k,(z’)}). (7)
Rotating this quantity in the excitonic basis we obtain the exciton Green’s function
A 2 5 ot
Nio(z,2) = Z Acm?lj Nc%k,c’v’k’(z’z/)Ac’%’k’ = <T{XAQ(Z)X;\/Q(Z/)})- (8)
cvk
VK

For any real time t we use the notation z = t, if z € C.. The average number of excitons is
simply given by

Nyo(t) = Nyo(t_, t;) = N3 (t, t). 9
It is useful to write the two-particle Green’s function according to
GZ(iZi)ij; mzp, nzn) = Gim(ziazm)Gjn(zj)Zn) - L(lZl,]ZJ, mzpm, nzn): (]—O)

where G;,(2;,%,) = —i(T{&i(zi)a;(zm)}) is the one-particle Green’s function and L is the
so called exchange-correlation (xc) function [64], which can be determined diagrammatically
from the solution of the Bethe-Salpeter equation. Inserting this expression in Eq. (7) we obtain

Nc?/k,c’v’k’ (Z’Z/) = 5Q,0pcvk(t)pv’c’k’(t/) + N;Lllc(’,(c)’v’k’ (Z’ 2/), (1 1)
where
k() = —1Gy 1 (z,27) = (d7, (2)d 4 (2)) (12)
is the one-particle density matrix, and hence
N:ﬁl‘i”?,v,k,(z,z/) = Lg}k’c,v,k/(z,z’;zﬂz’*) = L(ck+ Qz, V'K ; vkzt, 'K + Qz'™). (13)

Inserting Eq. (11) into Eq. (8), the exciton Green’s function reads
Njyo(z,2") = 5Q,0|P}L(f)|2 +N;ifg(2,z/), (14)

where the exciton polarization is defined according to

PA(t) = D AN o) = (X30(0)), (15)
cvk
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and the incoherent exciton Green’s function N”‘C(z z') is defined as in Eq. (8) with

N — N, As the exciton wavefunction is normahzed to unity, the exciton polarization scales
like 4/ Ny, as it should be. Equation (14) shows that the number of excitons, see Eq. (9), is
naturally written as the sum of the number of coherent excitons 5¢ ol ,()|? and the number

of incoherent excitons N lrlc(t) = Nine <(t t),ie.,

Nyg(t) = Sqlpa () + Ny (0). (16)

Coherent excitons are generated by optical excitations and therefore have zero momentum.

2.2 Ab initio Hamiltonian

The dynamics of any quasiparticle in a crystal, including the exciton, is governed by the first
principles Hamiltonian for electrons and phonons

H(t) :ﬁcwstal+ﬁdrive(t)' 17)

The unperturbed crystal Hamiltonian is written in terms of normal mode displacement ﬁaQ
and momentum P, operators of the nuclear lattice, satisfying the commutation relations

[UaQ,P ,Q,] 00,0/ 0 qa> as well as electronic field operators ﬁuk. We have [60]
I:-\[crystal = FIO,e + IfIO,ph + I:\Ie—e + I:\Ie—ph; (18)
where
e = D (A dy (19)
kuu
A (Q) 0 / !
Hopn =5 Z (0, aQ’ aQ)( aaO O qar a,Q Z Zpu ka0 (K) Uao,  (19D)
Qaa/ aa Po Q kpy! @
He— = — Z .Uk+Q VK —Q vk /kduk+QdV’k’ dek/a’u/k, (19C)
kk’Q
pp’ vy’
ﬁe—ph = Z Z d;kdu’k—QgZﬁQ(k) UaQ- (19d)
kuu’ Qa

In Eq. (19a), h,,(k) = (,uk|§ + V(#)|u’k) is the matrix element of the one-electron Hamil-
tonian, V(r) being the potential generated by the nuclei in their equilibrium positions. Equa-
tion (19b) is the Hamiltonian of the bare phonons, with x,,(Q) the elastic tensor,
pu k= (dukdufk) the equilibrium density matrix, and
ov(r)
0Uqq

lu'k—Q) = “”*(k Q) (20)

UaQZO

i) = (uk

the bare e-ph couplings. Notice that Eq. (20) scales like 1/+/A/} since the commutation re-
lation between U 20 and pf Q! has been normalized to a Kronecker delta. The second term
in Eq. (19b) guarantees that the time-derivatives of the nuclear momenta vanish in equilib-
rium [60]. The elastic tensor satisfies the exact identity (in the basis of the Born-Oppenheimer
normal modes) [60,65,66]

Kaa’(Q) + Hg};a/(w = O) = 5aa/w§Q> 21
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where H%(w) is the equilibrium phononic self-energy in the clamped-nuclei approximation,

and wiQ are the eigenvalues of the Hessian of the Born-Oppenheimer energy. The e-e and e-ph
interactions are described by Egs. (19¢) and (19d) respectively. The full ab initio Hamiltonian
can alternatively be written in terms of the Born-Oppenheimer phononic operators f)aQ using
the relations

_ g 5| P gy
aQ = \/m (bOLQ + ba—Q) B POLQ =—1 (baQ — ba—Q)' (22)

2
The driving Hamiltonian accounts for the light-matter interaction and reads

Hdrive = Zguvk(t)a;kavk: (23)
uvk
where
1 n N N .1,
Q(t) = z—c(uklp AR, t) +A(E 0) - P+ oA (£ t)lvk) 24

can be thought of as a time-dependent Rabi frequency, A being the vector potential.

2.3 The exchange-correlation function

In this section we introduce the basic mathematical tools for the development of the theory.
The exact xc function Lgvk’u,v,k,, see Eq. (10), satisfies the Bethe-Salpeter equation [60]
L=L—iL(v+gDyg)L, (25)

which can be represented diagrammatically as

@ -~

(26)

ik o+ Q WK+ Q
vk V'K

In Eq. (25) we have the bare e-e coupling v (wiggly line), the bare e-ph coupling g (circle)
and the noninteracting phonon Green’s function D, (spring). We recall that D, does not have
poles at the physical phonon frequencies [60]. The latter emerge when dressing the phonons
with electrons, see again Eq. (21). The correlator L is irreducible with respect to a cut of an
e-¢ interaction line and/or a phonon line.

Let us introduce the v-reducible and D-irreducible correlator

LW =T —ilvi™. (27)
Iterating Eq. (25), and grouping terms with the same power of g, we get the exact identity
L= —iLvL+..)—i(L—iLvL +...)gDog(L —iLvL +...)
—i(L—iLvL +...)gDog(—i)(L —iLvL +...)gDog(L —iLvL +...) +...
=10 —iLg*Dyg’L —iLg*Dyg(—i)Lg*Dyg’L + ...
=1 — iZgS(DO +Dy(—i)gLg* Dy +...)g°L
=1V —iLg*Dg’L. (28)
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In the second equality we have recognized the screened e-ph coupling g° = (1 —ivL™)g
=(1—iWL)g, defined diagrammatically by the equation below [60, 65]:

So=30+ v @0

where the circle is g, the crossed circle is g* and the double wiggly line is the screened Coulomb
interaction W = v —ivLW. In the third equality we have recognized the phononic self-energy
TP = —igLg® [60,65], which, in the forth equality, has been used to dress the phonon Green’s
function D = Dy + D,ITP'D. Taking into account that g°L = gL(*), the xc function can alterna-
tively be written as

L=1LW—iLMgpgL™ =1 —iT¢g*DgL™ =10 —iLMgDg°T. (30)
Henceforth we refer to the two-time functions
N e @2) = L2 (5,552 ,5), (31)
as the irreducible exciton propagator,
NOR (&) =100 (272", 2), (32)
as the v-reducible exciton propagator, and

o L
NOX | (z,2)=—i[Lg'Dg LIS, (2. 212%,2""), (33)

as the D-reducible exciton propagator.
Excitonic effects in photoabsorption spectra are captured by the following approximation:

L ~TSX = ¢ + (kS g, 34)
which can be represented diagrammatically as

pk+Q wk +Q

—
St =
. (35)

(r),SEX

vk’ V'K

In this equation £ = GG is the free electron-hole propagator, whereas K is the £-reducible

SEX kernel. The latter solves the T-matrix equation

KSEX = w4 jw g (FSEX (36)
or, diagrammatically,
1k +Q 1K +Q
v VK ' , (37)

where W is the statically screened Coulomb interaction. Inserting Eq. (36) into Eq. (34) we
can write L5 = ¢ + il WL, which corresponds to approximate L) in Eq. (27) as

L0V o [HSEX — gy g RHSEXPHSEX — g 4 (D HSEX, (38)
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with KHSEX — gHSEX 4 ;g HSEX p g (MHSEX the ¢ _reducible HSEX kernel, and K™SEX = W —y the
(-irreducible HSEX kernel defined in Eq. (3). The diagrammatic representation of K "HSEX jg
given by the equation below

nk+Q Wk +Q
vk V'K - (39)
In LUSEX the particle-hole scatters through the direct (with bare v) and exchange (with

screened W) channels. Solving Eq. (38) in equilibrium is equivalent to solving Eq. (2). In
fact, the so called Bethe-Salpeter Hamiltonian is nothing but the “pole” of (the retarded) LHSEX,
Generally speaking, elevating the pole of a quasiparticle correlator (in our case, the exciton)
to the status of a Hamiltonian is not recommended when the quasiparticles interact with other
degrees of freedom (such as the phonons in our case).

Let us denote by NEX the two-time propagator in Eq. (13) evaluated with L = L"SEX, Tak-
ing into account that the free electron-hole propagator E?Vk,c,v,k, (2,2") = 61406061y Eekr0(2,2)
g2.x(#’,2), with g the quasi-particle Green’s function, the equations of motion for the HSEX
propagator read

d Q HSEX,Q '
L S el KHSEX.Q  \HSEX.Q ,
[l dz Ecvk]chk,c’v’k’ (Z, z ) + (ka ck+Q) Z cvk,eyvi Ky c1v1k1 V'K (Z,Z )

c1vikg

= 181408 oer 8,y 8(2,2")(fS — (40a)

e
ck+Q)’

d Q HSEX ,Q
i el HSEX,Q / HSEX,Q
I: le/ Eclvlklil evke! V/k/(z i ) + (f VK —f /k/+Q) Z cvk,c1vp k )K61V1k1,c'v’k’
aviky

= i5kk/5cc’5vv/5(2: Z/)(fvell_f(il.q.Q): (40Db)

where f ¢l the electronic occupation of band u at momentum k. For small excitation densities,

the Pauh blocking factors (f$ ,k, — fow +Q) multiplying the kernel are approximated as unity.

These factors are responsible for the renormalization of the exciton energies and wavefunc-
tions. Rotating Egs. (40) in the excitonic basis, that is

Neperne(@2) = ZA?&NHSEX(z;z’)A?Sf‘k/ : (41)
we obtain
d
[~ B V™ (.2) = i8(,2) D LS P Fidio): (422)
cvk
d HSEX . AQ 2/ el 1
[~i ~Exa]Nis (z,z’)=l6(z,z')§|Awk| o= Fiho) (42b)

Accordingly, the propagator N"X(z,2’) does not contribute to the number of incoherent
excitons since

In the following sections we focus on small excitation densities, considering contributions
beyond the linear regime. Some second-order effects must be discarded to achieve a closed set
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of equations. These include the aforementioned renormalization of the exciton energies and
wavefunctions due to Pauli blocking factors as well as the update of the screened Coulomb in-
teraction W during the time evolution. We also assume that the Tamm-Dancoff approximation
for the solution of the Bethe-Salpeter equation remains accurate. Although these approxima-
tions are ubiquitous in the literature, it would be interesting to investigate their impact in the
future.

3 Coherent excitons

The equation of motion for the exciton polarization p;(t) follows from the equation of motion
of peyi(t) [67]:

d 1
. . ~PO. . HSEX,0 .
apcvk + l(eck ) lrcvk)pcvk -1 Z Kcvk o’ v/k/pc vk — _chvk' (44)

C/v/k/

This equation reduces to the time-dependent HSEX equation for Fﬁfﬁ = 0[29,31,68]. In
the linear response regime, the time-dependent HSEX equations are equivalent to solving the
Bethe-Salpeter equation [64, 69, 70]. In fact, the exciton polarization is proportional to the
induced field, and therefore its Fourier transform is connected to the absorption spectrum.
The polarization rates Ffvoli can be calculated by different means [44,71,72], although they

are often treated as fitting parameters. For small excitation densities Ffvoli is dominated by e-ph
scattering mechanisms [32,38]. The polarization rates in the Fan-Migdal approximation can be
obtained using the mirrored form of the Generalized Kadanoff-Baym Ansatz (MGKBA) [67,73]
(the MGKBA corrects the standard GKBA which leads to unphysical polarization rates).

The treatment of Ref. [67] must be improved for semiconductors hosting excitons. The
origin of the term Ffvipcvk stems from the collision integral

Ffv(ﬁ(t)l)cvk(t) = chk(t) = J di[Z(Z,i)G(g,Z+) - G(Z’§)2(5’2+)]Cvk’ (45)

where Y. is the electronic correlation energy. In the presence of excitons, the Fan-Migdal self-
energy alone (see the first diagram in Fig. 1) is not sufficient because electrons and holes
cannot form bound states. A suitable approximation for X can be deduced from those ap-
proaches that treat excitons as composite bosonic particles [72]. In these approaches the
coherent-exciton self-energy has the structure I1%(z,2’) = iGD(z,2")NPSEX(z,2/)G, where the
exciton-phonon coupling [42,53,74-77]

G@= 2, A elGla+Qa Y = > Al g e + QA0S o (46)

cieaviky cvivaky

depends on the screened e-ph coupling g* and the exciton wavefunctions defined in Eq. (2).
In the ab initio formulation, the polarization rates generated by the model I1®* are produced
by the electronic self-energy in Fig. 1(a), see below for the proof of this statement. However,
the screened e-ph coupling in Fig. 1(a) leads to an overscreening. Consider, for instance, the
second diagram %V, Taking into account that W = v — ivL5¥*W, and using the explicit form
of g° for the e-ph coupling at the top of the diagram (with L ~ L5%%), we get the diagrammatic
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[overscreening| [no overscreening|

Z/U/k =

ik G

Figure 1: Electronic self-energy with excitonic effects in terms of electronic Green’s
functions G (solid lines), phononic Green’s functions D (double springs), and
screened e-ph couplings g° (circled crosses). Panel (a) shows ¥ affected by over-
screening. Panel (b) shows X with no overscreening.

structure
gsEK(r),HSEX _ geK(r),HSEX . l-g’ESExweK(r),HSEX
= g@K(r)’HSEX — ingEX(v —ivISy 4 . )O(KPSEX 4 g HSEXp e HSEX |y
= gEK(r)’HSEX — ingEX(v —ivLS¥y 4 . ) HSEXEHSEX

= gEK(r)’HSEX —igLSB (v —ivISERy 4+ )(LSEX —{[SEXyTSEX 1 KHSEX - (47)

from which the overscreening of the e-ph coupling is evident.

To solve the overscreening problem and simultaneously develop a theory in terms of screened
e-ph couplings, it is sufficient to examine the exact form of the electronic self-energy [60,65].
The closest approximation to Fig. 1(a) which is free of overscreening is the one in Fig. 1(b),
where KUHSEX _, g(MSEX  The crucial difference between the self-energies in Fig. 1 is that
©G o< g*Dg*LISEX for panel (a), see Eq. (38), while ©G oc g*Dg°LS™* = g*DgLHSEX for
panel (b), see Eq. (34). To evaluate the collision integral, see Eq. (45), with the self-energy of
panel (b) we make the following ansatz for the off-diagonal elements of the electronic Green’s
function [78]

chk(zz Z/) = _Gcck(zz Z/)pcvk(t/) + pcvk(t)vak(za Z/)’ (483)
Gvck(z’ Z/) = _pvck(t)Gcck(Z: Z/) + vak(Z: Z/)pvck(t/)- (48b)
This ansatz is exact at the mean-field level. Equation (48) allows for expressing all matrix

elements of the irreducible xc function L% in terms of the irreducible exciton propagator
[compare with Eq. (13)]

cvk c’'v'K cvk c’v'K

see Appendix A for details. The irreducible exciton propagator takes a particularly simple
form in the irreducible excitonic basis. Let us consider the eigenvalue equation [compare with
Eq. (2)]

F ~1Q _ 7Q
cvacvk Z cvk,c v’k’ ’k’ E cvk’ (50)
c’'v'K

The irreducible exciton wavefunctions A are chosen orthonormal for every Q. Proceeding along
the same lines leading to Eq. (41) we obtain

NSEXQ AQ 77SEX ~AQx
CVkC v’k’(z z ) - ZACVk AQ (Z,Z )AC/ K (51)

10
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The equations of motion for ]\NI%X(Z, ') are identical to Egs. (42) with E 20 — EXQ and A*Q — AMQ,

In particular, for systems in equilibrium,

ﬁ;gx(z,z’) = 9(z,zl)e_i550(t_t/). (52)
These results can be used to rewrite the collision integral in the excitonic basis according
to
\SMA . -
Si(2) = ) AN (2) =i fd G, QN 27, (@2, (DD o(z,2), (53)
cvk Allz aQ

where we define the irreducible exciton-phonon coupling

Gl @= 3 Al g+ QAL — 3 A el v QA o (59
c1cav1 kg c1v1vaky
Equation (54) does not reduce to Eq. (46) with Q" = Q as the e-ph coupling is contracted with
the product of an exciton wavefunction A and an irreducible exciton wavefunction A. Assuming
that the dominant contribution in Eq. (53) comes from the terms with A, = A, we show in
Appendix A that the Markov approximation enables us to express Eq. (44) in the excitonic
basis as follows

d . : 1 o
2P0 =—1E0pa(0) i () — o Z PA}QPA(t) (55)
rQ

with Q)\ = chkA

cvk
A

faQ = ( baQ) according to

*Q. k- The polarization rates depend on the phononic populations

Fpol _ Zlg (Q)I2[5(E

h h
ANQ EAO + C‘)()LQ)(]- +f£ Q) + 6(E)L’Q E)LO - waQ)f;)Q] (56)

7Q
We remark that TP involves the difference between an exciton energy E and an irreducible
exciton energy E. The necessity of introducing irreducible excitons in a theory of excitons and
phonons has also been recognized by Paleari and Marini [50]. They investigated a scatter-
ing channel different from the one considered here. Nevertheless, their study also led to the
emergence of the irreducible exciton-phonon coupling in Eq. (54).

The equation of motion Eq. (55) for the exciton polar1zat10n agrees with cluster expansion
results [12,53,54] provided that we replace G with G and EA,Q with Ej/q. Such replacement
is equivalent to evaluate the electronic self-energy with the diagrams of Fig. 1(a) instead of
Fig. 1(b). As previously discussed, this introduces an overscreening of the e-ph coupling.
The overscreening issue is common to all methods that do not rely on the first principles
Hamiltonian [60], but rather on model Hamiltonians where both the e-e and e-ph interactions
are already screened. Our treatment highlights the advantages of the first-principles Green’s
function formulation, where screening naturally emerges from the diagrammatic expansion
and is therefore counted only once. Another important feature of Eq. (55) is that it reduces to
the equation of motion in Ref. [67] if we neglect the last two diagrams in Fig. 1.

As a technical note, we highlight that there exists a generalization of Eq. (55) which agrees
with more sophisticated treatments of the bosonic Hamiltonian for excitons and phonons [72]
see Appendix A. The main difference with these models is agam the occurrence of G and E.

By retaining all terms with A, # A in Eq. (53) we show that $* =>5 7, 2,0 Pol P, Where

AA 2 1Q
~ ~2q A x A ~Z Ay
F;;li 0 can be obtained from Eq. (56) by replacing |G, ' (Q)|2 *(Q)g 2 (Q) and
2741
Ej;o — Ej,0- It should be stressed, however, that the matrix XY 7,0 M Z 0 is not guaranteed to

be positive definite.
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[overscreening| (a)

uk-&ﬁ iQ @ ,,,,,.

[no overscreening| (b)

Figure 2: Exchange correlation function L underlying the equation of motion of the
number of incoherent excitons. In panel (a) we show L from model Hamiltonians
whereas in panel (b) we show the exact result from the ab initio Hamiltonian.

4 Incoherent excitons

In this section we show how optically generated coherent excitons are converted into inco-
herent excitons via the e-ph scattering. The cluster expansion technique applied to model
Hamiltonians with already screened e-e and e-ph couplings has been used to derive the equa-
tion of motion for incoherent excitons [12,53,54]. This equation can alternatively be derived
using many-body Green’s function methods. It is sufficient to approximate the xc function L as
in Fig. 2(a), see below. Using the same arguments as in the previous section, it is straightfor-
ward to realize that L in Fig. 2(a) suffers from overscreening. To highlight the shortcomings
of Fig. 2(a), we show in Fig. 2(b) the exact result from Eq. (28).

We approximate again L ~ L5 and hence L) ~ LHS¥X_ The propagator N"¥X(z, z/)
= LHSEX(3 2’:2,2") does not contribute to the number of incoherent excitons, see Eq. (43) and
discussion below it. We then focus on the second term of Eq. (28), i.e., the D-reducible exciton
propagator

N®) ~ TSFXgs P gSTSEX, (57)

As we see later, phonons are responsible for converting all coherent excitons into D-reducible
excitons. We observe that N(®) involves “off-diagonal” elements of LS. Suppose that the left

e-ph coupling has conduction indices. Then the left part of the diagram is Lcsfl)f ch " (2,2";2,2").
On the other hand, if the left e-ph coupling has valence indices then the left part of the dia-

gram is chk ik (2,2’;2,2"). Analogous considerations apply to the right part of the diagram.

Through the ansatz in Eqs. (48) we can express all matrix elements of L™ in terms of N5,
see Appendix A. Expanding N5EX in the irreducible excitonic basis, see Eq. (51), and p in the
excitonic basis, see Egs. (15), we get

Ny @ s) =~ f dzdz’ A;a?f“(Q)E?Z*(Q)ﬁggx(z,5)%(f)iDaQ(z,z’)pz(f’)i\?;gx(i’,z’).
(58)

In the following we assume that the dominant term comes from A; = A,. For small excitation
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NS ng in equilibrium, see Eq. (52), and find

densities we can evaluate

d = u® | s @, S\RSEX s o
[la EAQ] (z,2") = f dz HIQ (Z’Z)NZQ (2,2"), (59a)

d = 0 = =SEX(, AP (s o/
[— l@ _EAQ]NXQ (z,2')= dZNiQ (Z’Z)HZQ (2,2"), (59b)

where the self-energy for the D-reducible excitons reads
D vy
M2)(z,2) = Y 13, (@I pa()Duq(z,2)05(t). (60)
Q Ma
We extract the time-derivative of the number of D-reducible excitons

NP(t) = NDP=<(¢, 1), (61)

by taking z = t_ and 2’ = t’, subtracting Eq. (59b) from Eq. (59a) and then setting t = t":

- ;(f))(t)_lf dt[H(D)<(t t)NSEX>(t t)— H(D)>(t t)NSEX<(t,t)]+h.c., (62)

where N SEX’Z(t, t’) can be deduced from Eq. (52). To evaluate the collision integral in Eq. (62)
we implement again the Markov approximation and find

d o ol 2
t t 63
T AQ() ; MQIp (O, (63)

where the polarization rates are defined in Egs. (56).
By definition, see Eq. (13), the number of incoherent exciton with quantum number A and
momentum Q produced by our approximation is

inc _ Q 2,7(D)
NIw(6) = lemi No(o), (64)
where
Q _ 2Qx3A'Q
SAZ’ - Acvacvk (65)
cvk

is the overlap matrix between excitons and irreducible excitons. Therefore, the equation of
motion for the number of incoherent excitons reads

N‘“C(t)—Zl SLPTPY |pa (o). (66)

AN TAQ
Yo%

From the equations of motion Egs. (55) and (66) we can easily deduce the equation of
motion for the total number of excitons, see Eq. (16),

N=> Nig=>.(8¢0lpal +NI). (67)
2Q 2Q
Since ., IS%II2 =1 for all A’ we have ZAN‘nC(t) = ZAN(D)(t) and therefore
d .
ENzZZl:Im[QApA]. (68)

The first principles formulation confirms an important result from model Hamiltonians, which
states that the total number of excitons remains constant after the optical field is applied.
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5 Inelastic exciton-phonon scattering

The approximations to X and L discussed in Sections 3 and 4 do not include the inelastic
exciton-phonon scattering, responsible for exciton diffusion and thermalization. The inclusion
of this fundamental process in the exciton dynamics requires an improvement of the xc function
L. The exact L") satisfies the Bethe-Salpeter equation

where the the correlation kernel K¢ is irreducible with respect to a cut of a v-, D- and {-line.
To second-order in the screened e-ph coupling we approximate

¢Q . -
Kclvlkl,cﬂzkz(zpzz,23>Z4)— 5(21123)5(22324)%:DaQ/(lezz)
a /
c s,che
[Zga_lQ} (k; +Q)g o *(ky +Q— Q)L . Vlklxczvzk (21,%2;21,%2)
C C2
S,C ! S,V: v/ Q .
_Z a_lQ}(kl + Q)gan/ *(kp)L, Vlkl:czvzk +Q,(Z1,22;21,Zz)
C VZ
EATAN s,che
—Z Sarey (k + Qg U + Q= QL2 S Lo, 1 (1,7151,%5)
V CZ

V S,V V
+Z OL—Q/ (kl + Q ) aQZ/ Z(kZ) v k1+Q’ V2k2+Q’(Z1’Zz;Zl’22)]’ (70)
v/

which is represented diagrammatically in Fig. 3. The assumption of small excitation density is
equivalent to approximate the internal Green’s functions as

Gcck(ZJZ/) >~ _ie(ZJZ/)e_iECk(t_t/)J (713)
G,i(2,2") ~ i6(z, z)e o=t (71b)

Consider the first diagram of the kernel. The structure GGK®? involves the calculation of
J dzldz3GC1k1+Q(z,zl)GCikﬁQ_Qx(zl,z’)6(zg,zl)lek1 (2',23)G, k, (23,2)

= iGVlkl (Z/,Z)J dzlGC1k1+Q(Z,Zl)GC;kl_,_Q_Q/(Zl,Z/), (72)

where we use Egs. (71). The gluing of two Green’s functions allows us to recover the Feynman
rules for the two-particle Green’s function [64]. It is straightforward to verify that the gluing
argument applies to all four diagrams of the kernel. We emphasize that no overscreening issue
arises if we use the screened e-ph coupling in K€. In fact, the Green’s functions entering an
e-ph vertex come from different xc functions, ensuring that screening is counted only once.

The diagrams of Fig. 3 have been discussed in Refs. [76,77,79] for the stationary case and for
I — [ HSEX

Since K€ is already of second order in g* we approximate [see Eq. (28)]
KL™ =KL +iLg'Dg°L) ~K°L, (73)
which implies
L~ [HSEX 4 j HSEXpe[ 171 —iT¢°Dg°L. (74)
In the following we derive the equations of motion for all kind of excitons and show how they

are coupled.
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cak +Q ks +Q

K¢ =

viky voka

Figure 3: Diagrammatic representation of the irreducible kernel to second order in
the e-ph interaction.

5.1 D-reducible excitons
The approximation in Eq. (69) implies that, see Eq. (27),

L =15+ ISXK[L]L. (75)
The last term in Eq. (74) with I from Eq. (75) provides an improved approximation to the D-
reducible exciton propagator NP), compare with Eq. (57). The equation of motion for N®)<
in the irreducible exciton basis is identical to Eq. (62) provided that we replace NS — N. To

calculate the collision integral we extend the MGKBA to N s along the lines outlined Ref. [80]
[compare with Eq. (52)]

S5S A RS I \SS 0 o =Bz (t—t)
Niq(t,t)—[e(t t)NZQ(t,t)+9(t t)NXQ(t,t)]e iQ , (76)

where ﬁfQ(t, t)= IVXQ(t) is the number of irreducible excitons, and ﬁfQ(t, t)y=1+ N)NLQ(t)'
Then, the improved version of the equation of motion Eq. (63) reads

d 0y _N[Feol LT & ,
aVio © = 21 +TuiaNia®]lew (0, 77
where the rates
A'A
= G, (QPr_ - -
Diso = 2nZ —;waQ [5(E;,Q —Ejo+ waq) —6(Ezq—Exo— waQ)] (78)
a

depend on the irreducible exciton-phonon coupling defined in Eq. (54). Equation (77) couples
the D-reducible excitons to the irreducible excitons N and the coherent excitons |p|.

5.2 Irreducible excitons

The equation of motion for NXQ can be derived from Eq. (75). As the kernel is proportional
to 5(z1,23)5(2y,24) we infer that this equation can be closed on N(z,2") = L(z,2’;2,2’) and
N™(z,2") = L(z,2’;2,2") [see Egs. (13) and (32)], thus becoming an integral equation for
two-time functions on the Keldysh contour. Considering only the diagonal elements of N in
the irreducible exciton basis and the diagonal elements of N'™ in the exciton basis we find

d ~ 9~ ) s L
[la - EXQ]NXQ(Z,Z/) =i5(z,2 )+ J dz HXQ(Z,Z)NXQ(Z,Z/), (79a)

cd = - . o~ =
[ —i EXQ]NXQ(Z:Z/) =i6(z,2 )+ f dz N;Q(z,z)HzQ(z,z’), (79b)
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where we use Eq. (52) and introduce the irreducible exciton self-energy

i@ = DS 10 G (QPNES (5,5 Dugy(2,5). (80)

A Qua

The irreducible exciton-phonon coupling in II generalizes the one in Eq. (54) to finite momen-
tum transfer:

AQx 5,010y VQ—Q’ ~AQx _S,von Q—Q’
Z Aclvlkl a—Q’ (kl +Q)Ac2v1k1 - Z Ac1v1k1 a—Q’ (kl +Q )Ac1v2k1+Q"

c1eavikg c1vivaky

~)L7L
GHNC)
(81)

The Matsubara component of the irreducible exciton self-energy agrees with the result in
Ref. [77] if we replace N'™ with N¥¥X and G with G. As we see below, having a self-energy
which is a functional of N'™ is essential to derive a Boltzmann-like equation.

To extract the equation of motion for the number of irreducible excitons we subtract
Eq. (79b) from Eq. (79a) and then set z = t_ and 2z’ = t.. Extending the MGKBA in Eq. (76)
to the propagator N'™, i.e.,

Ny = (6,6 = [0(e—t) Ny =(6,0) + 0’ = ON; 5(¢, ') [e7E2el =), (82)

and implementing the Markov approximation we obtain

d ~

- Nzo() = I‘SUt(t) Q(t)+l"ln(t)(1+ N3o(0), (83)

where the irreducible excitonic rates are given by

o 57 0@ e
Q NaQ! 26()an rQ-Q
X [5(EX’Q —Q' E + waQ/)(l + folt)g’) + 5(E)L/Q_Q/ — EXQ — CL)aQ/)f;)EQ,], (843)
|ga_Q,(Q)|
=2n N
; QZ 2w aQ’ rQ-Q
x [5(E;VQ_Q, — B+ wag )f o + 6(Erg-o — Fig— wag )1+ F2)]. (84b)

Notice that this is not a Boltzmann equation for N since the rates depend on the occupations
Ninc_

5.3 Incoherent excitons

The number of incoherent excitons is given by the sum of v-reducible and D-reducible excitons,
see Eq. (13) and (28):

N =N 4 ND), (85)
According to the approximation in Eq. (74):

LO) = [HSEX | HSEXpee[ 171, (86)
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Definition Equations
. . . d _ . . 1 pol
Exciton polarization Pr=—1Ep;, —i82, — 3 ZZ'Q |:1"M,Q +T vaN Q]pl
Irreducible excitons %]\NI;Q = —fi’é‘ [N i“C]I\NI;LQ + IN";(‘)[N ] (14 I\NI;Q)

Incoherent excitons | NIt = —TS[N™ NI + Ti [N™](1+ Niw ) + 30,5 |sQ |2 [r;,jQ + ﬁ,ioﬁzoﬁ pul?

Table 1: Excitonic Bloch equations.

The equation of motion for N*)(t) can be derived from Eq. (86), by following the same
logic as for N. Considering only the diagonal elements of N'™ in the excitonic basis we find

LN =~ ONGS) + Ti(O(1+ NES(O), (87)

where the excitonic rates

677 (@
Iyt =2 ——— (14N,
AQ T A%/ ZwaQ/ ( A'Q—Q )
X [5(EX’Q—Q’ — E?LQ + waQ/)(l + folt)g’) + 5(E7L’Q—Q/ — EAQ - CL)aQ/)fOE)EQ,iI, (88a)
A/
. Zo(Q)
R I LR
A/ Q/
X [5(EA'Q—Q’ - EAQ + waQ’)f(f(};/ + 5(EA’Q—Q’ - EXQ - CL)aQ/)(]. +f£EQ,)i|, (88b)

have the same mathematical form as the irreducible excitonic rates in Eq. (84), the difference
being that the irreducible exciton energies and wavefunctions are replaced by the exciton ones.
Notice the emergence of the original exciton-phonon coupling defined in Eq. (46).

5.4 Coherent excitons

The improved approximation to L leads to an improved equation of motion for the exciton
polarization as well. In fact, the collision integral S, must now be evaluated with N, whose
lesser component is, in general, nonzero. Using the MGKBA in Eq. (76) it is straightforward
to derive

d 1 o
7P (0 =—1E0pa(0) —i() — 5 >, [F;’AfQ +TaoNao(0) Joa(0), (89)
Q

which should be compared with Eq. (55).

6 Excitonic Bloch equations

In Table 1, we summarize the main results from Section 5, highlighting the types of excitons
on which the various rates depend. We refer to the equations in Table 1 as the excitonic Bloch
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equations (XBE). It is noteworthy that the irreducible exciton-phonon coupling G governs the
dynamics of coherent excitons, while the reducible exciton-phonon coupling G governs the
dynamics of incoherent excitons. The XBE reconciles previous works that advocate for either
G [50] or G [53, 74-77], by clarifying that both are essential, though relevant in different
regimes (or equivalently at different timescales).

Choosing the time origin earlier than the switch-on time of the external driving fields
(hence Q,(t < 0) = 0), the XBE must be solved with initial conditions p,(0) = NXQ(O)

= N%C(O) = 0. The first line contains the equation of motion of the exciton polarization,
see Eq. (89). The quantity

Yi= Z I:F;D%Q + F)LX’QNE’Q:I (90)
AQ

gives the exciton linewidth of a photoabsorption spectrum, and agrees with Ref. [50] for in-
finitesimally small excitation densities (i.e., N = 0). An increasing number of irreducible
excitons accelerates the transition toward the incoherent regime, in agreement with the fact
that the polarization lifetime decreases with the excitation density [38,81]. The equation of
motion for the number of irreducible excitons, see Eq. (83), is shown in the second line. The
third line contains the equation of motion for the number of incoherent excitons, obtained
by adding Egs. (77) and (87). Coherent excitons are first converted into D-reducible exci-
tons N (D), see Eq. (77), which then diffuse and becomes incoherent excitons. Aside from
the overscreening issue, the equation of motion for N agrees with findings from the cluster
expansion [12,53,54] in the limit of infinitesimally small excitation densities. This limit corre-
sponds to setting N = 0 and retaining only terms linear in N'"°. In the incoherent regime, i.e.,
P =0, the equation of motion for N'" also agrees with findings from Ref. [82]. We observe,
however, that setting p, = O from the outset yields a homogeneous equation, meaning that
the initial value of the incoherent exciton population must be determined by other means.
The many-body diagrammatic treatment of the first principles Hamiltonian not only provides
a many-body justification of the work in Ref. [82], but also extends it to the coherent regime.
This extension allows for monitoring the exciton dynamics from the moment the optical field
drives the system out of equilibrium.

As lim;_, o, p;(t) = 0, the number of incoherent excitons approaches a Bose-Einstein dis-
tribution with the same temperature as the phonon bath - it is straightforward to show that
the right hand side of the third XBE in Table 1 vanishes in this scenario. This implies that
lim,_, o, N(t) follows a Bose-Einstein distribution as well. Indeed, the right hand side of the
second XBE in Table 1 vanishes if fP?, N'" and N are all described by a Bose-Einstein distri-
bution at the same temperature.

To summarize, the XBE have the merits of being overscreening free and applicable to
nonequilibrium systems beyond the linear response regime. Furthermore, they preserve Eq. (68),
according to which the total number of excitons remains constant when the driving field is off.

7 Conclusions

Starting from the ab initio Hamiltonian for electrons and phonons [60] and using the many-
body diagrammatic Green’s function theory [64] we have derived a first principles scheme
for material specific predictions of nonequilibrium excitons. The XBE are a system of nonlin-
ear differential equations for the coupled dynamics of coherent excitons, irreducible excitons
and incoherent excitons. They encompass the initial transient regime, driven by external op-
tical fields, as well as the evolution from the coherent to the incoherent regime, governed by
exciton-phonon scatterings. Importantly, the XBE are free of overscreening issues. It is worth
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remarking that the first-principles formulation presented in this work involves only screened
e-ph couplings. In Appendix B we outline an alternative first-principles formulation that elim-
inates the need for introducing irreducible excitons but involves the bare e-ph coupling. In
the ab initio theory of electrons and phonons the bare g appears in the exact formula of the
phonon self-energy [65, 83,84] as well as in the coupling to coherent phonons [60, 67, 85].
However, in the present context the use of a bare g complicates the formulation since both
intraband and interband e-ph coupling must be accounted for. In fact, the dressing of g“/ and
g""/ is mainly due to g and g"°.

The XBE form a minimal set of equations for describing exciton formation, diffusion and
thermalization for not too high excitation densities. They can be improved along several direc-
tions that we wish to discuss here. First, the lifting of the Markov approximation through the
introduction of higher order correlators. This idea has been already implemented in nonequi-
librium systems of electrons [32, 80, 86-88] and bosons [38, 89-91] for several many-body
approximations, and it is also possible to implement it in this context. Second, the extension
to nonequilibrium phonons. In this work, we have assumed that phonons remain in thermal
equilibrium. However, at sufficiently high excitation densities, this assumption becomes un-
realistic. The equation of motion for the phonon occupations can be derived following the
approach outlined in Ref. [67]. However, the phononic self-energy must be refined to account
for excitonic effects in the polarization. Third, at large enough excitation density the Coulomb
mediated exciton-exciton scattering can no longer be ignored. This interaction has been in-
vestigated in Refs. [92-94], and it gives rise to additional rates in the equations of motion.
Fourth, excitons can strongly couple to coherent optical phonons. This interaction is governed
by the bare e-ph coupling [60, 85] and is responsible for a time-dependent shift of the exci-
ton energies. Given the long timescale of optical nuclear displacements, we expect that an
adiabatic approximation of the XBE, i.e., E;q — E;q(t), is reasonably accurate. Fifth, the
inclusion of exciton recombination through the quantized treatment of photons. This aspect
has been already covered in, e.g., Ref. [53], and does not present criticalities as the ab initio
Hamiltonian for electrons and photons has long been well established.

We hope that our contribution can clarify the pitfalls inherent in model Hamiltonians,
serve as a solid ground for the development of a rigorous theory of nonequilibrium excitons,
phonons and photons, and inspire parameter-free numerical schemes for real-time simulations
of excitonic materials.
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A On the polarization rates
For the evaluation of Eq. (45) we assume that the Green’s function Gk with band indices
u, u’ either both conduction or both valence is diagonal. Let us analyze [ZFM (2,2)G(zZ, z+):|cvk.

Focusing solely on the dependence on the electronic band indices, this term contains either
G, (2,2)8°G,,,(Z,27) or g7°1G, ,, (3,2)g°""" G, (Z,27). The second diagram in Fig. 1
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contributes as [2(1)(2,5)G(£,z+)]wk. We have the following possible structures

g6, (2,2)G,,,(Z,2")g>?4 G, (Z7,2')G,, (2, 2), (91a)
871Gy, (2,2)G,,, (2,2")g7%G, ., (2",2))G,, (2, 2), (91Db)
§¥G, , (2,%)G,,,, (#',2")g""1"G,,,,(2",2)G,, (2,2), (910)
g¥9G,,, (2,2)G,,,, (2,278 G,,, (8",2))G,,, (3,2). (91d)

We see that the first and third combinations are linear in the off-diagonal G whereas the
second and third combinations are cubic, and can therefore be ignored. We finally consider
[2(2)(z,£)G(2,z+)]cvk. We have the following possible structure

G\, #,2")812G,,,,(2",2)G,,, (2,2)§7“ G, (2, 2), (92a)
G,,#,2")g12G,,,,(2",2)G,,, (2,2)8"" G, (2,2), (92b)
Gep, (2,27)8"12G,,,,(2",2)G, ., (2,2)g%% G, (2, 2), (920)
Gepy, (7,27)8"112G,,,,(2"7,2)G,,,,(2,2)87" G, (2, 2). (92d)

The first and third combinations are cubic in the off-diagonal G, and we discard them. The
second and fourth combinations contain G,,,,(2,2)G,,(%,2) which scales linearly with the ex-
citation density, and we therefore discard these combinations as well. We can use the ansatz
in Eqgs. (48) to express the off-diagonal elements of L in terms of the irreducible exciton prop-
agator:

7Q N Q

Lok ok, (B:5:2:2) = 2 Ny g (2:,2)0c,0,1 (6), (93a)
"
L i BEED == D N (5,5)Pc 40D (93b)
a
After some algebra we find
(206G ] =i > &SG0N85 (DS (K — Q)Dqqlz.2)

€1CaC3v1,aQ

—i Z a CCl (k) vk, CzV2k1( )p02V1k1 Q(t)gs o (& — Q)Dgq(2,2)-

51C2V1Vz,aQ

(94)

We now contract the left hand side with the exciton wave functions, and expand N in the
irreducible excitonic basis and p in the excitonic basis

ZA§3; 2(2,2)6(E,2M)] =1 Z (Z A0 g fjg(k)Ac " )N~ 0@ 5)p,(D)Dyq(2.2)

cvk 21A,aQ \cc1vk

2 —Q* 5,CoC 2,0
X( Z AC21V1k1 23(1(1 Q)Acszvl )

cac3voky

—i ) (ZA?SE ZC%(R)A?;S)M o0& D)P1,(FIDeo(2,2)

ZMZQQ ccyvk
Al—Q* sv3v2 120
x( Do AT g — QA |- (95)
Cavavaky
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It is useful to define the following quantities

“2Q% _s,cic 1Q ~(c)m
Z A61V1k1 a— IQ%(k], +Q)ACZV1 a Q (Q) (963)
cieovi kg
AQ— Q* s,C1C ?LQ _~(c)AA*
Z AC1V1k1 an/ 2(k1 + Q Q )ACZVI Ct Q/ (Q) (96b)
c16ov1ky
“2.Qx S, VoV AQ-Q _ ~(v))\)u
Z Ac1v1k1 a— 2Q’l (Iky +Q )Aclv2k1+Q’ =8, Q (Q), (96¢)
c1v1voky
AQ—Q'x _s,vyv 2AQ ~(v)A Ax
Z A01V1k1+Q’gaQ2’ ' k1 avoky T 8o Q (Q) (96d)

c1v1vaky

where we use the property gZIQ(k) g;)g*(k—Q), see Eq. (20). Then we can rewrite Eq. (95)
as

SN2 06E D] =i D D B D QN _o(z,2)

cvk 2 129 aQ
~(€)A1 A ~(V)21 A
x [0 (—Q) — 801" (—Q) |os, (DDag(z.2). (97
Proceeding along the same lines we can show that

ZA?:/)ﬁ G(z,2)%(z, Z+) cvk - Z Z ~(V)l17t*( Q)NXI_Q(Z,g)

cvk Al Ay aQ

x[2917(-Q) - 200" (-Q) o, DDugl.2).  (98)

The collision integral S, is the difference between Egs. (97) and (98). Using the definition of
the irreducible exciton-phonon coupling in Eq. (54) we conclude that

smmZZJd G QN o550 (@)1, (DD, o(z,5), (99)

Aia, @Q

where we rename Q — —Q.
We now observe that for any Keldysh function k(z,z’)

f dz k(z,%) = J dtkR(t, ©). (100)
Taking into account that for the product of functions [64]
[NDI¥(t,t) = N¥(t,©)D> (¢, ) + N<(¢t, F)DR(t, 1), (101)

we can rewrite Eq. (105) as

s:0=1 3 S F

A1, 0Q
t
F[NR (+ F\D< 2 N< (¢ F\DR z z
x f di [Nilq(t’ D5 o(t, 1) +N711Q(t, E)Dy_o(t, B)]pa, (D). (102)

To evaluate this quantity we use the MGKBA in Eq. (76) for N, the dressed D of the Born-
Oppenheimer approximation [67]
o(t—
(t t )_ ( )|: aQ(t)e lwaQ(t t)+n (t)elwaQ(t t):|
(l)aQ

+9(t —t)[

- (t Ye{@aolt= t)—l—n olt el ®@aalt= t)] (103)
2iwgyq
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Zpu/k =

Figure 4: Overscreening-free approximation of the phononic self-energy leading to a
formulation in terms of bare e-ph couplings.

where nj, = f(fg and ng, (t) = f(fg + 1, and approximate

pa(t)) = e =00, (), (104)

see Eq. (55). A technical remark. The self-energy in Fig. 1 is not positive definite in the sense
of Ref. [95], and it gives rise to complex rates for nonvanishing phononic coherences ©,q =

O4—q(t) = ( aQ ba_ ). We therefore discard phononic coherence in our treatment. Taking the
Markovian limit we find

1 1
$:0=5 25 [T 0+ TR0 020, (105)
Z/A//Q
where
7L Ax =2
- CNC)
F;);’A//Q =27 Z 20 o [5(E7L/Q E)L”O + Cl)aQ)na -Q + 5(EA/Q El//O — waQ)n:Q],
a a
(106a)
A Ak A
= (Q)Q Qr_ ~ -
Flz’l”Q = 27'[2 20 o [5(E1/Q_El”0 +waQ)—5(E;,Q—EMO—waQ)].
a a
(106b)

The result reduces to Egs. (56) and (78) when retaining only the contribution A" = A.

B Irreducible excitons or bare e-ph coupling?

The challenge in formulating the theory using excitons instead of irreducible excitons lies in the
appearance of the product of bare and screened e-ph couplings in ©.G = g*DgLHEX see dis-
cussion below Eq. (47). Since dynamical effects in the dressing of g are typically disregarded,
the Markov limit would result in non-positive rates. One possible strategy to formulate the
theory exclusively in terms of excitons is to work with bare e-ph couplings.

In Appendix A we have shown that for small excitation densities only ="M+ % contributes
t0 [£G ]k and only =™ + 5@ contributes to [GE],,x. Let us slightly modify the self-energy.
For [£G],,x we use &' = igDGg’, instead of M = ig*DGg®, and evaluate (") with a bare g
on the left (keeping the screened g° at the top), see Fig. 4(a). Then

©G =igDlg® +igD(L%* —¢)g* = igDLS¥(1 —ivLFSX)g = gD HEX g, (107)
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where in the last equality we use Eq. (27). Similarly, for [GX],,x we use &7 = ig°GDg ,
instead of ™ = ig*DGg’, and evaluate (¥ with a bare g on the right (keeping the screened
g*® at the top). We then find

GL=ig°GIDg +ig* (L5 —0)Dg = g(1 — LHSEX))[SEXg — j g D HSEX g (108)

Following the same steps as in Section 3 the equation of motion for the exciton polarization
becomes

d . 1 pol
2;Pr = TP i — 3 AZQ: Dao(0)pa(t), (109)

where the polarization rates are expressed in terms of excitonic energies and wavefunctions

FM,Q = ZTEZ W[5(E}VQ —Ejo+ o)1+ f, o)+ 6(Exg—Epo— waQ)faQ]:
a a

(110)

and G? is the bare exciton-phonon couplings

gz,ll’(Q) = Z A??}*k C1C (kl + Q)Aitzgl _ Z A??}*k VaVp (kl + Q)AC Vol +Q° (111)

c1cov1kg c1v1vaky

The equation of motion Eq. (66) for the incoherent exciton numbers can also be refor-
mulated in terms of only excitons and bare e-ph couplings. According to Eq. (30) we have
L=L1L"—iLMgDgL™. Using this expression and following the same steps as in Section 4
we find

—N‘“c Zr;’f’,{Q(t) loa (D)2, (112)

It is straightforward to verify that also in in this alternative formulation the total number of
excitons satisfies Eq. (68).

The above formulation overlooks an important detail. For a semiconductor in equilibrium
at low temperature it is reasonable to set to zero all matrix elements of L except for L., .,/
and L, /. From Eq. (29) we have (omitting the dependence on momenta and times)

gS,Cc' — gcc/ —l Z Vcdac/Lad,[j[J_'gﬁﬁ‘ (113)

aapp
We see that the dressing of g¢ is due to the interband bare e-ph couplings g’ and g”¢. The
same holds true for the dressing of g”” . Since the interband couplings are not negligible, they

must be included. This complicates the whole theory as the equations of motion can no longer
be closed solely on exciton numbers.
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