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Abstract

We analyze the problem of storing random pattern-label associations using two classes
of continuous non-convex weights models, namely the perceptron with negative margin
and an infinite-width two-layer neural network with non-overlapping receptive fields
and generic activation function. Using a full-RSB ansatz we compute the exact value of
the SAT/UNSAT transition. Furthermore, in the case of the negative perceptron we show
that the overlap distribution of typical states displays an overlap gap (a disconnected
support) in certain regions of the phase diagram defined by the value of the margin and
the density of patterns to be stored. This implies that some recent theorems that ensure
convergence of Approximate Message Passing (AMP) based algorithms to capacity are
not applicable. Finally, we show that Gradient Descent is not able to reach the max-
imal capacity, irrespectively of the presence of an overlap gap for typical states. This
finding, similarly to what occurs in binary weight models, suggests that gradient-based
algorithms are biased towards highly atypical states, whose inaccessibility determines
the algorithmic threshold.
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1 Introduction

One of the very first applications of the physics of disordered systems to machine learning
has been the so-called storage problem. Given a model of a neural network, one asks what
is the volume of networks in the space of weights which correctly classify a given instance
of a (typically random) dataset. In a series of pioneering works [1–4], using tools previously
applied to the study of spin glasses, it was shown that in the limit of large system size a sharp
SAT-UNSAT transition exists, where such volume goes to zero, as the ratio of the dataset-size
to the data dimensionality is increased.

In recent years, this problem has seen a resurgence of interest, and has been framed both
as a model of jamming and a model of machine learning. The first setting has been motivated
by the realization that the storage problem of a simple one-layer neural network (called the
Perceptron [5]) can be interpreted as the "simplest model of jamming" [6], and displays many
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of the critical properties of the jamming transition of soft matter systems [?]. Along these lines
of research, some efforts have been devoted at understanding the universality class of this SAT-
UNSAT (in this contest, jamming) transition [7,8], and identifying further models that belong
to this same universality class [9,10].

The second setting, more relevant to the framing of this paper, has gained momentum as
the need for a theoretical framework explaining the incredible success of deep learning has
emerged. Indeed, most neural networks used in practice are so-called Interpolators, highly
overparametrized networks which achieve zero error on the training set. Understanding how
the set of these Interpolators behaves and how algorithms are able to find them has thus
become crucial. Along these lines, several research directions have emerged. On the one
hand, some efforts have been devoted at studying more realistic neural network and data
models, including multiple layers, non-linear activation functions and non-i.i.d. data [11–17].
On the other hand, rather than asking questions about the existence and size of the set of
solutions, its actual geometry has been investigated [18, 19]. Simple properties such as the
distance between solutions and their connectivity have proven to be insightful and a picture
of how the high-dimensional loss landscape can have a profound impact on the behavior of
algorithms has emerged [20,21].

In binary weights models, for example, the algorithmic threshold has been connected to
the disappearance of a rare cluster of very dense solutions [21–23]. For continuous weight
models instead, the picture is not as clear: the same tools used for binary models provide an
algorithmic threshold that can be easily overcomed by simple algorithms [19].

In this work we consider two of these continuous models, the Tree-Committee Machine [9,
11,12,24] with arbitrary non-linearity and the Spherical Negative Perceptron, and settle a long-
standing open problem about the numerical value of the SAT-UNSAT threshold. Previous esti-
mates were all derived under the Replica Symmetric (RS) and 1-step Replica Symmetry Breaking
(1RSB) assumption, both of which only provide an approximation to the actual value.

Furthermore, we identify a new phase transition line between the Full-Replica Symmetry
Breaking (fRSB) and the Gardner phase in the negative perceptron, where typical solutions
develop a so called Overlap Gap [25]. We discuss this in connection to recently developed
algorithms based on Approximate Message Passing [26, 27], which provably finds solutions
conditioned on the absence of this Overlap Gap.

The rest of the paper is organized as follows. In Section 2 we precisely define these models
and the learning tasks we are interested in, namely the classification of random patterns and
labels. In Section 3 we summarize the main steps in the analytical calculation we performed.
In Section 4 we introduce a simple method through which we are able to compute the exact
SAT/UNSAT threshold of those models with high precision. In Section 5 we study the transition
to the Gardner phase starting from the fRSB phase, and propose an empirical method for the
numerical estimation of this threshold. We also discuss where commonly used algorithms such
as Gradient Descent are able to find solutions.

2 Model and learning task

The model that we will study in this work is a neural network with one hidden layer
having non-overlapping receptive fields and fixed second layer weights, which is known in the
statistical physics literature as the tree-committee machine. The architecture of the network is
depicted in Fig. 1. Mathematically, given a N -dimensional input vector ξ, the output of the
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Figure 1: Tree committee-machine architecture.

network is computed as

ŷ = sign

�

1
p

K

K
∑

l=1

cl ϕ(τl)

�

(1)

where K is the width of the hidden layer, cl are the weights of the second layer and τl is the
l-th receptive field, given by

τ
µ

l ≡ ϕ

 

√

√K
N

N/K
∑

i=1

wl iξl i

!

(2)

where wl i , i ∈
�N

K

�

, l ∈ [K] are the N weights of the first layer and ϕ(•) is a generic acti-
vation function. We will consider in the following the case of spherical weights: individually
wl i ∈ R, but each branch of the weights is constrained to live on the N/K-dimensional sphere
of radius

p

N/K ,
N/K
∑

i=1

w2
l i =

N
K

, i ∈ [K] . (3)

The weights of the second layer will be considered fixed to cl = ±1 or to cl = 1 respectively
depending if the activation function ϕ is odd or not. Another choice could be to impose all the
cl to be 1 and subtract a bias term

p
K b inside the sign of equation (1), so that the preactivation

of the output has zero mean. Notice that in the case of the identity activation functionϕ(h) = h
and for K = 1, we recover the perceptron architecture.

We are interested in learning the weights w , in such a way that they correctly predict
P = αN labels yµ, corresponding to P input patterns ξµ, µ ∈ [P]. In the following we will

call D =
�

ξµ, yµ
	P
µ=1 the training set of the model. In the present paper we will be interested

in the so-called storage problem, i.e. we will take inputs distributed as i.i.d. standard normal
Gaussian variables ξµl i ∼ N (0,1), ∀µ, i, l and the corresponding label will be yµ = ±1 with
equal probability.

We are interested in classifying the input patterns in such a way that the preactivation of
the output is aligned with the correct label within a certain margin κ; in other words we want
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the following constraints to be satisfied

∆µ(w ;κ)≡
yµ
p

K

K
∑

l=1

cl ϕ(τ
µ

l )−κ≥ 0 , ∀µ ∈ [P] (4)

The quantity∆µ(w ;κ) is called the stability of the µ-th pattern of the training set. We will call
the set of w satisfying the constraints in equation (4) the space of solutions of the problem.

Since the labels are random, the problem is not always expected to be satisfiable (SAT).
Indeed, in the large N limit, the problem exhibit a sharp transition at a constrained density
αc(κ) above which the problem becomes unsatisfiable (UNSAT). In the following we will call
αc equivalently as SAT/UNSAT transition or critical capacity. In the soft matter literature, this
also corresponds to the jamming transition [6].

Another interesting problem that we will analyze in the present paper is the so-called neg-
ative perceptron problem. This is recovered by taking K = 1, the identity activation φ(h) = h
and a negative margin κ < 0. For simplicity, whenϕ(•) is a non-linear function, we will always
focus on the case κ= 0.

2.1 Related works

Previous works on the tree-committee machine in the large width limit with sign [11, 12,
28] and other non-linear activation functions such as ReLU [13, 24] have only characterized
the SAT/UNSAT transition in the Replica Symmetric (RS) or 1-step Replica Symmetry Break-
ing (1RSB) approximation. Recently, using fully-lifted random duality theory techniques,
Refs. [29, 30] obtained results compatible with RS, 1RSB and 2-steps RSB approximations.
One of the goals of the present work is to compute exacly αc in the infinite-width limit regime.

The negative perceptron model has been recently studied in connection to jamming in high
dimension [6–8, 31–34]: indeed patterns ξµ, µ ∈ [P] can be thought to represent spherical
obstacles to the possible position that a particle can occupy. The obstacles radius is determined
by κ; jamming is attained by reaching the point where the particle has no available space
and corresponds to the SAT/UNSAT transition. This can be achieved either by “inflating” the
obstacles by increasing the margin, or by increasing the number of obstacles, i.e. α. In this
context the critical exponents of the model were computed [8] and were shown to be exactly
the same as those observed in the jamming of spheres in large dimensions [7]. Recently, the
tree-committee machine with several activation functions and the parity machine with a finite
number of hidden units K [9] have also been shown to pertain to the same universality class.

From the optimization point of view, imposing a negative margin is necessary in order to
obtain a non-convex model: for κ ≥ 0 indeed the space of solutions is convex and algorithms
are able to reach capacity, which can be obtained exactly using an RS ansatz [1,3]. For κ < 0
the space of solution is instead non-convex [35] and, in the overparameterized regime α≪ 1,
it has been shown to be star-shaped [20]. From the point of view of algorithmic dynamics, at
present it is difficult to compare the algorithmic threshold with the capacity transition since, as
in the case of the committee machine, we only know approximations [19] or upper bounds [36]
to the true value of the latter.

In [26], the authors develop an algorithm called incremental Approximate Message Passing
(iAMP), originally devised in [27] for approximating the ground state of the Sherrington-
Kirkpatrick model. Interestingly, this algorithm can be proven to reach capacity, provided that
the typical states exhibit no overlap gap, i.e. the overlap distribution of typical states is with a
compact support. This is what we refer in the rest of the paper as a no overlap gap condition
(nOG). Notice that the nOG condition is weaker than the no-Overlap Gap Property (OGP)
introduced by Gamarnik [25] which is defined for all states, i.e. both typical and atypical,
and that was connected to algorithmic hardness for stable algorithms. In the present paper
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we identify all the regions in the (κ,α) phase diagram that satisfy the nOG and we compute a
new transition line separating a nOG from an overlap gapped phase for the typical states.

3 Accessing the entropy of solutions via the replica method

Following the seminal work by Gardner and Derrida [1, 2] the volume of the space of
solutions can be computed from the partition function

ZD =

∫

dµ(w ) e−βL(w ) =

∫

dµ(w )
P
∏

µ=1

e−βℓ(∆
µ(w ;κ)) (5)

where the measure dµ(w ) contains the spherical constraint in equation (3). The subscript D is
there to remind that the partition function depends on the random realization of the dataset.
Notice that depending on the loss function used, one may explore different kind of regions
of the space of solutions; for example it has been shown that the cross-entropy loss in the
large β limit, tends to focus the measure p(w )∝ e−βL(w ) over particular types of solutions
having lower entropy, but more desirable properties such as a large robustness to perturbations
over inputs and weights (flat minima) and low generalization error [18,19,37]. Here, we are
particularly interested in studying the properties of the most probable solution that satisfies
the constraints in equation (4); those typical solutions can be investigated by studying the flat
measure over the set of all solutions. This corresponds to choosing the so called error-counting
loss

ℓ(x)≡ Θ (−x) . (6)

Using the error counting loss, the partition function in equation (5) becomes, in the large β
limit,

ZD =

∫

dµ(w )
P
∏

µ=1

Θ (∆µ(w ;κ)) =

∫

dµ(w )XD (w ;κ) . (7)

It is also called Gardner volume because it measures the volume of weights that satisfy the
constraints of a correct classification of the training set, equation (4). We are interested in
computing the average log-volume of solutions, i.e. the entropy of the system

φ = lim
N→∞

1
N

ln ZD , (8)

where • denotes the average over the disorder in the dataset.
Since the labels are random, we do not always expect the problem to be satisfiable (SAT).

As shown in many previous works, in the large N limit, the problem exhibit a sharp transition
at a constrained density αc(κ) above which the problem becomes unsatisfiable (UNSAT); at
αc , correspondingly, the entropy diverges to −∞. In the following we will call αc equivalently
as SAT/UNSAT transition or critical capacity. One of the goal of the present work is to compute
exacly αc .

3.1 Replica method

Using the replica trick,

ln ZD = lim
n→0

ln Zn
D

n
, (9)
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the average over the dataset can be performed considering n as an integer. In the derivation,
the order parameters

qab
l ≡

K
N

N/K
∑

i=1

wa
liw

b
li , a < b ∈ [n] , l ∈ [K] , (10)

naturally appear. They represent the overlap between the same hidden unit of two indepen-
dent replicas of the systems. The overlap between different hidden units does not contribute
because they are connected to non-overlapping, uncorrelated portion of the input. We enforce
the definition (10) by using delta functions and their integral representations; this will in turn
introduce the conjugated parameters q̂ab

l with a ≤ b ∈ [n], l ∈ [K]. Notice that we need
also the diagonal conjugated overlaps q̂aa

l in order to enforce the spherical constraint in equa-
tion (3). In the end we get the following representation of the averaged replicated partition,
function

Zn
D =

∫

∏

a<b
l

dqab
l

∏

a≤b
l

dq̂ab
l eNS(q ,q̂) , (11)

where we have defined

S(q , q̂)≡ GS(q , q̂) +αGE(q) , (12a)

GS(q , q̂)≡
1

2K

∑

ab

∑

l

qab
l q̂ab

l −
1

2K

K
∑

l=1

lndet q̂ l , (12b)

GE(q)≡ lnEy

∫

∏

la

dλa
l dλ̂a

l

2π

∏

a

e−βℓ
�

yp
K

∑K
l=1 cl ϕ(λa

l )−κ
�

ei
∑

la λ
a
l λ̂

a
l −

1
2

∑

ab,l qab
l λ̂

a
l λ̂

b
l , (12c)

and we have understood that qaa
l = 1 because of the spherical constraint (3). The conju-

gated parameters satisfy saddle point equations that can be explicitly solved: qab
l =

�

q̂−1
l

�ab
.

Therefore the averaged replicated partition function can be written more compactly as

Zn
D =

∫

∏

a<b
l

dqab
l eNS(q) , (13)

where

S(q)≡ GS(q) +αGE(q) , (14a)

GS(q)≡
1

2K

K
∑

l=1

ln detq l , (14b)

GE(q)≡ lnEy

∫

∏

la

dλa
l dλ̂a

l

2π

∏

a

e−βℓ
�

yp
K

∑K
l=1 cl ϕ(λa

l )−κ
�

ei
∑

la λ
a
l λ̂

a
l −

1
2

∑

ab,l qab
l λ̂

a
l λ̂

b
l . (14c)

Notice that we recover the perceptron by imposing ϕ(x) = x and K = 1. We write both the
entropic and energetic terms for later convenience

GS(q) =
1
2

lndetq , (15a)

GE(q)≡ lnEy

∫

∏

a

dλadλ̂a

2π

∏

a

e−βℓ(yλ
a−κ)ei

∑

a λ
aλ̂a− 1

2

∑

ab qabλ̂aλ̂b
l (15b)

= lnEy e
1
2

∑

ab qab ∂ 2

∂ ha∂ hb
∏

a

e−βℓ(yha−κ)

�

�

�

�

�

ha=0

.
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In the last step we have integrated over the λ̂a variables and used the following set of identities
∫

∏

a

dλa

p

2πdetq
e−

1
2

∑

ab[q−1]ab
λ̂aλ̂b

∏

a

g(λa) =

∫

∏

a

Dλa
∏

a

g

�

∑

b

[
p

q]ab λb

�

=

∫

∏

a

Dλa e
∑

ab[
p

q]ab
λb d

dha

∏

a

g (ha)

�

�

�

�

�

ha=0

= e
1
2

∑

ab qab d2
dhadhb

∏

a

g (ha)

�

�

�

�

�

ha=0

,

(16)

where g(•) is a generic function and Dλ ≡ dλp
2π

e−
λ2
2 . We have also used the notation

p
q to

denote the square root of the symmetric (and therefore positive semidefite) overlap matrix qab.

3.2 Large width limit

The large number of hidden units limit can be performed before imposing the ansatz over the
replica indices of the overlap matrix qab

l . An important point to notice in this regard is that
since the weights are not overlapping and have access to uncorrelated portions of the input,
clearly qab

l must be independent on l on average. We can exploit this to simplify notably the
entropic and energetic terms. The entropic term is easy and it reads

GS(q) =
1
2

ln detq . (17)

In the energetic term (14c) we have instead to use the central limit theorem on the variable
ua =

1p
K

∑K
l=1 cl ϕ(λa

l ). This can be done extracting the variables ua from the loss function
in (14c) via n delta functions, inserting their integral representations, Taylor expanding at
second order and re-exponentiating. Performing those steps and using identity (16) we get

GE(q)≡ lnEy

∫

∏

a

duadûa

2π
ei
∑

a ua ûa

∫

∏

la

dλa
l dλ̂a

l

2π

∏

a

e−βℓ(yua−κ)

× ei
∑

la λ
a
l λ̂

a
l −

1
2

∑

ab,l qab
l λ̂

a
l λ̂

b
l −i

∑

a ûa
1p
K

∑K
l=1 cl ϕ(λa

l )

= lnEy

∫

∏

a

duadûa

2π
ei
∑

a ua ûa

∏

a

e−βℓ(yua−κ)e−i
∑

a ûa Ma−
1
2

∑

ab∆ab ûa ûb

= lnEy e
1
2

∑

ab∆ab
∂ 2

∂ ha∂ hb

∏

a

e−βℓ(y(Ma+ha)−κ)

�

�

�

�

�

ha=0

,

(18)

where Ma and∆ab represents respectively the mean and the covariance matrix of the variable
ua, i.e.

Ma ≡ mc

∫

∏

a

dλa
l dλ̂a

l

2π
ei
∑

a λ
a
l λ̂

a
l −

1
2

∑

ab qabλ̂a
l λ̂

b
l ϕ(λa

l )≡ mc 〈ϕ(λa)〉 , (19a)

∆ab ≡ σc

�


ϕ(λa)ϕ(λb)
�

− 〈ϕ(λa)〉



ϕ(λb)
��

, (19b)

with mc ≡
1p
K

∑K
l=1 cl and σc ≡

1
K

∑K
l=1 c2

l . They can also be written more compactly using
identity (16) as

Ma ≡ mc e
1
2

∑

ab qab ∂ 2
∂ sa∂ sb ϕ(sa)

�

�

�

�

sa=0
, (20a)

∆ab ≡ σm e
1
2

∑

ab qab ∂ 2
∂ sa∂ sb ϕ(sa)ϕ(sb)

�

�

�

�

sa=0
−m2

c MaMb . (20b)
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Notice that in our case the mean Ma is always vanishing: if the activation function is odd
indeed 〈ϕ(λa)〉= 0, whereas if the activation function is even mc = 0 since cl = ± with equal
probability in order to prevent the model to have a bias towards positive or negative labels.
We therefore get the following integral representation of the model in the large K limit:

Zn
D =

∫

∏

a<b

dqab eNS(q) , (21a)

S(q) =
1
2

ln detq +α ln

 

Ey e
1
2

∑

ab∆ab
∂ 2

∂ ha∂ hb

∏

a

e−βℓ(yha−κ)

�

�

�

�

�

ha=0

!

. (21b)

Notice that this expression is exactly equal in form to that of the perceptron model, see equa-
tion (15); the only difference is that instead of having the matrix qab we have an effective
order parameter ∆ab which is a function through ϕ(·) of qab. This has been evidenced for the
first time in [24]. The quantity ∆ab is also exactly identical to the so-called Neural Network
Gaussian Process (NNGP) kernel [38] that appears as the covariance matrix of the function
implemented by a neural network at initialization (i.e. with random weights) in the infinite
width limit and given two different inputs [39,40]. Here, the only difference is that this quan-
tity does not depend on the overlap between those two inputs, but it depends instead on the
average overlap qab between two different replicas of the weights extracted from the Gibbs
measure.

3.2.1 Saddle point equations

In the large N limit, the averaged replicated partition function in equation (21) is dominated
by the saddle points of the action S(q). The entropy of the system can be therefore written as

φ = lim
n→0

max
q

S(q)
n

. (22)

The stationary points of the action can be obtained by imposing that the first derivative of the
action vanishes. This set of n(n−1)

2 saddle point equations read, in the large width limit, as

q−1
cd = −α

d∆cd

dqcd

Ey e
1
2

∑

ab∆ab
∂ 2

∂ ha∂ hb
∂ 2

∂ hc∂ hd

∏

a e−βℓ(yha−κ)
�

�

�

�

ha=0

Ey e
1
2

∑

ab∆ab
∂ 2

∂ ha∂ hb
∏

a e−βℓ(yha−κ)

�

�

�

�

ha=0

, c < d ∈ [n] (23)

where
d∆ab

dqab
= e

1
2

∑

cd qcd ∂ 2
∂ sc∂ sd

∂ ϕ(sa)
∂ sa

∂ ϕ(sb)
∂ sb

�

�

�

�

sa=0
. (24)

3.3 Full Replica Symmetry Breaking ansatz and variational formulation

In order to solve the saddle point equations in the small n limit, one needs to impose some type
of ansatz on the structure of the replica overlap matrix qab. Here we consider the most general
type of ansatz, the k-steps Replica Symmetry Breaking (k-RSB) ansatz [41–43], in which it is
assumed that the overlap matrix assumes the k + 1 values q0, q1, . . . , qk. Defining the set of
integers 1 = mk ≤ mk−1 ≤ · · · ≤ m0 ≤ m−1 ≡ n with ms−1 divisible by ms for s = 0, . . . , k − 1
the overlap matrix qab is written in the k-RSB ansatz as

qab = q0 +
k
∑

s=0

(qs+1 − qs)I
ab
n,ms

(25)
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where Iab
n,ms

is the (a, b) element of a block matrix of size n×n whose blocks have size ms×ms
and contains all ones and all zeros respectively inside and outside the blocks. We have under-
stood in the previous equation that qk+1 = 1.

In the following we will use the square bracket notation [•]s to denote the operation of
extracting step s+1 from the k-step RSB matrix in its argument, i.e., for example,

�

qab
�

s = qs.
As we show in appendix B also the NNGP kernel ∆ab assumes a k-RSB form with the same
block structure of qab; in addition the s+ 1-th step of ∆ab is given by a simple function of the
(s+ 1)-th step of the matrix qab

[∆ab]s =

∫

Dx

�∫

D y ϕ
�
p

qs x +
p

1− qs y
�

�2

≡∆(qs) (26)

We report in appendix B the expression of the entropic and energetic term in the small n-limit
for the k-step RSB ansatz.

In the small n limit, the parameterization (25) is equivalent to requiring that the matrix
qab is parameterized by a stepwise function q(x) in the interval x ∈ [0,1]

q(x) = qs , x ∈ [ms−1, ms) , s = 0, . . . , k . (27)

In the large number of steps limit q(x) tends to a continuous function and so does the NNGP
kernel function ∆(q). This is what is called full-RSB ansatz (fRSB). When we are in the fRSB
phase, we expect the q(x) that maximises the free energy [21] to have the following shape:
for x ∈ [0, xm) and x ∈ [xM , 1), q(x) is constant and equal to qm and qM respectively, while
for x ∈ [xm, xM ] it is a continuous monotonic function of x . In the Replica Symmetric (RS)
phase instead, we expect the q(x) to be constant and equal to a single value q.

Although the function q(x) is not of easy interpretation, it is connected to a fundamen-
tal quantity, namely the probability distribution of the overlap between two samples of the
uniform measure over solutions

P(q) =

∫

dµ(w 1)dµ(w 2)XD (w 1;κ)XD (w 2;κ)δ

 

q−
K
N

N/K
∑

i=1

w1
l iw

2
l i

!

(28)

Indeed it can be shown that if we denote by x(q) the inverse function of q(x), then P(q) = d x(q)
dq

(or in other word x(q) is the CDF of P(q)).
Performing the continuous limit, the fRSB entropy can be written as

φ = GS +αGE (29a)

GS ≡ lim
n→0

GS

n
=

1
2

�

ln(1− qM ) +
qm

λm
+

∫ qM

qm

dq
λ(q)

�

(29b)

GE ≡ lim
n→0

GE

n
=

∫

dhN∆(qm)−∆(0)(h) f (qm, h) (29c)

having indicated with Nσ(h)≡ e−
h2
2σp

2πσ
and by λ(q) the continuous limit of the eigenvalues of a

k-RSB matrix (see also section A.2), i.e.

λ(q) =

∫ 1

q
dq′x(q′) . (30)

10
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The function of two variables f in the energetic term satisfies the following partial differential
equation (PDE) [44,45]

f (qM , h) = ln

∫

dzN∆(1)−∆(qM )(z + h) e−βℓ(z−κ) (31a)

ḟ (q, h) = −
1
2
∆̇(q)

�

f ′′(q, h) + x(q) f ′(q, h)2
�

(31b)

having denoted with a upper dot the derivative with respect to q and with a prime the deriva-
tive with respect to h. The second equation (31b) is a slight variation to the Parisi’s equation
which is obtained in the case ∆(q) = 1 i.e. in the linear activation (perceptron) case. Notice
that for both the error counting loss and the quadratic hinge loss, the initial condition, equa-
tion (31a), can be explicitly solved analytically; in particular, in the large β limit, in both cases
one has

f (qM , h) = ln H

�

κ+ h
p

∆(1)−∆(qM )

�

(32)

where H(x) ≡ 1
2Erfc

�

xp
2

�

. The saddle point equations in the continuous limit are difficult to
derive differentiating equation (29c) with respect to x(q), because f depends implicitly on
x(q) through equation (31b). As suggested in [46] we can remove this dependence by using
Lagrange’s method [45,46]

φvar =
1
2

�

ln(1− qM ) +
qm

λm
+

∫ qM

qm

dq
λ(q)

�

+α

∫

dzN∆(qm)−∆(0)(z) f (qm, z)

−α
∫ +∞

−∞
dh P(qM , h)

�

f (qM , h)− ln

∫

dzN∆(1)−∆(qM )(z + h) e−βℓ(z−κ)
�

+α

∫ 1

0

dq

∫ +∞

−∞
dh P(q, h)

�

ḟ (q, h) +
∆̇(q)

2

�

f ′′(q, h) + x(q) f ′(q, h)2
�

�

.

(33)

Deriving φvar with respect to x(q) we get the saddle point equations in the continuous limit

qm

λ2
m
+

∫ q

qm

dp
λ2(p)

= α∆̇(q)

∫

dh P(q, h) f ′(q, h)2 . (34)

Differentiating with respect to f (qm, h) and f (q, h) we get that the function P satisfies a PDE
of the Fokker-Planck type

P(qm, h) =N∆(qm)−∆(0)(h) , (35a)

Ṗ(q, h) =
∆̇(q)

2

�

P ′′(q, h)− 2x(q)
�

P(q, h) f ′(q, h)
�′�

(35b)

which can be shown to be equal to the continuous limit of iteration rule given in appendix,
equation (99).

We show in appendix B how to solve equations (31) and (34) numerically by writing them
in a discretized version that correspond to a finite number k of steps of RSB. Once they are
solved for a particular guessed value of q(x) in the interval [xm, xM ], the updated q(x) can be
computed from equation (34).

3.4 Instability of the ansatz

The continuous limit and the variational formulation of the saddle point described above can
be also useful as a tool to derive equations describing the instability of the ansatz itself. In

11
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Figure 2: Overlap q(x) for the infinite-width tree committee machine, with ReLU non-
linearity near the onset of RSB which happens at αdAT ∼ 1.7212 [24] (left panel),
and near the critical capacity regime (right panel).

order to do that we need to derive equation (34) written in terms of x ,

qm

λ2
m
+

∫ x

xm

d y
q̇(y)
λ2(y)

= α∆̇(q(x))

∫

dh P(x , h) f ′(x , h)2 (36)

with respect to x . We use the identity

∂

∂ x

∫

dh P(x , h) g(x , h) =

∫

dh P(x , h)Ω(x , h) g(x , h) (37)

where Ω(x , h) is the differential operator

Ω(x , h) =
∂

∂ x
+
∆̇

2
dq
d x

�

∂ 2

∂ h2
+ 2x f ′(x , h)

∂

∂ h

�

. (38)

Deriving equation (36) with respect to x once, assuming that dq
d x ̸= 0 (i.e. x is considered to

be in the interval [xm, xM ]) and using Parisi’s equation (31) we have

1
λ2(q)

= α∆̈(q)

∫

dh P(q, h) f ′(q, h)2 +α∆̇2(q)

∫

dh P(q, h) f ′′(q, h)2 . (39)

This equation computed at the k-RSB level will give us a prediction of the ansatz instability,
i.e. the value of α for which the chosen ansatz does not hold anymore. In the appendix
we show how this expression reproduces the de Almeida-Thouless (dAT) instability [47] when
equation (39) is evaluated with a Replica Symmetric (RS) ansatz (q(x) = q for any x ∈ [0, 1]),
and the so-called Gardner transition line [48] when evaluated using a one-step RSB ansatz.

3.5 Breaking point update

From the numerical point of view, even the breaking points xm and xM need to be found.
An update equation for each one of them can be obtained [49] deriving equation (39) with
respect to x . Again assuming dq

d x ̸= 0 and solving for x

x =
λ(x)

2

∫

dh P(x , h)
� ...
∆ f ′(x , h)2 + 3∆̇∆̈ f ′′(x , h)2 + ∆̇3 f ′′′(x , h)2

�

∫

dh P(x , h)
�

∆̈ f ′(x , h)2 + ∆̇2 f ′′(x , h)2 +λ(x)∆̇3 f ′′(x , h)3
� (40)

12
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Figure 3: Minimum and maximal overlap qm and qM as a function of α in the case of
the ReLU (left panel) and Erf activation functions (right) with κ = 0. For α ≤ αdAT ,
the RS ansatz is correct so qm = qM . For α→ αc we have that qM → 1. (Inset) We
show that qM scales as a power law, see equation (44), with an exponentσ ≃ 1.4157.
Dots are exact numerical solutions, lines are power-law fits.

which in the case of the identity activation function ∆(q) = q reduces to [8]

x =
λ(x)

2

∫

dh P(x , h) f ′′′(x , h)2
∫

dh P(x , h) [ f ′′(x , h)2 +λ(x) f ′′(x , h)3]
. (41)

Once equations (31), (35) and (34) are solved for a guess of xm and xM , they can be
updated using equation (40); the whole process is iterated until convergence is reached. We
refer to the appendix B for an in-depth discussion of the numerical procedure used.

In Fig. 2 we show the resulting plots of q(x) for several values of α starting from the onset
of RSB at αdAT in the case of the ReLU activation function ReLU(z) =max(0, z).

4 Exact determination of the SAT/UNSAT transition

In order to determine the SAT/UNSAT transition, a possible strategy is to perform the
qM → 1 limit inside the fRSB equations. This has been performed in [7, 8], in order to de-
termine the critical exponents of jamming. However the resulting equations are not easy to
analyze numerically. Here we adopt another simpler approach that consists in evaluating an
observable whose behavior near the SAT/UNSAT transition can be analytically predicted.

This observable is called the reduced pressure and it is proportional to the derivative of the
free entropy with respect to the margin

p̃ = −
1
α

∂φ

∂ κ
(42)

The name “pressure” comes from the fact that when we differentiate the free energy with
respect to the volume one gets the pressure: in the sphere packing interpretation of the neg-
ative perceptron problem, a variation with respect to κ is indeed equivalent to a change of
the particle volume [6]. We refer the reader to appendix C for a connection of the reduced
pressure to the stability distribution. Reminding that the evolution equations for the functions
f̃ (qm, h) = f (xm,−h− κ) and P are independent on κ, one gets

p̃ = −
1
α

∂φ

∂ κ
= −

∫

dh P(qm, h) f ′(xm, h) = −
∫

dh P(qM , h) f ′(qM , h) (43)

13



SciPost Physics Submission

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1.8 2 2.2 2.4 2.6 2.8 3

1
/p

̃

α

RS
1RSB
k=100

0

0.01

0.02

0.03

2.6 2.61 2.62 2.63 2.64 2.65 2.66 2.67

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4

1
/p

̃

α

RS
1RSB
k=100

0

0.01

0.02

0.03

0.04

2.3 2.32 2.34 2.36 2.38

Figure 4: Inverse reduced pressure as a function of the constraint density α in the
case of the infinite-width tree committee machine, with ReLU (left panel) and Erf
(right) activation functions with κ= 0. The blue and orange lines represents RS and
1RSB predictions. The red dots represent the solutions obtained by using k = 100
steps of RSB. For α→ αc the inverse reduced pressure scales as p̃−1 ∼ α− αc . The
red line represents a fit to the k-RSB data near the critical capacity.

ReLU Tanh Erf Swish
αdAT 1.721195 1.7530 1.71995 1.805634
αRS

c
2π
π−1 ≃ 2.934 2.3556 2.4514 2.42416

α1RSB
c 2.66428 2.306265 2.37499 2.3855699
αfRSB

c 2.6504(5) 2.3049(0) 2.3733(5) 2.3838(3)

Table 1: dAT and exact SAT/UNSAT transition for some activation functions with
κ = 0. We also show for comparison the SAT/UNSAT transition computed in the RS
approximation.

Now we use the (not yet mathematically proven) fact that upon approaching the SAT/UNSAT
transition, p̃ scales as [8,50]

p̃∝
1

αc −α
(44)

We show in Fig. 4 a validation of this scaling from the numerical solution of our fRSB equation.
We applied this strategy to the non-linear two-layer networks defined in section 2 with zero
margin, κ= 0. We show in Fig. 4 the inverse reduced pressure as a function of α for the ReLU
and Erf activations computed using k = 100 steps of RSB; a linear fit to the numerical data is
also presented. We show for comparison also the inverse reduced pressure computed at the
RS and 1RSB level. In Table (1) we summarize our findings for the value of the SAT/UNSAT
transition for several activation functions. We also report the constraint density where RSB
effects arise and the SAT/UNSAT transition computed in the RS and 1RSB approximations
(whose derivations can be found respectively in appendix B.4 and B.5).

5 Gardner phase in the negative perceptron and the no Overlap
Gap condition

In this section we focus on the case of the Negative Perceptron. While in two-layer networks a
non-convexity is already present due to the non-linear activation function of the hidden layer,
in the case of the perceptron one needs to achieve non-convexity by using a negative margin
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κ < 0. We will thus be concerned with the whole (κ,α) phase diagram, while in the previous
section we limited ourselves to the κ = 0 case. In subsection 5.1 we remind the full phase
diagram of the model, whereas in subsection 5.2 we unveil the presence of a line separating
two phases, where typical states respectively have or do not have an overlap gap. We refer to
appendix B.5 the phase diagram of the tree-committe machine with ReLU activation.

5.1 Phase Diagram

Depending on the value of the load α and the margin κ, the model exhibits a variety of phases,
the boundaries of which were calculated in [8]. In the appendix we sketch how these lines
can be estimated, while here we summarise what the phases are, and what type of q(x) we
expect in each phase. A plot of the phase diagram is reported in Figure 5.

For α < αdAT , the RS solution is stable, and we thus expect q(x) to be constant. Increasing
α above αdAT we enter different phases depending on the value of κ:

• For κ1RSB < κ < 0, the system goes into a fRSB phase, which we have described above,
through a continuous phase transition.

• For κRFOT < κ < κ1RSB the system passes into a 1RSB phase, always through a continu-
ous phase transition, before entering at larger value of α into a fRSB phase. In the 1RSB
phase, q(x) is a stepwise function, with q(x) = q0 for x < m and q(x) = q1 for x ≥ m.

• For κ < κRFOT the system goes into a sequence of phase transitions that are also encoun-
tered in infinite-dimensional theories of glasses and that are known as Random First
Order Transitions (RFOT). Firstly, (before RS becomes unstable), for αdyn < α < αK the
system enters a “dynamical 1RSB” phase: although the free energy is equal to that found
using an RS ansatz, the equilibrium measure decomposes into an exponential number of
pure states. This corresponds to having an 1RSB phase with m= 1. Further increasing α
above αK , we cross the Kauzmann line, indicating the onset of a 1RSB phase with m< 1.
Finally, for α > αG the system enters a Gardner phase, where the q(x) exhibits both a
1RSB-like discontinuity at x = m, and an fRSB-like continuous part for xm ≤ x ≤ xM ,
with m≤ xm.

5.2 Gardner Phase, Overlap Gap and Algorithmic Implications

It is natural to wonder where the boundary between the fRSB and Gardner phase lies, as this
has important algorithmic consequences. Indeed, Refs. [26,27] analyzed an algorithm called
Incremental AMP (iAMP) which provably finds a solution in the whole SAT phase, provided
that the distribution of overlaps of typical states has compact support. Throughout the paper
we called this the No Overlap Gap condition (nOG). This property holds in the fRSB phase,
however it does not in the Gardner phase (nor in the 1RSB phase). The boundary between
these phases could thus act as an algorithmic threshold, at least for iAMP.

Our contribution is thus to give a numerical estimate of this line, which we call α1+ f RSB.
Rather than looking at the q(x) directly, we use a more precise criterion. Starting in the fRSB
phase for a suitable fixed value of κ, we look at the derivative of q(x), which can be calcu-
lated analytically in the region [xm, xM ] (see appendix D). Then we increase the value of α;
α1+ f RSB corresponds to the first point where q̇(xm) becomes negative. Solutions with negative
derivative are unphysical, so they signal a discontinuity in the function, which corresponds to
a gap in the overlap distribution. More details and several plots of q(x) and q̇(x) near the
transition to the Gardner phase are reported in Appendix D. Notice that a similar criterion was
used in [8] to determine the numerical value of κ1RSB.
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Figure 5: Phase Diagram of the Negative Perceptron. The dynamical transition
line αd yn(κ) that exists for κ < κRFOT is not displayed for clarity reasons, but it
can be found in [19]. Dashed lines represent linear interpolations of the Gardner
and 1+fRSB transitions to their intersections with the dAT line which happens at
κ = κ1RSB. The dotted line represents the critical capacity evaluated with the RS
ansatz.

6 Numerical Simulations

In this section we compare our estimates of the critical capacity with the performance of Gra-
dient Descent (GD), a first-order optimization method which is a variant of the most widely
used optimization algorithm for neural networks, Stochastic Gradient Descent (SGD).

In order to find a solution using GD we used a (differentiable) loss function L(w )

L(w ) =
αN
∑

µ=1

ℓ(∆µ(w ;κ)) (45)

where ℓ(•) is a loss function per pattern. Generically ℓ(•) is chosen to be small if the stability
of each pattern in the training set is large and large otherwise. Commonly used loss functions
are

ℓ(x) =
1
γ

ln(1+ e−γx) (46a)

ℓ(x) =
x2

2
Θ(−x) (46b)

that are called respectively the cross entropy and quadratic hinge loss.
A solution is found by running the following iterative scheme

w t+1 = w t −η∇wL(w ) (47)

until all constrains ∆µ(w ;κ) ≥ 0 for µ = 1, . . . , P are satisfied. In this model particular at-
tention needs to be paid to the norm, since we are studying the set of solutions subject to the
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fixed the learning rate η = 1 and the maximum number of training epochs to 105.
The vertical black line represents the exact value of the SAT/UNSAT transition.

constraint given in equation (3), and the dynamics given by equation (47) will not keep the
weights normalized as we want. There are two ways to deal with this:

• Introduce a normalization step after every GD update.

• Keep the norm free to vary, and normalize it when the number of errors is calculated.

When training a tree committee machine we have empirically observed that the first method
leads to a larger probability of finding a solution, while for the negative perceptron the second
method works best.

In figure 6 we show the probability of finding a solution for a the negative perceptron as a
function of α at fixed κ= −0.5,−1.5 and for several values of N . As we can see, as N increases,
the transition between non-solvable and solvable problems becomes sharper. This transition,
however, clearly happens at values of α below the critical capacity, thus implying that there
is an algorithmic gap. Similar conclusions can be drawn in the tree committee machine case
with ReLU activation functions, see Figure 7.
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7 Conclusions

In the present work we studied the storage problem for two prototypical neural network mod-
els, the Negative Perceptron and the Tree-Committee Machine. Using the replica method, we
determined the saddle-point equations that the order parameters need to satisfy, for arbitrary
(negative) margin κ for the first and for arbitrary activation function ϕ for the latter. Focusing
on the Full-RSB region of the phase space, we solved these equations numerically using a k-RSB
ansatz with large k, and used the solutions to compute several observables. By performing a
linear fit of the inverse reduced pressure near the SAT/UNSAT threshold we were able to give
a high precision numerical estimate of this transition.

For the negative perceptron we determined another novel phase transition between a fRSB
and Gardner phase, and gave a numerical estimate of the value of this threshold. We discussed
the no Overlap Gap condition, according to which the support of the distribution P(q) of typical
states is connected, and identified the boundaries of validity of this property in the phase
diagram. The authors of [26] recently proposed an algorithm, iAMP, which provably finds
solutions under the nOG hypothesis. We have showed that this hypothesis does not hold in
the Gardner phase. This could indicate that this transition acts as an algorithmic threshold for
this model.

Finally, we compared our estimates of the SAT-UNSAT threshold with the performance of
Gradient Descent. In all cases analyzed we have given evidence that Gradient Descent stops
finding solutions before the exact SAT/UNSAT threshold that we computed, thus implying the
presence of an algorithmic gap.
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A Properties of k-RSB and fRSB matrices

A.1 Eigenvalues

We derive the eigenvalues of a fRSB matrix by iteration starting from the RS case and
moving to the 1 and 2RSB case. For the sake of generality we will suppose the matrix qab is
parameterized by the value it attains on its diagonal qd and the (step) functions corresponding
to values out of the diagonal: qab→ {qd , q(x)}.

• A RS matrix can be decomposed as a sum of two matrices

qab = (qd − q)δab + q (48)

that commute between each other, so they can be simultaneously diagonalized. An n×n
matrix with all elements equal to q has n−1 degenerate zero eigenvalues and one eigen-
value equal to nq. We therefore get two eigenvalues

λ−1 = qd − q+ nq , d−1 = 1 (49a)

λ0 = qd − q , d0 = n− 1 (49b)

• A 1RSB matrix can be expressed as the sum of 3 terms

qab = (qd − q1)δab + (q1 − q0)I
m0
ab + q0 (50)

where Im0
ab is the n × n matrix having elements equal to 1 inside the blocks of size m0

located around the diagonal and 0 otherwise. Again all the three matrices commute
with each other and can be simultaneously diagonalized. Each of the n/m0 blocks of
Im0
ab has all equal elements equal to 1, therefore it has n

m0
(m0 − 1) eigenvalues equal to

0 and n
m0

equal to m0. We therefore have the following eigenvalues

λ−1 = qd − q1 +m0(q1 − q0) + nq0 , d−1 = 1 (51a)

λ0 = qd − q1 +m0(q1 − q0) , d0 =
n

m0
− 1= n

�

1
m0
−

1
n

�

(51b)

λ1 = qd − q1 , d1 =
n

m0
(m0 − 1) = n

�

1−
1

m0

�

(51c)

• A 2RSB matrix is decomposed as

qab = (qd − q2)δab + (q2 − q1)I
m1
ab + (q1 − q0)I

m0
ab + q0 (52)

repeating the same argument as above we have

λ−1 = qd − q2 +m1(q2 − q1) +m0(q1 − q0) + nq0 , (53a)

λ0 = qd − q2 +m1(q2 − q1) +m0(q1 − q0) , (53b)

λ1 = qd − q2 +m2(q2 − q1) , (53c)

λ2 = qd − q2 , (53d)
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with degeneracies respectively

d−1 = 1 (54a)

d0 =
n

m0
− 1= n

�

1
m0
−

1
n

�

(54b)

d1 =
n

m0
(m0 − 1)−

n
m1
(m1 − 1) = n

�

1
m1
−

1
m0

�

(54c)

d2 = n
�

1−
1

m1

�

(54d)

• Generalizing to a k-RSB matrix we have

λs =
k
∑

i=s

mi(qi+1 − qi) , ds = n
�

1
ms
−

1
ms−1

�

, s = −1 , . . . , k (55)

where we have defined mk = 1, qk+1 = qd and m−1 = n→ 0, q−1 = 0, m−2 =∞. Notice
also that in the small n limit λ−1 = λ0.

In the continuous limit the eigenvalues become a function of x:

λ(x) =

∫ 1

q(x)
dq′x(q′) = qd − xq(x)−

∫ 1

x
d y q(y) (56)

As in the previous sections, we will denote by λm and λM the values of λ corresponding to the
minimum qm and a maximum qM value of the overlap, i.e.

λm = qd −
∫ 1

0

d x q(x) (57a)

λM = qd − qM (57b)

A.2 Inverse

Since k-RSB matrices form a group, the inverse element pab = (q−1)ab must be an element of
the group. Therefore the functional form of the eigenvalues is the same as the one derived be-
fore. Moreover, we know that the eigenvalues are simply 1/λs with s = 0, . . . , k. We therefore
have

k
∑

i=s

mi(pi+1 − pi) =
1

∑k
i=s mi(qi+1 − qi)

(58)

Those are k+1 equations in k+1 unknowns. They can be solved iteratively; first of all taking
the i = k index we get

pd = pk +
1

qd − qk
(59)

By subtracting the (s− 1)-th and the s-th equations we get the recursion

ps = ps−1 +
1

ms−1

�

1
∑k

i=s−1 mi(qi+1 − qi)
−

1
∑k

i=s ms(qi+1 − qi)

�

= ps−1 +
1

ms−1

�

1
λs−1
−

1
λs

�

= ps−1 −
qs − qs−1

λs−1λs
, s = 0 , . . . , k

(60)
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Iterating we get that the inverse of a k-RSB matrix elements are given by

ps = −
q0

λ2
0

−
s
∑

i=1

qi − qi−1

λi−1λi
(61a)

pd =
1

qd − qk
−

q0

λ2
0

−
k
∑

i=1

qi − qi−1

λi−1λi
(61b)

In the k→∞ limit we therefore get

lim
k→∞

ps = p(x) = −
qm

λ2
m
−
∫ x

0

d x
q̇(s)
λ2(s)

= −
qm

λ2
m
−
∫ q

qm

dq′

λ2(q′)
(62a)

lim
k→∞

pd =
1

qd − qM
−

qm

λ2
m
−
∫ 1

0

d x
q̇(s)
λ2(s)

=
1
λM
−

qm

λ2
m
−
∫ 1

0

dq′

λ2(q′)
(62b)

Notice how the right hand side of the first equation above is equivalent to the left hand side
of the saddle point equation (34).

A.3 Log of the determinant

Having computed the eigenvalues of a generic k-RSB matrix with diagonal elements qd , we
are now ready to compute the log of the determinant, which appears in the entropic term, see
for example (77). We are interested as usual in the limit n→ 0. We have

lim
n→0

1
n

lndetq = lim
n→0

1
n

k
∑

i=−1

di lnλi = lim
n→0

� k
∑

i=−1

1
mi

lnλi −
k−1
∑

i=−1

1
mi

lnλi+1

�

=

= ln (qd − qk) +
q0

λ0
+

k−1
∑

i=0

1
mi

ln
λi

λi+1
=

= ln(qd − qk) +
q0

λ0
+

k−1
∑

i=0

1
mi

ln
�

1+
mi(qi+1 − qi)
λi+1

�

(63)

When k is large qi − qi−1 is small, so that, in the continuous limit, we get

lim
k→∞

lim
n→0

1
n

lndetq = ln(qd − qM ) +
qm

λm
+

∫ xM

xm

d x
q̇(x)
λ(x)

(64)

A.4 Asymptotic behaviour of f (ml , h)

We start from the recursion relation in the case of the number of error loss function

f (mk, h) = f (xM , h) = ln

∫

dzN∆(1)−∆(qk)(z + h) e−βℓ(z−κ) = ln H

�

κ+ h
p

∆(1)−∆(qk)

�

f (ms, h) =
1

ms
ln

∫

dzN∆(qs+1)−∆(qs)(z − h)ems f (ms+1,z) , s = k− 1, . . . , 0

(65)

We know that

ln H(x)≃ −
x2

2
− ln x −

1
2

ln(2π) as x → +∞ (66)

whereas it goes exponentially to 0 as x →−∞. Therefore

ln H

�

κ+ h
p

∆(1)−∆(qk)

�

=

¨

− (κ+h)2

2(∆(1)−∆(qk))
≡ − (κ+h)2

2Λk
h→ +∞

O(e−h2
) h→−∞

(67)
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where Λk ≡∆(1)−∆(qk). Similarly we will define the quantities

Λs =
k
∑

i=s

mi(∆(qi+1)−∆(qi)) = Λs+1 +ms(∆(qs+1)−∆(qs)) , s = −1, . . . , k (68)

which will appear naturally in the following, and which represent the eigenvalues of the ef-
fective order parameter matrix ∆ab.

The asymptotic behavior of f (mk, h) at at h → ±∞ will induce a similar one for the
functions f (ms, h) with s = k−1, . . . , 0. Let’s start with the case s = k−1. We have for h→∞

f (mk−1, h) =
1

mk−1
ln

∫

dzN∆(qk)−∆(qk−1)(z) e
mk−1 f (mk ,z+h)

=
1

mk−1
ln

∫ ∞

−h
dzN∆(qk)−∆(qk−1)(z) e

−mk−1(κ+z+h)2

2(∆(1)−∆(qk))

≃
1

mk−1
ln

∫ ∞

−h
dz e−

z2

2(∆(qk)−∆(qk−1))
−mk−1(κ+z+h)2

2(∆(1)−∆(qk))

≃ −
(κ+ h)2

2(∆(1)−∆(qk))
+

1
mk−1

ln

∫ ∞

−h
dz e−akz2−bkz

(69)

where we have neglected low order terms in h and defined the quantities

ak ≡
1
2

�

mk−1

∆(1)−∆(qk)
+

1
∆(qk)−∆(qk−1)

�

=
mk−1Λk−1

2Λk(Λk−1 −Λk)
, (70a)

bk ≡
mk−1(κ+ h)
∆(1)−∆(qk)

=
mk−1(κ+ h)

Λk
. (70b)

Using the identity
∫ +∞

γ

dz e−αz2−βz =
s

π

α
e
β2

4α H
�

β + 2αγ
p

2α

�

(71)

and noticing that the argument of the H function bk − 2akh= − h
qk−qk−1

→−∞ we have

f (mk, h)≃ −
(κ+ h)2

2(∆(1)−∆(qk))
+

1
mk−1

ln

�

e
b2
k

4ak H

�

bk − 2akh
p

2ak

��

= −
(κ+ h)2

2(∆(1)−∆(qk))
+

b2
k

4mk−1ak

= −
(κ+ h)2

2Λk
+

mk−1(κ+ h)2(Λk−1 −Λk)
2ΛkΛk−1

= −
(κ+ h)2

2 (∆(1)−∆(qk) +mk−1(∆(qk)−∆(qk−1)))

≡ −
(κ+ h)2

2Λk
(72)

Iterating we get, for s = 0, . . . , k

f (ms, h)≃ −
(κ+ h)2

2Λs
as h→ +∞ (73)

Notice that since∆(qs+1)≥∆(qs), then Λs ≥ Λs+1 for all s = 0, . . . , k; this tells us that f (ms, h)
diverges slower to −∞ for h→ +∞ with respect to f (ms+1, h). Similarly one finds that

f (ms, h)≃ O(e−h2
) as h→−∞ (74)
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B k-steps Replica Symmetry Breaking ansatz

In this first appendix we derive the expressions of the entropic and energetic term for finite
number of breakings of Replica Symmetry [41, 42, 51], and we mention how we have solved
the corresponding saddle point equations. We remind that we call the k + 1 values assumed
by the matrix qab as q0, q1, . . . , qk, and the block sizes respectively as m0, m1, . . . , mk−1. We
will use the square bracket notation [•]s to denote the operation of extracting step s+ 1 from
the k-step RSB matrix in its argument, i.e., for example,

�

qab
�

s = qs.

B.1 Entropic potential

Imposing the k-RSB structure on the overlap matrix qab will enable us to perform the small n
limit

φ =max
q

S(q) (75a)

S(q) = GS(q) +αGE(q)≡ lim
n→0

GS(q)
n
+α lim

n→0

GE(q)
n

(75b)

In order to compute the entropic term GS(q) one needs to compute the eigenvalues of a generic
k-RSB matrix and the corresponding multiplicities. In appendix A.1 we show that there are
k+ 2 eigenvalues λs with multiplicities ds, s = −1,0, . . . , k which read

λs =
k
∑

i=s

mi(qi+1 − qi) , ds = n
�

1
ms
−

1
ms−1

�

, s = −1 , . . . , k (76)

In the previous equations we have used the definitions mk = 1, qk+1 = 1 and m−1 = n,
q−1 = 0, m−2 =∞. Once the eigenvalues are known, one can compute the entropic term,
which consists in computing the log of the determinant of q in the small n limit. We show in
appendix A.3 that it reads

GS(q) = lim
n→0

1
2n

lndetq =
1
2

ln(1− qk) +
q0

2λ0
+

k−1
∑

i=0

1
2mi

ln
�

1+
mi(qi+1 − qi)
λi+1

�

(77)

B.2 Infinite width energetic potential

B.2.1 Effective order parameters and entropy

If we impose a k-RSB ansatz on qab, also the effective order parameters ∆ab

∆ab = e
1
2

∑

ab qab ∂ 2
∂ sa∂ sb ϕ(sa)ϕ(sb)

�

�

�

�

sa=0
(78)

will be a k-steps RSB matrix with the same block size as qab. It is easy to show that the s + 1
step of ∆ab is

�

∆ab
�

s =

∫

Dz0 . . . Dzs

�

∫

Dzs+1 . . . Dzk+1ϕ

�k+1
∑

l=0

p

ql − ql−1zl

��2

=

∫

Dx

�∫

D y ϕ
�
p

qs x +
p

1− qs y
�

�2

≡∆(qs)

(79)
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i.e. it depends on qs only. We have used in the second line the fact that the sum of Gaussian
random variables is still Gaussian distributed (or equivalently, we have performed several 2-
dimensional rotations over the variables z0 . . . zs and zs+1 , . . . , zk+1). Notice that the previous
expression can also be written as a two dimensional Gaussian integral

∆(qs) =

∫

dh

2π
p

detC
e−

1
2 hTC−1hϕ(h1)ϕ(h2) (80)

where

C =
�

1 qs
qs 1

�

. (81)

therefore showing that our effective order parameters are also equivalent to the NNGP kernel
appearing in neural networks at initialization or in the lazy regime. In the following we will
also need the indices l = −1 and l = k+1 in order to write down the expression of the entropy;
consistently with the notation q−1 ≡ 0 and qk+1 ≡ 1, they can be found by substituting them
in (79), i.e.

∆(q−1) =∆(0) =

�∫

Dx ϕ(x)

�2

(82a)

∆(qk+1) =∆(1) =

∫

Dx ϕ2(x) . (82b)

Given those definitions the entropic term reads

GE =
1

m0

∫

Dz0 ln

∫

Dz1






. . .





∫

Dzk+1 e
−βℓ

�p
∆(1)−∆(qk)zk+1−

k
∑

s=0

p
∆(qs)−∆(qs−1)zs−κ

�





mk−1
mk

. . .







m0
m1

(83)

The energetic term can be written more compactly defining a discrete set of functions f (ms, h),
with s = 0, . . . , k, that satisfy the iterative rule

f (mk, h) = ln

∫

dzN∆(1)−∆(qk)(z + h) e−βℓ(z−κ)

f (ms, h) =
1

ms
ln

∫

dzN∆(qs+1)−∆(qs)(z − h)ems f (ms+1,z) , s = k− 1, . . . , 0

(84)

where Nσ(z) ≡ e−
z2
2σp

2πσ
. Notice how the iteration rule for f̃ (m0, h) ≡ f (m0,−h − κ) does not

explicitly depend on κ (this the function that is actually used in [8]). Notice that in error count-
ing loss, which we focus on in this paper, ℓ(x) = Θ(−x) the integral in the initial condition for
f can be explicitly solved, giving

f (mk, h) = ln Hβ

�

κ+ h
p

∆(1)−∆(qk)

�

(85)

where Hβ(x) ≡ e−β + (1− e−β)H(x) and H(x) ≡
∫∞

x D y = 1
2Erfc

�

xp
2

�

. The energetic term
therefore can be expressed in terms of f (m0, h) as

GE =

∫

dhN∆(q0)−∆(0)(h) f (m0, h) (86)
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B.2.2 Effective order parameters for some activation functions

We list here the expressions of the effective order parameters for some activation functions of
interest

• ϕ(x) = x , in the case of the identity activation we get back the perceptron case

∆(q) = q (87)

• ϕ(x) = sign(x) [11,12,28]

∆(q) = 1−
2
π

arccos (q) (88)

• ϕ(x) = ReLU(x) =max(0, x)

∆(q) =

p

1− q2

2π
+

q
π

arctan

�√

√1+ q
1− q

�

(89)

• ϕ(x) = Erf(γx)

∆(q) = 1−
2
π

arccos
�

2γq
1+ 2γ

�

(90)

B.2.3 Alternative approach

One can find (83) directly imposing the k-RSB ansatz on finite width version of the energetic
term, which reads

GE =
1

m0
Ey

∫

∏

l

Dz0
l ln

∫

∏

l

Dz1
l



. . .

�

∫

∏

l

Dzk+1
l e−βℓ

�

yp
K

∑K
l=1 cl ϕ

�

∑k+1
s=0

p
qs−qs−1zs

l

�

−κ
�

�

mk−1
mk

. . .





m0
m1

(91)

We can now use the central limit theorem repeatedly on this expression to perform the large
K limit. We specialize here for simplicity to the number of error loss with β →∞, but the
argument can be trivially generalized to generic loss functions. The innermost K-dimensional
integrals can be simplified as
∫

∏

l

Dzk+1
l Θ

�

y
p

K

K
∑

l=1

cl ϕ

�k+1
∑

s=0

p

qs − qs−1zs
l

�

− κ

�

≃
∫

Dzk+1Θ
�

yM (0) +
p

∆(0)zk+1 −κ
�

= H

�

κ+ yM (0)
p

∆(0)

�

(92)

where M (0) and∆(0) are respectively the mean and the variance with respect to variables zk+1

M (0) ≡
1
p

K

K
∑

l=1

cl

∫

Dhϕ

� k
∑

s=0

p

qs − qs−1zs
l +

p

1− qk h

�

(93a)

∆(0) ≡
1
K

K
∑

l=1

c2
l

�

∫

Dhϕ2

� k
∑

s=0

p

qs − qs−1zs
l +

p

1− qk h

�

(93b)

−

�

∫

Dhϕ

� k
∑

s=0

p

qs − qs−1zs
l +

p

1− qk h

��2
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Iterating the procedure k times we have

GE =
1

m0
Ey

∫

Dz0 ln

∫

Dz1



. . .

�

∫

Dzk Hmk−1

�

κ+ yM +
∑k

s=0

p

∆(qs)−∆(qs−1) zs
p

∆(1)−∆(qk)

��

mk−2
mk−1

. . .





m0
m1

(94)

where ∆(q) is the same kernel function defined in (79) and the mean term is

M ≡ mc

∫

Dx ϕ(x) (95)

where mc =
1p
K

∑

l cl .

B.3 Saddle point equations

The aim of this section is to write the saddle point equations

q−1
cd = −α

∂∆cd

∂ qcd

e
1
2

∑

ab∆ab
∂ 2

∂ ha∂ hb
∂ 2

∂ hc∂ hd

∏

a e−βℓ(ha−κ)
�

�

�

�

ha=0

e
1
2

∑

ab∆ab
∂ 2

∂ ha∂ hb
∏

a e−βℓ(ha−κ)

�

�

�

�

ha=0

≡ −α
∂∆cd

∂ qcd
Mcd (96a)

∂∆cd

∂ qcd
= e

1
2

∑

ab qab ∂ 2
∂ sa∂ sb

∂ ϕ(sc)
∂ sc

∂ ϕ(sd)
∂ sd

�

�

�

�

sa=0
(96b)

in the k-RSB ansatz in a compact form suitable for numerical evaluations. In the k-RSB ansatz,
∂∆cd
∂ qcd

, (q−1)cd and Mcd will be k-RSB matrices as well. Therefore, in order to compute the

update for the overlap qs, we need to compute the matrix elements
�

q−1
�

s, [M]s = Ms and
�

∂∆cd
∂ qcd

�

s
with s = 0, . . . , k. We start from

�

∂∆cd
∂ qcd

�

s
which is

�

∂∆cd

∂ qcd

�

s
=

∫

Dx

�∫

D y ϕ′
�
p

qs x +
p

1− qs y
�

�2

= ∆̇(qs) , s = 0, . . . , k (97)

having denoted by a dot the derivative with respect to q. The matrix elements of Mcd instead
can be written as

Ms =

∫

dh P(ms, h) f ′(ms, h)2 , s = 0, . . . , k (98)

where we have denoted with a prime a derivative with respect to h. P is instead found by the
following iteration rule

P(m−1, h) = δ(h)

P(m0, h) = em−1 f (m0,h)

∫

dzN∆(q0)−∆(q−1)(z − h) P(m−1, z) e−m−1 f (m−1,z) =N∆(q0)−∆(0)(h)

P(ml , h) = eml−1 f (ml ,h)

∫

dzN∆ql
−∆ql−1

(z − h) P(ml−1, z) e−ml−1 f (ml−1,z) , l = 1, . . . , k

(99)

which is the same as Sherrington Kirkpatrick (SK) model, apart for the effective order param-
eters.
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Finally we can get the update for the steps qs, s = 0, . . . , k by computing the inverse ele-
ments of the computed matrix ps ≡ −α∆̇(qs)Ms, s = 0, . . . , k. The inverse elements of a generic
k-RSB matrix with diagonal elements pk+1 ≡ pd are reported in section A.2.

However in order to use those results, we need to know what is the diagonal value assumed
by the k-RSB matrix p, i.e. pk+1 = pd . This can be computed knowing that the corresponding
diagonal value of the overlap matrix q is qk+1 = qd = 1. Therefore we can find pd by exploiting
equation (61); in the end one has to solve the implicit equation

1=
1

pd − pk
−

p0

λ̂2
0

−
k−1
∑

s=0

ps+1 − ps

λ̂sλ̂s+1

(100)

where λ̂s are the eigenvalues of the matrix p

λ̂s ≡
k
∑

i=s

mi(pi+1 − pi) , s = 0, . . . , k (101)

Once pd is computed we can find the corresponding values of qs, using the recursions

qs = qs−1 −
ps − ps−1

λ̂s−1λ̂s

, s = 0, . . . , k (102)

as derived in section A.2.

B.3.1 Summary

To summarize, in order to solve the k-RSB saddle point equations, we use the following pro-
cedure. We start with an initial guess for qs, s = 0, . . . , k and a starting value for the minimal
value and maximal value of x , xm = m0 xM = mk−1. We generate a grid of k − 2 points be-
tween xm and xM , given by m1 < · · · < mk−2; the grid need not to be necessary equispaced.
Then

1. Compute the effective order parameters∆(qs) and their derivatives ∆̇(qs) for s = 0, . . . , k
using respectively (79), (97).

2. Compute f (ms, h) for s = k, . . . , 0 using (84) and P(ms, h) for s = 0, . . . , k using equa-
tions (99).

3. Compute Ms using (98) and then ps = −α∆̇(qs)Ms with s = 0, . . . , k.

4. Compute pd by solving the implicit equation (100).

5. Use relations (102) to get a new estimate of qs from ps.

6. Repeat points 1-5 until convergence.

7. Update the value of the minimal and maximal breaking-point evaluating (40) respec-
tively in m0 and mk−1. Generate a new grid of values of k − 2 points between xm and
xM , given by m1 < · · · < mk−2 and compute the values of qs, s = 0, . . . , k, interpolating
the q(x) obtained at point 6.

8. Repeat points 1-7 until convergence.
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Figure 8: Left panel: q(x) as a function of x before the first and second update of the
breaking points (respectively violet and green line) as described in the text. Right
panel: breaking point update (i.e. the right hand side of equation (40)) as a function
of x . Here we have used ϕ(h) = erf(h) with κ = 0 and α = 2.3. We initialized the
code with xm = 0.001 and xM = 0.9 and we used k = 100. Only two iterations are
sufficient to get a very precise estimate of xm and xM , i.e. the points where green
line departs from the identity (dashed).

Once convergence is reached, we can compute all the observable of interest, in particular the
free entropy as

φ =
1
2

ln(1− qk) +
q0

2λ0
+

k−1
∑

s=0

1
2ms

ln
�

1+
ms(qs+1 − qs)
λs+1

�

+α

∫

dhN∆(q0)−∆(0)(h) f (m0, h) ,

(103)
In the left panel of Fig. 11, in the case ϕ(h) = erf(h), κ = 0 and α = 2.3, we show the plot of
q(x) before and after updating the breaking points for the first time. On the right panel we
show the corresponding update of the breaking points. It is evident that the convergence on
the breaking point is reached very rapidly and most of the situations only two repetitions of
points 1-5 are needed.

B.4 Replica Symmetric ansatz

B.4.1 Entropy and saddle point equations

In the Replica Symmetric (RS) approximation we have, in the infinite β limit the following
entropy

φ = GS +αGE (104a)

GS =
1

2(1− q)
+

1
2

ln (1− q) (104b)

GE =

∫

Dz0 ln H

�

κ+
p

∆(q)−∆(0) z0
p

∆(1)−∆(q)

�

(104c)

31



SciPost Physics Submission

The corresponding saddle point equation for the overlap q reads

q
2(1− q)2

= −α
∂ GE

∂ q
= α∆̇(q)

∫

Dz0





d
dz

ln H

�

z
p

∆(1)−∆(q)

�

�

�

�

�

�

z=κ+
p
∆(q)−∆(0) z0





2

=
α∆̇(q)

∆(1)−∆(q)

∫

Dz0 GH2

�

κ+
p

∆(q)−∆(0) z0
p

∆(1)−∆(q)

�

(105)

B.4.2 dAT instability

Applying the RS ansatz on (36) will allow us to derive the instability of the RS ansatz itself,
know as dAT instability. In this caseλ(q) = 1−q and the solution to the PDEs in equations (31b)
and (35b) is trivial

P(q, h) = N∆(q)−∆(0)(h) (106a)

f (q, h) = ln H

�

κ+ h
p

∆(1)−∆(q)

�

. (106b)

Inserting those identities in (39) we get

1
(1− q)2

= α∆̈(q)

∫

Dh





d
dz

ln H

�

z
p

∆(1)−∆(q)

�

�

�

�

�

�

z=κ+
p
∆(q)−∆(0)h





2

+α∆̇2(q)

∫

Dh





d2

dz2
ln H

�

z
p

∆(1)−∆(q))

�

�

�

�

�

�

z=κ+
p
∆(q)−∆(0)h





2

=
α∆̈(q)

∆(1)−∆(q)

∫

Dh GH2

�

κ+
p

∆(q)−∆(0)h
p

∆(1)−∆(q)

�

+
α∆̇2(q)

(∆(1)−∆(q))2

∫

DhW2

�

κ+
p

∆(q)−∆(0)h
p

∆(1)−∆(q)

�

(107)

where

W(z)≡ d2

dz2
ln H(z) = −

d
dz

GH(z) = GH(z) (z − GH(z)) . (108)

B.4.3 SAT/UNSAT transition in the RS approximation

To find the SAT/UNSAT transition in the RS approximation we have to perform the q → 1
limit. As evinced in [24], in most of the activation functions, the kernel ∆(q) scales as

∆(q)≃∆(1)− ∆̇(1)δq (109)

with δq = 1− q.
Using the fact that ln H(x) ≃ −1

2 ln(2π) − ln x − x2

2 as x →∞, retaining only the most
divergent terms we get

∫

Dz0 ln H

�

κ+
p

∆(q)−∆(0)z0
p

∆(1)−∆(q)

�

≃
∫ +∞

− κp
∆(1)−∆(0)

Dz0





1
2

lnδq−

�

κ+
p

∆(1)−∆(0)z0

�2

2∆̇(1)δq





=
1
2

ln(δq)H ( x̃(κ))−
B(κ)

2∆̇(1)δq
(110)
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where we have defined the quantities

x̃(κ) = −
κ

p

∆(1)−∆(0)
(111a)

B(κ) = κ
Æ

∆(1)−∆(0)G ( x̃(κ)) +
�

κ2 +∆(1)−∆(0)
�

H ( x̃(κ)) (111b)

The free energy is

φ =
1

2δq
+

1
2

lnδq+
α

2

�

ln(δq)H ( x̃(κ))−
B(κ)
∆̇(1)δq

�

(112)

The derivative with respect to δq is

2
∂ φ

∂ δq
=

1
δq
−

1
δq2

+α

�

H ( x̃(κ))
δq

+
B(κ)

∆̇(1)δq2

�

= 0 . (113)

In the critical capacity limit, i.e. α= αRS
c −δαwe have that δq scales linearly in δα, δq = Cδα.

We get

2
∂ φ

∂ δq
=

1
Cδα
−

1
C2δα2

+ (αc −δα)
�

H ( x̃(κ))
Cδα

+
B(κ)

∆̇(1)C2δα2

�

=
1

Cδα

�

1+αcH ( x̃(κ))−
B(κ)

C∆̇(1)

�

+
1

C2δα2

�

αc
B(κ)
∆̇(1)
− 1

�

= 0 .

(114)

The first term gives the scaling of δq, the second gives us the critical capacity in terms of the
margin

αRS
c =

∆̇(1)
B(κ)

(115)

Notice that imposing (115) is equivalent to impose that the divergence 1/δq in the entropy (112)
is eliminated at the critical capacity (and the free energy correctly goes to −∞ in that limit).
In particular, in the zero margin case we get that B(κ= 0) = ∆(1)−∆(0)

2 and therefore

αRS
c =

2∆′(1)
∆(1)−∆(0)

=
2
∫

Dhϕ′(h)2
∫

Dhϕ2(h)−
�∫

Dhϕ(h)
�2 (116)

as was previously derived in [24].

B.5 1RSB ansatz

B.5.1 Entropy

In the 1RSB approximation and in the error counting loss case the entropy reads

φ = GS +αGE (117a)

GS =
1
2

�

q0

1− q1 +m(q1 − q0)
+

m− 1
m

ln (1− q1) +
1
m

ln (1− q1 +m(q1 − q0))
�

(117b)

GE =
1
m

∫

Dz0 ln

∫

Dz1 Hm

�

κ−
p

∆(q0)−∆(0) z0 −
p

∆(q1)−∆(q0) z1
p

∆(1)−∆(q1)

�

(117c)
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Figure 9: Plot of the dAT (eq. (107)), Gardner (eq. (118)) and Kautzmann transition
lines as a function of κ for the committee machine in the large width limit with the
ReLU activation function.

B.5.2 Gardner Transition

In the 1RSB case usually the instability to the fRSB type of ansatz (Gardner transition) develops
at q1. Imposing a 1RSB ansatz in (39) and evaluating it in q = q1 we get

1
(1− q1)2

=

=
α∆̈(q)

∆(1)−∆(q1)

∫

Dz0

∫

Dz1 Hm (A(z0, z1))GH2 (A(z0, z1))
∫

Dz1 Hm (A(z0, z1))

+
α∆̇2(q)

(∆(1)−∆(q1))2

∫

Dz0

∫

Dz1 Hm (A(z0, z1))W2 (A(z0, z1))
∫

Dz1 Hm (A(z0, z1))

(118)

where

A(z0, z1)≡
κ+

p

∆(q0)−∆(0) z0 +
p

∆(q1)−∆(q0)z1
p

∆(1)−∆(q1)
(119)

We plot the Gardner transition for the committee machine with the ReLU activation function
in Figure 9.

B.5.3 SAT/UNSAT transition in the 1RSB approximation

In order to compute the SAT/UNSAT transition in the 1RSB approximation, one needs to per-
form the limit q1→ 1 with m= m̃(1− q1)→ 0 [11,24,28]. Therefore we express all in terms
of m by using δq1 = 1− q1 =

m
m̃ obtaining

φ =
1

2m

�

m ln
�m

m̃

�

+ ln (1−m+ m̃(1− q0)) +
m̃q0

1−m+ m̃(1− q0)
+ 2mαGE

�

. (120)

In the limit m→ 0, we need to assure that the entropy goes to −∞, so we need to impose that
the coefficient of first order expansion of the free energy (which is of order 1/m) vanishes.
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This is equivalent to impose that at the SAT/UNSAT transition

ln (1+ m̃(1− q0)) +
m̃q0

1+ m̃(1− q0)
+ 2αcF(κ; q0, m̃) = 0 (121)

or

αc =
ln (1+ m̃(1− q0)) +

m̃q0
1+m̃(1−q0)

2F(κ; q0, m̃)
(122)

where

F(κ; q0, m̃) = lim
m→0

∫

Dz0 ln

∫

Dz1 Hm

 

κ−
p

∆(q0)−∆(0) z0 −
p

∆(1)−∆(q0) z1
q

∆̇(1)m
m̃

!

(123)

Expanding the H(x) function at large arguments H(x)≃ G(x)/x and performing the integral
over z1 one gets

F (κ; q0, m̃) =

=

∫

Dz0 ln

�

H

�

κ+
p

∆(q0)−∆(0) z0
p

∆(1)−∆(q0)

�

+

Æ

∆̇(1) e
−

m̃(κ+p∆(q0)−∆(0)z0)2
2(∆̇(1)+(∆(1)−∆(q0))m̃)

Æ

∆̇(1) + (∆(1)−∆(q0)) m̃
H



−

√

√

√ ∆̇(1)
∆(1)−∆(q0)

κ+
p

∆(q0)−∆(0) z0
Æ

∆̇(1) + (∆(1)−∆(q0)) m̃











(124)

C Observables

Once the saddle point equations are solved, we can use the solutions not only to compute the
entropy, but also other observables of interest.

C.1 Distribution of Stabilities

An observable of interest is the so called distribution of stability P(h), i.e.

P̂(h)≡ 1
P

P
∑

µ=1

δ (h−∆µ(w ;κ)) (125a)

P(h) =



P̂(h)
�

(125b)

this quantity, also called “gap probability distribution” in the context of the jamming of hard
spheres [6], quantifies in which fashion the constraints of the training set are satisfied. In
the context of machine learning it has been recognized that well-generalizing solutions have
a stability distribution that is small and flat around zero [21, 23]; those kind of solutions can
be found by biasing the measure towards flat regions [24].

We can easily compute the partition function by rewriting the partition function in (5) as
can be written as

Z =

∫

dµ(w ) e−β
∑

µ ℓ(∆
µ(w ;κ)) =

∫

dµ(w ) eP
∫

dh P̂(h)[−βℓ(h)] (126)

The stability distribution can by taking a derivative of the free entropy with respect to the loss
function, i.e.

P(h) = − 1
αβ

∂ φ

∂ ℓ(h)
= e−βℓ(h)

∫

dz P(qM , z)N∆1−∆qM
(h+ z +κ)e− f (qM ,z) (127)
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Figure 10: Stability distribution for κ = −1.6 and two values of α. As α → αc the
distribution develops a power law behavior around small stabilities h∼ κ. We show
in the dashed blue line a standard normal Gaussian distribution for comparison.

A generic observable O of the stability h, can be therefore easily expressed as an integral over
the stability distribution

〈O〉 ≡
∫

dhP(h)O(h) =
∫

dhO(h) e−βℓ(h)
∫

dz P(qM , z)N∆(1)−∆(qM )(h+ z +κ)e− f (qM ,z)

=

∫

dz P(qM , z)e− f (qM ,z)

∫

dhO(h) e−βℓ(h)N∆(1)−∆(qM )(h+ z +κ)

=

∫

dz P(qM , z)

∫

dhO(h) e−βℓ(h)N∆(1)−∆(qM )(h+ z +κ)
∫

dh e−βℓ(h)N∆(1)−∆(qM )(h+ z + κ)
(128)

As an example, the fraction of violated constraints z can be obtained by using the observable
O(h) = Θ(−h), i.e.

z =

∫ 0

−∞
dhP(h) (129)

C.2 Pressure

The average stability of violated constraints or “pressure” [8] can be obtained by using as
observable O(h) = −hΘ(−h), which gives

p = −
∫ 0

−∞
dhP(h)h= −

∫

dz P(qM , z)

∫ 0
−∞ dhh e−βℓ(h)N∆(1)−∆(qM )(h+ z + κ)
∫

dh e−βℓ(h)N∆(1)−∆(qM )(h+ z +κ)
(130)

In the SAT phase, by definition P(h) = 0 for h < 0, therefore the pressure (and also the
fraction of violated constraints) vanishes. However one can study how it tends to zero with
the temperature. For the number of error loss this decays exponentially to 0 with β going to
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Figure 11: Behavior of q(x) (violet) and q̇(x) (green) as a function of x in the phase
where typical states do not possess any gap (left panel, κ = −1.27 and α ≃ 18)
and a phase where they possess a gap (right panel, κ = −1.4 and α ≃ 26.7). When
there is no gap q̇ is always positive in the range x ∈ [xm, xM ]. A gap instead appears
for a fixed κ at a value of α = α1+ f RSB(κ) where for x → xm, the denominator
of (134) becomes zero, signalling an infinite derivative of q(x). For α > α1+ f RSB, the
denominator suddenly becomes negative at x = xm.

infinity. For the quadratic hinge loss it vanishes linearly to zero with T = 1/β; in the SAT
region; indeed

p = −T

∫

dz P(qM , z)
N∆(1)−∆(qM )(z + κ)

∫ 0
−∞ dh h e−

h2
2

∫∞
0 dh N∆(1)−∆(qM )(h+ z + κ)

= −T

∫

dz P(qM , z) f ′(qM , z) .

(131)
Using the property

d
d x

∫ 1

0

d x P(x , h) f ′(x , h) = 0 . (132)

one gets

p = −T

∫

dz P(qM , z) f ′(qM , z) = −T

∫

dz P(qm, z) f ′(qm, z) . (133)

The “reduced pressure” presented in the main text is therefore related to the pressure by
p = T p̃.

D Equation for q̇(x) and the transition to the overlap gapped phase

Higher order derivatives of the saddle point equation can give information to derivatives of
q(x) in the interval [xm, xM ]. For example, deriving twice equation (39) and solving for dq

d x ,
we get

dq
d x
=

1
λ3(x) +α∆̇

3
∫

dh P(x , h) f ′′(x , h)3

α
2

∫

dh P(x , h)B(x , h)− 3x2

λ4(x)

(134)

where

B(x , h) = 6∆̇4 x2 f ′′4 + ∆̇4 f ′′′′2 − 12∆̇4 x f ′′ f ′′′2 +
....
∆ f ′2

+
�

3∆̈2 + 4∆̇
...
∆
�

f ′′2 + 6∆̈∆̇2
�

f ′′′2 − 2x f ′′3
� (135)
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Figure 12: q(x) deep in the Gardner phase (here κ = −2.0), where one can see
clearly that the point m where there is a jump is distinct with xm.

which in the case ∆(q) = q reduces to

dq
d x
=

1
λ3(x) +α

∫

dh P(x , h) f ′′(x , h)3

α
2

∫

dh P(x , h) [6x2 f ′′(x , h)4 + f ′′′′(x , h)2 − 12x f ′′(x , h) f ′′′(x , h)2]− 3x2

λ4(x)

(136)

As we have described in the main text, we used equation (136) to evaluate the transition be-
tween the fRSB phase (no overlap gap phase), to the Gardner phase (which is overlap gapped).
Indeed the transition is signalled by the divergence of the derivative of q(x) at x = xm, see
Figure 11. If then one moves in a region (κ,α) deep in the Gardner phase (i.e. for κ very
negative and α large) one can see that the point where the q(x) has a jump (i.e. for x = m)
becomes visibly distinct and lower than xm, see Figure 12. Similar transitions have been seen
in [52], even if in a slightly different setting.
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