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Abstract

We investigate the modular properties of Generalised Gibbs Ensembles (GGEs) in two di-
mensional conformal field theories. These are obtained by inserting higher spin charges
in the expressions for the partition function of the theory. We investigate the particular
case where KdV charges are inserted in the GGE. We first determine an asymptotic ex-
pression for the transformed GGE. This expression is an expansion in terms of the zero
modes of all the quasi-primary fields in the theory, not just the KdV charges. While these
charges are non-commuting they can be re-exponentiated to give an asymptotic expres-
sion for the transformed GGE in terms of another GGE. As an explicit example we focus
on the Lee-Yang model. We use the Thermodynamic Bethe Ansatz in the Lee-Yang model
to first replicate the asymptotic results, and then find additional energies that need to
be included in the transformed GGE in order to find the exact modular transformation.
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1 Introduction35

The study of generalised Gibbs ensembles plays an important role in understanding the ther-36

malisation properties of many body systems with additional conserved quantities. Usually37

when we study a system where the only conserved quantity is the energy we use the Gibbs38

distribution39

pn =
1
Z

e−βEn , Z =
∑

n

e−βEn , (1)

which gives the probability of the system being in state n which has energy En. However if we40

are interested in a system which contains additional conserved charges Q i , not just the energy,41

we instead use the generalised Gibbs distribution42

pn =
1
Z

e−βEn−
∑

i αiQ i,n , Z =
∑

n

e−βEn−
∑

i αiQ i,n , (2)

where Q i,n is the value of the charge Q i in state n. For a review of the role of GGEs in the43

contexts of statistical mechanics and thermalisation see [1].44

In this paper we will be interested in GGEs in two dimensional conformal field theories45

(2d CFTs). In order to construct a GGE we need to have additional conserved charges. To46

construct these charges in a 2d CFT we start with a quasi-primary field. These fields give rise47

to all the conserved charges in the theory. We will be interested in the modular properties of48

the GGE and hence we want to study theories on a torus. For us the torus will be a cylinder49

with the ends identified and therefore our charges will be the zero modes of the quasi-primary50

fields on a cylinder.51
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Often it is not enough for our theory to have an infinite set of conserved charges, we also52

want the charges to commute. It has been known for some time that 2d CFTs contain infinite53

sets of mutually commuting conserved charges [2]. The most well known set of charges are54

related to the classical KdV hierarchy, as detailed in [3], and hence we will refer to them as the55

KdV charges. They are constructed from the Virasoro modes and we list the first three here56

I1(R) =
2π
R

�

L0 −
c

24

�

, (3)

I3(R) =
�

2π
R

�3
�

2
∞
∑

k=1

L−k Lk + L2
0 −

c + 2
12

L0 +
c(5c + 22)

2880

�

, (4)

I5(R) =
�

2π
R

�5
 

∑

k1+k2+k3=0

: Lk1
Lk2

Lk3
: +
∞
∑

k=1

�

c + 11
6

k2 − 1−
c

24

�

L−k Lk (5)

+
3
2

∞
∑

k=1

L1−2k L2k−1 −
c + 4

8
L2

0 +
(c + 2)(3c + 20)

576
L0 −

c(3c + 14)(7c + 68)
290304

�

.

The normal ordering : Lk1
Lk2

Lk3
: means we order the modes such that k1 ≤ k2 ≤ k3. These57

charges are the zero modes of quasi-primary fields on a cylinder of circumference R. Often in58

the literature the dimensionless charges I2n−1 =
� R

2π

�2n−1
I2n−1(R) are studied. Informally the59

charges I2n−1 are given by I2n−1(2π), i.e. the charges defined on a cylinder with R = 2π, and60

hence the prefactor is absent. However we note that R is dimensionful and therefore cannot61

actually be set to the dimensionless quantity 2π. For our purposes this prefactor will play an62

important role and hence we will keep it explicit.63

These are the additional conserved charges that we will insert into our partition functions64

to obtain a GGE65

Z = Tr
�

e−L(I1(R)+
∑∞

n=2 α2n−1 I2n−1(R))
�

, (6)

where L is the length of the cylinder. At this stage we have not been explicit about what66

space we are tracing over, it could be individual highest weight representations of the Virasoro67

algebra or the whole space of states. Later we will explicitly be tracing over individual highest68

weight representations.69

These GGEs have been studied extensively in the literature. Their large central charge limit70

(c→∞) was studied in a series of papers by Dymarsky et al [4–6] and also by Maloney et al71

in [7] and Brehm and Das in [8]. There, expressions for these GGEs in the limit c →∞ and72

leading 1/c corrections were derived. These GGEs are then holographically dual to a class of73

black holes in AdS3 referred to in [9] as KdV charged black holes and their connection to the74

eigenstate thermalisation hypothesis was also explored in [10].75

In this paper we will be investigating the modular properties of these GGEs. The deep76

relationship between 2d CFTs and modular forms has been known for a long time and has77

been used extensively to study 2d CFTs. It is know that the characters of a rational 2d CFT78

form a vector valued modular form. This was first suggested by Cardy in [11] and rigorously79

proven by Zhu in [12]. It is also known that if we expand the GGE (6) as a power series in80

chemical potentials α2n−1, then each term, which is a correlation functions of the charges, is81

a modular form or quasi-modular form. This was first argued by Dijkgraaf in [13] and then82

in [14] Maloney et al found expressions for the correlators in terms of modular differential83

operators acting on the characters which makes the modular properties manifest.84

A natural question to ask is whether the full GGE has any interesting modular properties.85

This has been studied in detail for the GGEs in the free fermion model (c = 1
2 Ising minimal86

model) in the series of papers [15–17]. In general, closed form expressions for the GGEs are87

not known. However for the free fermion model the simplicity of the theory means that exact88
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expressions can be found and used as a starting point to study the modular properties. This89

meant an explicit expression for the modular transformation could be found.90

In order to find this modular transformation formula, first the GGEs were expanded as an91

asymptotic power series in the chemical potentials. Each term in the series could be modular92

transformed and then the result was resummed into an exponential. This gave another GGE93

that contained an infinite set of charges, however this expression diverged and had to be94

regularised. Even after regularising the result, the expressions only matched asymptotically95

which is not surprising since in the first step of the derivation we take an asymptotic expansion.96

However an exact modular transform can be found. This was done by using the thermo-97

dynamic Bethe ansatz (TBA). The TBA for the original GGE is known from [18]. We then take98

a mirror transform of the TBA in order to find the spectrum of the GGE in the new channel.99

When this is done the spectrum from the asymptotic results can be reproduced, but we also100

find additional energies. These energies behave as Cα−ν, where α < 0 is the chemical poten-101

tial, Re(C) > 0 and ν > 0, and hence when they are exponentiated they give rise to terms102

that have a vanishing asymptotic expansion. This is why they were missed in the original103

asymptotic analysis but including them in the transformation gives an exact expression for the104

modular transformed GGE.105

In this paper we want to find the modular transformation of other minimal models. We106

will start by briefly discussing generic minimal models and then move to focusing on the Lee-107

Yang minimal model. We have chosen the Lee-Yang model as our main example since the two108

characters satisfy a second order modular differential equation which simplifies the correlators109

in the asymptotic expansion and later when we solve the TBA equations there is only one110

integral equation to solve.111

The layout of the paper is as follows. In section 3 we consider a generic rational 2d CFT and112

start by asymptotically expanding the GGE as a power series in the chemical potential. Each113

term in the series can be written as a modular differential operator acting on the characters114

of the theory. We can modular transform each term in the series. After taking the modular115

transform the resulting expressions can be written as the correlators of charges from all quasi-116

primary fields in the theory. We find conditions under which this restricts to just the KdV117

charges.118

In section 4 we repeat the above asymptotic analysis for the Lee-Yang model. We again119

find that additional charges, not just the KdV charges, will appear in our expression. However120

the transformed expression can still be re-exponentiated to give an asymptotic expression for121

the modular transform of the GGE in terms of another GGE, this time containing all charges122

from quasi-primary fields, not just the KdV charges. These additional charges don’t commute,123

and so it is not obvious that the expression will exponentiate. However we show that this does124

not stop us from being able to re-exponentiate the expression (up to the order, in the chemical125

potential α, we are working).126

We then turn our attention to the TBA in section 5. We start by using the TBA to reproduce127

the asymptotic results. We then show that there are other solutions to the TBA equations128

which when exponentiated have a vanishing asymptotic expansion, just as in the case of the129

free fermion model. We conjecture that including these additional energies in the transformed130

GGE will give the exact modular transformation for the GGE. During this process we derive131

new integral equations that encode the spectrum of the KdV charges as well as the charges132

coming from the other quasi-primary fields in the theory.133

We end with a summary of the main results in section 6 and discuss some future direc-134

tions. We have also included a series of appendices that contain either background material135

or lengthy calculations that would have cluttered the main text.136
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2 Transformed GGEs and defects137

We start by outlining the aims of this paper. Our goal is to understand how to take a modular138

transformation of a generalised Gibbs ensemble (GGE) in a 2d CFT. As will be explained below,139

our CFT is living on a cylinder with the two ends identified. The GGE is given by inserting140

a defect that wraps the compact direction of the cylinder. A modular transformation then141

corresponds to rotating the defect so it now runs along the axis of the cylinder. The defect is142

now intersecting the circle that the Hilbert space is defined on which leads to a new defect143

Hilbert space and a defect Hamiltonian that acts on this space. In order to determine the144

modular transformed GGE we need to compute this defect Hilbert space and Hamiltonian.145

The objects we will be studying are GGEs where the additional charges inserted in the146

characters are the KdV charges I2n−1(R). We will restrict ourselves to the case where we have147

just one KdV charge inserted along with the usual 2d CFT Hamiltonian I1(R) =
2π
R

�

L0 −
c

24

�

148

TrHi

�

e−L(I1(R)+αI2n−1(R))
�

, (7)

where Hi is a highest weight irreducible representation of the Virasoro algebra.149

Let {|m〉} be an orthonormal basis of states for the representation Hi . By construction all150

of the KdV charges commute, hence we can find a basis where each element is an eigenstate151

of the charges I2n−1(R). The basis element |m〉 has eigenvalue E(2n−1)
m (R) under the charge152

I2n−1(R), i.e.153

I2n−1(R)|m〉= E(2n−1)
m (R)|m〉 . (8)

The GGE (7) then has the explicit form154

TrHi

�

e−L(I1(R)+αI2n−1(R))
�

=
∑

m

e−L(E(1)m (R)+αE(2n−1)
m (R)) . (9)

Throughout the paper we will refer to the terms Em(R) = E(1)m (R) + αE(2n−1)
m (R), in the expo-155

nential, as the spectrum of the GGE.156

The GGE can be thought of as the insertion of a defect as was done in [16]. We consider157

our theory to be living on a cylinder of circumference R and length L as shown in diagram (I)158

of figure 1. We identify the ends of the cylinder so it becomes a torus with modular parameter159

τ̂ = i L/R. The insertion of the KdV charge I2n−1 is given by a horizontal defect wrapping the160

cylinder. The defect operator is D̂ = e−LαI2n−1(R) and the GGE is given by161

TrHi

�

e−L(I1(R)+αI2n−1(R))
�

= TrHi

�

D̂e−LI1(R)
�

. (10)

The insertion of the defect doesn’t change the Hilbert space we trace over but it does change162

the spectrum of our GGE.163

We want to take the modular transformation of the GGE (7). We will just focus on the S164

transform S : τ̂ 7→ τ= −1/τ̂. This is equivalent to rotating the cylinder as is shown in diagram165

(II) of figure 1. The modular parameter becomes166

τ̂= i L/R 7→ τ= −1/τ̂= iR/L . (11)

We are now considering our theory as depicted in (II) of figure 1. The Hilbert space now lives167

on a horizontal slice of length L. This horizontal slice is intersected by our defect which has168

been rotated to be vertical. Since the defect is not topological, the resulting Hilbert space does169

not have to carry an action of the Virasoro algebra. We denote this modified Hilbert space by170

HD. The transformed GGE takes the form171

TrHD

�

e−RHD(L)
�

, (12)
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𝑖 𝑅

𝐿
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𝑖 𝐿

𝑅
=  −

1

𝜏
 

I II 

TrHi

�

D̂ e−LI1(R)
�

TrHD

�

e−RHD(L)
�

Figure 1: Interpretation of the modular transformed GGE traces: on torus (I), the
GGE is given by a defect inserted as an operator D̂ in the trace; on torus (II) the
defect is rotated and the transformed GGE is given by a trace over the Hilbert space
HD with a defect Hamiltonian HD(L) inserted in the trace.

where HD(L) is the Hamiltonian that acts on the Hilbert space HD.172

Let {|em〉} be a basis for the Hilbert space HD such that the element |em〉 has eigenvalue173

E(D)
em (L) under HD(L), i.e.174

HD(L)|em〉= E(D)
em (L)|em〉 . (13)

We can then express our transformed GGE as the sum175

TrHD

�

e−RHD(L)
�

=
∑

em

e−RE(D)
em (L) . (14)

We will refer to the terms E(D)
em (L) as the transformed spectrum.176

When α = 0 the defect isn’t present and the GGEs (7) are the characters of the 2d CFT. It177

is known that the characters form vector valued modular forms [12]178

TrHi

�

e−LI1(R)
�

=
∑

j

Si j TrH j

�

e−RI1(L)
�

, (15)

for a constant matrix Si j . When α ̸= 0 and the defect is present we want to determine whether,179

under a modular transformation, the GGE (7) transforms in an analogous way to the characters180

in (15)181

TrHi

�

e−L(I1(R)+αI2n−1(R))
�

=
∑

j

Si j TrHD, j

�

e−RHD(L)
�

, (16)

where the HD, j are a collection of defect Hilbert spaces. Or equivalently using (9) and (14)182

∑

m

e−L(E(1)m (R)+αE(2n−1)
m (R)) =

∑

j

Si j

∑

em

e−RED, j
em (L) , (17)
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where ED, j
em (L) is the spectrum of the Hamiltonian HD(L) acting on the Hilbert space HD, j .183

If we take the full partition function of a 2d CFT, with both holomorphic and anti-holomorphic184

sectors, then physically we expect it to be modular invariant. When α = 0 the full partition185

function is186

Z(R, L) =
∑

i j

Mi j TrHi

�

e−LI1(R)
�

TrH̄ j

�

e−L Ī1(R)
�

, (18)

where H̄ j is an irreducible representation of the anti-holomorphic Virasoro algebra { L̄n}, the187

constants Mi j are non-negative integers and Ī1(R) =
2π
R (L̄0 −

c
24). (We are assuming that the188

holomorphic and anti-holomorphic sectors have the same central charge.) Under the modular189

transformation (15), the partition function is modular invariant (Z(R, L) = Z(L, R)) provided190

the matrix Mi j satisfies191

Mi j =
∑

kl

SikS̄ jl Mkl , (19)

where S̄ jl is the complex conjugate of S jl . We now define the GGE of the full theory by summing192

over both holomorphic and anti-holomorphic sectors. We will only insert a charge in the193

holomorphic sector, so our GGE is194

Z(R, L,α) =
∑

i j

Mi j TrHi

�

e−L(I1(R)+αI2n−1(R))
�

TrH̄ j

�

e−L Ī1(R)
�

. (20)

If we assume that the modular transformation (16) holds then modular invariance of the GGE195

(20) is given by196

Z(R, L,α) =
∑

i j

Mi j TrHD,i

�

e−RHD(L)
�

TrH̄ j

�

e−RĪ1(L)
�

, (21)

where we used (19). Note that the α dependence of the transformed GGE (21) is in both the197

defect Hilbert spaces HD,i and the defect Hamiltonian HD(L).198

We want to determine the defect Hilbert space HD of the transformed GGE and the Hamil-199

tonian HD(L) that acts on this space. In order to try and determine the Hilbert space HD and200

the Hamiltonian HD(L) we will make some assumptions about their form.201

We will start with an asymptotic analysis, as α→ 0, of the modular transformation of (7)202

in sections 3 and 4. There, as was also done in the asymptotic analysis in [15], we will assume203

that the defect Hilbert space is just the irreducible representations of the Virasoro algebra.204

In [15], where the free fermion model was studied, it was found that the defect Hamiltonian205

HD(L) had an asymptotic expansion as a sum over the other KdV charges206

HD(L)∼
∞
∑

n=1

α2n−1 I2n−1(L) , (22)

where α2n−1 were coefficients that depended on α but not R and L.207

We will see in section 3 for a generic CFT (and in section 4 for the Lee-Yang model) that208

this is no longer true. Instead in a generic CFT it appears that the asymptotic expansion takes209

the form210

HD(L)∼
∞
∑

n=1

∑

a

βa
2n−1J (a)2n−1(L) , (23)

where the charges J (a)2n−1 are all the charges coming from the quasi-primary fields at level 2n,211

not just the KdV charges. More details are given in section 3.212

While we have an asymptotic expression for the Hamiltonian HD(L), based on the results213

in [15–17] we believe this is not the full picture. There, additional terms had to be added214

to the transformed spectrum that behaved as α−ν for ν > 0. These terms were missed in the215

7
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asymptotic analysis since the exponential e−α
−ν

has a vanishing asymptotic expansion as α→ 0216

from above. These additional terms are found in section 5.6 where the power ν is derived.217

These additional terms that needed to be added to the transformed spectrum were deter-218

mined in [15,16] by using the thermodynamic Bethe ansatz (TBA). In section 5 we again use219

the TBA to find additional terms that we believe should be added to the transformed spectrum220

in order to give the full modular transformed GGE (12). These additional terms in the spec-221

trum come from additional terms that have been added to the Hilbert space HD, hence this222

Hilbert space is no longer an irreducible representation of the Virasoro algebra.223

3 GGEs in a Generic 2d CFT224

We start by considering GGEs with a KdV charge inserted for a generic 2d CFT. For simplicity225

we will just consider inserting a single charge but this will already lead to interesting results.226

As was done in [15], we will start by expanding the GGE as an asymptotic series in the chemical227

potential associated to the inserted charge. We can then modular transform each term using228

the results from [14]. When this was done in [15] for the free fermion model (c = 1
2 Ising229

minimal model) we found that the transformed expressions could be written as correlators230

of the other KdV charges. In the case of a generic CFT we will find that the transformed231

expressions are instead given by correlators of all the charges from quasi-primary fields, not232

just the KdV charges.233

We will assume that we are working with a minimal model so we have a finite number234

of highest weight, irreducible representations of the Virasoro algebra, Hi , whose weights are235

denoted by hi , i = 1, . . . , N . We will first consider the simplest case: a GGE with just the I3(R)236

charge from (4) inserted. The GGE in the hi representation Hi is given by237

TrHi

�

e−L(αI3(R)+I1(R))
�

. (24)

We will begin by expanding the GGE as an asymptotic series in the chemical potential α238

TrHi

�

e−L(αI3(R)+I1(R))
�

=
∞
∑

n=0

(−αL)n

n!
TrHi

�

I3(R)
ne−LI1(R)

�

. (25)

We can take a modular transform for each term and attempt to resum them to give us an239

asymptotic expression for the transformed GGE. We start by introducing the following nota-240

tion: I2n−1 =
� R

2π

�2n−1
I2n−1(R), τ̂= i L/R is the modular parameter of the torus and q̂ = e2πiτ̂.241

We also introduce the expectation value for an operator O242

〈O〉i(τ̂) = TrHi

�

Oq̂I1
�

. (26)

The asymptotic expansion (25) becomes243

TrHi

�

e−L(αI3(R)+I1(R))
�

=
∞
∑

n=0

1
n!

�

−(2π)3αL
R3

�n

〈In
3 〉i(τ̂) . (27)

The modular properties of the thermal correlators 〈In
3 〉i where studied by A. Maloney et al244

in [14]. There they showed the correlators can be written as modular linear differential oper-245

ators acting on the characters of the CFT. In particular up to order α2 we have the following246
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expressions for the correlators247

〈1〉i =χi , (28)

〈I3〉i =
�

D2 +
c

1440
E4

�

χi , (29)

〈I2
3 〉i =

�

D4 +
c + 40
720

E4D2 −
3c + 11
1080

E6D+
c(407c + 4000)

14515200
E2

4

�

χi (30)

+ E2

�

2
3

D3 +
3c + 11
1080

E4D−
c(c + 10)
36288

E6

�

χi ,

where χi = χi(q̂) is the character of the Hi representation. The differential operators are given248

by Dn = D2n−2D2n−4 . . . D0 where Dr is the Serre derivative249

Dr = q̂
∂

∂ q̂
−

r
12

E2(τ̂) , (31)

and E2k are the Eisenstein series defined in appendix A.250

We now want to take the modular transform of each term in the asymptotic expansion of251

the GGE. We will just take the S : τ̂ 7→ τ = −1/τ̂ transform. The characters (28) of a 2d CFT252

form a weight 0 vector valued modular form [12], so under the S modular transform we have253

χi(τ̂) =
N
∑

j=1

Si jχ j(τ) , (32)

for a constant matrix Si j . We can use the modular properties of Eisenstein series and Serre254

derivatives (given in appendix A) to compute the modular transform of the higher correlators.255

The one point function (29) is a weight 4 vector valued modular form256

〈I3〉i(τ̂) = τ4
N
∑

j=1

Si j〈I3〉 j(τ) . (33)

The 2 point correlator transforms as a weight 8, depth 1 vector valued quasi-modular form257

〈I2
3 〉i(τ̂) =

N
∑

j=1

Si j

�

τ8〈I2
3 〉 j(τ)−

iτ7

π

�

4D3 +
3c + 11

180
E4D−

c(c + 10)
6048

E6

�

χ j

�

. (34)

The definition of quasi-modular forms is again given in appendix A.258

The additional term in the transformation (34)259

�

4D3 +
3c + 11

180
E4D−

c(c + 10)
6048

E6

�

χ j , (35)

can be interpreted as the thermal correlator of a linear combination of a charge J5 and the260

KdV charge I5. The charge is J5 = J5(2π) where J5(R) is given by261

J5(R) =
�

2π
R

�5
�

−
18
5

∞
∑

k=1

k2 L−k Lk −
3

100
L0 +

31c
16800

�

. (36)

This is the zero mode, on the cylinder, of a quasi-primary field at level 6 that is linearly inde-262

pendent to the KdV charge I5. We show how to compute this charge in appendix B.2. Using263

the differential operator representation of the thermal correlators from appendix C.2 we find264

4〈I5〉 j +
5
54
(c + 2)〈J5〉 j =

�

4D3 +
3c + 11

180
E4D−

c(c + 10)
6048

E6

�

χ j . (37)
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Recalling that τ̂ = i L/R, and hence τ = iR/L, we can express the modular transformations265

(32–34) as266

〈1〉i(τ̂) =
N
∑

j=1

Si j〈1〉 j(τ) , (38)

〈I3(R)〉i(τ̂) =
R
L

N
∑

j=1

Si j〈I3(L)〉 j(τ) , (39)

〈I3(R)
2〉i(τ̂) =

�

R
L

�2 N
∑

j=1

Si j

�

〈I3(L)
2〉 j(τ)−

1
R

�

8〈I5(L)〉 j(τ)+
5(c+2)

27
〈J5(L)〉 j(τ)

��

. (40)

If we assume the transformed GGE can be resummed into an exponential, we have267

TrHi

�

e−L(αI3(R)+I1(R))
�

∼
N
∑

j=1

Si j TrH j

�

e−R(I1(L)+αI3(L)+α2(8I5(L)+
5(c+2)

27 J5(L))+... )
�

. (41)

We have written this as a trace again to make it explicit that the right hand side can be for-268

mally interpreted as a Hamiltonian acting on a Hilbert space of states defined on a circle of269

circumference L.270

Here we have assumed that after taking the modular transform of each term in (25) we271

can resum it into an exponential. However the charge J5 doesn’t commute with the KdV272

charges and hence we need to be careful about the order of the operators when we expand the273

exponential. When we study the GGE in the Lee-Yang model in the next section we will verify274

that the asymptotic expansion can indeed be resummed into an exponential after transforming275

each term.276

We can see that generically when we want to take the modular transform of a GGE with a277

KdV charge inserted we have to include all possible charges in the transformed GGE, not just278

the original KdV charges.279

Let us outline what will happen at higher orders in the asymptotic expansion. We will also280

consider the case with just one charge inserted again, but this time insert the I2m−1(R) charge.281

Hence we want to study the GGE282

TrHi

�

e−L(I1(R)+αI2m−1(R))
�

. (42)

If we again expand the GGE as an asymptotic series in α each term is of the form283

〈In
2m−1〉i(τ̂) , (43)

where we have removed the R and L dependence. As a function of τ̂, 〈In
2m−1〉i(τ̂) is a vector284

valued quasi-modular form of weight 2mn and depth n− 1. This was shown in [13] by con-285

sidering contact terms between the currents that give rise to the charges. Hence we can write286

it in the form287

〈In
2m−1〉i(τ̂) =

n−1
∑

p=0

F2mn−2p(τ̂)E2(τ̂)
p , (44)

where F2mn−2p(τ̂) is a weight 2mn− 2p vector valued modular form, which can be written as288

a modular differential operator acting on the characters of the theory [14]. We can then take289

the modular transform of each term in (44) to obtain290

〈In
2m−1〉i(τ̂) = τ

2mn〈In
2m−1〉i(τ) +

n−1
∑

k=1

�

−
6i
π

�k

τ2mn−k
n−k−1
∑

p=0

F2mn−2(p+k)(τ)E2(τ)
p . (45)

10
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The coefficient of τ2mn−k is a weight 2mn − 2k vector valued quasi-modular form of depth291

n− k− 1.292

Take a generic correlator293

〈J (a1)
2n1−1 . . . J (aI )

2nI−1〉 , (46)

where the charges J (a)2n−1 are the zero modes on the cylinder of a weight 2n quasi-primary field.294

(We may have several quasi-primary fields of the same weight hence we have the additional295

index a. We include the KdV charges I2n−1 in this set of charges.) This will be a weight296

2
∑I

i=1 ni vector valued quasi-modular form of depth I − 1. Hence we expect that the τ2mn−k
297

coefficients can be written as a linear combination of correlators of the form298

〈J (a1)
2n1−1 . . . J (an−k)

2nn−k−1〉 , (47)

where
∑n−k

i=1 ni = mn− k. We have see that this worked above for the case with the I3 charge299

inserted and will see in section 4 that this works for the GGE with the I5 charge in the Lee-Yang300

model.301

Once the modular transform of each of the terms 〈In
2m−1〉i(τ̂) has been expressed in terms302

of correlators of the charges J (a)2n−1 we want to re-exponentiate the expression to obtain, at least303

formally, an expression for the transformed GGE in terms of a new GGE. This transformed GGE304

will contain charges from all the quasi-primary fields in the theory, not just the KdV charges305

TrHi

�

e−L(I1(R)+αI2m−1(R))
�

∼
N
∑

j=1

Si j TrH j

�

exp

�

−R
∞
∑

n=1

∑

a

βa
2n−1J (a)2n−1(L)

��

, (48)

and the βa
2n−1 are constants that only depend on α.306

To end this section we note that there are two interesting cases in which we can do away307

with the additional charge J5 appearing in (37). The first is when the charges I5 and J5 corre-308

spond to states which only differ by a null state (and are hence proportional to one another).309

This happens when c = 1
2 , which is the Ising Model central charge. This fact was used in the310

series of papers [15–17] which studied the modular properties of GGEs in the Ising model.311

The second case is when the central charge is c = −2. The integrability of the KdV equations312

at c = −2 was studied in [19], although it is not clear at the moment how one would study313

this is in the context of a GGE. The theory at this central charge is logarithmic, and so the GGE314

would involve taking traces over logarithmic modules. A review of logarithmic CFTs can be315

found in [20].316

4 Asymptotic Analysis of the GGE in the Lee-Yang Model317

We will now repeat the analysis from the previous section for the Lee-Yang theory. We have318

chosen this theory since it is arguably the simplest interacting 2d CFT with only two Virasoro319

representations, one with h = 0 and the other with h = −1/5. The theory therefore has two320

characters and they satisfy a second order modular differential equation as detailed in [21].321

Using this second order differential equation allows us to simplify the expression for the cor-322

relators found in [14]. We can then use these simplified expressions to compute more of these323

correlators than was done in [14]. In particular we can compute to high enough order to324

check whether the fact that the additional charges (which come from the other quasi-primary325

fields) don’t commute with the KdV charges stops us being able to re-exponentiate the trans-326

formed expression. In the GGE studied below with I5(R) inserted the non-commutativity is327

first present when we transform the 〈I6
5 〉 term. We confirm that we can indeed still exponen-328

tiate the transformed expression to formally give an expression for the modular transforms of329

the original GGE as a new GGE with an infinite set of charges inserted.330
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In the Lee-Yang theory, the quasi-primary field that gives I3(R) is now a null state and hence331

the correlators containing I3 vanish, as was proved in [14]. The next simplest case for a GGE332

here is the ensemble with I5(R) inserted333

TrHi

�

e−L(αI5(R)+I1(R))
�

. (49)

The charges and thermal correlation functions relevant to this work have been collected in the334

appendices B.3 and C.2. We will just present the transformed expressions for the correlators335

here but all the necessary details needed to verify the results are given in B.3 and C.2.336

We will proceed in the same way as the previous section and start by expanding the GGE337

as an asymptotic series in the chemical potential α338

TrHi

�

e−L(αI5(R)+I1(R))
�

=
∞
∑

n=0

1
n!

�

−(2π)5αL
R5

�n

〈In
5 〉i(τ̂) . (50)

Recall that I2n−1 =
� R

2π

�2n−1
I2n−1(R) and the expectation value 〈. . .〉i was defined in (26).339

For what is to follow, we will suppress the modular S matrix in our transformed expressions340

and we will also suppress the particular module that we are tracing over. These details are341

unimportant for the following discussion but can be added back in by referring to section 3.342

The first few terms transform as343

〈1〉(τ̂) = 〈1〉(τ) , (51)

〈I5〉(τ̂) = τ6〈I5〉(τ) , (52)

〈I2
5 〉(τ̂) = τ

12〈I2
5 〉(τ)−

206388i
116875π

τ11〈J9〉(τ) , (53)

〈I3
5 〉 (τ̂) = τ

18〈I3
5 〉(τ)−

619164i
116875π

τ17〈I5J9〉(τ)+τ16
�

405
4π2
〈I13〉(τ)+

1149876
2875π2

〈J13〉(τ)
�

. (54)

The charges J9 and J13 are the zero modes on the cylinder of weight 10 and 14 quasi-primary344

fields, respectively, that are linearly independent of the KdV charges. They are defined in terms345

of Virasoro modes in appendix B.3.346

It is worth noting here that we did not necessarily need to use the MLDO expressions for347

the thermal correlators to calculate these transformations. We could have used the method348

developed in [22] to calculate the transformed expressions of thermal correlation functions.349

This method was used in, for example, [23] to calculate the transformations of W3 characters350

in terms of zero-modes of known currents in the theory. The advantage of using the MLDO351

expressions comes from the fact that the map going from the currents in a 2d CFT to the352

thermal correlation functions of their zero-modes has a non-trivial kernel1. That is, if we used353

the method previously mentioned, then we would not know a priori whether certain parts of354

that expression vanished.355

For example, consider the following level 9 state, which is present in any theory356

|J8〉 ≡
�

−
5
8

L3
−3 +

3
2

L−6 L−3 +
3
2

L−4 L−2 L−3 − L−5 L2
−2 + L−9 −

3
4

L−7 L−2

�

|0〉 . (55)

Applying the methods outlined in appendix B, just as in the above cases, we find the associated357

charge to be358

J8(R) =
�

2π
R

�8
�∞
∑

k=1

�

7k4

4
+

37k2

4
−

59
3

�

L−k Lk −
59
6

L2
0 −

85
6

L0 −
1
3
L(0, 0,0)

−
1
6
L(1,0, 0)−

5
8
L(1, 1,1) +

3
4
L(2,1, 0)−

1
6
L(3, 0,0)

�

,

(56)

1We would like to thank G. M. T. Watts for this observation.

12



SciPost Physics Submission

where L(n, m, l) is defined in (222). We can verify that the thermal expectation value vanishes,359

and so if we had many terms appearing like this, it would be rather time-consuming to check360

which terms vanish in the thermal correlator and which don’t. So the advantage of calculating361

things in terms of the MLDO is that we have non-vanishing expressions which we match to the362

thermal correlators of charges.363

Just as before, we would like these to be the first few terms of another GGE, at least asymp-364

totically. In essence, we would like to be able to state that the following holds asymptotically365

Tr
�

e−L(αI5(R)+I1(R))
�

∼ Tr
�

e−R(I1(L)+α5αI5(L)+β9α
2J9(L)+α13α

3 I13(L)+β13α
3J13(L)+... )

�

, (57)

where α5,β9,α13 and β13 are constants to be fixed. A priori they may depend on α, R and L,366

but we will see below that they are in fact numerical constants. If we write (51–54) in terms367

of L and R using τ= −1/τ̂= iR/L, then comparing them with the right hand side of (57), we368

find369

α5 = −1 , (58)

β9 =
206388
116875

, (59)

α13 =
135

2
, (60)

β13 =
766584
2875

. (61)

Given that the charges I2n−1(L) do not commute with the charges J2n−1(L), one question that370

may be asked is “Is this re-exponentiation a reasonable thing to do?". It seems that the answer371

is yes, and the fact that these charges do not commute does not affect our ability to formally372

re-write the transformed GGE as another GGE. Let us take some time to elaborate on this point.373

When we expand the right hand side of (57), the ordering of the charges in the correlators374

matters since they do not commute. This will lead to the presence of correlators that contain375

the same charges in different orders and we need to ensure that all the necessary correlators376

are present when we take the modular transformations of the 〈In
5 〉 in the original GGE.377

When we expand the right hand side of (57), we find that the first term that appears where378

the non-commutativity matters is at order α6 and gives us the two correlators379

· · ·+α6 R4

4!

�

2π
L

�28

2α2
5β

2
9 〈I5J9 I5J9 + 2I2

5 J2
9 〉+ . . . . (62)

It is worth mentioning briefly that 〈I5J9 I5J9〉 and 〈I2
5 J2

9 〉 cannot independently be written as380

modular linear differential operators (MLDOs) acting on the characters of the theory, but this381

particular linear combination presented above does have a representation as an MLDO acting382

on the characters. We suspect that if one carefully studies the contact terms between the383

relevant currents associated to these charges, as was done in [13] for a different model, then384

it may become clear that indeed these expectation values separately cannot be written as385

MLDOs, however we have not performed this analysis.386

One would expect that this term appears in the transformation of the 〈I6
5 〉 piece of the GGE387

as it is of weight 32 and depth 3. From Appendix C.2, we know that 〈I6
5 〉 will be a weight 36388

and depth 5 quasi-modular form that resembles389

〈I6
5 〉= F36 + E2F34 + E2

2 F32 + E3
2 F30 + E4

2 F28 + E5
2 F26, (63)

where Fk is a weight k modular form. The explicit expressions for the Fk in terms of differential390

operators acting on the characters are given in appendix C.2. After performing the modular S391
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transformation on this, we can single out the weight 32 depth 3 piece of this expression392

〈I6
5 〉(τ̂) = · · · −

36τ34

π2

�

10E3
2 F26 + 6E2

2 F28 + 3E2F30 + F32

�

(τ) + . . . . (64)

Since this expression is a weight 32 and depth 3 quasi-modular form, we expect it to be a393

linear combination of the correlators394

〈I3
5 J13〉 , 〈I3

5 I13〉 , 〈I5J9 I5J9 + 2I2
5 J2

9 〉 , (65)

which are all themselves weight 32 depth 3 quasi-modular forms. Using the results in appendix395

C.2 we find396

10E3
2 F26 + 6E2

2 F28 + 3E2F30 + F32 = γ1〈I3
5 J13〉+ γ2〈I3

5 I13〉+ γ3〈I5J9 I5J9 + 2I2
5 J2

9 〉. (66)

where397

γ1 = −
127764

575
, γ2 = −

225
4

, γ3 =
3549667212
2731953125

. (67)

Therefore, in the transformed GGE we have a term of the form398

γ3

6!
36
π2

�

R
L

�34
�

−
(2π)5αL

R5

�6

〈I5J9 I5J9 + 2I2
5 J2

9 〉 . (68)

By expanding the right hand side of (57) and comparing it with (68) we find the relation399

γ3 =
5
12
α2

5β
2
9 . (69)

Using the definitions of γ3, (67), and α5 and β9, (58) and (59), we can confirm that this400

relation does indeed hold. Hence we have seen that at this order the fact that the charges401

do not commute does not prevent the re-exponentiation of the transformed expression into402

another (formal) GGE given by (57) and constants (58–61).403

While we have found an asymptotic expression for the transformed GGE, or rather an404

expression with the leading charges in the transformed GGE, (57), we don’t believe that these405

match as functions. Firstly the right hand side of (57) contains an infinite sum in the charges. It406

is not clear if this sum is convergent, indeed in the case of free fermions the equivalent sum over407

charges was not convergent and had to be regularised [15]. In the case of free fermions this408

regularisation introduced functions with a branch cut. Hence while the original GGE was real,409

the transformed expression was complex. This problem was resolved by introducing additional410

terms in the transformed expression that came from the thermodynamic Bethe ansatz (TBA).411

These additional terms made the transformed expression real. It was then proved in [17] that412

these additional terms gave expressions that matched exactly, not just asymptotically. We will413

now use the TBA for the Lee-Yang model to first reproduce our asymptotic results, and then414

find additional terms that we believe should be included in the transformed expression for the415

GGE.416

5 Thermodynamic Bethe Ansatz for the transformed GGE417

While we have found an asymptotic expression for the transformed GGE in the previous section418

we believe that the full expression is encoded in a set of TBA equations. We first reproduce419

the asymptotic results of the previous section using the TBA. We will see that when we write420

down the TBA equations that reproduce the asymptotics there will also be additional solutions421

that were missed in the asymptotic analysis. This is because these solutions give contributions422
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to the energy that behave as Cα−
1
4 , with Re(C) > 0, so when we exponentiate in the GGE we423

have terms of the form eCα−
1
4 which have a vanishing asymptotic expansion as α→ 0−. Hence424

we missed these terms in the asymptotic analysis but believe they should be included in the425

transformed GGE.426

5.1 TBA and mirror TBA427

L

R C

B

Figure 2: Strip of width L and length R. On the horizontal slice B we have the Hilbert
space HB and on the vertical slice C we have the Hilbert space HC .

Let us start by considering a system living on a rectangle where the two sides have length R428

and L. We will quantise our theory on the vertical slice C, of length R and treat the horizontal429

slice B as time. The partition function is then given by430

Z(R, L) = TrHC

�

e−LHC(R)
�

, (70)

where HC(R) is the Hamiltonian for the system on C and hence depends on R. For now HC(R)431

is an arbitrary Hamiltonian but later we will take it to be either the GGE Hamiltonian or the432

transformed GGE Hamiltonian defined in (7) and (12). In the thermodynamic limit L →∞433

we can extract the ground state energy E0(R) of HC(R) via434

log(Z(R, L))∼ −LE0(R) , L→∞ . (71)

If we instead quantised the system on B and treated C as the time direction then, in the ther-435

modynamic limit, the partition function can be computed using the Bethe ansatz. This was436

derived in [24] and the extension to also compute the excited states was derived in [25]. We437

will just state the results here.438

We will consider a system with only one particle species. The scattering is purely elastic439

and factorises into two-to-two scattering with S matrix S(θ ). We will keep the form of the440

one particle energies e(R,θ ) and momentum p(R,θ ) arbitrary and we have kept the possible441

R dependence explicit since it will be important when taking the mirror transform later.442

The TBA equations for the ground state are then443

ε(θ ) = Re(R,θ )−
∫ ∞

−∞
ϕ(θ − θ ′) log

�

1+ e−ε(θ
′)
� dθ ′

2π
, (72)

where ϕ(θ ) = −i d
dθ log S(θ ). The ground state energy E0(R) is then given by444

E0(R) = −
∫ ∞

−∞
∂θ p(R,θ ) log

�

1+ e−ε(θ )
� dθ

2π
. (73)
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We can also extract the excited states from the TBA equations by analytic continuation. This445

was first discussed in [25] and further details were given in [26]. In [25] it was conjectured446

that the TBA equation should be modified to447

ε(θ ) = Re(R,θ ) +
N
∑

i=1

log

�

S(θ − θi)

S(θ − θ̄i)

�

−
∫ ∞

−∞
ϕ(θ − θ ′) log

�

1+ e−ε(θ
′)
� dθ ′

2π
, (74)

where the θi are the solutions to448

ε(θi) = (2ni + 1)πi , ni ∈ Z , (75)

which lead to singularities in the integrand in (72). Note that there are also singularities in449

the integrand due to the poles in the S matrix. These poles can also give rise to additional450

driving terms in the TBA equation (72). Solving the TBA equations with these terms added451

moves us between the different Virasoro representations in our theory as detailed in [25]. We452

will only solve TBA equations of the form (74) which gives us excited states in the ground453

state representation. In the Lee-Yang model this is the h= −1/5 representation.454

When we plug the singularities θi into (74) we have a set of consistency conditions they455

must satisfy456

2niπi=Re(R,θi)− log S(θi − θ̄i)+
N
∑

j=1
j ̸=i

log

�

S(θi−θ j)

S(θi−θ̄ j)

�

−
∫ ∞

−∞
ϕ(θi−θ ′) log

�

1+e−ε(θ
′)
� dθ ′

2π
.

(76)
The specific choice of branch cuts of the logarithms won’t matter in our analysis but they have457

been carefully studied in [26]. The excited state energy is then given by458

E(R) = i
N
∑

i=1

(p(R, θ̄i)− p(R,θi))−
∫ ∞

−∞
∂θ p(R,θ ) log

�

1+ e−ε(θ )
� dθ

2π
. (77)

When we numerically solve the TBA equations for the Lee-Yang model we will only do it for459

the ground state and excited states corresponding to N = 1.460

We are interested in the modular transform461

S : τ̂=
i L
R
7→

iR
L
= τ , (78)

which swaps the cycles C and B in figure 2. Since we have swapped C and B we are now462

interested in the spectrum of the Hamiltonian HB(L) which acts on the Hilbert space HB.463

The spectrum can again be found by solving TBA equations. The energy and momentum of464

the new system is given by the mirror transform of the original TBA. The mirror energy and465

momentum are denoted by ee(L,θ ) and ep(L,θ ) respectively and are related to the original466

energy and momentum by467

ee(L,θ ) = ip
�

L,θ −
iπ
2

�

, ep(L,θ ) = ie
�

L,θ −
iπ
2

�

(79)

The TBA equations for the ground state, eE0(L), of the modular transformed theory are468

eε(θ ) = Lee(L,θ )−
∫ ∞

−∞
ϕ(θ − θ ′) log

�

1+ e−eε(θ
′)
� dθ ′

2π
, (80)

eE0(L) = −
∫ ∞

−∞
∂θep(L,θ ) log

�

1+ e−eε(θ )
� dθ

2π
. (81)
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and the excited states are given by469

eε(θ ) = Lee(L,θ ) +
N
∑

i=1

log

�

S(θ − θi)

S(θ − θ̄i)

�

−
∫ ∞

−∞
ϕ(θ − θ ′) log

�

1+ e−eε(θ
′)
� dθ ′

2π
, (82)

eE(L) = i
N
∑

i=1

(ep(L, θ̄i)− ep(L,θi))−
∫ ∞

−∞
∂θep(L,θ ) log

�

1+ e−eε(θ
′)
� dθ

2π
. (83)

We again have a constraint equation that the θi must satisfy470

2niπi=Lee(L,θi)− log S(θi − θ̄i)+
N
∑

j=1
j ̸=i

log

�

S(θi−θ j)

S(θi−θ̄ j)

�

−
∫ ∞

−∞
ϕ(θi−θ ′) log

�

1+e−eε(θ
′)
� dθ ′

2π
,

(84)
where ni ∈ Z.471

5.2 TBA for the GGE472

First we will use the TBA equations to reproduce the spectrum of the GGE with the I5(R) charge473

inserted. The definition of the spectrum of the GGE was given in (9). The S matrix S(θ ) for474

the Lee-Yang model is475

S(θ ) =
sinh(θ ) + i sin(π3 )

sinh(θ )− i sin(π3 )
. (85)

To reproduce the spectrum we set the one particle energy e(R,θ ) and momentum p(R,θ ) to476

be477

e(R,θ ) =
1
R

eθ , p(R,θ ) =
1
R

eθ +
αC
R5

e5θ . (86)

where the constant C is478

C = −
32400

p
3π2Γ (2

3)
6

1729Γ (1
6)6

. (87)

The constant C can be computed using the results in [18], in particular479

C = −
�

2π
R

�5 4
5C3κ5

sin
�

8π
3

�

, (88)

where C3 is given in equation (4.35), κ in (4.16) and the combination is given in (4.34) in [18].480

(Note that our TBA equation (89) differs from (4.30) in [18] where the driving term is κeθ481

instead of eθ . This accounts for the factor κ5 in (88).)482

The TBA equation for the ground state is483

ε(θ ) = eθ −
∫ ∞

−∞
ϕ(θ − θ ′) log

�

1+ e−ε(θ
′)
� dθ ′

2π
, (89)

and the ground state energy is given by484

E0(R) = −
∫ ∞

−∞

�

1
R

eθ +
5αC
R5

e5θ
�

log
�

1+ e−ε(θ )
� dθ

2π
. (90)

The α0 term in the integral gives the vacuum eigenvalue of I1(R) in the h= −1
5 representation485

and the α term gives the vacuum eigenvalue of I5(R) for h = −1
5 . This was derived in [18].486

We have started with the TBA equations for a massless theory, however we could start with a487
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massive theory and then take the massless limit. This was done in [27] and gives the same488

TBA equations we are studying here.489

The excited states TBA equations are490

ε(θ ) = eθ +
N
∑

i=1

log

�

S(θ − θi)

S(θ − θ̄i)

�

−
∫ ∞

−∞
ϕ(θ − θ ′) log

�

1+ e−ε(θ
′)
� dθ ′

2π
, (91)

and the energies are given by the integrals491

E(R)=i
N
∑

i=1

�

1
R

�

eθ̄i−eθi
�

+
αC
R5

�

e5θ̄i−e5θi
�

�

−
∫ ∞

−∞

�

1
R

eθ+
5αC
R5

e5θ
�

log
�

1+e−ε(θ )
� dθ

2π
.

(92)
The θi satisfy the constraints492

2niπi = eθi−log S(θi−θ̄i)+
N
∑

j=1
j ̸=i

log

�

S(θi − θ j)

S(θi − θ̄ j)

�

−
∫ ∞

−∞
ϕ(θi−θ ′) log

�

1+ e−ε(θ
′)
� dθ ′

2π
. (93)

It was again verified in [18] that solving these TBA equations gives the excited state eigenvalues493

for I1(R) and I5(R).494

5.3 Transformed TBA495

We now want to find the spectrum of the modular transformed GGE, which was defined in (14).496

As discussed above in section 5.1, if we know the TBA equations that encode the spectrum of497

the GGE then to find the spectrum of the transformed GGE we use the mirror TBA. The mirror498

energy ee(L,θ ) and momentum ep(L,θ ) were given in (79). Using the explicit forms of the499

energy and momentum for the original GGE (86), the mirror energy and momentum are500

ee(L,θ ) =
1
L

eθ +
αC
L5

e5θ , ep(L,θ ) =
1
L

eθ (94)

Hence the TBA equation for the ground state is501

ε(θ ) = eθ +
αC
L4

e5θ −
∫ ∞

−∞
ϕ(θ − θ ′) log

�

1+ e−ε(θ
′)
� dθ ′

2π
, (95)

and the ground state energy is given by502

E0(L) = −
1
L

∫ ∞

−∞
eθ log

�

1+ e−ε(θ )
� dθ

2π
. (96)

(Note we have dropped the tilde from ε which we had in (80) and (81) to distinguish the503

mirror TBA from the original TBA equations.) The excited state mirror TBA equations are504

ε(θ ) = eθ +
αC
L4

e5θ +
N
∑

i=1

log

�

S(θ − θi)

S(θ − θ̄i)

�

−
∫ ∞

−∞
ϕ(θ − θ ′) log

�

1+ e−ε(θ
′)
� dθ ′

2π
, (97)

and the energies are given by the integrals505

E(L) =
i
L

N
∑

i=1

�

eθ̄i − eθi
�

−
1
L

∫ ∞

−∞
eθ log

�

1+ e−ε(θ )
� dθ

2π
. (98)
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Again the θi satisfy the constraints506

2niπi=eθi+
αC
L4

e5θi− log S(θi−θ̄i)+
N
∑

j=1
j ̸=i

log

�

S(θi−θ j)

S(θi−θ̄ j)

�

−
∫ ∞

−∞
ϕ(θi−θ ′) log

�

1+e−ε(θ
′)
� dθ ′

2π
.

(99)
The constant C define in (87) is negative. Hence we only have solutions to the TBA equations507

(95) and (97) if Re(α) < 0. Otherwise the log
�

1+ e−ε(θ
′)
�

term in the convolution integrals508

will diverge, since for large θ > 0 it behaves as log
�

1+ e−αCe5θ /L4
�

. Throughout the following509

sections we will only consider α on the negative real axis.510

We will numerically check in the next section that these TBA equations for both the ground511

state and the excited states reproduce the spectrum of the transformed GGE found from the512

asymptotic analysis. We will then show how to find other solutions to the TBA equations which513

do not appear in the asymptotic analysis. We will conjecture that these are all the solutions514

and including all of them reproduces the full spectrum of the transformed GGE.515

5.4 Asymptotic results from the TBA516

We want to show that the TBA equations (95), (96) and (97), (98) reproduce the asymptotic517

spectrum found in section 4. From (57–61) we expect the ground state energy E0(L) in the518

transformed GGE to have the asymptotic expansion519

E0(L)∼ Ivac
1 (L)−αI

vac
5 (L) + β9α

2J vac
9 (L) +α3

�

α13Ivac
13 (L) + β13J vac

13 (L)
�

+O(α4) , (100)

where the α2n−1 and β2n−1 are given in (59–61) and Ivac
2n−1(L) is the eigenvalue of the charge520

I2n−1(L) on the highest weight state |−1/5〉 and similarly for J vac
2n−1(L).521

In order to reproduce this asymptotic expansion for E0(L) defined in (96), we assume that522

the pseudo energy ε(θ ) has the asymptotic expansion523

ε(θ )∼
∞
∑

n=0

εn(θ )
� α

L4

�n
. (101)

Recall that we mentioned in the previous section that the TBA equations only have solutions for524

Re(α) < 0 hence the expansion (101) must have zero radius of convergence and is therefore525

asymptotic. We also define the function526

L(ε(θ )) = log
�

1+ e−ε(θ )
�

. (102)

Plugging the asymptotic expansion for ε in L(ε) gives527

L(ε)∼L(ε0) +
α

L4
ε1 L′(ε0) +

α2

L8

�

ε2 L′(ε0) +
1
2
ε2

1 L′′(ε0)
�

+
α3

L12

�

ε3 L′(ε0) + ε2ε1 L′′(ε0) +
1
6
ε3

1 L′′′(ε0)
�

+O(α4) .

(103)

If we then use these asymptotic expansions in the TBA equation (95) and collect each power528
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of α we end up with the series of equations529

ε0(θ ) =eθ −
∫ ∞

−∞
ϕ(θ − θ ′)L(ε0(θ

′))
dθ ′

2π
, (104)

ε1(θ ) =Ce5θ −
∫ ∞

−∞
ϕ(θ − θ ′)ε1(θ

′)L′(ε0(θ
′))

dθ ′

2π
, (105)

ε2(θ ) =−
∫ ∞

−∞
ϕ(θ − θ ′)

�

ε2(θ
′)L′(ε0(θ

′)) +
1
2
ε1(θ

′)2 L′′(ε0(θ
′))
�

dθ ′

2π
, (106)

ε3(θ )=−
∫ ∞

−∞
ϕ(θ−θ ′)

�

ε3(θ
′)L′(ε0(θ

′))+ε2(θ
′)ε1(θ

′)L′′(ε0(θ
′))+

1
6
ε1(θ

′)3 L′′′(ε0(θ
′))
�

dθ ′

2π
,

(107)

Note that the first equation (104) is the usual TBA equation for a massless theory. Once we530

have solved (104) we can then treat ε0 as a known function in (105). Hence (105) is a linear531

equation in ε1. We can continue to iteratively solve the TBA equations for εn with n ≥ 2. For532

n≥ 1 the TBA equations take the general form533

εn(θ ) = fn(θ )−
∫ ∞

−∞
ϕ(θ − θ ′)εn(θ

′)L′(ε0(θ
′))

dθ ′

2π
, (108)

where the functions fn(θ ) depend on εk(θ ) for k = 0, . . . , n− 1 which have been previously534

solved for. These are again linear integral equations for εn(θ ). We will outline how to solve535

these equations numerically in appendix D.536

We can similarly expand the ground state energy (96) in α to obtain the asymptotic ex-537

pansion538

E0(L) =−
1
L

∫ ∞

−∞
eθ L(ε0(θ ))

dθ
2π
−
α

L5

∫ ∞

−∞
eθε1(θ )L

′(ε0(θ ))
dθ
2π

−
α2

L9

∫ ∞

−∞
eθ
�

ε2(θ )L
′(ε0(θ )) +

1
2
ε1(θ )

2 L′′(ε0(θ ))
�

dθ
2π

(109)

−
α3

L13

∫ ∞

−∞
eθ
�

ε3(θ )L
′(ε0(θ ))+ε2(θ )ε1(θ )L

′′(ε0(θ ))+
1
6
ε1(θ )

3 L′′′(ε0(θ ))
�

dθ
2π

+O(α4) .

If we compare this with (100) we find that the following relations must hold539

Ivac
1 (L) = −

1
L

∫ ∞

−∞
eθ L(ε0(θ ))

dθ
2π

, (110)

Ivac
5 (L) =

1
L5

∫ ∞

−∞
eθε1(θ )L

′(ε0(θ ))
dθ
2π

, (111)

β9J vac
9 (L) = −

1
L9

∫ ∞

−∞
eθ
�

ε2(θ )L
′(ε0(θ )) +

1
2
ε1(θ )

2 L′′(ε0(θ ))
�

dθ
2π

, (112)

α13Ivac
13 (L) + β13J vac

13 (L) = (113)

−
1

L13

∫ ∞

−∞
eθ
�

ε3(θ )L
′(ε0(θ )) + ε2(θ )ε1(θ )L

′′(ε0(θ )) +
1
6
ε3

1(θ )L
′′′(ε0(θ ))

�

dθ
2π

, (114)

where the numerical constants α2n−1 and β2n−1 are given in (59–61). We note from (104–107)540

that the pseudo energies are independent of L and hence we have the correct L dependence541

in for the charges.542
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We have numerically solved the TBA equations for the ground state and collected the results543

in section 5.5.544

The results in section 4 also give an asymptotic expansion for the excited states in the545

transformed GGE. The excited states are given by the TBA equations (97) and (98) along with546

the constraint (99). We will focus on the case where we have picked up just one pole in the547

equations, which we will denote by η. Then the TBA equation (97) becomes548

ε(θ ) = eθ +
αC
L4

e5θ + log
�

S(θ −η)
S(θ − η̄)

�

−
∫ ∞

−∞
ϕ(θ − θ ′) log

�

1+ e−ε(θ
′)
� dθ ′

2π
, (115)

the energy (98) becomes549

E(L) =
i
L

�

eη̄ − eη
�

−
1
L

∫ ∞

−∞
eθ log

�

1+ e−ε(θ )
� dθ

2π
, (116)

and the constraint (99) becomes550

2nπi = eη +
αC
L4

e5η − log S(2iIm(η))−
∫ ∞

−∞
ϕ(η− θ ′) log

�

1+ e−ε(θ
′)
� dθ ′

2π
. (117)

To find an asymptotic solution we will again assume that ε has the asymptotic expansion (101).551

Furthermore, we will assume that the pole η also has an asymptotic expansion552

η∼
∞
∑

n=0

ηn

� α

L4

�n
. (118)

Using (118) we have the following asymptotic expansions. First we expand log
�

S(θ−η)
S(θ−η̄)

�

which553

appears in (115). We note log
�

S(θ−η)
S(θ−η̄)

�

= 2Re (log S(θ −η)) for θ ∈ R and hence554

log
�

S(θ −η)
S(θ − η̄)

�

=2Re (log S(θ −η0)) + 2
α

L4
Im(η1ϕ(θ −η0))

+ 2
α2

L8
Im
�

η2ϕ(θ −η0)−
1
2
η2

1ϕ
′(θ −η0)

�

(119)

+ 2
α3

L12
Im
�

η3ϕ(θ −η0)−η2η1ϕ
′(θ −η0) +

1
6
η3

1ϕ
′′(θ −η0)

�

+O(α4)

We also need the expansions of log S(2iIm(η)) and ϕ(η− θ ′) in (117)555

log S(2iIm(η)) = (120)

log S(2iIm(η0))−2
α

L4
Im(η1)ϕ(2iIm(η0))−2

α2

L8

�

Im(η2)ϕ(2iIm(η0))+iIm(η1)
2ϕ′(2iIm(η0))

�

−
α3

L12

�

2Im(η3)ϕ(2iIm(η0))+4iIm(η2)Im(η1)ϕ
′(2iIm(η0))−

4
3

Im(η1)
3ϕ′′(2iIm(η0))

�

+O(α4) ,

and556

ϕ(η− θ ′) =ϕ(η0 − θ ′) +
α

L4
η1ϕ

′(η0 − θ ′) +
α2

L8

�

η2ϕ
′(η0 − θ ′) +

1
2
η2

1ϕ
′′(η0 − θ ′)

�

+
α3

L12

�

η3ϕ
′(η0 − θ ′) +η2η1ϕ

′′(η0 − θ ′) +
1
6
η3

1ϕ
′′′(η0 − θ ′)

�

+O(α4) . (121)
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Finally we also expand the exponentials eη and e5η. Plugging these expansions into (115)557

gives us the series of equations558

ε0(θ ) =eθ + log
�

S(θ −η0)
S(θ − η̄0)

�

−
∫ ∞

−∞
ϕ(θ − θ ′) log

�

1+ e−ε0(θ ′)
� dθ ′

2π
, (122)

ε1(θ ) =Ce5θ + 2Im(η1ϕ(θ −η0))−
∫ ∞

−∞
ϕ(θ − θ ′)ε1(θ

′)L′(ε0(θ
′))

dθ ′

2π
, (123)

ε2(θ ) =2Im
�

η2ϕ(θ −η0)−
1
2
η2

1ϕ
′(θ −η0)

�

(124)

−
∫ ∞

−∞
ϕ(θ − θ ′)

�

ε2(θ
′)L′(ε0(θ

′)) +
1
2
ε1(θ

′)2 L′′(ε0(θ
′))
�

dθ ′

2π
,

ε3(θ ) =2Im
�

η3ϕ(θ −η0)−η2η1ϕ
′(θ −η0) +

1
6
η3

1ϕ
′′(θ −η0)

�

(125)

−
∫ ∞

−∞
ϕ(θ−θ ′)

�

ε3(θ
′)L′(ε0(θ

′))+ε2(θ
′)ε1(θ

′)L′′(ε0(θ
′))+

1
6
ε3

1(θ
′)L′′′(ε0(θ

′))
�

dθ ′

2π
.

For n≥ 1 the TBA equations for εn take the form559

εn(θ )=gn(η0, . . . ,ηn−1;ε0, . . . ,εn−1;θ )+2Im(ηnϕ(θ−η0))−
∫ ∞

−∞
ϕ(θ−θ ′)εn(θ

′)L′(ε0(θ
′))

dθ ′

2π
,

(126)
where gn contains all the dependence on the previously determined ηi and εi . We will use560

this when we discuss how to numerically solve the TBA equations in appendix D.561

We can similarly plug the expansions into the constraint equation (117) and obtain the562

system of constraints563

2nπi = eη0 − log S(2iIm(η0))−
∫ ∞

−∞
ϕ(η0 − θ ′) log

�

1+ e−ε0(θ ′)
� dθ ′

2π
, (127)

564

0=η1eη0 + Ce5η0 + 2Im(η1)ϕ(2iIm(η0))

−
∫ ∞

−∞

�

η1ϕ
′(η0 − θ ′)L(ε0(θ

′)) +ϕ(η0 − θ ′)ε1(θ
′)L′(ε0(θ

′))
� dθ ′

2π
, (128)

565

0=
�

η2 +
1
2
η2

1

�

eη0 + 5Cη1e5η0 + 2
�

Im(η2)ϕ(2iIm(η0)) + iIm(η1)
2ϕ′(2iIm(η0))

�

−
∫ ∞

−∞

��

η2ϕ
′(η0 − θ ′) +

1
2
η2

1ϕ
′′(η0 − θ ′)

�

L(ε0(θ
′)) +η1ϕ

′(η0 − θ ′)ε1(θ
′)L′(ε0(θ

′))

+ϕ(η0 − θ ′)
�

ε2(θ
′)L′(ε0(θ

′)) +
1
2
ε1(θ

′)2 L′′(ε0(θ
′))
��

dθ ′

2π
,

(129)
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566

0=
�

η3 +η2η1 +
1
6
η3

1

�

eη0 + C
�

5η2 +
25
2
η2

1

�

e5η0

+
�

2Im(η3)ϕ(2iIm(η0)) + 4iIm(η2)Im(η1)ϕ
′(2iIm(η0))−

4
3

Im(η1)
3ϕ′′(2iIm(η0))

�

−
∫ ∞

−∞

��

η3ϕ
′(η0 − θ ′) +η2η1ϕ

′′(η0 − θ ′) +
1
6
η3

1ϕ
′′′(η0 − θ ′)

�

L(ε0(θ
′))

+
�

η2ϕ
′(η0 − θ ′) +

1
2
η2

1ϕ
′′(η0 − θ ′)

�

ε1(θ
′)L′(ε0(θ

′))

+η1ϕ
′(η0 − θ ′)

�

ε2(θ
′)L′(ε0(θ

′)) +
1
2
ε1(θ

′)2 L′′(ε0(θ
′))
�

+ϕ(η0 − θ ′)
�

ε3(θ
′)L′(ε0(θ

′)) + ε2(θ
′)ε1(θ

′)L′′(ε0(θ
′)) +

1
6
ε3

1(θ
′)L′′′(ε0(θ

′))
��

dθ ′

2π
.

For n≥ 1, the constraint equation determining ηn and εn is given by567

0=hn(η0, . . . ,ηn−1;ε0, . . . ,εn−1) +ηneη0 + 2Im(ηn)ϕ(2iIm(η0)) (130)

−
∫ ∞

−∞

�

ηnϕ
′(η0 − θ )L(ε0(θ )) + εn(θ )ϕ(η0 − θ )L′(ε0(θ ))

� dθ
2π

,

where hn contains all the dependence on the previously determined ηi and εi . We will explain568

how to numerically solve the constraint equation in appendix D.569

Finally if we expand the energy (116) we obtain the asymptotic expansion570

E(L)∼
1
L

�

2Im (eη0)−
∫ ∞

−∞
eθ L(ε0(θ ))

dθ
2π

�

(131)

+
α

L5

�

2Im (η1eη0)−
∫ ∞

−∞
eθε1(θ )L

′(ε0(θ ))
dθ
2π

�

+
α2

L9

�

2Im
��

η2 +
1
2
η2

1

�

eη0

�

−
∫ ∞

−∞
eθ
�

ε2(θ )L
′(ε0(θ )) +

1
2
ε1(θ )

2 L′′(ε0(θ ))
�

dθ
2π

�

+
α3

L13

�

2Im
��

η3 +η2η1 +
1
6
η3

1

�

eη0

�

−
∫ ∞

−∞
eθ
�

ε3(θ )L
′(ε0(θ )) + ε2(θ )ε1(θ )L

′′(ε0(θ )) +
1
6
ε3

1(θ )L
′′′(ε0(θ ))

�

dθ
2π

�

+O(α4)

For levels 1,2 and 3 in the h = −1/5 representation of the Lee-Yang model we have only one571

state. Hence using (57–61) we see that the coefficients in the expansion are related to the572

single eigenvalue of the charges I2n−1 and J2n−1 as follows573

I1(L) =
1
L

�

2Im (eη0)−
∫ ∞

−∞
eθ L(ε0(θ ))

dθ
2π

�

, (132)

I5(L) = −
1
L5

�

2Im (η1eη0)−
∫ ∞

−∞
eθε1(θ )L

′(ε0(θ ))
dθ
2π

�

, (133)

β9J9(L)=
1
L9

�

2Im
��

η2+
1
2
η2

1

�

eη0

�

−
∫ ∞

−∞
eθ
�

ε2(θ )L
′(ε0(θ ))+

1
2
ε1(θ )

2 L′′(ε0(θ ))
�

dθ
2π

�

,

(134)

α13I13(L) + β13J13(L) =
1

L13

�

2Im
��

η3 +η2η1 +
1
6
η3

1

�

eη0

�

−
∫ ∞

−∞
eθ
�

ε3(θ )L
′(ε0(θ )) + ε2(θ )ε1(θ )L

′′(ε0(θ )) +
1
6
ε3

1(θ )L
′′′(ε0(θ ))

�

dθ
2π

�

. (135)
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Here the I2n−1(L) and J2n−1(L) are eigenvalues of the charges I2n−1(L) and J2n−1(L) in the574

excited states. Again these relations only apply to the case where we have a single state at a575

given level in the Virasoro representation.576

For level 4 and higher we have multiple states in the h = −1/5 representation and we577

need to be more careful. The coefficients in the expansion (131) of the energy E(L) will no578

longer be given by eigenvalues of the individual charges since the charges don’t commute and579

therefore can’t be simultaneously diagonalised.580

Recall that we want to reproduce the right hand side of (57)581

Tr
�

e−R(I1(L)−αI5(L)+β9α
2J9(L)+α13α

3 I13(L)+β13α
3J13(L)+... )

�

, (136)

where the trace is taken over the h = −1/5 representation. We can split the trace up into582

the sum of traces over level subspaces of the representation, i.e. spaces where the descendent583

states have the same L0 eigenvalue. Let HN denote the subspace at level N . (We are only584

working in the h = −1/5 representation so won’t add an additional label to H to represent585

this.) The trace (136) is given by586

Tr
�

e−R(I1(L)−αI5(L)+β9α
2J9(L)+α13α

3 I13(L)+β13α
3J13(L)+... )

�

=
∞
∑

N=0

TrHN

�

e−
R
L Q
�

α

L4

�
�

, (137)

where 1
L Q
�

α
L4

�

is defined by its asymptotic expansion587

1
L

Q
� α

L4

�

∼ I1(L)−αI5(L) + β9α
2J9(L) +α13α

3 I13(L) + β13α
3J13(L) + . . . . (138)

If the space HN has dimension n then we will label the n eigenvalues of Q by qi , i = 1, . . . , n588

and we find589

TrHN

�

e−
R
L Q
�

α

L4

�
�

=
n
∑

i=1

e−
R
L qi

�

α

L4

�

(139)

It is the eigenvalues 1
L qi

�

α
L4

�

that will be found by solving the TBA equations (97) and plugging590

the solutions into (98). In our numerical analysis we have only solved the one particle excited591

state TBA equation (115) and hence have only found one of the eigenvalues qi at each level.592

The others can be obtained by solving the TBA equations (97) with more than one pole.593

We will verify the above claims that the TBA is encoding the spectrum of the transformed594

GGE with some numerical tests in the next section.595

5.5 Numerical results596

In the previous section we found asymptotic solutions to the TBA equations (95), (96) for the597

ground state and (97), (98) for the excited states. The energy (96) and (98) are then given598

as asymptotic expansions in α599

E(L)∼ E0(L) +αE1(L) +α
2E2(L) +α

3E3(L) +O(α4), (140)

where the Ek can be read off from (109) for the ground state and are given in (131) for600

the excited states. As explained in section 5.4 the coefficients εk are expected to be linear601

combinations of the eigenvalues of the charges I2n−1(L) and J2n−1(L) for levels 0, 1, 2 and 3602

where we have only one state. The exact relations are603

E0(L) = I1(L) , (141)

E1(L) = −I5(L) , (142)

E2(L) = β9J9(L) , (143)

E3(L) = α13I13(L) + β13J13(L) , (144)
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where the numerical constants β9,α13 and β13 are given in (59–61) and as before I2n−1(L)604

and J2n−1(L) are eigenvalues of I2n−1(L) and J2n−1(L).605

However for levels 4 and 5 in the h= −1/5 representation we have two states. Hence we606

need to find the eigenvalues of the operator Q defined in (138). We can find the elements of607

the matrix Q up to O(α4) using (138) and the explicit expressions for the charges I2n−1 and608

J2n−1 given in appendix B.3. This then allows us to compute the eigenvalues up to O(α4). For609

level 4 the two eigenvalues of 1
L Q
�

α
L4

�

are610

1
L

q1

� α

L4

�

=
239
60

1
L
+

�

29871991
756000

+
2
p

5149
5

�

α

L4
+

�

65155161071
21600000

+
1581671

p
5149

40650

�

� α

L4

�2

+

�

906057445994257
2592000000

+
400124699794729

p
5149

83722740000

�

� α

L4

�3
+O(α4) , (145)

1
L

q2

� α

L4

�

=
239
60

1
L
+

�

29871991
756000

−
2
p

5149
5

�

α

L4
+

�

65155161071
21600000

−
1581671

p
5149

40650

�

� α

L4

�2

+

�

906057445994257
2592000000

−
400124699794729

p
5149

83722740000

�

� α

L4

�3
+O(α4) , (146)

and for level 5 the two eigenvalues are611

1
L

q1

� α

L4

�

=
299
60

1
L
+

�

99483211
756000

+
2
p

36409
5

�

α

L4
+

�

511399295771
21600000

+
558565553

p
36409

5461350

�

� α

L4

�2

+

�

16846422773011117
2592000000

+
2527183186828313923

p
36409

79536916860000

�

� α

L4

�3
+O(α4) ,

(147)

1
L

q2

� α

L4

�

=
299
60

1
L
+

�

99483211
756000

−
2
p

36409
5

�

α

L4
+

�

511399295771
21600000

−
558565553

p
36409

5461350

�

� α

L4

�2

+

�

16846422773011117
2592000000

−
2527183186828313923

p
36409

79536916860000

�

� α

L4

�3
+O(α4) .

(148)

In tables 1 – 4 we collect our numerical results and compare them to the expected analytic612

values up to level 52. In all cases we have good numerical agreement which supports out claim613

that the TBA equations (97) and (98) give the spectrum of the transformed GGE.614

We note that for levels 4 and 5 where we have two eigenvalues the TBA equations give the615

eigenvalue corresponding to the positive square root. We believe that the other root can be616

obtained by solving the TBA equation (97) with two poles but we have not verified this.617

2In all of our numerical results we have not done a serious error analysis, even though errors do arise from
discretising and introducing cut-offs to our integration range in the TBA. This is because our results were in such
agreement with the known analytic values that we did not feel the need to perform such an analysis.
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E0(2π) numerical and analytic values

Level Numerical value Analytic value
0 −0.01666666666666666 − 1

60 = −0.016666666666666666

1 0.9833333333333341 59
60 = 0.9833333333333333

2 1.983333333333334 119
60 = 1.9833333333333333

3 2.9833333333333334 179
60 = 2.9833333333333333

4 3.983333333333334 239
60 = 3.9833333333333333

5 4.983333333333334 299
60 = 4.9833333333333333

Table 1: We list the numerical values of E0(2π) (L = 2π) when the TBA equations
are solved for levels 0 to 5. In the final column we list the analytic results that come
from diagonalising the charges directly.

E1(2π) numerical and analytic values

Level Numerical value Analytic value
0 0.00011772486772486771 89

756000 = 0.00011772486772486772

1 0.07821560846561151 59131
756000 = 0.07821560846560846

2 2.1565489417989436 1630351
756000 = 2.156548941798942

3 16.234882275132286 12273571
756000 = 16.234882275132275

4 68.2158287299221 29871991
756000 +

2
p

5149
5 = 68.21582872992198

5 207.91611903557663 99483211
756000 +

2
p

36409
5 = 207.91611903557674

Table 2: We list the numerical values of E1(2π) (L = 2π) when the TBA equations
are solved for levels 0 to 5. In the final column we list the analytic results that come
from diagonalising the charges directly.

E2(2π) numerical and analytic values

Level Numerical value Analytic value
0 −0.00008004629629629623 − 1729

21600000 = −0.0000800462962962963

1 0.023933842592585384 516971
21600000 = 0.023933842592592593

2 11.574614398148247 250011671
21600000 = 11.574614398148148

3 438.0852949537006 9462642371
21600000 = 438.0852949537037

4 5808.453146384214 65155161071
21600000 + 1581671

p
5149

40650 = 5808.45314638423

5 43191.34083200923 511399295771
21600000 + 558565553

p
36409

5461350 = 43191.34083200952

Table 3: We list the numerical values of E2(2π) (L = 2π) when the TBA equations
are solved for levels 0 to 5. In the final column we list the analytic results that come
from diagonalising the charges directly.
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E3(2π) numerical and analytic values

Level Numerical value Analytic value
0 −0.00041588850308641904 − 1077983

2592000000 = −0.00041588850308641975

1 0.01004061612654321 26025277
2592000000 = 0.01004061612654321

2 86.7328804540904 224811626137
2592000000 = 86.73288045408951

3 16554.39302029211 42908986708597
2592000000 = 16554.393020292053

4 692495.4337312711 906057445994257
2592000000 + 400124699794729

p
5149

83722740000 = 692495.4337312633

5 12562179.006709663 16846422773011117
2592000000 +2527183186828313923

p
36409

79536916860000 =12562179.006709557

Table 4: We list the numerical values of E3(2π) (L = 2π) when the TBA equations
are solved for levels 0 to 5. In the final column we list the analytic results that come
from diagonalising the charges directly.

5.6 Non-asymptotic solutions to the TBA618

In section 5.4 we found the solutions to the TBA equations that reproduced the asymptotic619

results from section 4. Here we will show that there are additional solutions to the TBA equa-620

tions that one needs to consider when calculating the transformed GGE. We will again restrict621

to the h= −1
5 sector in the transformed GGE. These additional solutions therefore correspond622

to states in the HD,− 1
5

defect Hilbert space. (the defect Hilbert spaces were introduced in (12).)623

We will begin by recalling the one particle excited state TBA equations624

ε(θ ) = eθ +
αC
L4

e5θ + log
�

S(θ −η)
S(θ − η̄)

�

−
∫ ∞

−∞
ϕ(θ − θ ′) log

�

1+ e−ε(θ
′)
� dθ ′

2π
, (149)

625

E(L) =
i
L

�

eη̄ − eη
�

−
1
L

∫ ∞

−∞
eθ log

�

1+ e−ε(θ )
� dθ

2π
, (150)

and the constraint626

2nπi = eη +
αC
L4

e5η − log S(2iIm(η))−
∫ ∞

−∞
ϕ(η− θ ′) log

�

1+ e−ε(θ
′)
� dθ ′

2π
. (151)

In order to solve (149) and (151) to find solutions that were missed in the asymptotic analysis627

we will choose alternative expansions to (101) and (118) for ε and η. We assume now ε(θ )628

has the expansion629

ε(θ ) =
∞
∑

n=0

ε n
4
(θ )

� α

L4

�
n
4

. (152)

and η can be expanded as630

η= −
1
4

log
� α

L4

�

+
∞
∑

n=0

η n
4

� α

L4

�
n
4

. (153)

The leading order −1
4 log

�

α
L4

�

term for η can be determined as follows. Assume that as631

α → 0 the pseudo energy tends to a finite, α independent function of θ , ε(θ ) → ε0(θ ). We632

will further assume that in this limit eη→
�

α
L4

�ν
eη0 for some ν and η0 to be determined. We633

plug both of these limits into the constraint equation (151) to determine the power ν.634
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We first note that if Re(ν) ̸= 0 then in the limit α→ 0 the kernel ϕ(η−θ ′) vanishes so we635

drop the convolution term. If Re(ν) = 0 then ϕ(η− θ ′) oscillates without decaying as α→ 0,636

so we don’t have a well defined limit. We now need to determine the behaviour of the driving637

term log S(2iIm(η)) as α→ 0. If Im(ν) = 0 then we have log S(2iIm(η))→ log S(2iIm(η0)).638

However if Im(ν) ̸= 0 then log S(2iIm(η)) oscillates without decaying as α→ 0 so we again639

don’t have a well defined limit. Hence we must have ν ∈ R\{0}.640

Using both of these limits in the constraint equation (151) gives the leading order terms641

2nπi ≈
� α

L4

�ν

eη0 +
� α

L4

�5ν+1
Ce5η0 − log S(2iIm(η0)) . (154)

If ν > 0 then both αν and α5ν+1 are subleading and we have642

2nπi ≈ − log S(2iIm(η0)) . (155)

However this equation has no solutions for finite η0, hence ν < 0. Now the αν term diverges643

as α→ 0 and so the α5ν+1 term must also diverge at the same rate in order for them to cancel.644

This fixes ν= −1
4 and hence we have the leading η behaviour from (153)645

eη ∼
� α

L4

�− 1
4

eη0 ⇒ η∼ −
1
4

log
� α

L4

�

+η0 . (156)

As in section 5.4 we will expand the TBA equations as an asymptotic series in α and solve646

them term by term. First we need to expand the terms in the TBA equations. We start with647

log
�

S(θ−η)
S(θ−η̄)

�

648

log
�

S(θ −η)
S(θ − η̄)

�

= 4
p

3 Im
�

e−η0
�

eθ
� α

L4

�
1
4
− 4
p

3 Im
�

η 1
4
e−η0

�

eθ
� α

L4

�
1
2
+O

�

α
3
4

�

. (157)

Next we provide the expansion of S(2iIm(η))649

log S(2iIm(η)) = log S(2iIm(η0))− 2
� α

L4

�
1
4

Im
�

η 1
4

�

ϕ(2iIm(η0)) (158)

− 2
� α

L4

�
1
2
�

Im
�

η 1
2

�

ϕ(2iIm(η0))+iIm
�

η 1
4

�2
ϕ′(2iIm(η0))

�

+O(α
3
4 ) ,

and finally ϕ(η− θ ′)650

ϕ(η− θ ′) = −2
p

3e−η0 eθ
′
� α

L4

�
1
4
+ 2
p

3η 1
4
e−η0 eθ

′
� α

L4

�
1
2
+O(α

3
4 ) . (159)

If we plug (157) into the non-linear integral equation (149) then we get the series of equations651

ε0(θ ) = eθ −
∫ ∞

−∞
ϕ(θ − θ ′)L(ε0(θ

′))
dθ ′

2π
, (160)

ε 1
4
(θ ) = 4

p
3 Im

�

e−η0
�

eθ −
∫ ∞

−∞
ϕ(θ − θ ′)ε 1

4
(θ ′)L′(ε0(θ

′))
dθ ′

2π
, (161)

ε 1
2
(θ )=−4

p
3 Im

�

η 1
4
e−η0

�

eθ−
∫ ∞

−∞
ϕ(θ−θ ′)

�

ε 1
2
(θ ′)L′(ε0(θ

′))+
1
2
ε 1

4
(θ ′)2 L′′(ε0(θ

′))
�

dθ ′

2π
,

(162)
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and if we plug (158) and (159) into the constraint (151) we have the series of equations652

0= eη0 + Ce5η0 , (163)

2nπi =
�

eη0 + 5Ce5η0
�

η 1
4
− log S(2iIm(η0)) , (164)

0=
1
2

�

eη0 + 25Ce5η0
�

η2
1
4
+
�

eη0 + 5Ce5η0
�

η 1
2
+ 2Im

�

η 1
4

�

ϕ(2iIm(η0))

+

∫ ∞

−∞
2
p

3e−η0 eθ L(ε0(θ ))
dθ
2π

. (165)

We note that (160) doesn’t contain η n
4

and hence can be solved by itself to find ε0. Similarly653

(163) can be solved to find654

η0 =
1
4

log(−1/C) +
πik
2

, k = 0,1, 2,3 , (166)

where we recall that C defined in (87) is negative so we can choose the branch cut such that655

log(−1/C) ∈ R. (We are ignoring the solution eη0 = 0.) We can then solve (164) to find four656

possible values for η1 and use all the previous solutions to solve (165) for η 1
2
. While so far we657

have been able to solve each of the equations independently we note that equations coming658

from higher orders in α will again have to be solved in tandem as we did for the asymptotic659

solutions in section 5.4.660

We can continue to solve the series of equations coming from the integral equation (160)661

and the constraint (151) iteratively to find an asymptotic solution to η and ε. There will be662

four possible solutions, which when added to the asymptotic solution gives us five in total for663

each n ∈ Z in the constraint.664

However we do not want to include all of these solutions in the transformed GGE (14).665

We only want solutions ε(θ ) and η such that when they are plugged into the integral (150)666

for E(L) we have667

Re(E(L)− E0(L))> 0 , (167)

where E0(L) is the ground state energy. This is to ensure the convergence of the GGE (14)668

which is a sum over the exponentials e−R(E(L)−E0(L)).669

Based on the results for free fermion GGEs [15–17] we conjecture that if we add these670

terms to the GGE then we will have the full modular transformation. This conjecture can also671

be extended to the case with a finite number of charges inserted as was done for free fermions672

in [16].673

A non-trivial check of the conjecture would be to verify that with these additional terms674

inserted the expression for the transformed GGE is real. We believe that the individual energies675

E(L) that come from solving (97) and plugging the solution into (98) will have branch points676

in α on the negative real line. This is for both the asymptotic solutions from section 5.4 and677

the ones from this section. Hence the energies may individually be complex, but by including678

all of them in the transformed expression for the GGE we get a real quantity.679

In order to verify this we would like to numerically determine the branch points of the680

energies. This could be done by solving the TBA equations (97) numerically for fixed values681

of α and finding where the energies (98) become complex. This would give exact solutions682

for a given α to the TBA equations rather than the power series solutions we have discussed683

so far. However, so far we have not been able to find a stable numerical algorithm to solve684

(97) for α ̸= 0. We leave it to future work to find the solutions to (95) for fixed values of α685

and determine there branch points.686

We will end this section with a brief discussion on the large α behaviour of the solutions687

to the TBA equations (149) and the constraint (151). Since the solutions only depend on the688
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combination α
L4 , the large α limit is equivalent to the small L limit. We will assume that the689

pseudo energy ε(θ ) and the pole η have the leading behaviour690

ε(θ )∼
� α

L4

�µ

ε0(θ ) , eη ∼
� α

L4

�ν

eη0 (168)

As was discussed above for the α → 0 limit, the constraint equation (151) again only has a691

well defined limit if ν ∈ R\{0}. Note that the value of µ does not change the fact that the692

convolution term is suppressed in (151) as α→−∞. Hence we have693

2nπi ≈
� α

L4

�ν

eη0 +
� α

L4

�5ν+1
Ce5η0 − log S(2iIm(η0)) . (169)

In the limitα→−∞ this equation only has solutions if ν= −1
5 . Then theαν term is subleading694

and the leading order constraint equation is695

2nπi ≈ Ce5η0 − log S(2iIm(η0)) . (170)

For ν ∈ R\{0} the log
�

S(θ−η)
S(θ−η̄)

�

term in (149) tends to 0 as α→−∞. The integral in (149) is696

also subleading and hence we have the leading order behaviour697

ε(θ ) =
α

L4
Ce5θ . (171)

So as α→∞ we have698

ε(θ )∼
α

L4
Ce5θ , eη ∼

� α

L4

�− 1
5

eη0 . (172)

If we use these limits in the energy integral (150) then we find the leading order behaviour of699

the spectrum is700

E(L)∼ (αL)−
1
5

�

i
�

eη̄0 − eη0
�

+

∫ ∞

−∞
eθ log

�

1+ eCe5θ
� dθ

2π

�

. (173)

6 Conclusions and Outlook701

Let us begin our conclusion with a brief summary of the results presented in this paper. We702

will just focus on the main example from the paper, the Lee-Yang model where the I5(R) KdV703

charge was inserted into the characters, with chemical potential α, to give us our GGE704

TrHi

�

e−L(I1(R)+αI5(R))
�

. (174)

We expanded the GGE as an asymptotic series in α705

TrHi

�

e−L(I1(R)+αI5(R))
�

=
∞
∑

n=1

(−αL)n

n!
TrHi

�

I5(R)
ne−LI1(R)

�

, (175)

and took the modular transform of each term. The expressions for the transformed correlators706

can be written as correlators of the original KdV charges as well as the correlators of the zero707

modes of the other quasi-primary fields present in the theory. For example708

Tr
�

I5(R)
2e−LI1(R)

�

=
�

R
L

�2

Tr
�

I5(L)
2e−RI1(L)

�

−
412776
116875

R
L2

Tr
�

J9(L)e
−RI1(L)

�

, (176)
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where J9(L) is the zero mode on the cylinder of the quasi-primary field at level 10 in the h= 0709

representation. Once we have transformed each term we can then resum them into a GGE710

with all charges from the quasi-primary fields present, not just the subset of the KdV charges711

Tr
�

e−L(αI5(R)+I1(R))
�

∼ Tr
�

e−R(I1(L)+α5 I5(L)+β9J9(L)+α13 I13(L)+β13J13(L)+... )
�

, (177)

where the α2n−1 and β2n−1 are given in (59–61). Based on the results for the free fermion712

model [15–17] we assume that the expressions (177) only match asymptotically and that as713

a GGE the right hand side is a formal expression that diverges.714

In order to find a regularised expression for the right hand side of (177) we turned to the715

TBA. If the transformed GGE is just given as a trace over the h= −1/5 representation then the716

TBA equations that give the ground state energy are717

ε(θ ) = eθ +
αC
L4

e5θ −
∫ ∞

−∞
ϕ(θ − θ ′) log

�

1+ e−ε(θ
′)
� dθ ′

2π
, (178)

E0(L) = −
1
L

∫ ∞

−∞
eθ log

�

1+ e−ε(θ )
� dθ

2π
, (179)

and the TBA equations for the excited states are718

ε(θ ) = eθ +
αC
L4

e5θ +
N
∑

i=1

log

�

S(θ − θi)

S(θ − θ̄i)

�

−
∫ ∞

−∞
ϕ(θ − θ ′) log

�

1+ e−ε(θ
′)
� dθ ′

2π
, (180)

E(L) =
i
L

N
∑

i=1

�

eθ̄i − eθi
�

−
1
L

∫ ∞

−∞
eθ log

�

1+ e−ε(θ )
� dθ

2π
. (181)

and the poles θi satisfy the constraints719

2niπi = eθi+
αC
L4

e5θi−log S(θi−θ̄i)+
N
∑

j=1
j ̸=i

log

�

S(θi − θ j)

S(θi − θ̄ j)

�

−
∫ ∞

−∞
ϕ(θi−θ ′) log

�

1+ e−ε(θ
′)
� dθ ′

2π
,

(182)
where ni ∈ Z.720

If we assume that both the pseudo energy ε(θ ) and the poles θi have asymptotic expansions721

as a power series in α then we can reproduce the spectrum of the GGE on the right hand side722

of (177). We verified this for the case with one pole but conjecture that all the other states723

can also be obtained this way.724

We then found another set of solutions to the TBA equations which had the leading be-725

haviour α−1/4 as α → 0+. When exponentiated these energies have a vanishing asymptotic726

expansion and where hence missed in the original asymptotic analysis. However we conjecture727

that they should be included in the full expression for the transformed GGE and they are the728

only additional terms that we have to add to the asymptotic results. Hence the full spectrum729

of the transformed GGE is contained in the above TBA equations.730

It is also worth noting that these TBA equations can be written as the same Y system that731

one has for the ordinary Lee-Yang model. The original derivation of Y systems from TBA732

equations was given in [28], and in [29] Castro-Alvaredo showed that the same Y system also733

encodes the TBA equations for GGEs. For the case of our Lee-Yang TBA equations (178) and734

(180), we define735

Y (θ ) = eε(θ ) . (183)

Then Y (θ ) satisfies the Y system736

Y
�

θ −
iπ
3

�

Y
�

θ +
iπ
3

�

= 1+ Y (θ ) . (184)
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As was noted in [28] the functions Y (θ ) are periodic Y (θ ) = Y
�

θ + 5πi
3

�

. Hence we can737

further define738

t(λ) = Y
�

5
3

logλ
�

, (185)

which satisfies the T system739

t
�

e
iπ
5 λ
�

t
�

e−
iπ
5 λ
�

= 1+ t(λ) . (186)

This is the same T system first derived in [3]. However our function t(λ) also has a dependence740

on α and hence has different analytic properties to the one defined in [3]. In [3] the asymptotic741

expansion of t(λ) as λ→∞ gave the eigenvalues of the KdV charges in the theory. It would742

be interesting to understand if the asymptotic expansion of our function t(λ) as λ → ∞743

again contains the eigenvalues of higher spin conserved charges that are present in the theory744

represented by our transformed GGE.745

While we have provided evidence for our conjecture that the spectrum for the transformed746

GGE is fully encoded in the TBA equations (178) and (180) we have not provided a rigorous747

proof of this statement. In [17] it was proven that for free fermions the full spectrum of the748

transformed GGE is encoded in the TBA equations for that model. However the proof required749

having the explicit expressions for the GGEs and then using Poisson summation to perform the750

modular transformation. Here we do not have an explicit expression for the original GGE and751

hence cannot attempt to use the same methods.752

In section 3 we saw that when we found an asymptotic expression for the transformed GGE753

we had not only KdV charges appearing in the expression, but the zero modes of the other754

quasi-primary fields were also present. These are also conserved charges and so physically755

they should also be inserted into the GGE if we want to consider the most general GGEs used756

to describe a physical system. It would be interesting to study these GGEs and their modular757

properties. We can repeat the analysis of section 3 to find an asymptotic expression for the758

transformed GGE in terms of a new GGE. However we do not have TBA equations that encode759

the spectrum of these charges that are not KdV charges, hence we can’t reproduce the analysis760

of section 5 even though we would again expect there to be terms missing from the asymptotic761

results. We leave the study of these more general GGEs to future work.762

Naturally we would like to extend these results to other models where there are interesting763

GGEs to study. We can naturally extend the results of this paper to the case of minimal models764

where again the KdV charges are inserted into the characters to give us our GGEs.765

An interesting point to mention is that in a generic 2d CFT, there exist further infinite766

sets of commuting conserved charges that are independent to the KdV hierarchy. In particular767

there exist hierarchies that are related to the ZMS-Bullough-Dodd model, see for example [30],768

and can be constructed by considering certain integrable perturbations of CFTs [31] (in fact769

there are two sets of Bullough-Dodd charges which depend on the choice of the integrable770

perturbation). In the case of the Lee-Yang Model that we have analysed in this paper, the KdV771

hierarchy and the Bullough-Dodd hierarchies exactly coincide. It is then natural to ask about772

GGEs with Bullough-Dodd charges inserted in them in a more general setting.773

There is also the BO2 hierarchy that exists for CFTs that have a U(1) current. GGEs with774

these charges inserted have been studied in [32,33]. Studying their modular properties is an775

open question that would be interesting to explore.776

Finally we mention GGEs arising from W algebras. The W3 algebra contains a weight 3777

primary field with zero mode W0. This zero mode commutes with the stress tensor zero mode778

L0, hence we can construct a GGE779

Tr(eαW0qL0−
c

24 ) . (187)

The modular properties of this GGE is still an open question. The first few terms in the asymp-780

totic expansion and their modular transforms were calculated in [23, 34]. The additional781
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charges and their thermal correlators have recently been calculated in [35,36]. Putting these782

results together could allow us to find an asymptotic expression for the modular transform of783

(187) similar to our results in section 3. If TBA equations for the additional charges are known784

then we may hope to repeat the arguments of section 5 to find the full modular transform of785

(187).786
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A Modular forms800

In this appendix we will list the relevant facts about modular forms that appear in this paper.801

Proofs of the following statements can be found in [37] and most of the notation will be the802

same.803

The modular group will be denoted by804

Γ1 = SL(2,Z)/{±I} , (188)

Consider a matrix805
�

a b
c d

�

∈ Γ1 . (189)

If a holomorphic function f (τ), defined in the upper half plane, has the following transforma-806

tion property807

f
�

aτ+ b
cτ+ d

�

= (cτ+ d)k f (τ) , (190)

then we say that the function is a holomorphic modular form of weight k on Γ1. We will denote808

the space of modular forms of weight k on Γ1 by Mk(Γ1).809

The group Γ1 is finitely generated by the matrices810

±
�

1 1
0 1

�

, ±
�

0 1
−1 0

�

, (191)

hence we only need to check that a function transforms as a modular form under811

T : τ 7→ τ+ 1 , S : τ 7→
−1
τ

, (192)

to verify it is an element of Mk(Γ1).812
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An important fact about the space Mk(Γ1) is that it is finite dimensional. The space M2k(Γ1)813

is generated by the Eisenstein series, which we now define.814

The Eisenstein series E2k(τ) are elements of M2k(Γ1) for k = 2,3, . . . and they are defined815

by816

E2k(τ) = 1+
2

ζ(1− 2k)

∞
∑

n=0

n2k−1qn

1− qn
, q = e2πiτ . (193)

For k = 1 the Eisenstein series E2(τ) is quasi-modular which means that under a modular817

transform we have the transformation property818

E2

�

aτ+ b
cτ+ d

�

= (cτ+ d)2E2(τ)−
6i
π

c(cτ+ d) . (194)

We also encounter quasi-modular forms. For our purpose we will define the space of quasi-819

modular forms of weight k and depth p, denoted by eM (≤p)
k (Γ1), to be820

eM (≤p)
k (Γ1) =

p
⊕

r=0

Mk−2r(Γ1) · E r
2 , (195)

where the coefficient of Ep
2 is non-zero.821

Finally we define the Serre derivative. The Serre derivative acting on a modular form f (τ)822

of weight k is defined to be823

Dk f (τ) =
1

2πi
d

dτ
f (τ)−

k
12

E2(τ) f (τ) . (196)

By using the transformation of d
dτ under a modular transform we can see that Dk f (τ) is a824

modular form of weight k+ 2.825

B Construction of Charges826

In this appendix we will explain how to construct the charges used throughout this paper.827

These charges are the zero modes of quasi-primary fields on the cylinder so we will begin by828

explaining how we use the algorithm of Gaberdiel in [38] to map fields from the cylinder to829

the plane. We will then apply this map to the case of the quasi-primary field at level 6 that830

is linearly independent from the quasi-primary field that gives the KdV charge I5. Finally we831

will discuss the charges in the Lee-Yang minimal model and give explicit expressions for all the832

charges used in this work.833

B.1 Mapping between the cylinder and plane834

To start we will explain how to map a field from the cylinder to the plane. Suppose that we835

have a field φpl(z) defined on the complex plane z ∈ CWe will assume that this field is a level836

N descendent of a primary fields of weight h, hence the field φpl has weight h+ N . We want837

an expression for this field on the cylinder of circumference R with coordinate w∼ w+ iR. We838

will denote the field on the cylinder by φcyl(w) and we will find an expression for it in terms839

of fields on the plane, i.e. an expression of the form840

φcyl(w) = Φ(z) , (197)

where Φ(z) is constructed out of fields defined on the plane. The conformal map that we use841

to map between the cylinder and the plane is842

z = e
2π
R w . (198)
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In order to find the expression φcyl(w) = Φ(z) we first find the asymptotic state associated to843

φpl(z)844

|φ〉= lim
z→0
φpl(z)|0〉 . (199)

We then find an intermediate state |Φ〉 by acting on |φ〉 with Virasoro modes Ln845

|Φ〉= zL0

∞
∏

n=1

eRn Ln |φ〉, (200)

where the product is written in ascending order of n846

∞
∏

n=1

eRn Ln = eR1 L1 × eR2 L2 × eR3 L3 × ... . (201)

The algorithm for computing the Rn is given in [38], we have listed the relevant ones for our847

calculations in table 5. We note that for n odd and greater than 1 Rn = 0 so we have not listed848

them in table 5. (For a general conformal map z = f (w) the Rn will be functions of w and849

zL0 becomes f ′(z).) Although we have an infinite product and the exponentials also contain850

infinite products these expressions can truncate to a finite one since any operator of the form851

Ln1
. . . Lni

with n1 + · · ·+ ni > N will annihilate |φ〉.852

The intermediate state |Φ〉 will be of the form853

|Φ〉=
N
∑

m=0

zm+h|Φm〉 , (202)

so we can then use the state operator correspondence to find the fields Φm(z) corresponding854

to |Φm〉. We then define the field855

Φ(z) =
N
∑

m=0

zm+hΦm(z) . (203)

This field gives the an expression for the field φcyl(w) on the cylinder in terms of fields on the856

plane857

φcyl(w) = Φ(z) . (204)

Our charges are the zero modes of fields on the cylinder. If we have a field φcyl(w) on the858

cylinder of circumference R, we integrate it on a spatial slice to obtain the associated charge859

φ0(R). We can then use our map (204) to express this as an integral on the plane860

φ0(R) =

∫ iR

0

dw
2πi
φcyl(w) =

R
2π

∮

dz
2πi z

Φ(z). (205)

B.2 Example of a Weight 6 Field861

As an explicit example we will apply the algorithm of the previous section to the weight 6862

quasi-primary field863

φpl(z) = (T ′T ′)(z)−
4
5
(T ′′T )(z)−

1
42

T (4)(z), (206)

which is defined on the plane. This field is linearly independent to the quasi-primary field that864

gives the KdV charge I5.865
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n Rn(w)
0 w

1 1
2(

2π
R )

1

2 − 1
12(

2π
R )

2

4 − 1
48(

2π
R )

4

6 1
12096(

2π
R )

6

8 − 1
138240(

2π
R )

8

10 1
2280960(

2π
R )

10

12 − 389
13586227200(

2π
R )

12

14 1
464486400(

2π
R )

14

Table 5: Table of some of the Rn’s necessary for the map of a field from the cylinder
to plane

First we need its associated asymptotic state which is866

|φ〉=
�

L2
−3 −

8
5

L−4 L−2 −
4
7

L−6

�

|0〉. (207)

Next, acting on the state to generate the intermediate state |Φ〉 as in (200) yields867

�

2π
R

�6�

z6
�

L2
−3 −

8
5

L−4 L−2 −
4
7

L−6

�

|0〉+ z4
�

4
5

L2
−2 +

14c − 95
210

L−4

�

|0〉

+ z3 70c + 29
420

L−3|0〉+ z2 280c − 163
2100

L−2|0〉+
31c

16800
|0〉
�

.
(208)

Finding the state defined in (203) gives868

Φ(z) =
�

2π
R

�6�

z6
�

(T ′T ′)(z)−
4
5
(T ′′T )(z)−

1
42

T (4)(z)
�

+ z4
�

4
5
(T T )(z) +

14c − 95
420

T ′′(z)
�

+ z3 70c + 29
420

T ′(z) + z2 280c − 163
2100

T (z) +
31c

16800

�

.

(209)

The brackets denote normal ordering as defined in [39]. This then gives use the field φcyl(w)869

on the cylinder870

φcyl(w) =
�

2π
R

�6�

z6
�

(T ′T ′)(z)−
4
5
(T ′′T )(z)−

1
42

T (4)(z)
�

+ z4
�

4
5
(T T )(z) +

14c − 95
420

T ′′(z)
�

+ z3 70c + 29
420

T ′(z) + z2 280c − 163
2100

T (z) +
31c

16800

�

.

(210)

We can then integrate this as in (205) to obtain the conserved quantity871

J5(R) = φ0(R) =
�

2π
R

�5
�

−
18
5

∞
∑

k=1

k2 L−k Lk −
3

100
L0 +

31c
16800

�

. (211)
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B.3 Charges in the Lee-Yang Model872

In this section we will present the charges relevant to the Lee-Yang model. These will include873

the KdV charges which have been calculated previously (see for example [3]). However we874

will find new simpler expressions for them by using a bases of states in the Lee-Yang theory875

which already has null states removed. We will also calculate the charges associated with the876

other quasi-primary fields in the theory. While these don’t commute with the KdV charges they877

still appear when we take the modular transform of a GGE as see in section 4.878

There is natural basis of states in the vacuum module which avoids the null vectors in the879

Lee-Yang model [40], that is the vacuum module is given by880

H0 = span
�

L−n1
...L−nm

|0〉 | m≥ 0, nm > 1, ni > ni+1 + 1
	

. (212)

We can then use this bases of states when calculating the quasi-primary fields. For example at881

level 4 we have a single state882

L−4|0〉 . (213)

If we act on this state with L1 we obtain883

L1 L−4|0〉= 5L−3|0〉 ̸= 0 . (214)

Hence we have no quasi-primary states at level 4. This means we have no I3 KdV charge as884

has previously been pointed out in [14].885

We can also find the quasi-primary state at level 6. A generic state at level 6 is886

(aL−6 + bL−4 L−2)|0〉 , (215)

for constants a and b. When we act with L1 we obtain887

(7aL−5 + 5bL−3 L−2)|0〉 (216)

However the term L−3 L−2 is not in H0. We can exchange it for terms in H0 by using the null888

states in the Lee-Yang model. In the vacuum sector there is a null state at level 4 given by889

�

L−4 −
5
3

L2
−2

�

|0〉= 0 . (217)

Hence we can act on this with L−1 to obtain the relation890

L−3 L−2|0〉=
2
5

L−5|0〉 . (218)

Using this in (216) we obtain891

L1(aL−6 + bL−4 L−2)|0〉= (7a+ 2b)L−5|0〉 ∈H0 . (219)

Hence we have the quasi-primary state at level 6892

�

L−6 −
7
2

L−4 L−2

�

|0〉 . (220)

This is proportional to the state which gives the KdV charge I5. However if we map this state893

to the cylinder then we get an expression for the zero mode which only contains quadratic894

and linear terms in the Virasoro modes rather than the usual expression for I5 which contains895

terms that are cubic (see for example the expression in [3]). Hence using the representation896

(212) for the vacuum module leads to simpler expressions for the charges.897
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Using the representation (212) for the vacuum model we have calculated the zero modes898

of all the quasi-primary fields with even weight up to weight 14899

I1(R) =
�

2π
R

�1
�

L0 +
11
60

�

,

I3(R) = 0,

I5(R) =
�

2π
R

�5
�

1
5

∞
∑

k=1

(k2 + 6)L−k Lk +
3
5 L2

0 +
73
600 L0 +

341
756000

�

,

I7(R) =
�

2π
R

�7
�

1
28

∞
∑

k=1

(13k4 + 82k2 − 546)L−k Lk −
39
4 L2

0 +
90137
35280 L0 −

5863
8467200

�

,

J9(R) =
�

2π
R

�9
�

− 55
27216

∞
∑

k=1

(17k6 + 30054)L−k Lk −
275495
9072 L2

0 −
7934443
1306368 L0 −

5797
78382080

�

,

J13(R) =
�

2π
R

�13
�

− 23
8895744

∞
∑

k=1

(19k10 + 51294138)L−k Lk −
196627529

2965248 L2
0 −

3864911011991
291424573440 L0 −

1494977
1589588582400

�

,

I13(R) =
�

2π
R

�13�

− 91
211612500000

∞
∑

k=1

(1631557057290− 18646489477k2 − 14982597630k4 − 275953986k6

− 4754750k8 + 546098k10)L−k Lk −
637

937500L(5,3, 0)− 45227
3375000L(4,2, 0)− 637

8437500L(6,2, 0)− 4949056407113L2
0

14107500000

− 187569810221381L0
3047220000000 −

825517
174960000000

�

.

(221)

where the L(l, n, m) are defined by900

L(l, n, m) =(T (l)(T (n)T (m)))0 =

∮

dz
2πi

z l+n+m+5(T (l)(T (n)T (m)))(z),

=
∑

i≤−2
j≤−2

(−1)l+n+m
l+1
∏

a=2

(i + a)
n+1
∏

b=2

( j + b)
m+1
∏

c=2

(c − i − j)Li L j L−i− j

+
∑

i≤−2
j≥−1

(−1)l+n+m
l+1
∏

a=2

(i + a)
n+1
∏

b=2

( j + b)
m+1
∏

c=2

(c − i − j)Li L−i− j L j

+
∑

i≥−1
j≤−2

(−1)l+n+m
l+1
∏

a=2

(i + a)
n+1
∏

b=2

( j + b)
m+1
∏

c=2

(c − i − j)L j L−i− j Li

+
∑

i≥−1
j≥−1

(−1)l+n+m
l+1
∏

a=2

(i + a)
n+1
∏

b=2

( j + b)
m+1
∏

c=2

(c − i − j)L−i− j L j Li .

(222)

The I2n−1 are the KdV charges coming from a weight 2n quasi-primary field. They can be901

uniquely fixed (up to a factor) by imposing that they all commute [3]. J9 is the zero mode of902

the unique quasi-primary field at level 10, it does not commute with the KdV charges. J13 is903

the zero mode of the quasi-primary field at level 14 that is linearly independent to the field904

that gives the KdV charge I13, it also doesn’t commute with the KdV charges.905
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C Eigenvalues and Thermal Correlation Functions of Charges906

In this appendix we explain how to compute the thermal correlation functions of the charges907

using the techniques of [14]. These thermal correlation functions are given by modular dif-908

ferential operators acting on the characters of the theory.909

C.1 Eigenvalues910

First we will give an expression for the correlators in terms of kth power sums (225) of the911

eigenvalues. We will explain how to calculate these power sums using the characteristic equa-912

tion of a matrix which avoids us having to explicitly find the eigenvalues we are summing913

over.914

Consider an operator O with scaling dimension hi . We want to calculate the thermal915

correlator916

〈Ok〉i(τ) , (223)

where 〈. . .〉i is defined in (26).917

In order to do this we need to find the sums of powers of the eigenvalues at each level.918

Consider restricting the operator to the level N subspace and let us denote the dimension of919

this subspace n. We can obtain the eigenvalues of O in this subspace and label them λi for920

i = 1, . . . , n. Then the thermal correlator is921

〈Ok〉i(τ) = qhi−
c

24

∞
∑

N=0

pk(λ1, . . . ,λn)q
N , q = e2πiτ , (224)

where pk(λ1, . . . ,λn) is the kth power sum922

pk(λ1, . . . ,λn) =
n
∑

i=1

λk
i . (225)

In order to calculate the correlator we need to know pk(λ1, . . . ,λn). We could find the eigen-923

values at each level and then sum their powers. However for level subspaces with n > 4 we924

won’t, in general, be able to find eigenvalues since they will be roots of polynomials of order925

greater than 4.926

Instead we can calculate pk(λ1, . . . ,λn) using Newton’s identities. These identities relate927

the coefficients in the characteristic equation of O restricted to a level subspace, to the power928

sum of the eigenvalues. It is much easier to compute the characteristic polynomial for a matrix929

than finding it’s eigenvalues, especially when n> 4.930

We start by defining the coefficients x i in the characteristic polynomial931

det(λI −O) =
n
∏

i=1

(λ−λi) =
n
∑

i=0

xn−i(λ1, . . . ,λn)λ
i . (226)

We then define the elementary symmetric polynomials e(λ1, . . . ,λn)932

e0(λ1, . . . ,λn) = 1

e1(λ1, . . . ,λn) = λ1 + · · ·+λn

e2(λ1, . . . ,λn) =
∑

1≤i< j≤n

λiλ j

...

en(λ1, . . . ,λn) = λ1 . . .λn

ek(λ1, . . . ,λn) = 0 , k > n.

(227)
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We have the relation933

x i(λ1, . . . ,λn) = (−1)iei(λ1, . . . ,λn). (228)

Newton’s identity then states the following relation between the x i and the pk934

pk(λ1, . . . ,λn) = −kxk(λ1, . . . ,λn)−
k−1
∑

i=1

xk−i(λ1, . . . ,λn)pi(λ1, . . . ,λn) , n≥ k ≥ 1 ,

pk(λ1, . . . ,λn) = −
k−1
∑

i=k−n

xk−i(λ1, . . . ,λn)pi(λ1, . . . ,λn) , k > n≥ 1 .

(229)

Hence we can use the coefficients of the characteristic polynomial to compute the thermal935

correlator of Ok.936

As an example we have tabulated in Tables 6 and 7 the necessary sums of eigenvalues of937

the composite operator I5J13 which we have calculated using this method. This can then be938

used to calculate the thermal correlator (248). In general however, the tables become rather939

large and are not very illuminating to have in the document.940

Level m Λm =
∑

λi

0 − 509787157
1201728968294400000

2 − 2569135573534504727
13219018651238400000

3 −5073183677278566332927
13219018651238400000

4 −981246408964814147312327
13219018651238400000

5 −56558651194472972584841327
13219018651238400000

6 −109719634725387940354134161
944215617945600000

7 −12470098331132900857673903327
6609509325619200000

Table 6: Sums of powers of eigenvalues I5J13 in h= 0 representation.

Level m Λm =
∑

λi

0 − 1141081727
13219018651238400000

1 − 18487172153927
13219018651238400000

2 − 614331959543590361
1888431235891200000

3 −6214449825743713137527
13219018651238400000

4 −548022831223321427788127
6609509325619200000

5 −2351735393047156019125379
508423794278400000

Table 7: Sums of powers of eigenvalues I5J13 in h= −1
5 representation.

C.2 Thermal Correlation Functions941

Using the method presented in the previous section to calculate sums of eigenvalues of oper-942

ators, we can find the expression of thermal correlation functions in terms of modular differ-943

ential operators acting on the characters of the CFT as was done in [14].944

We will do this explicitly for the charge J5 = J5(2π) which we defined in section B.2. We945

can calculate it’s thermal correlator in a generic rational CFT as follows. We first note that in946
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the vacuum sector h0 = 0 we have947

〈J5〉0 =
31c

16800
+ 0q+O(q2) , (230)

and in the other representations hi with i ̸= 0 we have948

〈J5〉i ̸=0 =
31c − 504h

16800
+

31c − 121464h− 504
16800

q+O(q2) , (231)

From [14] we know that the thermal correlator must be a weight 6 modular differential oper-949

ator acting on the characters. We only have a linear L0 term in (211), hence we must have a950

first order differential operator. Using the definition of the Serre derivative D and Eisenstein951

series E2k in appendix A the only first order weight 6 differential operator we can construct is952

〈J5〉i =
�

a E4D+ b E6

�

χi , (232)

where a, b are constants. Then by performing a q-series expansion of the above differential953

operator and comparing with the leading order terms in (230) and (231), we deduce954

〈J5〉i =
�

−
3

100
E4D+

c
1680

E6

�

χi . (233)

If we restrict to the Lee-Yang model we can find simpler expressions for the correlation func-955

tions compared to those given in [14] for generic CFTs. This is because the characters satisfy956

a second order differential equation which can be used to reduce the order of differential957

operator acting on the characters.958

We will demonstrate this for the case of the correlator 〈I5〉 in the Lee-Yang model. (For959

the rest of this section we will drop the i subscript since the specific representation won’t be960

important.) From [14], 〈I5〉 in the Lee-Yang model is961

〈I5〉=
�

D3 −
1

720
E4D+

11
9450

E6

�

χ . (234)

However we also have the modular differential equation satisfied by the two characters of962

Lee-Yang [21]963
�

D2 −
11

3600
E4

�

χ = 0 . (235)

Acting on this with the Serre derivative D4 and using D4E4 = −
1
3 E6 we find964

�

D3 −
11

3600
E4D+

11
10800

E6

�

χ = 0 . (236)

Using this to eliminate the D3 term in (234) gives use the first order differential operator965

�

1
600

E4D+
11

75600
E6

�

χ = 0 . (237)

Using the differential equation (235) means that all thermal correlators will be first order966

differential operators acting on the characters.967

For example if we want the thermal correlator 〈I2
5 〉 in the Lee-Yang model we know it must968

be a weight 12, depth 1, first order modular differential operator acting on the characters so969

we have the ansatz970

〈I2
5 〉=

�

a1E4E6D+ a2E3
4 + a3E2

6

�

χ + E2

�

a4D+ a5E4E6

�

χ , (238)

which has five constants ai that can be fixed by finding the 2nd power sum of the eigenvalues971

as detailed in section C.1.972

In the following subsections we will give all the thermal correlation functions, in the Lee-973

Yang model, that are relevant to this work. They were all computed using the techniques974

detailed in section C.1 this section.975
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C.2.1 One Point Functions976

〈I5〉=
� 1

600 E4D+ 11
75600 E6

�

χ, (239)
977

〈J9〉=
�

− 187
1306368 E2

4 D− 187
3919104 E4E6

�

χ, (240)
978

〈I13〉= (−
19747

5832000000 E2
4 E6 −

5341
1188000000 E3

4 D− 889
320760000 E2

6 D)χ, (241)
979

〈J13〉= (−
437

582266880 E2
4 E6 −

3059
4625786880 E3

4 D− 10925
29142457344 E2

6 D)χ. (242)

C.2.2 Two Point Functions980

〈I2
5 〉=

� 977
22680000 E4E6D+ 3937

432000000 E3
4 +

5669
1143072000 E2

6

�

χ

+ E2

�

− 91
2160000 E2

4 D− 91
6480000 E4E6

�

χ ,
(243)

981

〈I5J9〉=(−
6827183

296284262400 E2
6 E4 −

16388119
940584960000 E4

4 −
93101129

1283898470400 E6E2
4 D)χ

+ E2(
76109

1881169920 E6E2
4 +

28985
1069915392 E2

6 D+ 8789
194088960 E3

4 D)χ
(244)

C.2.3 Three Point Functions982

〈I3
5 〉=

� 236364271
86416243200000 E3

6 +
494225369

32659200000000 E3
4 E6 +

1157429
86400000000 E4

4 D+ 21351661
1143072000000 E4E2

6 D
�

χ

+ E2

�

− 7974967
518400000000 E4

4 −
474617

23328000000 E4E2
6 −

497867
7776000000 E2

4 E6D
�

χ

+ E2
2

� 37037
2073600000 E2

4 E6 +
2303

115200000 E3
4 D+ 31

2592000 E2
6 D
�

χ

(245)

C.2.4 Four Point Functions983

〈I5J9 I5J9 + 2I2
5 J2

9 〉=(
2179392274819219829707613
39221702969366937600000000 E8

4 +
3261128141852799871003297969
7516682487267296123289600000 E5

4 E2
6

+ 44439554924896114133249
289103172587203697049600 E2

4 E4
6 +

17972586716703024676379357
80306436829778804736000000 E6

4 E6D

+ 13447381664688693623851
48183862097867282841600 E3

4 E3
6 D+ 365114027354495

34835065137266688 E5
6 D)χ

+ E2(−
18459713714614824862569887
21305789363002540032000000 E6

4 E6 −
2145587212938780676961401
2087967357574248923136000 E3

4 E3
6

− 7991249766071003993
225861853583752888320 E5

6 −
36766183126802406909223
182100763786346496000000 E7

4 D

− 189497908537579626909319
167037388605939913850880 E4

4 E2
6 D− 13629984197781552899

66922030691482337280 E4E4
6)χ

+ E2
2(

11365591839138152004301
42718374662661734400000 E7

4 +
113298927841216325585509
79541613621876149452800 E4

4 E2
6+

3741640654381407688889
15659755181806866923520 E4E4

6 +
86626897675944766897
96624895070306304000 E5

4 E6D

+ 419839214238450958633
652489799241952788480 E2

4 E3
6 D)χ

+ E3
2(−

420831892527650263
1095342940068249600 E5

4 E6 −
17371382461645795
67089755079180288 E2

4 E3
6

− 655898828464786511
6102624951808819200 E6

4 D− 71634855640572155
186892889149145088 E3

4 E2
6 D

− 25790460875702875
1144718946038513664 E4

6 D)χ
(246)
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〈I3
5 I13〉=(−

3662789242251036625469
5744286720000000000000000 E8

4 −
829919046794601603749

298383782400000000000000 E6
4 E6D− 43752429748829672779547

8788758681600000000000000 E5
4 E2

6

− 2347943315988952972079
676734418483200000000000 E3

4 E3
6 D− 10253251682424762132791

5813763867878400000000000 E2
4 E4

6 −
1755294025516129867

13463453167718400000000 E5
6 D)χ

+ E2(
449152119628129528793

179030269440000000000000 E7
4 D+ 1136041754009699277559

80563621248000000000000 E2
6 E4

4 D+ 9522101518506256241
3759635658240000000000 E4

6 E4D

+ 3640771544831927121763
366198278400000000000000 E6E6

4 +
1554345511673424702041

131831380224000000000000 E3
6 E3

4 +
157315328878419838243

387584257858560000000000 E5
6)χ

+ E2
2(−

99734751071982908147
8951513472000000000000 E6E5

4 D− 38670103939681218767
4833817274880000000000 E3

6 E2
4 D− 52306420490432254657

17132083200000000000000 E7
4

− 1436431475895774703849
87887586816000000000000 E2

6 E4
4 −

7227523086579850439
2636627604480000000000 E4

6 E4)χ

+ E3
2(

3774988666431944689
2826793728000000000000 E6

4 D+ 2992912386847019
628176384000000000 E2

6 E3
4 D+ 233020899293

831409920000000 E4
6 D

+ 377646503248171703
85660416000000000000 E6E5

4 +
1017904924658167

342641664000000000 E3
6 E2

4)χ
(247)

〈I3
5 J13〉= (−

17873436145260800359
33955446260736000000000 E6E6

4 D− 490391522408009449802489
747519641905150033920000000 E3

6 E3
4 D− 92716955395499288947

3767498995201956170956800 E5
6 D

− 612351928167536196113
4316414253465600000000000 E8

4 −
716957562395761874841373

647203153164632064000000000 E2
6 E5

4 −
3361152009340424011942883

8562497716368082206720000000 E4
6 E2

4)χ

+ E2(
4915080143718468157

10348326479462400000000 E7
4 D+ 2260654561876999456183

847527938667970560000000 E2
6 E4

4 D+ 79483870998598392829
166115475978922229760000 E4

6 E4D

+ 101454123296320814531
45861901443072000000000 E6E6

4 +
12737016679505510738243

4854023648734740480000000 E3
6 E3

4 +
39680387596385790613

439102446993234984960000 E5
6)χ

+ E2
2(−

1329564636918812861
630601144842240000000 E6E5

4 D− 1398099098325038689
924575933092331520000 E3

6 E2
4 D− 45313164080668629943

66708220280832000000000 E7
4

− 480391290954347056469
132082276156047360000000 E2

6 E4
4 −

96714650888817229
158498731387256832000 E4

6 E4)χ

+ E3
2(

309189907965822079
1222984038481920000000 E6

4 D+ 145460634198308051
161433893079613440000 E2

6 E3
4 D+ 159846756287

3021489977425920 E4
6 D

+ 12584290522849297
12828503900160000000 E6E5

4 +
1492883098488757

2257816686428160000 E3
6 E2

4)χ
(248)

C.2.5 Six Point Functions984

〈I6
5 〉= (

4933344922206498844523471
564350976000000000000000000 E9

4 +
77877392361154733121560441
829595934720000000000000000 E6

4 E2
6

+ 162476124463643206566112771
2822285369917440000000000000 E3

4 E4
6 +

51469469692192836453088181
37338835444007731200000000000 E6

6

+ 135302164964875254677089
3292047360000000000000000 E7

4 E6D+ 1008801061084124465663
12697896960000000000000 E4

4 E3
6 D

+ 438784179523246262258293
49389993973555200000000000 E4E5

6 D)χ

+ E2(−
1346076414093419404192429
5079158784000000000000000 E7

4 E6 −
5499851662401108509876537
11199545118720000000000000 E4

4 E3
6

− 104252410025005355760517
2015918121369600000000000 E4E5

6 −
476358679312745389693
8957952000000000000000 E8

4 D

− 25610275729568078785301
59256852480000000000000 E5

4 E2
6 D− 108690825605598138285517

671972707123200000000000 E2
4 E4

6 D)χ

+ E2
2(

277870344086154864737
1990656000000000000000 E8

4 +
66428206941466921745437
60949905408000000000000 E5

4 E2
6

+ 691953340111094055949
1791927218995200000000 E2

4 E4
6 +

682300288060138541261
1209323520000000000000 E6

4 E6D

+ 12506995040326554259
17777055744000000000 E3

4 E3
6 D+ 59178874407903767

2239909023744000000 E5
6 D)χ

+ E3
2(−

2632129661468288897993
3627970560000000000000 E6

4 E6 −
13111503925652433941
15237476352000000000 E3

4 E3
6

− 3318117971641012397
111995451187200000000 E5

6 −
68392401230782519891
403107840000000000000 E7

4 D

− 13834166805095898541
14511882240000000000 E4

4 E2
6 D− 25352801672559097

148142131200000000 E4E4
6 D)χ

+ E4
2(

43107759312689342117
386983526400000000000 E7

4 +
34617980883231658451
58047528960000000000 E4

4 E2
6

+ 120977896233403
1209323520000000 E4E4

6 +
22495159155372463
59719680000000000 E5

4 E6D+ 653851361661301
2418647040000000 E2

4 E3
6 D)χ

+ E5
2(−

19212872091349937
199065600000000000 E5

4 E6 −
58267207067069
895795200000000 E2

4 E3
6

− 436874136548774617
16124313600000000000 E6

4 D− 194747805703493
2015539200000000 E3

4 E2
6 D− 114470161877

20155392000000 E4
6 D)χ

(249)
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C.3 Modular transform of correlators985

What’s actually important here is the modular transformation of the 〈In
5 〉 thermal correlators.986

When performing the modular transformation of these quasi-modular forms, we pick up addi-987

tional pieces which we can then rewrite in terms of other thermal correlators. For example, the988

following transformation was derived by finding 〈I3
5 〉 as a modular differential operator acting989

on the characters of the theory, (245), then taking the S : τ 7→ − 1
τ transformation and noticing990

that the result can be written in terms of the other thermal correlation functions (241), (242),991

(244)992

〈I3
5 〉
�

− 1
τ

�

= τ18〈I3
5 〉(τ)−

6i
πτ

17
�103194

116875〈I5J9〉(τ)
�

− 36
π2τ

16
�

−45
16〈I13〉(τ)−

31941
2875 〈J13〉(τ)

�

. (250)

This is crucial for the re-exponentiation of the GGE after we take the modular S transformation993

of it.994

D Numerical algorithm for TBA995

In this appendix we will briefly outline our approach to solving the TBA equations numerically.996

We do this by discretising the integrals into finite sums and then setting up iteration schemes.997

Our iteration scheme for finding the pseudo energy ε(θ ) is the same as the one used in equa-998

tions (2.2) of [25] with a = 1. We will also explicitly give the iteration scheme we used to999

solve for the poles η in the excited states.1000

D.1 Ground State1001

Let us start with the ground state TBA equations (95) and (96). In order to solve the TBA1002

equations we expanded ε(θ ) as an asymptotic series in α (101) and then solved the TBA1003

equation (95) order by order in α. The first equation to solve is the non linear integral equation1004

for ε0(θ )1005

ε0(θ ) = eθ −
∫ ∞

−∞
ϕ(θ − θ ′) log

�

1+ e−ε0(θ ′)
� dθ

2π
. (251)

We start by taking the finite set of real points {−aN ,−a(N − 1), . . . , aN} where N ∈ N and1006

a > 0. For our numerics we set N = 300 and a = 0.1. We then discretise (251) so it becomes1007

ε0(ia) = eia −
a

2π

N
∑

j=−N

ϕ((i − j)a) log
�

1+ e−ε0( ja)
�

, i = −N , . . . , N . (252)

This discrete equation can then be solved iteratively. We take the seed solution1008

ε
(0)
0 (ia) = eia , (253)

and then define ε(k+1)(ia), for k ≥ 0, by the recursion relation1009

ε
(k+1)
0 (ia) = eia −

a
2π

N
∑

j=−N

ϕ((i − j)a) log
�

1+ e−ε
(k)
0 ( ja)

�

, (254)

We then evaluate a discrete version of the integral (110) giving the vacuum eigenvalue of I11010

using the solution ε(k)01011

L Ivac,(k)
1 (L) = −

a
2π

N
∑

i=−N

eia L(ε(k)0 (ia)) . (255)
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We terminate the algorithm when1012

�

�

�

�

�

L Ivac,(k+1)
1 (L)− L Ivac,(k)

1 (L)

L Ivac,(k)
1 (L)

�

�

�

�

�

< δ , (256)

for some chosen δ. We set δ = 10−16 in our numerics and it typically took about 30 iterations1013

before the iteration scheme terminated.1014

We now want to solve for the εn(θ ), n≥ 1, in the expansion (101). As remarked in (108)1015

these all satisfy linear integral equations of the form1016

εn(θ ) = fn(θ )−
∫ ∞

−∞
ϕ(θ − θ ′)εn(θ

′)L′(ε0(θ
′))

dθ ′

2π
, (257)

where the fn(θ ) is a know function of ε0, . . . ,εn−1. We again discretise the integral and set up1017

the iteration scheme for k ≥ 01018

ε(k+1)
n (ia) = fn(ia)−

a
2π

N
∑

j=−N

ϕ((i − j)a)ε(k)n ( ja)L
′(ε0( ja)) , (258)

with seed solution1019

ε(0)n (ia) = fn(ia) . (259)

We can again plug the solutions into a discrete version of the integral at O(αn) in (109) to1020

terminate the algorithm and find the desired energies.1021

D.2 One Particle Excited State1022

We will now outline the numerical algorithm used to determine the excited states. We now1023

have two equations to solve in tandem, one coming from the TBA equation (115) and the1024

other coming from the constraint (117). We will start with the equations for ε0 and η0, (122)1025

and (127). The iteration scheme coming from (122) is1026

ε
(k+1)
0 (ia) = eia + log

�

S(ia−η(k)0 )

S(ia− η̄(k)0 )

�

−
a

2π

N
∑

j=−N

ϕ((i − j)a)L(ε(k)0 ( ja)) , (260)

for k ≥ 0 with the seed solution1027

ε
(0)
0 (ia) = eia + log

�

S(ia−η(0)0 )

S(ia− η̄(0)0 )

�

. (261)

In order to set up the iteration scheme for η0 we first have to rearrange the constraint equation1028

2nπi = eη0 − log S(2iIm(η0))−
∫ ∞

−∞
ϕ(η0 − θ ′)L(ε0(θ

′))
dθ ′

2π
. (262)

We first rearrange it to put the iIm(η0) in log S(2iIm(η0)) on the left hand side1029

iIm(η0) =
1
2

S−1

�

exp

�

eη0 −
∫ ∞

−∞
ϕ(η0 − θ ′)L(ε0(θ

′))
dθ ′

2π

��

. (263)

S−1 is the inverse of the S matrix which is given by1030

S−1(θ ) = i arcsin
�

θ + 1
θ − 1

sin
�π

3

�

�

. (264)
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The branch cut of arcsin is fixed by demanding that Im(η0) ∈ [0,2π).1031

We can also extract the real part of η0 by taking the imaginary part of (262). Taking the1032

imaginary part gives1033

2nπ= eRe(η0) sin(Im(η0))−πs− Im

�∫ ∞

−∞
ϕ(η0 − θ ′)L(ε0(θ

′))
dθ ′

2π

�

, (265)

where s = 0 if S(2iIm(η0))> 0 and s = 1 if S(2iIm(η0))< 0. This can be rearranged to give1034

Re(η0) = log





(2n+ s)π+ Im
�

∫∞
−∞ϕ(η0 − θ ′)L(ε0(θ ′))

dθ ′
2π

�

sin(Im(η0))



 . (266)

Adding together (263) and (266) gives us the new constraint equation1035

η0 = log





(2n+ s)π+ Im
�

∫∞
−∞ϕ(η0 − θ ′)L(ε0(θ ′))

dθ ′
2π

�

sin(Im(η0))



 (267)

+
1
2

S−1

�

exp

�

eη0 −
∫ ∞

−∞
ϕ(η0 − θ ′)L(ε0(θ

′))
dθ ′

2π

��

.

Through numerical experimentation we found that this appears to be best form of the con-1036

straint equation to turn into an iteration scheme. Our discrete iteration scheme is then1037

η
(k+1)
0 = log





(2n+ s)π+ Im
�

a
2π

∑N
i=−N ϕ(η

(k)
0 − ia)L(ε(k)0 (ia))

�

sin(Im(η(k)0 ))



 (268)

+
1
2

S−1

�

exp

�

eη
(k)
0 −

a
2π

N
∑

i=−N

ϕ(η(k)0 − ia)L(ε(k)0 (ia))

��

.

We set the initial value of η(0)0 = 2.2+0.5i and found that our scheme converges to the correct1038

solutions in about 30 iterations. We then solve (260) and (268) in tandem. The solutions can1039

then be plugged into a discretisation of the O(α0) integral in (131) to determine the excited1040

states.1041

In order to solve for εn and ηn for n≥ 1 we have the TBA equation (126)1042

εn(θ ) = gn(θ ) + 2Im(ηnϕ(θ −η0))−
∫ ∞

−∞
ϕ(θ − θ ′)εn(θ

′)L′(ε0(θ
′))

dθ ′

2π
, (269)

and the constraint (130)1043

0= hn+ηneη0+2Im(ηn)ϕ(2iIm(η0))−
∫ ∞

−∞
(ηnϕ

′(η0−θ )L(ε0(θ ))+εn(θ )ϕ(η0−θ )L′(ε0(θ )))
dθ
2π

,

(270)
where gn(θ ) and hn depend on εi and ηi for i = 1, . . . , n − 1 which have previously been1044

determined. As we did above we will rearrange the constraint equation before setting up an1045

iterative scheme. The imaginary part of ηn can be solved for to give1046

Im(ηn)=
1

2ϕ(2iIm(η0))

�∫ ∞

−∞
(ηnϕ

′(η0−θ )L(ε0(θ ))+εn(θ )ϕ(η0−θ )L′(ε0(θ )))
dθ
2π
−hn−ηneη0

�

.

(271)
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To get the real part of ηn we take the imaginary part of (270) and rearrange1047

Re(ηn) =
Im
�

∫∞
−∞(ηnϕ

′(η0−θ )L(ε0(θ ))+εn(θ )ϕ(η0−θ )L′(ε0(θ )))
dθ
2π−hn

�

−Im(ηn)Re(eη0)

Im(eη0)
.

(272)
Taking the sum of these two expressions we find a new form of the constraint1048

ηn =
Im
�

∫∞
−∞(ηnϕ

′(η0−θ )L(ε0(θ ))+εn(θ )ϕ(η0−θ )L′(ε0(θ )))
dθ
2π−hn

�

−Im(ηn)Re(eη0)

Im(eη0)

+
i

2ϕ(2iIm(η0))

�∫ ∞

−∞
(ηnϕ

′(η0−θ )L(ε0(θ ))+εn(θ )ϕ(η0−θ )L′(ε0(θ )))
dθ
2π
−hn−ηneη0

�

.

(273)

We take a discrete version of this constraint and a discrete version of (269) to obtain the two1049

recursive equations1050

ε(k+1)
n (ia) = gn(ia) + 2Im(η(k)n ϕ(ia−η0))−

a
2π

N
∑

j=−N

ϕ((i − j)a)ε(k)n ( ja)L
′(ε0( ja)) , (274)

with1051

ε(0)n (ia) = gn(ia) + 2Im(η(0)n ϕ(ia−η0)) , (275)

and1052

η(k+1)
n =

Im
�

a
2π

∑N
i=−N

�

η(k)n ϕ
′(η0−ia)L(ε0(ia))+ε(k)n (ia)ϕ(η0−ia)L′(ε0(ia))

�

−hn

�

−Im(η(k)n )Re(eη0)

Im(eη0)

+
i

2ϕ(2iIm(η0))

�

a
2π

N
∑

i=−N

�

η(k)n ϕ
′(η0−ia)L(ε0(ia))+ε

(k)
n (ia)ϕ(η0−ia)L′(ε0(ia))

�

−hn−η(k)n eη0

�

.

(276)
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