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Abstract

Correcting for detector effects in experimental data, particularly through unfolding, is
critical for enabling precision measurements in high-energy physics. However, tradi-
tional unfolding methods face challenges in scalability, flexibility, and dependence on
simulations. We introduce a novel approach to multidimensional object-wise unfolding
using conditional Denoising Diffusion Probabilistic Models (cDDPM). Our method uti-
lizes the cDDPM for a non-iterative, flexible posterior sampling approach, incorporating
distribution moments as conditioning information, which exhibits a strong inductive bias
that allows it to generalize to unseen physics processes without explicitly assuming the
underlying distribution. Our results highlight the potential of this method as a step to-
wards a “universal” unfolding tool that reduces dependence on truth-level assumptions,
while enabling the unfolding of a wide range of measured distributions with improved
adaptability and accuracy.
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1 Introduction23

Experimental data in high-energy physics (HEP) presents a distorted picture of the underlying24

physics processes due to detector effects. Unfolding is an inverse problem solved through sta-25

tistical techniques that aims to correct the detector distortions of the observed data to make26

inferences about the true underlying distribution of particle properties. This process is essen-27

tial for the validation of theories, constraining new physics models using experimental data,28

precision measurements, and comparison of experimental results between different experi-29

ments.30

A standard approach to unfolding [1] begins with a predicted particle distribution ftrue(x),31

where x represents the true particle-level kinematic properties, that characterizes the underly-32

ing physics process of interest, and a detailed detector simulation that describes how detector33

effects distort the particle property distributions. These distortions affect the reconstruction of34

kinematic quantities of particles incident to the detector, resulting in an altered observed par-35

ticle distribution fdet(y), where y represents the reconstructed detector-level kinematic prop-36

erties. This relationship between an observed distribution and its underlying kinematic prop-37

erties can be written as a Fredholm integral equation of the first kind,38

fdet(y) =

∫

dx P(y|x) ftrue(x) (1)

where P(y|x) is the conditional probability distribution describing the detector effects. Un-39

folding requires the inverse process P(x|y), which can be expressed with Bayes’ theorem, as40

P(x|y) =
P(y|x) ftrue(x)

fdet(y)
. (2)

In this context, a detector dataset can be unfolded by sampling from the posterior P(x|y)41

to recover the distribution ftrue(x). The detector effects P(y|x) are assumed to be the same for42

any physics process, and it is clear that the posterior P(x|y) depends on the prior distribution43

ftrue(x). Although one can sample from ftrue(x) through the use of particle generators, there is44

no guarantee that any particular assumed ftrue(x) accurately represents the underlying physics45

of the specific data to unfold. Consequently, unfolding results can be significantly influenced46

by the assumed underlying distribution, potentially introducing bias or limiting the method’s47
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ability to detect unexpected phenomena - a challenge commonly known as the bias problem48

in unfolding. While many traditional unfolding methods [2–4] attempt to address this bias49

problem, they face several inherent limitations: they require binned histograms, cannot un-50

fold multiple observables simultaneously, retain a potential residual bias towards an assumed51

underlying distribution (introduced as a necessary trade-off to reduce large variances in the52

unfolded distribution), and depend heavily on specific choices made by experimenters during53

the data analysis process. These challenges reveal the difficulty in developing a universal un-54

folder, which aims to remove detector effects from any set of measured data agnostic of the55

process of interest with no bias towards any prior distribution and without constraints on the56

final interpretation. This task of creating a widely applicable unfolding method is known as57

the generalization problem.58

Related Work: Various machine learning approaches have emerged in recent years to ad-59

dress these challenges. These include re-weighting methods like OmniFold [5] [6], as well60

as several generative approaches. Among the generative techniques are those using genera-61

tive adversarial networks (GANs) [7,8], conditional invertible neural networks (cINN) [9–11],62

and variational latent diffusion models (VLD) [12] [13]. Additionally, distribution mapping63

techniques have been developed such as SBUnfold, which utilizes Schrödinger bridges [14],64

and DiDi, a direct diffusion model [15]. For a comprehensive overview of these methods, see65

the recent survey by [16]. Each new method has made further strides in unfolding and shown66

the advantages in machine learning based approaches compared to traditional techniques. Ta-67

ble 1 provides a comparative summary of these machine learning-based methods, traditional68

techniques, and our proposed approach, highlighting some key characteristics and advantages.69

While this overview is not exhaustive of all unfolding algorithms developed to date, it provides70

a comprehensive portrait that allows situating our proposed approach within the landscape of71

existing solutions to the unfolding problem.72

Objectives: Our work seeks to overcome the limitations of traditional unfolding methods73

while expanding upon the benefits offered by machine learning-based approaches. The pro-74

posed approach builds upon the advantages of object-wise unfolding, a technique common in75

machine learning-based unfolding methods, which reconstructs the properties of individual76

particles or physics objects rather than operating on binned distributions. Through object-77

wise unfolding, some of the challenges posed by traditional methods can be addressed: the78

impact of the experimenter’s selections and cuts on the unfolded results can be minimized,79

while underlying correlations between the unfolded distributions are preserved.80

We first present a “dedicated” unfolder, an approach similar to many existing machine81

learning-based methods, which learns and applies a specific posterior distribution for a par-82

ticular physics process. This approach serves as an effective solution for well-understood pro-83

cesses and provides a benchmark for our subsequent work. Building upon this foundation,84

our aim is to develop a "generalizable" unfolder to handle a wide range of physics processes85

and observables, including those not explicitly seen during training. This generalization ca-86

pability is crucial for enhancing the method’s applicability across various physics scenarios,87

while ideally avoiding dependence on specific physics generator models and. This amounts88

to addressing both the bias and generalization problems in our solution to unfolding. Such a89

method would enable the unfolding of distributions for a wide range of processes, including90

those involving yet-undiscovered particles in new physics searches at high-energy colliders.91

An effective new unfolding method should achieve an accuracy that falls within the typical92

uncertainty range of measurements where unfolding is applied. For instance, the ATLAS collab-93

oration’s [17] measurement of the W+jets differential cross-sections [18] obtained from data94

resulting from proton-proton collisions at the Large Hadron Collider [19] provides a bench-95
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mark for the necessary level of precision. These results [20] demonstrate that a 10-15% total96

uncertainty is typical for energy-momentum related quantities, with approximately 3-5% at-97

tributable to unfolding. The goal is to achieve this level of accuracy while simultaneously98

preserving the benefits of object-wise unfolding, such as maintaining correlations between99

kinematic quantities, and offering generalization capabilities. With these objectives, we hope100

to contribute a more flexible, accurate, and widely applicable unfolding tool to the high-energy101

physics community.102

Our Contribution: This work introduces a novel approach using conditional Denoising Dif-103

fusion Probabilistic Models (cDDPM) to unfold detector effects in HEP data. We demonstrate104

that a single cDDPM, trained on diverse particle data and incorporating statistical moments of105

various distributions, can serve as a “generalized” unfolder by performing multidimensional106

object-wise unfolding for multiple physics processes without explicit assumptions about the107

underlying distribution, thereby minimizing bias. Figure 1 illustrates the effectiveness of this108

approach in two key scenarios. Panel (a) shows an “unknown” process created by combining109

data from multiple known processes (40% t t̄, 35% W+jets, and 25% leptoquark). Here, the110

generalized unfolder outperforms a “dedicated” unfolder, which is designed to unfold only a111

single specific physics process (in this case t t̄, selected because it forms the largest component112

of the unknown process). Panel (b) provides further evidence of the generalized unfolder’s113

flexibility, demonstrating its ability to accurately unfold data from graviton production (gener-114

ated in the context of large extra-dimension scenarios [21]) accompanied by jets, a completely115

new physics process absent from the training phase. In both cases, the generalized unfolder116

achieves accuracy within typical LHC uncertainty budgets. The accuracy of the generalized117

approach illustrates its ability to handle previously unseen physics processes without assum-118

ing an underlying distribution. This flexibility demonstrated by the generalized unfolder is119

beneficial for new physics searches and studying processes not accurately modeled by cur-120

rent theories, providing an unfolding solution to the bulk of the data analyses performed at121

high-energy colliders. Section 3 provides a detailed analysis of these results.122

2 Methods123

2.1 Our Unfolding Approach124

We seek an approach that will enhance the inductive bias of the unfolding method to improve125

generalization to cover various posteriors pertaining to different physics data distributions,126

while avoiding systematically favoring any particular prior distribution. From the a priori127

information used in the formulation of the solution to the unfolding problem (Equation 2), it128

can be seen that the posteriors for two different physics processes i and j, where the detector129

effects are independent of the process, are related by a ratio of the probability density functions130

of each process,131

Pi(x|y)
Pj(x|y)

=
f i
true(x) f j

det(y)

f i
det(y) f j

true(x)
. (3)

This relationship indicates that if a posterior for a given physics process can be learned,132

then distributional information about ftrue(x) and fdet(y) could be used to estimate unseen133

posteriors. Specifically, the first moments of these distributions can be utilized as key features.134

This approach of using summary statistics like moments is particularly advantageous, as it135

allows for generalization without being overly sensitive to details and insignificant fluctuations136
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Table 1: Comparison of unfolding techniques and their key characteristics. The ta-
ble presents traditional and machine learning-based approaches, with our proposed
methods (dedicated and generalizable cDDPM) highlighted in green and orange, re-
spectively. The “Type” column indicates the fundamental algorithmic structure of
each method. “Posterior Estimation” describes whether the solution is obtained it-
eratively, non-iteratively, or partially, where partial refers to methods that estimate
only certain components of the posterior. “Event-wise” indicates methods that un-
fold individual particles or objects without binning, allowing event-level information
to be reconstructed from the unfolded results. “Tuneable Regularization” indicates
whether the method implements adjustable bias-variance trade-offs in its unfolding
solution. “Generalizable” indicates whether the method is designed to estimate a
wide range of unseen posteriors. While not exhaustive, these characteristics provide
a framework for comparing different approaches to the unfolding problem.

Method Type
Posterior

Estimation
Event-
Wise?†

Multi-
dimensional?

Tuneable
Regularization?

Generalizable?*

Traditional

IBU [2] Bin-by-bin correction Iterative No Limited Yes No

SVD Unfolding [4] Matrix inversion Partial No Limited Yes No

TUnfold [3] Matrix inversion Non-iterative No No Yes No

ML-Based

OmniFold [5,6] Re-weighting Iterative Yes Yes Yes NA

GANs [7,8] Generative Non-iterative Yes Yes No No

cINN [9–11] Generative Non-iterative Yes Yes No No

VLD [12,13] Generative Non-iterative Yes Yes No No

SBUnfold [14] Distribution mapping Non-iterative Yes Yes No No

DiDi [15] Distribution mapping Non-iterative Yes Yes No No

Dedicated cDDPM Generative Non-iterative Yes Yes No No

Generalizable cDDPM Generative Non-iterative Yes Yes No Yes

in the distributions. By making use of the first moments of the detector data distribution as137

conditionals, a more flexible unfolder can be created that is not strictly tied to a selected prior138

distribution, and enables interpolation and extrapolation to unseen posteriors based on the139

provided moments. Consequently, this unfolding tool gains the ability to handle a wider range140

of physics processes and enhances the generalization capabilities, making it a more versatile141

tool for unfolding in various high energy physics applications. It would therefore provide an142

unfolding solution addressing both the bias and generalization problems.143

2.2 Denoising Diffusion Probabilistic Models144

In learning systems, the challenge of generalization through inductive bias is central, as any145

system must have some bias beyond the training instances to make the inductive leap necessary146

to classify unseen cases [22]. Our proposed unfolding approach calls for a flexible generative147

model to address this challenge, and denoising diffusion probabilistic models (DDPMs) [23]148

lend themselves naturally to this task. DDPMs are designed to create new content based on149

training data, making them well-suited for these generalization needs. DDPMs can be trained150

to model a data distribution through a reversible generative process, which can be condi-151

tioned directly on the detector data values and on the moments of the distribution fdet(y).152

This learned process provides a natural way to sample from P(x|y) for unfolding. We will153

first describe DDPMs in a general context before discussing their specific application to our154

unfolding problem.155

Unconditional DDPM The standard unconditional DDPM [23] consists of two parts. First156

is a forward process (or diffusion process) q(xt |xt−1) which is fixed to a Markov chain that157

gradually adds Gaussian noise (following a variance schedule β1, ...,βT ) to data samples from158
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Figure 1: Unfolding results from the data-driven detector smearing using the gener-
alized cDDPM unfolder. Panel (a) shows performance on data from an "unknown"
physics process combining multiple processes. The generalized unfolder (orange)
demonstrates superior performance compared to the dedicated unfolder (green),
which was trained assuming a specific physics process. Panel (b) shows the gen-
eralized unfolder successfully handling data from graviton production accompanied
by jets, a new physics process completely absent from the training data. The accuracy
of the generalized approach in both scenarios illustrates its ability to handle previ-
ously unseen physics processes without assuming an underlying distribution.

a known initial distribution,159

q(xt |xt−1) :=N (xt ;
Æ

1− βt xt , βt I). (4)

Second is a learned reverse process (or denoising process) pθ (x0:T ) parameterized by160

θ . The reverse process is also a Markov chain with learned Gaussian transitions starting at161

p(xT ) =N (xT ;0, I),162

pθ (x0:T ) := p(xT )
T
∏

t=1

pθ (xt−1|xt) (5)

pθ (xt−1|xt) :=N
�

xt−1 ;µθ (t,xt), σ
2
t I
�

. (6)

By learning to reverse the forward diffusion process, the model learns meaningful latent163

representations of the underlying data and is able to remove noise from data to generate new164

samples from the associated data distribution. This type of generative model has natural ap-165

plications in high energy physics, for example generating data samples from known particle166

distributions. However, to be used in unfolding the process must be altered so that the de-167

noising procedure is dependent on the observed detector data, y. This dependence on the168

observed data is crucial because the goal of unfolding is to reconstruct the true particle-level169

properties from the observed detector-level data, necessitating a direct link between the de-170

noising process and the specific detector measurements. This can be achieved by incorporating171

conditioning methods to the DDPM.172
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Conditional DDPM Conditioning methods for DDPMs can either use conditions to guide173

unconditional DDPMs in the reverse process [24], or they can incorporate direct conditions174

to the learned reverse process. While guided diffusion methods have had great success in175

image synthesis [25], direct conditioning provides a framework that is particularly useful in176

unfolding since it allows for a more explicit and precise incorporation of the detector-level177

data into the unfolding process, enabling the model to learn a direct mapping between the178

observed detector measurements and the true particle properties.179

We implement a conditional DDPM (cDDPM) for unfolding that keeps the original uncon-180

ditional forward process and introduces a simple, direct conditioning on the input y to the181

reverse process,182

pθ (x0:T |y) := p(xT |y)
T
∏

t=1

pθ (xt−1|xt ,y). (7)

Similar to an unconditional DDPM, this reverse process has the same functional form as the183

forward process and can be expressed as a Gaussian transition with a learned mean µθ and a184

fixed variance at each timestep σ2
t ,185

pθ (xt−1|xt ,y) :=N
�

xt−1 ;µθ (t,xt ,y), σ
2
t I
�

. (8)

This conditioned reverse process learns to model the posterior probability P(x|y) through its186

Gaussian transitions. The reverse process pθ (x0:T |y) is parameterized by θ , where θ represents187

the learnable parameters of the model, such as the weights and biases of a neural network.188

This process learns to remove the noise introduced during the forward process to recover the189

target x by conditioning directly on the input y.190

Training optimizes the parameters θ to maximize the likelihood of accurately estimating191

the noise ε that should be removed at each timestep in order to denoise xt given the con-192

dition y. Similar to the unconditional DDPM, the Gaussian nature of these transitions and a193

reparametrization of the mean can be used to simplify the loss function to the mean squared194

error (MSE) between the noise ε added at each timestep during the forward process and the195

noise εθ (xt ,y) predicted by the model given the noisy sample xt at timestep t and the condition196

y:197

L(θ ) = Et,ε,xt ,y

�







ε− εθ (t,xt ,y)









2�

. (9)

A detailed derivation of this loss can be found in A.1. This approach can be compared to198

the commonly used guided conditioning method, where the model estimates the noise with199

a weighted combination of the conditional prediction and the unconditional prediction as200

ε̃θ (xt ,y) = (1+ w)εθ (xt ,y)− wεθ (xt) [26]. In the guided approach, the use of the uncondi-201

tional prediction εθ (xt) introduces a bias towards the underlying distribution used in training.202

This bias is undesirable for the unfolding task, as it is important to minimize any assumptions203

about or dependence on the underlying distribution. The cDDPM approach mitigates this bias204

by setting the guidance weight w= 0, relying solely on the conditional prediction. In this case,205

sampling would be done purely according to the learned conditional distribution pθ (xt |y). Al-206

though the learned conditional probability implicitly depends on the prior, sampling from the207

cDDPM does not require explicitly evaluating the prior distribution p(xt) over the data space.208

This makes the cDDPM a promising choice for applications like unfolding where the prior is209

unknown or difficult to model.210

2.3 Unfolding with cDDPMs: Toy Model211

Proof-of-concept is first demonstrated using a toy model with non-physics data. The method212

will then be tested with generated physics data, the results of which are discussed in Section213

7



SciPost Physics Submission

3.214

In both the toy model and physics results, the Wasserstein-1 distance [27] is used to mea-215

sure the success of the proposed unfolding algorithm. This metric quantifies the discrepancy216

between two distributions, quantifying how closely the unfolded distribution matches the tar-217

get (truth) distribution, as well as the difference between the detector data and the true under-218

lying distribution. The objects to unfold are characterized by multiple kinematic properties,219

necessitating a multidimensional representation of each object. Unlike traditional methods220

that unfold each quantity separately thereby losing correlations, the cDDPM algorithm pre-221

serves these correlations by simultaneously unfolding the full multidimensional phase space.222

The 1D Wasserstein distances for individual quantities are provided (labeled "Wasserstein" in223

figures), as well as multidimensional Wasserstein distances for the complete set of variables224

defining physics objects (reported in tables).225

In addition to the Wasserstein distance, two other metrics are employed to evaluate the226

unfolding performance. The first is the chi-squared per degree of freedom (χ2/DoF) on the227

binned distribution, denoted as “Binned χ2/DoF” in the figures. This metric assesses the agree-228

ment between the unfolded and true distributions while accounting for statistical fluctuations229

in each bin. The second metric is the sum of the absolute values of (ratios - 1), where the ratios230

are calculated as the detector or unfolded distributions divided by the truth distribution. This231

metric, labeled as ”
∑

|ratios− 1|” in the figures, provides a measure of the overall deviation232

from the true distribution across all bins.233

In the figures, the binning of the distributions is done after unfolding to provide a simple234

visual representation of the results. From the unfolded results, any choice of binning can235

be used, allowing the data to be presented in various ways and adapted for specific physics236

analyses.237

This study focuses on QCD jets, which are narrow streams of hadrons produced by quark238

or gluon hadronization in high-energy particle collisions. Jets are typical object signatures in239

HEP data that provide information about the fundamental interaction of nature that leads to240

their production. Multiple toy model jet datasets are designed, each representing a distinct241

physics process, with each dataset independently distorted by detector effects. Each jet is242

characterized by a 4-vector containing kinematic information: transverse momentum (pT ),243

pseudorapidity (η), azimuthal angle (φ), and energy (E). To emulate realistic physics data,244

these parameters are each sampled from specific distributions. The particle pT is sampled from245

an exponential distribution f (x; 1/β) = (1/β)exp(−x/β), reflecting the typical exponential246

behavior observed in pT distributions in particle physics. The azimuthal angle φ is sampled247

uniformly from the range [−π,π], while the pseudorapidity η follows a Gaussian distribution248

with µ = 0 and σ = 2. Assuming massless jets for simplicity, the energy is calculated as249

E = pT coshη. These components for the “truth-level” jet vector (x), which is then processed250

through a detector-like smearing framework, producing a “detector-level” jet quantities (y)251

that mimics the particle interactions within an actual detector. For a comprehensive description252

of the detector smearing, please refer to B.3.253

Part 1: Dedicated Unfolder We first consider how to setup a dedicated cDDPM unfolder254

(without use of the distributional moments) that can achieve multidimensional object-wise255

unfolding for a single physics process. A cDDPM can be trained with data pairs (x,y) as input256

to learn the posterior distribution P(x|y). To unfold, the detector data y are given as input and257

the cDDPM acts as a posterior sampler of P(x|y). This dedicated unfolder relies on learning a258

specific posterior distribution, which implicitly incorporates information about the prior dis-259

tribution of the training data. While not explicitly using the prior, this approach results in an260

unfolder that is more tailored to the particular distribution represented in the training data.261

This makes the dedicated unfolder particularly well-suited for scenarios involving well-known262

8



SciPost Physics Submission

distributions, where the implicit bias towards the training prior is acceptable or even desirable.263

To validate this approach, two test cases are presented that probe different aspects of the264

cDDPM dedicated unfolder. In case (1), the ability of the cDDPM to learn a posterior P(x|y)265

given a dataset of pairs {x,y} is tested, where both the training and test datasets have the266

same prior and posterior distributions (Figure 2a). Case (2), depicted in Figure 2b, evaluates267

the unfolding accuracy when the training and test datasets have different underlying true dis-268

tributions (priors) but the exact same posterior P(x|y). Since the cDDPM does not explicitly269

evaluate the prior distribution of the training dataset, it can sample from the posterior distri-270

bution without an imposed bias towards underlying characteristics of the prior of the training271

data. The successful unfolding in each case validates the cDDPM formulation, showing that is272

able to learn the posterior P(x|y)with minimal influence from the specific shape of the training273

distribution, a crucial feature for developing our unbiased generalized unfolder.274
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Figure 2: Unfolding results for toy-model data using a cDDPM dedicated unfolder.
On the left (a) are the results for case (1) that tests the ability of the cDDPM to learn
a posterior P(x|y) given a dataset of pairs {x,y}. On the right (b) are the results for
case (2) which aims to unfolds the same test dataset (red) as (a), but the cDDPM
unfolder is trained using an alternative training dataset (purple and brown) that is
created such that the posterior P(x|y) is the same as test data, while the priors (blue
vs purple) are different.

Part 2: Generalized Unfolder Since physics generators cannot perfectly emulate real physics275

processes, it is important to minimize assumptions and bias towards specific generator mod-276

els. Although the dedicated unfolder exhibits reduced bias towards the underlying distribution277

used in training, the learned posterior by definition contains information about the prior. Con-278

sequently, the posterior will not be the same across different data distributions subjected to279

the same detector effects. This means the generalization power of the dedicated unfolder is280

limited, as it is strictly tied to one specific posterior, and it may not successfully unfold data for281

which the observed distribution widely differs from those assumed in the training phase of the282

algorithm. Here, the aim is to develop a generalized cDDPM unfolder capable of handling a283

broader range of posteriors, thus enabling the unfolding of data from diverse physics processes284

with minimal bias towards generated physics distributions.285

To achieve this, the model’s inductive bias is enhanced by incorporating distributional mo-286

ments into the approach, allowing for interpolation and extrapolation to unseen posteriors as287

discussed in Section 2.1. This strategy is implemented by expanding the training dataset to288

9



SciPost Physics Submission

include data pairs (x,y) from multiple different distributions. For each dataset, six moments289

of the pT distribution are computed: the first raw moment (mean) µ = 1
N

∑N
i=1 pT,i , followed290

by the 2nd through 6th central moments calculated as µk =
1
N

∑N
i=1(pT,i −µ)k for k = 2, ..., 6.291

These moments are process-specific – they are calculated once for each physics process using292

the full set of events for that process. The moments are then appended to both the truth-293

level (x) and detector-level (y) vectors of every jet from that process. This means that while294

the kinematic components of x and y vary jet-by-jet, all jets from the same physics process295

carry identical moment values that characterize that process’s pT distribution. The resulting296

augmented vectors contain both the jet-specific kinematic information and these process-level297

distributional features that help distinguish between different physics processes.298

The moments of the pT distribution are chosen because they are characteristic features299

for different physics processes, with the raw first moment capturing the average scale of the300

process and the higher central moments characterizing the shape and asymmetry of the distri-301

bution. Tests were performed incorporating moments from all components of the jet kinematic302

vector (pT , η, φ, E), but this resulted in degraded performance. This degradation likely stems303

from the inclusion of moments from components like η andφ distributions that remain similar304

across different physics processes, effectively introducing noise to the conditioning informa-305

tion rather than providing discriminating features. Additional tests comparing the use of four306

versus six moments showed improved performance with six moments, leading to this choice307

for the final implementation, though the possibility of including even higher moments was not308

investigated.309

Two approaches were explored for incorporating the distributional moments into the un-310

folding process. The first method appends the moments only to the detector-level vector y,311

using them purely as conditioning information. The second approach includes the moments in312

both the truth-level and detector-level vectors (x and y, respectively), allowing the truth-level313

moments to participate in the denoising process. While both approaches showed promising314

results, the latter demonstrated marginally better performance and was therefore adopted for315

all results presented in this work.316

With this chosen approach, the truth-level vector x and detector-level vector y are now317

redefined to include these distributional moments, creating augmented jet vectors that en-318

compass both the original kinematic information and the newly added moment data. It is319

important to note that while these moments are unfolded along with the jet kinematic com-320

ponents, they primarily serve as conditioning information and are not part of the final output,321

being discarded after the unfolding process. By training with these diverse augmented data322

pairs (x,y), the cDDPM is enabled to represent multiple posteriors corresponding to the dis-323

tributions in the expanded training dataset, distinguishable through the added distributional324

information provided by the moments (more details on the training dataset are provided in325

B.1).326

To evaluate the efficacy of the generalized unfolder approach, a series of tests are con-327

ducted using a cDDPM trained on an expanded dataset. This dataset incorporates four distinct328

pT distributions: a uniform distribution and exponential functions with β = 0.7, 0.3, and 0.07,329

all augmented with their respective distributional moments. The model’s performance is then330

assessed on test datasets sampled from previously unseen pT distributions (β = 0.4, 0.2, and331

0.06). Figure 3 presents these results, demonstrating the unfolder’s ability to generalize across332

different distributions.333

To further investigate the impact of including the distributional moments in the data vector,334

additional experiments are performed. Figure 4 illustrates two critical test cases: (a) unfolding335

without including any moments in the training or test datasets, and (b) unfolding with “fake”336

moments (random numbers) assigned to the distributions. The stark contrast in performance337

between these cases and the primary results highlights the crucial role that the distributional338
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moments play in achieving a truly generalized unfolder. These results demonstrate the strong339

potental use of the cDDPM for generalized unfolding in HEP physics analyses.340
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Figure 3: Unfolding results for toy-model data using a cDDPM generalized unfolder.
The unfolder is trained on an expanded dataset including four distinct pT distribu-
tions (uniform and exponential with β = 0.7, 0.3, and 0.07). Panels show unfolding
performance on previously unseen pT distributions: (a) β = 0.4, (b) β = 0.2, and
(c) β = 0.06. This shows the unfolder’s ability to generalize across different dis-
tributions, with the unfolded results (orange) closely matching the truth-level data
(blue). Error bars indicate statistical uncertainties after binning.

3 Application to Particle Physics Data341

3.1 Setup and Implementation342

The approach is now tested on simulated particle physics data. The objective is to test whether343

the method can succeed in accurately unfolding physically relevant observable distributions,344

rather than simple functions, with more complex detector effect models. Using the PYTHIA345

event generator [28], jet datasets for various physics processes (t t̄, W+jets, Z+jets, dijet, and346

leptoquark) are generated under different theoretical modelings of the processes (details of347

these synthetic datasets can be found in B.2). In this context, the jet kinematic information348

is defined with a vector that includes the transverse momentum (pT ), pseudorapidity (η),349

azimuthal angle (φ), and its 4-momentum (E, px , py , pz).350

These jet vectors are defined both at truth-level as x and detector-level as y, with one vec-351

tor pair (x,y) corresponding to each individual jet in an event. The generated truth-level jets352

were passed through two different detector simulation frameworks to simulate particle inter-353

actions within an LHC detector. The detector simulations used were DELPHES [29] with the354

standard configuration for the CMS detector [30], and another detector smearing framework355

developed using an analytical data-driven approximation for the pT , η, andφ resolutions from356

results published by the ATLAS collaboration [31] (more details in B.3). DELPHES provides a357

comprehensive detector simulation that takes into account the full detector geometry and its358

impact on particle reconstruction, while the data-driven detector smearing focuses on resolu-359

tion effects, allowing testing of the unfolding success under more drastic detector smearing.360

Separate generalized unfolders were trained for the datasets from each detector-effects frame-361

work, but the implementation and application of the cDDPM methodology remained identical362

in both cases.363

Using the same approach described for the toy model, both dedicated and generalized cD-364
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Figure 4: Investigation of the role of distributional moments in unfolding perfor-
mance. Using the same distributions as Figure 3 (a uniform distribution as well as
exponential distributions with β = 0.7, 0.3, 0.07) for training and β = 0.06 for test-
ing, two test cases are shown: (a) unfolding without including any distributional
moments in either training or test datasets, and (b) unfolding with random numbers
assigned as "fake" moments. The degraded performance in both cases, compared
to Figure 3c, demonstrates the crucial role that true distributional moments play in
achieving successful generalized unfolding.

DPM unfolders are trained. The dedicated unfolder is trained using data pairs (x,y), excluding365

the distributional moments. In contrast, the generalized unfolder is trained on multiple sim-366

ulated physics processes (detailed in B.2). For the data-driven detector smearing framework,367

the training dataset includes 18 different physics processes, while for the DELPHES frame-368

work, 6 different processes were available for training. For each process, the training dataset369

incorporates the first 6 central moments of the pT distribution, appending these moments to370

the corresponding truth-level and detector-level data vectors of that distribution. All results371

presented in this section use these trained generalized unfolders (one for each detector simu-372

lation framework), with all test cases shown being from datasets that were excluded from the373

training. A key distinction between the generalized and dedicated unfolders lies in their learn-374

ing outcomes: the generalized unfolder learns to model multiple posteriors from the diverse375

physics processes in its training data, whereas the dedicated unfolder captures only a single376

posterior represented by its specific training set. This difference allows us to use the dedicated377

unfolder as a performance benchmark, against which we can evaluate the effectiveness of the378

generalized unfolder.379

3.2 Performance Evaluation380

Figure 1 showcases two critical test cases that demonstrate the versatility of the generalized381

unfolder. Panel (a) presents results from an “unknown” process dataset, created by combining382

jets from multiple sources: 40% t t̄, 35% W+jets, and 25% leptoquark test datasets. While this383

“unknown” dataset is constructed from known physics processes (though none were included384

in the training data), their combination produces a unique prior distribution. The moments385

used for conditioning are calculated from the combined dataset as a whole, presenting the386

generalized unfolder with previously unseen distributional characteristics. This scenario rep-387

resents the optimal use case for the generalized unfolder, as it simulates a situation where388
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the underlying physics is not fully known or understood, such as in new physics searches. To389

demonstrate this, the generalized unfolder is compared against a dedicated unfolder trained390

on t t̄ data, chosen as it represents the majority component (40%) of the unknown process.391

The generalized unfolder demonstrates superior performance when unfolding this unknown392

process, effectively adapting to the mixed nature of the data without prior knowledge of its393

composition. In contrast, the dedicated unfolder, constrained by its assumption of a t t̄-like394

posterior, shows reduced accuracy. This comparison underscores the generalized unfolder’s395

potential in scenarios involving new or unexpected physics processes, where the underlying396

distribution may deviate significantly from known models. Panel (b) further demonstrates the397

generalized unfolder’s performance, unfolding data from graviton production in the context398

of large extra-dimension scenarios [21], accompanied by jets. This process, which features399

distinctly different physics signatures from Standard Model processes, was completely absent400

from the training data yet is accurately unfolded by our method. Here too, the generalized401

unfolder demonstrates accuracy in reconstructing the true distributions, effectively adapting402

to entirely new physics processes without prior knowledge of their underlying physics.403

Figures 5 and 6 illustrate unfolding results for the data-driven detecter smearing and404

DELPHES detector simulation, respectively. The plots show various jet kinematics across dif-405

ferent generated physics datasets that are not included in the training data, showcasing the406

generalized unfolder’s versatility. While the generalized unfolder’s advantage is expected for407

unknown processes, we also aim for comparable performance to dedicated unfolders on known408

processes. The results demonstrate that the performance between the dedicated and general-409

ized unfolders is indeed comparable. The statistical measures of agreement between the un-410

folded and true distributions slightly favor the dedicated unfolder, particularly in the binned411

χ2/DoF metric, due to small fluctuations in the first three bins of the distributions where412

the statistical uncertainty is negligible. This is particularly evident in the W+jets unfolding413

(Figure 5c), where the generalized unfolder exhibits nearly perfect agreement with the true414

distribution in the low-pT region, achieving better performance than the dedicated unfolder415

in these bins, despite showing some deviations in the tail of the distribution. When consid-416

ered in the context of total systematic uncertainties typical in real measurement processes,417

the observed deviations between dedicated and generalized unfolders would contribute neg-418

ligibly to the overall measurement uncertainty due to unfolding. Therefore, the generalized419

unfolder achieves a similar level of accuracy to the dedicated unfolder on known processes,420

while maintaining the advantage of being able to unfold unknown processes.421

To validate our framework’s effectiveness we compare both unfolders across various test422

datasets, and Table 2 presents the resulting multidimensional Wasserstein distances to their423

true distributions. These quantitative results support the earlier conclusions, showing compa-424

rable performance between the generalized and dedicated unfolders across all test processes.425

To further evaluate the generalized unfolder’s capabilities, a test is conducted using t t̄426

datasets generated with different theoretical modeling from varying settings in PYTHIA. Ded-427

icated unfolders are trained on each of these t t̄ variants, except for one “unseen” variant. The428

variants used for training the dedicated unfolders employed different PDFs (CTEQ6L1 and429

NNPDF23) with the default PYTHIA parton showers, while the unseen variant used CT14lo430

PDF with the Vincia parton shower [32]. The performance of these dedicated unfolders and431

the generalized unfolder is then compared in unfolding the unseen t t̄ variant. Figure 7 illus-432

trates the results of this test. As shown in Figure 7, the generalized unfolder accurately unfolds433

the data from the unseen t t̄ variant, and in some metrics outperforms the dedicated unfolders434

trained on the other t t̄ variants. This result demonstrates the generalized unfolder’s ability435

to capture subtle differences between posterior distributions arising from different generator436

settings, not just large variations across different physics processes. Such capability suggests437

that the generalized unfolder could be a valuable tool in refining models for generating known438
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Figure 5: Unfolding results of the data-driven detector smearing of jet vector compo-
nents for three different physics processes: (a) t t̄, (b) leptoquark, and (c) W+jets.
For each process, results from the generalized cDDPM unfolder (orange) are com-
pared against a process-specific dedicated unfolder (green), where each dedicated
unfolder was trained exclusively data from its corresponding process, while the gen-
eralized unfolder was trained on a diverse dataset excluding all three test processes.
In all cases, the unfolding accuracy is within the expected uncertainty budget typical
of experimental measurements of these distributions. Error bars indicate statistical
uncertainties.
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Figure 6: Unfolding results of the DELPHES detector simulation of jet vector compo-
nents for three different physics processes: (a) leptoquark, (b) t t̄, and (c) W+jets.
For each process, results from the generalized cDDPM unfolder (orange) are com-
pared against a process-specific dedicated unfolder (green). Each dedicated unfolder
was trained exclusively on its corresponding physics process, while the generalized
unfolder was trained on a diverse dataset excluding all three test processes. In all
cases, the unfolding accuracy is within the expected uncertainty budget typical of
experimental measurements of these distributions. Error bars indicate statistical un-
certainties.
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Table 2: Comparison of Wasserstein distances for detector-level data and unfolded
results using the data-driven detector smearing, corresponding to the processes
shown in Figures 5 and 6. Values are shown for both generalized and dedicated
unfolders across different physics processes.

Detector Process Multidimensional Wasserstein Distances

Detector Generalized Dedicated

Data-driven

“Unknown” 28.20 0.74 2.68
Graviton (CT14lo) 31.35 0.64 N/A
t t̄ (CT14lo, Vincia) 26.43 0.34 0.35
Leptoquark (NNPDF23) 32.42 0.26 0.30
W+Jets (CT14lo) 31.09 0.54 0.52

DELPHES
t t̄ (CTEQ6L1) 1.49 0.21 0.20
Leptoquark (CTEQ6L1) 1.51 0.27 0.15
W+Jets (CTEQ6L1) 2.07 0.62 0.34

physics processes, as it can adapt to nuanced variations in the underlying distributions without439

requiring specific training on each variant of PDF or parton shower model.440

In Figure 8, the model’s efficacy is further demonstrated with two tests: (1) reconstructing441

jet mass from unfolded results, indicating well-preserved correlations among jet vector com-442

ponents, and (2) reconstructing event-level observables from unfolded quantities, achieved443

by tracking event numbers through object-wise unfolding. The successful reconstruction of444

jet mass, which is not directly unfolded but derived from the unfolded jet vector compo-445

nents, showcases the method’s ability to maintain complex relationships between variables.446

This preservation of correlations allows for the calculation of various derived quantities post-447

unfolding, offering the option to construct new observables that are not explicitly part of the448

original unfolding process.449

3.3 Computational Performance450

The generalized unfolder demonstrates not only accuracy but also computational efficiency,451

making it a practical tool for large-scale physics analyses. The model used in these results,452

trained on a diverse dataset of 1.8 million jets, requires approximately 3 hours of training453

time on an NVIDIA A100 GPU. Once trained, the generalized unfolder can be applied rapidly,454

with the ability to unfold 1 million events in approximately 3 minutes. This speed is partic-455

ularly advantageous as the generalized unfolder does not require retraining for specific pro-456

cesses, unlike the dedicated unfolder and other machine-learning based unfolding methods.457

Consequently, it can provide fast, object-wise unfolding results across a wide range of physics458

analyses without incurring additional training overhead for each new process or dataset. For459

a more detailed discussion of the computational performance and parameters of the model,460

see A.2.461

4 Conclusion462

The results presented in this paper demonstrate the generalized cDDPM unfolder can success-463

fully unfold detector effects on particle jets from a variety of physics processes, including those464

not seen during training. The key feature of this method is its non-iterative and flexible pos-465

terior sampling approach, which exhibits a strong inductive bias allowing generalization to466

unseen processes without explicitly assuming the underlying physics distribution. The gen-467
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Figure 7: Comparison of unfolding performance for the data-driven detector smear-
ing on an unseen t t̄ variant generated using CT14lo PDF and the Vincia parton
shower. The generalized unfolder (orange) demonstrates comparable performance
to dedicated unfolders trained on other t t̄ variants with different PDFs (CTEQ6L1
shown in green, NNPDF23 shown in purple). While these dedicated unfolders were
each trained exclusively on their respective t t̄ variant, the generalized unfolder was
trained on a diverse dataset of multiple physics processes described in the text.
Shown are the jet pT (a) and E (b) distributions.

16



SciPost Physics Submission

10 3

10 2

10 1

d
/d

x

Wasserstein:
  detector = 67.77
  generalized unfolder = 2.58
  dedicated tt unfolder = 8.27

Unknown Process
(tt, W+jets, & leptoquark)

truth
detector
generalized unfolder
dedicated tt unfolder

0 100 200 300 400 500
jet m [GeV]

0.8
0.9
1.0
1.1
1.2

ra
tio

s

generalized/truth
dedicated/truth

(a)

10 5

10 4

10 3

10 2

10 1

100

101

d
/d

x

tt (CT14lo, Vincia) 

truth              Wasserstein:        Binned 2/DoF:      |ratios - 1|:
detector            = 1.80                = 15303               = 12.67
generalized       = 0.03                = 15.80                = 1.08
dedicated          = 0.02                = 4.25                  = 0.76

0 5 10 15 20 25 30
Hadronic Recoil [GeV]

0.8
0.9
1.0
1.1
1.2

ra
tio

s

generalized/truth
dedicated/truth

(b)

Figure 8: Demonstration of the unfolding method’s ability to preserve correlations
and handle event-level quantities using the data-driven detector smearing. Recon-
struction of jet mass (a), derived from the unfolded four-momentum components,
showing that correlations between kinematic variables are well-preserved through
the unfolding process. Reconstruction of the hadronic recoil (b), an event-level ob-
servable obtained by combining multiple unfolded jets within each event, demon-
strating the method’s capability to handle event-level physics quantities. Error bars
indicate statistical uncertainties.
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eralized unfolder therefore provides a solution to the unfolding problem that addresses both468

the bias and the generalization challenges, something other approaches to unfolding did not469

attempt.470

Additionally, the generalized unfolder is able to accurately reconstruct jet properties and471

derived quantities like jet mass, even for processes absent from its training data. By preserving472

correlations between jet vector components, it enables the construction of complex observables473

post-unfolding, offering new possibilities in data analysis.474

This approach also offers computational advantages. Once trained, it eliminates the need475

for process-specific retraining, reducing computational overhead. The ability to unfold a mil-476

lion events in approximately 3 minutes demonstrates its potential for efficient large-scale data477

processing in high-energy physics experiments.478

While the generalized approach excels in adaptability, dedicated unfolders remain valu-479

able for scenarios requiring maximum precision on well-understood processes. The cDDPM480

formulation can easily be adapted for either the generalized or dedicated unfolder, allowing for481

flexibility in choosing the most appropriate approach based on specific analysis requirements482

and the desired balance between adaptability and specialized accuracy.483

Several open questions remain regarding the implementation of the conditioning on the484

moments. These include optimal selection of priors and the number of moments required for485

the best unfolding performance. Further investigation is needed to determine the extent of486

the cDDPM’s inductive bias and its tolerance to variations in the underlying physics processes.487

Understanding these aspects will help refine the method and ensure its robustness across a488

wide range of scenarios.489

While this approach shows promise, key limitations are acknowledged. The current studies490

were performed on QCD jets, and extending this method to other particle types is necessary for491

its comprehensive application in data analysis. Addressing particles outside detector thresh-492

olds and accounting for systematic and experimental uncertainties are crucial improvements493

needed to fully realize the method’s potential in practical applications. An important constraint494

of the current implementation is that while correlations between object vector components are495

preserved, the model lacks access to event-wise information which impacts the reconstruction496

accuracy of certain event-level observables. These improvements and extensions are left for497

future work.498

To conclude, the results confirm the versatility of the generalized cDDPM unfolder across499

diverse physics processes. This non-iterative and flexible posterior sampling approach exhibits500

a strong inductive bias that allows the cDDPM to generalize to unseen processes without ex-501

plicitly assuming the underlying distribution, setting it apart from other unfolding techniques502

developed so far.503
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A cDDPM Details512

A.1 Loss Derivation513

In the proposed cDDPM, the forward process is a Markov chain that gradually adds Gaussian514

noise to the data according to a variance schedule β .515

q(xt |xt−1) :=N (xt ;
Æ

1− βt xt−1 , βt I) (A.1)

To recover the original sample from a Gaussian noise input, this process needs to be reversed.516

This can be achieved through the use of a model pθ which corresponds to the joint distribution517

pθ (x0:T |y) = pθ (x0, x1, ...xT |y), and it is defined as a Markov chain with learned Gaussian518

transitions starting at p(xT |y) =N (xT ; 0, I)519

pθ (x0:T |y) := p(xT |y)
T
∏

t=1

pθ (xt−1|xt ,y) (A.2)

520

pθ (xt−1|xt ,y) :=N
�

xt−1 ;µθ (t,xt ,y), Σθ (t,xt ,y)
�

(A.3)

where µθ represents the learned mean, and Σθ represents the learned covariance of the Gaus-521

sian transitions, which vary with time step t:522

Σθ (t,xt ,y) = σ
2I, σ2 = βt . (A.4)

Training involves learning the reverse Markovian transitions that maximize the likelihood of523

the training samples, which is equivalent to minimizing the variational upper bound on the524

negative log likelihood. This negative log likelihood can be expressed in terms of the Kullback-525

Leibler (KL) divergence [33], a statistical measure of the difference between two probability526

distributions P and Q:527

DK L(P∥Q) =
∑

x∈X

P(x)
�

log
P(x)
Q(x)

�

(A.5)

Applying this, the variational bound on the negative log likelihood can be expressed as:528

E
�

− log pθ (x0|y)
�

≤ E
�

− log pθ (x0|y)
�

+ DK L (q(x1:T |x0)∥pθ (x1:T |x0,y))

= E
�

− log pθ (x0|y)
�

+Eq

�

log
q(x1:T |x0)

pθ (x1:T |x0,y)

�

= E
�

− log pθ (x0|y)
�

+Eq

�

log
q(x1:T |x0)

pθ (x0:T |y)/pθ (x0|y)

�

= E
�

− log pθ (x0|y)
�

+Eq

�

log
q(x1:T |x0)
pθ (x0:T |y)

�

+E
�

log pθ (x0|y)
�

= Eq

�

− log
pθ (x0:T |y)
q(x1:T |x0)

�

= Eq

�

− log p(xT |y) −
∑

t≥1

log
pθ (xt−1|xt ,y)

q(xt |xt−1)

�

:= L

(A.6)
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Following the similar derivation provided in [23], this loss can then be rewritten using the529

KL-divergence530

L = Eq

�

− log
pθ (x0:T |y)
q(x1:T |x0)

�

= Eq

�

− log p(xT |y) −
∑

t≥1

log
pθ (xt−1|xt ,y)

q(xt |xt−1)

�

= Eq

�

− log p(xT |y) −
∑

t>1

log
pθ (xt−1|xt ,y)

q(xt |xt−1)
− log

pθ (x0|x1,y)
q(x1|x0)

�

= Eq

�

− log p(xT |y) −
∑

t>1

log
pθ (xt−1|xt ,y)
q(xt−1|xt ,x0)

·
q(xt−1|x0)
q(xt |x0)

− log
pθ (x0|x1,y)

q(x1|x0)

�

= Eq

�

− log
p(xT |y)
q(xT |x0)

−
∑

t>1

log
pθ (xt−1|xt ,y)
q(xt−1|xt ,x0)

− log pθ (x0|x1,y)

�

= Eq



DK L

�

q(xT |x0) ∥ p(xT |y)
�

︸ ︷︷ ︸

LT

+
∑

t>1

DK L

�

q(xt−1|xt ,x0) ∥ pθ (xt−1|xt ,y)
�

︸ ︷︷ ︸

L1:T−1

− log pθ (x0|x1,y)
︸ ︷︷ ︸

L0





(A.7)

The term LT is a constant, as it is the KL-divergence between two distributions of pure noise,531

and the L0 term is a final denoising step with no comparison to the forward process posteriors.532

For the term L1:T−1, the forward process posteriors can be written as533

q(xt+1|xt ,x0) =N (xt+1; µ̃t(xt ,x0), β̃t I) (A.8)
534

where β̃t =
1− ᾱt−1

1− ᾱt
βt , ᾱt =

t
∏

s=1

(1− βs)

and µ̃t(xt ,x0) =

�

βt
p

ᾱt−1

1− ᾱt
x0 +

p

ᾱt(1− ᾱt−1)
(1− ᾱt)

xt

�

.

(A.9)

Using this forward process posterior together with the reverse process posterior defined in535

Equation A.3, a parametrization for µθ (xt , t,y) is introduced that aims to predict µ̃t(xt ,x0).536

With this the loss becomes537

Lt−1 = E
�

1

2σ2
t
∥ µ̃t (xt ,x0)−µθ (t,xt ,y) ∥2

�

+ C (A.10)

where C is a constant, and µ̃t and µθ can be reparametrized using xt =
p

ᾱt x0 +
p

1− ᾱt ε538

and reduced to539

Lt−1 = Eε,x0,y

�

β2
t

2σ2
tαt(1− ᾱt)

∥ ε− εθ (t,
p

ᾱtx0 +
p

1− ᾱtε,y) ∥2

�

. (A.11)

Finally we can write a simplified version of the loss with the terms differentiable in θ as540

Lsimple(θ ) = Eε,xt ,y

�

∥ ε− εθ (t,
p

ᾱtx0 +
p

1− ᾱtε,y) ∥2
�

= Eε,xt ,y

�

∥ ε− εθ (t,xt ,y) ∥2
�

.
(A.12)

This derivation shows that in the cDDPM formulation, the task of learning a posterior541

distribution reduces to minimizing a simple mean squared error between added and predicted542

noise. This allows for estimation of the posterior without requiring explicit evaluation of the543

prior distribution.544
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Algorithm 1 Conditional DDPM: Training
Input: dataset {x0, y}, variance schedule β1, ... βT
t ← Uniform({1, ... , T})
ᾱt ←
∏t

s=1(1− βs)
ε←N (0, I)
Repeat

a) xt ←
p

ᾱt x0 +
p

1− ᾱt ε

b) Calculate loss, L = ||ε− εθ
�

t,xt ,y
�

||2

c) Update θ via ∇θ L

Until converged

Figure 9: The training procedure for the conditional DDPM unfolding model is pre-
sented. The algorithm trains on data samples {x0, y}. In step (a) Gaussian noise ε is
added to x0 over T timesteps according to the variance schedule. The model param-
eterized by θ is trained to estimate this added noise by observing the noisy states xt
at a timestep t and the condition y.

A.2 Model Parameters545

During inference, the inputs are given to the denoising process are the vector y and random546

noise values xT ∼N (0, I). The denoising process removes noise from xT in T steps according547

to the learned conditional distribution pθ (x0:T |y). Pseudocode for the training and sampling548

algorithms can be seen in Figures 9 and 10.549

The cDDPM architecture consists of a Multi-Layer Perceptron (MLP), a feedforward neural550

network, with approximately 1 million trainable parameters. It comprises three main compo-551

nents: an initial linear layer with Gaussian Error Linear Unit (GELU) activation, which provides552

smooth non-linear transformations, a time step embedding layer, and a series of linear layers553

with GELU activations. The network takes as input the noised data and the time step. It first554

processes the input through a 256-unit hidden layer, then adds a learned time step embed-555

ding. This combined representation is passed through four 512-unit hidden layers, followed556

by a 256-unit layer. Skip connections are employed between the input and output of the main557

block. The final output layer predicts the noise at the given time step. Dropout (rate 0.01) is558

applied after each linear layer to prevent overfitting during training.559

The diffusion process employs a linear variance schedule over T = 500 time steps. The560

schedule starts with an initial noise level β1 = 1e-4 at the first step and increases linearly to βT561

= 0.02 at the final step. The model is trained using the Adam optimizer with an initial learning562

rate of 3e-4. To improve convergence and performance, a linear learning rate scheduler is563

employed. It starts at the initial rate and linearly decreases to 1% of the initial rate (3e-6) by564

the end of training.565

The model is trained for 5000 epochs with a batch size of 2048. Using an NVIDIA A100566

GPU, the training procedure on our full dataset or 1.8 million data points completes in approx-567

imately 3 hours (more details on the training and test datasets in B). Once trained, the model568

demonstrates efficient inference capabilities. Unfolding a dataset of 1 million data points takes569

approximately 3 minutes on the A100 GPU, with processing time scaling linearly with the num-570

ber of jets. Notably, this model functions as a generalizing unfolder, eliminating the need for571

retraining when applying it to various different datasets.572

21



SciPost Physics Submission

Algorithm 2 Conditional DDPM: Sampling
Input: detector-level data vector y, variance schedule β1, ... βT
xT ←N (0, I)
For t = T, ..., 1 do

a) αt ← 1− βt , ᾱt ←
∏t

s=1αs, σt ←
p

βt

b) z←N (0, I) if t > 1, else z← 0

c) xt−1←
1p
αt

�

xt −
1−αtp

1−ᾱt
εθ
�

t,xt ,y
��

+ σt z

Return x0

Figure 10: The trained conditional DDPM model serves as a posterior sampler, gen-
erating unfolded truth-level samples x0 given condition y. Starting from pure noise
xT , the conditioned reverse process denoises xt at each timestep by removing the
estimated injected noise. Here σt ≡

p

βt since this choice is optimal for a non-
deterministic x0.

B Datasets573

B.1 Data Processing for cDDPMs574

The jets in both the toy model and physics datasets are limited to certain ranges for each of the575

jet vector components, allowing a maximum pT , px , py of 1000 GeV and a maximum pz and576

E of 4000 GeV, though these ranges can be extended by training with higher energy generated577

physics datasets. The jet η range is between -4.4 and 4.4 (following standard detector limita-578

tions), and the φ range between -3.5 and 3.5. The φ range is extended beyond −π and π to579

avoid discontinuity in training due to wrap-around values. The components of the jet vector580

are divided by the respective maximum values so that the final vector components each range581

between [0,1] or [-1, 1]. As described in Section 2.3, the first 6 distributional moments of582

the pT distribution for each process are appended to the corresponding jet vectors. We choose583

to use the moments of the pT distribution because they serve as a distinguishing feature for584

different physics processes. The pT spectrum is particularly sensitive to the underlying physics585

and provides valuable information for process discrimination. We experimented with includ-586

ing moments from all components of the jet vector, but found that this approach led to reduced587

performance.588

The training dataset for the data-driven detector smearing is comprised of 1.8 million jets589

generated from 18 different physics simulations described in Table 3. The training dataset for590

the DELPHES detector simulation is comprised of 1.8 million jets generated from 6 different591

physics simulations described in Table 4. The data pairs (x,y) are the input to the training592

process. The test datasets are processed in the same way as the training dataset, limiting the593

range and normalizing the range of the values. Additionally, a unique event identifier number,594

which associates jets to their original event in the dataset, is included in each jet vector and595

carried through the unfolding process (though not used as an input to the model) to enable596

the reconstruction of event-level observables after unfolding. The jets in each of test datasets597

pertain to only one process, with the exception of the “unknown process” dataset which is made598

from a combination of 3 of the test datasets (40% t t̄, 35% W+jets, and 25% leptoquarks) to599

mimic a distribution from an unknown process that could not be easily unfolded with the600
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standard dedicated unfolding approach.601

B.2 Physics Generation602

Physics datasets are generated using PYTHIA 8.3 Monte-Carlo event generator. The simula-603

tions are run for proton-proton collisions at a center-of-mass energy of 13 TeV to emulate604

LHC physics interactions. The various physics processes used in this study are chosen for their605

high jet-production cross-section across a large jet energy range. The chosen processes are606

t t̄, (Z → µµ̄)+jets, (W → µν̄)+jets, dijets, and a new-physics process of leptoquarks. Note607

that each listed process typically includes multiple subprocesses (e.g., t t̄ production occurs608

through both gluon-gluon and quark-antiquark collisions). For processes with unstable parti-609

cles, one particle per event decays to include at least one charged lepton, while other unstable610

particles decay hadronically. Each of these processes are run under multiple generator settings611

controlling the theoretical modeling of the underlying processes, with varying parton distri-612

bution functions (PDFs), parton shower models, and with an imposed phase space bias that613

increased the probability of generating events with high jet energies. For simulations where a614

phase space bias is applied, the events are sampled in the phase space as (p̂T/p
ref
T )

a, where we615

set pref
T = 100 GeV and a = 5 such that events with a pT over 100 GeV will be oversampled,616

increasing the event statistics in high-energy regions [28]. A list of the physics processes gen-617

erated for the data-driven detector smearing framework is shown in Table 3, and a list of the618

processes generated for the DELPHES detector simluation is shown in Table 4. Unless stated619

otherwise, the simulations are run with the PYTHIA simple parton shower model and no phase620

space bias.621

B.3 Detector Smearing and Jet Matching622

Our results present the unfolding of detector effects from two different detector smearing623

frameworks: DELPHES and a data-driven approach. DELPHES is a framework developed for624

the simulation of multipurpose detectors for physics studies [29]. Specifically, the DELPHES625

CMS configuration is frequently used as the detector simulation of choice in recent machine-626

learning based unfolding studies.627

For the toy model studies presented in Section 2.3, the detector effects were simulated628

using the same resolution functions as the data-driven approach described below, applying629

the same smearing to the kinematic quantities pT , φ, and η. However, in the toy model case,630

the jets were treated as massless particles for simplicity, with their energy calculated directly631

from the smeared momentum components.632

To test the unfolding performance under more exaggerated detector effects, we develop a633

framework with a data-driven detector smearing using jet energy resolution results published634

by the ATLAS collaboration at a centre-of-mass energy of 8 TeV with an integrated luminosity635

of 20 fb−1 [31]. In this framework, the PYTHIA event generator is used to simulate truth-level636

particles, and the resulting partons are grouped into jets using the FastJet package [34]. The637

transverse momentum pT , azimuthal angle φ, and pseudorapidity η of each truth-level jet is638

then smeared following an approximated ATLAS calibration and resolution functions. For the639

φ and η smearing, the effect is small since the angular resolution effects are proportional to640

the detector granularity. We assume that there is no angular shift and apply a smearing to φ641

and η by sampling from a Gaussian centered at the truth-level value and with a σ equal to642

the detector resolution for the particle. We apply a quadratic fit (σ = a p 2
T + b pT + c) to the643

calibration data presented in [31] to approximate the detector resolution in φ and η.644

In principle, a calorimeter cell measurement is an energy measurement, but since the jet645

calibration studies precisely measure the jet pT resolution, we apply a shift and a smearing to646

the jet pT instead. The jet pT resolution can be expressed as σpT
= pT

q

a/p 2
T + b/pT + c and647
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Table 3: List of physics simulations generated for the data-driven detector smearing,
along with the corresponding parton distribution functions (PDFs), parton shower
models, phase space biases, and their inclusion in the training dataset. Simulations
not included in the training dataset are used as test datasets.

Process PDF with Parton Shower (Phase Space Bias) In Training?

t t̄

CT14lo ✓
CT14lo (biased) ✓
CT14lo with Vincia
NNPDF23_lo ✓
CTEQ6L1 ✓
CTEQ6L1 (biased) ✓

Z+jets

CT14lo ✓
CT14lo (biased) ✓
NNPDF23_lo ✓
CTEQ6L1
CTEQ6L1 (biased) ✓

W+jets

CT14lo
CT14lo (biased) ✓
NNPDF23_lo ✓
CTEQ6L1 ✓

Dijets
CT14lo ✓
CTEQ6L1 ✓
CTEQ6L1 (biased) ✓

Leptoquark

CT14lo ✓
CT14lo (biased) ✓
NNPDF23_lo
CTEQ6L1 ✓

a fit of this function is applied to the jet calibration data (obtained for jets with 0 < |η | < 0.8648

for simplicity) to approximate this resolution. The jet pT also has a calibration shift, which is649

calculated from the data. The detector smeared pT is then defined by sampling from a Gaus-650

sian centered at the shifted pT and with σ equal to the jet pT resolution. Finally, the smeared651

energy for each jet is calculated with E =
p

m2 + |p⃗ |2 by fixing the mass of the particle m and652

using the smeared pT . This approach enables testing the unfolding algorithm’s performance653

under various detector resolution conditions, including unrealistically large smearing effects.654

While each detector model requires retraining the unfolder, the algorithm’s performance char-655

acteristics remain consistent across different detector modelings.656
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Table 4: List of physics simulations generated for the DELPHES CMS detector sim-
ulation, along with the corresponding parton distribution functions (PDFs), phase
space biases, and their inclusion in the training dataset. Simulations not included in
the training dataset are used as test datasets.

Process PDF (Phase Space Bias) In Training?

t t̄
CTEQ6L1
CTEQ6L1 (biased) ✓

Z+jets
CTEQ6L1 ✓
CTEQ6L1 (biased) ✓

W+jets
CTEQ6L1
CTEQ6L1 (biased) ✓

Dijets
CTEQ6L1 ✓
CTEQ6L1 (biased) ✓

Leptoquark CTEQ6L1
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