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Abstract

We provide a prescription for computing two-point tree-level amplitudes in the pure spinor formalism
that provides finite results that agree with the corresponding expression in the field theories. In [1, 2],
the same result was discovered in the bosonic strings with indications of generalization to superstrings in
the Ramond-Neveu-Schwarz formalism. Pure spinor formalism is the unique super-Poincare covariant
approach to quantizing superstrings [3]. Since the pure spinor formalism is equivalent to other superstring
formalisms, it verifies the above claim. We introduce a mostly BRST exact operator to achieve this.

1



Contents

1 Introduction 2

2 Two point amplitudes in the pure spinor formalism 4

3 Discussion 8

A Review of the Pure Spinor Formalism 9

B V0 as a mostly BRST exact operator 10

C Some explicit examples 11

D Some consistency checks for V0 insertion 12

E Requirement of a non-vanishing two point string amplitude 13

1 Introduction

The two-point tree-level bosonic string amplitudes in flat spacetime, hitherto known to vanish, are finite
and in agreement with the corresponding free particle expression in the quantum field theories [1, 2].
We anticipate the same holds in the superstrings as well. Further, [1] suggested that this analysis can
be carried over identically to the NS − NS sector of superstrings. Also, spacetime supersymmetry
would ensure a similar story would repeat for the other sectors of superstrings. It is desirable to see if
this claim can be explicitly verified and check if the results hold in other formalisms of superstrings.
Here, we shall focus on the pure spinor formalism that keeps the Poincare and spacetime supersymmetry
manifest [3]. A naive application of the pure spinor amplitude prescription gives a vanishing two-point
tree-level amplitude. We shall see why this is the case and how to rectify it. Before delving further into
the superstring case, in what follows, we briefly recall why the two-point tree-level amplitudes in the
bosonic strings were thought to vanish.

In bosonic strings, we have a diff × Weyl symmetry - a local gauge symmetry. As is usual in gauge
theories, the path integrals for various physical quantities in string theory also get divided by the volume
of this local gauge group. Following a gauge fixing procedure such as the Faddeev- Popov method
usually produces a factor proportional to the volume of the gauge group that usually cancels the factor in
the denominator. Schematically

⟨f(Φ)⟩ =
∫
[dΦ]exp[−S[Φ]]f [Φ]

VG

Faddeev-Popov−−−−−−−→
VG

∫
[dΦ̂]exp[−Ŝ[Φ̂]]f̂ [Φ̂]

VG

where Φ stands for all the fields, S is the action and VG represents the volume of the gauge group G. All
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the hatted symbols denote gauge fixed quantities.
For the bosonic strings, G = diffeomorphism × Weyl, which can be fixed locally by fixing the com-

ponents of the worldsheet metric. The choice of metric, however, does not fully fix all the symmetries.
These residual unfixed symmetries do not affect the gauged fixed metric. These are called the conformal
killing group (CKG). Here, we are interested in the string amplitudes on a disk/sphere. On a disk/sphere,
the CKG is three-dimensional and is non-compact. For amplitudes involving three or more strings, the
CKG gets completely fixed by fixing the positions of three vertex operators. In the two-point amplitude,
after fixing the position of both vertex operators, the residual conformal killing group still has infinite
volume. This volume appears in the denominator of the corresponding path integral, which naively im-
plies that the path integral vanishes. Thus, these amplitudes were assumed to assumed to vanish. This
understanding, however, relies on the assumption that the numerator of the corresponding path integral is
finite. [1] noticed for the first time that the numerator is also ∞, and hence one has to make sense of an
expression of the form ∞

∞ . Closer examination reveals that this expression is finite and gives rise to the
expected two-point amplitudes. Further, the same arguments may be repeated to the NS-NS sector of the
RNS superstrings.

The authors of [2] revisited these amplitudes using the operator formalism of bosonic strings. The
tree-level amplitudes in this formalism vanish unless they involve three or more vertex operators since
otherwise, the saturation of c ghost zero modes is impossible [4]. The saturation of c ghost zero mode
requires three c ghosts on the disk. Consequently, the two-point amplitudes vanish on the disk/sphere
as the vertex operators supply two c ghosts. Hence, to agree with the path integral method [1], the
amplitudes involving fewer than three strings at the tree level must be modified.

The authors of [2] arrived at this modification by introducing a a novel vertex operator that statures the
ghost zero modes in these amplitudes and provides the desired two-point answer. This vertex operator is
mostly BRST exact. In this work, we introduce a mostly BRST exact operator in the pure spinor formalism
that provides non-vanishing two-point tree-level amplitudes in the pure spinor formalism. Explicitly,

V0(z) ≡
1

2πα′

∫ ∞

−∞
dq

(
λγ0θ

)
eiqX

0(z) (1)

Notice that the integrand of the above operator for q ̸= 0 can be re-written as [Q, ⋆], justifying the
nomenclature- mostly BRST exact (see equation (28) for explicit form). The mostly BRST exact opera-
tors appeared earlier but in a different context in [5].

Since V0 isolates the time index "0", Lorentz invariance of the amplitudes involving these operators
must be explicitly checked. We must also ensure that V0 insertion does not violate the super-Poincare and
conformal invariance, as is required of these amplitudes. We verify that these symmetries are preserved1,
in the appendix D. Consequently, we shall freely use the consequences of these symmetries to reach
various conclusions.

1Up to BRST exact terms, which give a vanishing contribution.
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The rest of the paper is organized as follows. In section 2, we first address why the two-point ampli-
tudes in the pure spinor formalism vanish on a naive use of the standard prescription. Next, we introduce
the mostly BRST operator and show that its use gives rise to the expected two-point result. We end with
a discussion in 3 and defer some details and computations to the appendices.

2 Two point amplitudes in the pure spinor formalism

In this section, we begin by addressing the problem with two-point amplitudes in the pure spinor for-
malism. We shall consider open strings for simplicity as the generalization to other string theories is
straightforward - we make some comments on this in the discussion section 3. The amplitude prescrip-
tion at tree level in the pure spinor formalism is [3]

An =

∫ n∏
j=4

dzj⟨V1(z1)V2(z2)V3(z3)Uj(zj)⟩D2 (2)

where, V are the unintegrated vertex operators and U are the integrated vertex operators. We shall not
present all details of the pure spinor formalism, but give a quick review in A containing the important
ingredients required in this work - see [6, 7, 8, 9] for detailed reviews. We shall only require the use of
unintegrated vertex operators. In the plane wave basis, these are given by

V (z) = V̂ eik.X ≡ λαOαe
ik.X , QV = 0 , k2 = − n

α′ (3)

where Oα are conformal weight n, composite operators constructed out of the basic world-sheet fields
Πm, dα, θ

a, Nmn, J . Here, λα is the pure spinor, a Grassmann even spinor satisfying

λα(γm)αβλ
β = 0,∀ m.

γm are the Chiral-Gamma matrices in 10 dimensions. Also, n stands for the n-th excited level of the
string and Q denotes the BRST charge. The eik.X cancels the conformal weight of Oα so that V has zero
conformal dimension.

We should note that there is so far no genuine derivation of amplitude prescription (2) due to the
absence of the underlying gauge theory for pure spinor formalism whose gauge fixing gives (2)2. A
justification for this amplitude prescription relies on the fact that the pure spinor formalism in its non-
minimal version is N = 2 topological strings [11], whose amplitude prescription is same as that of the
bosonic strings3.

All the non-trivial amplitudes in the pure spinor formalism can be brought to a form that contains

2Recently a gauge theory behind the pure spinor formalism was proposed in [10]. Perhaps one can arrive at the amplitude
prescription using this.

3This amplitude prescription was studied in [12] by coupling the standard pure spinor formalism to topological gravity and
performing a BRST quantization.
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three λ and five θ zero modes in the corresponding correlator. We choose to normalize all the amplitudes
with the following correlator45

⟨(λγmθ) (λγmθ) (λγpθ) (θγmnpθ)⟩ = 1 (4)

For n = 2, a naive application of (2) gives

A2 = ⟨V1(z1)V2(z2)⟩D2 ∝
〈(
λαO1

α

)
(z1)

(
λβO2

β

)
(z2)

〉
D2 (5)

Since the above correlator has only two λ, it vanishes identically, implying that the above prescription
gives a trivial two-point amplitude. We must find the correlator that gives rise to the correct two-point
scattering amplitude. It must involve an extra vertex operator to be non-vanishing and at the same time
get rid of δ(k0

1 − k0
2). This suggests that the extra piece must have one λα. The operator proposed in (1)

fulfills all these requirements.
Let us begin by calculating the following amplitude

A ≡ ⟨V0(z)V1(z1)V2(z2)⟩ =
1

2πα′

∫ ∞

−∞
dq

〈[(
λγ0θ

)
(z)eiqX

0(z)
]
V1(z1)V2(z2)

〉
(6)

where, V0 is the operator introduced in (1) which we fix at z, while V1 and V2 are the unintegrated vertex
operators (fixed at z1 and z2 respectively). To calculate this, we split the integral into three parts as
follows

A =
1

2πα′

(∫ −ϵ

−∞
dq

〈[(
λγ0θ

)
(z)eiqX

0(z)
]
V1(z1)V2(z2)

〉
+

∫ ϵ

−ϵ

dq
〈[(

λγ0θ
)
(z)eiqX

0(z)
]
V1(z1)V2(z2)

〉
+

∫ ∞

ϵ

dq
〈[(

λγ0θ
)
(z)eiqX

0(z)
]
V1(z1)V2(z2)

〉)
In the above equation, ϵ > 0 is an infinitesimal parameter. This allows us to replace the operator in the
square brackets of the first and the third term with the BRST expression given in (28) . This replacement
implies that first and the third terms of the above equation vanish individually. This can be seen by
unwrapping the contour in the definition of the mBRST exact operator (see equation(1)) and writing it
in terms of the following three contours - Cz1: contour around z1, Cz2: contour z2, and Cz,z1,z2:contour
containing z, z1, z2. Schematically ∮

Cz

=

∮
Cz,z1,z2

−
∮
Cz1

−
∮
Cz2

4Normalizing this correlation function is sufficient since there is only one scalar present in tensor product of three λ and
five θ.

5There is an alternative zero mode normalization for λ and θ given by ⟨1⟩0 = 1 [13]. We shall not be working with this.
See [14]) for an application of this prescription to compute one-point closed string amplitudes on a disk.
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The contour integrals around z1 and z2 vanish due to QV1 = 0 and QV2 = 0, while the remaining one can
be deformed to include point at infinity which vanishes as well since there are no non-trivial operators
there. Thus, we are left with

A =
1

2πα′

∫ ϵ

−ϵ

dq
〈[(

λγ0θ
)
(z)eiqX

0(z)
]
V1(z1)V2(z2)

〉
(7)

On substituting the form of Vi given in (3), we can factor the amplitude as

A ≡ 1

2πα′

∫ ∞

−∞
dq

〈〈(
λγ0θ

)
(z) V̂1(z1)V̂2(z2)

〉〉〈
eiqX

0

(z)eik1.X(z1)e
−ik2.X(z2)

〉
(8)

where we use the notation ⟨⟨· · · ⟩⟩ as a shorthand to denote that the necessary OPEs have been taken
among the operators inside the bracket. We have taken the momentum k1 to be incoming and k2 to be
outgoing. The Koba-Nielsen factor of the above expression reduces to〈
eiqX

0

(z)eik1.X(z1)e
−ik2.X(z2)

〉
= iCX

D2
(2π)10 δ

(
q + k0

1 − k0
2

)
δ(9)

(
k⃗1 − k⃗2

)
|z − z1|2α

′qk01 |z − z2|−2α′qk02 |z1 − z2|−2α′k1.k2 (9)

On substituting the above result in (8), we find

A =
i

α′C
X
D2

∫ ∞

−∞
dqδ

(
q + k0

1 − k0
2

)
(2π)9 δ(9)

(
k⃗1 − k⃗2

) 〈〈(
λγ0θ

)
(z) V̂1(z1)V̂2(z2)

〉〉
×|z − z1|2α

′qk01 |z − z2|−2α′qk02 |z1 − z2|−2α′k1.k2 (10)

We are interested in the on-shell amplitudes for which k0 =

√
|⃗k|2 +m2, for a particle carrying momen-

tum k⃗ and mass m. The space Dirac-delta function in the above sets k⃗1 = k⃗2. Further, let us assume that
m2 −m1 = δ, where m1 and m2 are the masses of the string 1 and 2. If m1 = m and m2 = m + δ, we
find that on-shell

k0
2 − k0

1 =

√
|⃗k|2 +m2

[√
1 +

δ2 + 2δm

|⃗k|2 +m2
− 1

]
However, since −ϵ < q < ϵ, for getting support from the energy Dirac-delta we must have

−ϵ <

√
|⃗k|2 +m2

[√
1 +

δ2 + 2δm

|⃗k|2 +m2
− 1

]
< ϵ.

Since, ϵ → 0, we must have δ → 0 for energy Dirac-delta to provide a non-trivial contribution. This
means unless the masses of the strings are the same, the amplitude vanishes on-shell. Thus, we find that

A =
i

α′C
X
D2
(2π)9 δ(9)

(
k⃗1 − k⃗2

) 〈〈(
λγ0θ

)
(z)V̂1(z1)V̂2(z2)

〉〉
|z1 − z2|2α

′m2
1 δm1,m2 (11)
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where we used k1.k2 = −k0
1k

0
2+k⃗1 .⃗k2 = −(k0

1)
2+ |⃗k1|2 = −m2

1. Notice the factor of |z1−z2|−2αm2
1 . This

factor cancels with a similar factor coming from pure spinor superspace, namely
〈〈

(λγ0θ) V̂1(z1)V̂2(z2)
〉〉

.

Recall that at the nth level of open superstring we have (mass)2 = n
α′ and also that the conformal dimen-

sions of V̂i for i = 1, 2 are n. Furthermore, (λγ0θ) has zero conformal weight. Thus, upon using the
standard result for a 3-point function in a CFT, we find〈〈(

λγ0θ
)
(z) V̂1(z1)V̂2(z2)

〉〉
∝ |z1 − z2|−2n = |z1 − z2|−2α′m2

1 (12)

which, cancels the coordinate dependence coming from the Koba-Nielsen factor. Thus, the amplitude is
coordinate invariant.

Having fixed the coordinate dependence, let us further elaborate on the dependence of ⟨⟨· · ·⟩⟩ on the
kinematic data, namely the polarizations and momenta. We argue that it must be of the form〈〈(

λγ0θ
)
(z) V̂1(z1)V̂2(z2)

〉〉
∝ f 0(ϵ1, ϵ2; k) (13)

where ϵi are the polarizations and k is momentum of the state represented by vertex operators V1 and
V2. Since our theory is supersymmetric, giving the argument for purely bosonic states is sufficient.
The polarizations for the bosonic states are specified by using the Lorentz vector indices. Further, the
polarizations satisfy kmϵ

m···
i = 0. Let us assume that the 0 index is supplied by ϵ1. For a non-zero answer,

we contract the rest of the indices of ϵ1 with only ϵ2. But, this leaves a free index on ϵ2, which must
be contracted by k, giving a vanishing contribution. Hence, there is a unique choice - the polarization
tensors contract among themselves, and the 0 index is supplied by k0. In appendix C, we explicitly verify
this for all the states at the massless level. Thus, we find6

〈〈(
λγ0θ

)
V̂1(z1)V̂2(z2)

〉〉
∝ k0 δjj′ (14)

where we have used j and j′ in δjj′ to distinguish between states with degenerate masses like gluon and
gluino. Hence, the final result

A ∝ (2π)9 δ(9)
(
k⃗1 − k⃗2

)
k0 δm1,m2 δjj′ (15)

reproduces the expected two-point amplitude in a field theory in D dimensions given by

A2 = 2k0 (2π)D−1 δD−1
(
k⃗1 − k⃗2

)
, k0 ≡

√
m2 + k⃗2 (16)

6There are other factors containing the contribution of non-zero modes of various worldsheet fields, normalization of
polarizations, and pure spinor superspace computations. These are all non-zero.
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up to a constant of proportionality, which can be determined through unitarity

A2(k1, k2) =

∫
dD−1k

(2π)D−1
A2(k1, k)A2(k, k2) (17)

In appendix C, we explicitly verify the above result for some amplitudes. Thus, the two-point amplitudes
in the pure spinor formalism using operator V0 behave as is expected.

3 Discussion

The non-vanishing of two-point tree-level amplitudes in string theory is desirable for various consistencies-
see [15] for a discussion and detailed set of references. We provide a brief reminder of S matrix and its
properties in the context of quantum field theories in appendix E. On the physical grounds, it is resonable
to demand that these properties carry over to scattering amplitudes in string theories. In particular string
scattering amplitudes must follow the cluster decomposition principle, which requires a finite two-point
tree-level amplitude. Thus, a crucial requirement of the scattering amplitudes of string theory is that they
have a non-vanishing two-point tree-level amplitude. In particular these must have a form that is given
by (16). Using a mostly BRST-exact vertex operator, we found non-zero two-point tree amplitudes in the
pure spinor formalism in open strings that has same form as equation (16). Further, we have checked
that this amplitude are super-Poincare and conformally invariant (see appendix D). Generalization to the
closed strings is straightforward by adding a right-moving sector. Generalization to Heterotic strings
follows by using the pure spinor prescription of this work for the supersymmetric side, and the analysis
of [1, 2] for the bosonic side.

To conclude, we have identified the correlation functions that give rise to correct two-point amplitude
in the pure spinor formalism. However, we do not know from a fundamental point of view why the
additional vertex operator is of this form7. It is important to explore for a fundamental origin of the
mostly BRST exact operator we used in this work, perhaps by making use of the gauge invariant action
presented in [10] (see also [16, 17] which gave important insights that lead to [10]). This investigation
we leave for future work.

Acknowledgments: I thank Biswajit Das for some discussions and Ashoke Sen and Mritunjay Verma for
providing various comments on the draft. I am indebted to Renann Lipinski Jusinskas for many insightful
discussions at the initial stages of this work. I am thankful to the Institute of Physics, Bhubaneshwar for
providing a three-month extension beyond the usual term of my post-doctoral tenure, during the pandemic
due to COVID-19.

7Perhaps these are related to the zero momentum states as pointed out by Renann Lipinski Jusinskas. We note that the
additional operators in [1, 2] too resemble zero momentum states. The understanding of their precise role we leave for future
work.
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A Review of the Pure Spinor Formalism

In this appendix, we very briefly review the pure spinor formalism that makes the discussion in the main
text coherent. The world sheet action in a conformal gauge for strings in a flat 10D spacetime takes the
form

S =
1

πα′

∫
d2z

(
1

2
∂Xm∂̄Xm + pα∂̄θ

α − wα∂̄λ
α

)
(18)

where, m ∈ {0, 1, · · · , 9} and α ∈ {1, · · · , 16}. Xm are the spacetime coordinates, θα, wβ are anti-
commuting Majorana-Weyl spinors while λα are commuting Weyl Spinors. {Xm, θα, λα} are scalars on
the worldsheet, while pα, wα, the conjugate momenta fields of θα and wα respectively, carry weight 1.
Further, λα satisfy the pure spinor

λαγm
αβλ

β = 0 ∀ m (19)

where, γm
αβ are symmetric 16× 16 Gamma matices in 10 dimensional spacetime. To keep the supersym-

metry manifest, instead of working with pα and ∂Xm, we work with the supersymmetric combinations

dα = pα − 1

2
γm

αβθ
β∂Xm − 1

8
γm
αβγmσδθ

βθσ∂θδ

Πm = ∂Xm +
1

2
γm
αβθ

α∂θβ (20)

The BRST operator is postulated to be

Q =

∮
dz λα(z) dα(z) (21)

Due to the pure spinor constraint, wα remains defined up to a gauge transformation

wα = Λm(γ
mλ)α (22)

with Λm playing the role of gauge parameters. To take care of this gauge symmetry, we always work
with the following gauge invariant combinations

Nmn =
1

2
wα(γmn)

α
βλ

β , J = wαλ
α , T = wα∂λ

α

J is the ghost-number current and sets the ghost number of λα to 1.
The physical states lie in the BRST cohomology with ghost number 1. The vertex operators are
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constructed out of {Πm, dα, θ
α, Nmn, J, λα}. The only non-trivia OPE we shall require is given by

dα(z)V (w) =
α′

2(z − w)
DαV (w) + · · · (23)

where, V denotes an arbitrary superfield while Dα is the super-covariant derivative given by

Dα ≡ ∂α + γm
αβθ

β∂m =⇒ {Dα, Dβ} = 2(γm)αβ∂m (24)

where, ∂m = ∂
∂Xm and ∂α = ∂

∂θα
. The above describes the minimal version of the pure spinor formalism.

It will be sufficient for this work.
To simplify the notation, we shall be implicit about normal orderings. The normal ordered operator

: AB : (z) is defined as

: AB : (z) ≡ 1

2πi

∮
z

dw

w − z
A(w)B(z) (25)

where, A and B are arbitrary operators.

B V0 as a mostly BRST exact operator

In this appendix, we demonstrate that the V0 introduced in the main body is a mostly BRST-exact operator.
Let us begin by noticing

[
Q, eiqX

0(z)
]
≡

∮
z

dw(λαdα)(w)e
iqX0(z) =

α′

2

∮
z

dwλα(w)

[
Dαe

iqX0(z)

w − z
+ · · ·

]
(26)

where, we used the standard OPE dα(z)V (w) ≃ α′

2
DαV
z−w

. On recalling that Dα = ∂α + (γmθ)α ∂m, we
find that [

Q, eiqX
0(z)

]
=

iqα′

2

(
λγ0θ

)
eiqX

0

(27)

Hence, for q ̸= 0 we have

(
λγ0θ

)
eiqX

0

= −1

q

[
Q,

(
2i

α′ e
iqX0(z)

)]
(28)

showing that the integrand of V0 is BRST-exact for q ̸= 0 and thus V0 is mostly BRST exact.
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C Some explicit examples

In this appendix, we evaluate the two-point massless open superstring amplitudes (on a disk) with the new
prescription given equation (6) in this paper. The goal is to substantiate the claim in (14) by providing
explicit examples. For this we essentially need to compute the

〈〈
(λγ0θ) V̂1V̂2

〉〉
where V̂i = λαAiα and

show it is proportional to k0. For the massless case, the task is trivial as everything inside the bracket
is conformal weight zero and hence there are no non-trivial OPEs. Consequently, we can use the pure
spinor-superspace method to perform the computation. The relevant theta expansion is given by (we
follow the notation and conventions used in [18])

Aα = am (γm)α − 2

3
(γmθ)α (θγmχ) + · · · (29)

where we have not shown the higher order θ terms as they will not be required. Also, am represents the
gluon field and χα the gluino field. Consequently, we find〈〈(

λγ0θ
)
V̂1V̂2

〉〉
=

〈(
λγ0θ

)
(λαA1α) (λ

αA2α)
〉
=

i

180
k0 (amr ar′m) +

1

360

(
χsγ

0χs′
)

(30)

where, r, r′ and s, s′ denote polarizations and helicities of gluons and gluinos respectively. We made use
of the following pure spinor superspace identities [19], for performing the gluon calculation

⟨(λθγmρ) (λθγnρ) (λθγpρ) (λθγstuρ)⟩ =
1

120
δmnp
stu (31)

and

⟨(λγuθ)(θγfghθ)(θγjklθ)(λγmnpqrλ)⟩

= − 4

35

[
δ
[m
[j δ

n
k δ

p
l]δ

q
[fδ

r]
g δ

u
h] + δ

[m
[f δ

n
g δ

p
h]δ

q
[jδ

r]
k δ

u
l] −

1

2
δ
[m
[j δ

n
kηl][fδ

p
gδ

q
h]η

r]u − 1

2
δ
[m
[f δ

n
g ηh][jδ

p
kδ

q
l]η

r]u
]

− 1

1050
ϵmnpqr

abcde

[
δ
[a
[j δ

b
kδ

c
l]δ

d
[fδ

e]
g δ

u
h] + δ

[a
[fδ

b
gδ

c
h]δ

d
[jδ

e]
k δ

u
l] −

1

2
δ
[a
[j δ

b
kηl][fδ

c
gδ

d
h]η

e]u − 1

2
δ
[a
[fδ

b
gηh][jδ

c
kδ

d
l]η

e]u

]
(32)

for gluino calculation8. We further note that the polarizations are normalized as (see for example [22])

amr ar′m = δrr′ ,
(
χsγ

0χs′
)
= k0δss′ (33)

Thus, we find that 〈〈(
λγ0θ

)
V̂1jV̂2j′

〉〉
∝ k0δjj′δss′ (34)

8We acknowledge the use of [20, 21] for performing the calculations.
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where, j, j′ stand for the particle species and s, s′ denote the corresponding polarizations. We note that we
get the same relative factor in gluon and gluino amplitude as in [18] and that the gluon-gluino amplitudes
vanish automatically as we expect them to. For the massive case, the computations can be repeated using
[18, 23], though we expect them to be involved.

D Some consistency checks for V0 insertion

In this appendix, we verify that the insertion of V0 does not spoil the super-Poincare and conformal
invariance. First note that the expression of V0 is not Lorentz covariant as it isolates 0th spacetime
component. Superstring theory in the flat background is super-Poincare invariant. So, let us first see if
the expression that we have arrived has this symmetry. Notice that

δ⟨V0V1V2⟩ = ⟨δV0V1V2⟩+ ⟨V0δV1V2⟩+ ⟨V0V1δV2⟩︸ ︷︷ ︸
automatically invariant

= ⟨δV0V1V2⟩ (35)

where δ denotes the change after applying some symmetry transformation. The vertex operators V1 and
V2 are invariant under δ. Hence, we only need to evaluate δV0. To facilitate the discussion, let us note
that we can write V0 as

V0 =

∫ ∞

−∞

dq

iπα′2
1

q

[
Q, eiqX

0
]

(36)

Now, we can write the variations as (on noticing that δQ = 0 )

δV0 =

∫ ∞

−∞

dq

iπα′2
1

q

[
Q, δeiqX

0
]

(37)

Let us now consider all the transformations one by one. To distinguish one transformation from another,
we shall provide a subscript on δ. Under translations

Xm → Xm + am =⇒ δaX
m = am =⇒ δae

iqX0

= iqa0eiqX
0

(38)

Thus, we see that

δaV0 =

∫ ∞

∞

dq

iπα′2
1

q

[
Q, iqa0eiqX

0
]
=

[
Q,

∫ ∞

∞

dq

πα′2 a0eiqX
0

]
(39)

On using QV1 = 0 = QV2, we can easily see that the two-point amplitude is translationally invariant.
Similarly, under Lorentz transformations

Xm → Xm + Λm
nX

n =⇒ δΛV0 =

[
Q,

∫ ∞

∞

dq

πα′2Λ
0
mX

meiqX
0

]
(40)
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and under supersymmetry transformation

Xm → Xm + (ηγmθ) =⇒ δηV0 =

[
Q,

∫ ∞

∞

dq

πα′2 (ηγ
mθ) eiqX

0

]
(41)

Thus, we see that the amplitude is super-Poincare invariant. Finally under conformal transformations
z → z + ϵ(z)z =⇒ δXm = ϵ(z)∂Xm(z), we have

δϵV0 =

[
Q,

∫ ∞

∞

dq

πα′2 ϵ(z)e
iqX0

]
(42)

showing that the two-point amplitude is conformally invariant.

E Requirement of a non-vanishing two point string amplitude

What do the scattering amplitudes in string theory correspond to? Do they represent the full S-matrix or
just the interaction part? Unlike the earlier view, the non-vanishing two-point tree-level string amplitude,
as found in [1], demonstrates that string amplitudes calculate the full S-matrix. Here, we briefly recall
the scattering matrix, S and some of its properties in a quantum (field) theory. For more details, and
references, see [15]. The S-matrix takes an incoming set of particles from the far past, represented by
|in⟩ state, to an |out⟩ state, the set of all outgoing particles in the far future. It is separated as

S = I + iT (43)

where I denotes the processes in which the particles in the |in⟩ state go to |out⟩ without undergoing any
interaction, while iT represents their effect on each other. Scattering amplitudes denoted An(p1, · · · , pn),
for n particles with momenta {pi}, correspond to processes in which particles from the far past come near,
interact, and then move away from each other into the far future. They correspond to the matrix elements
of S − iT and are related to Gn(p1, · · · , pn), the Green’s functions, via the LSZ procedure

An = Gn(p1, p2, · · · , pn)
n∏

i=1

(p2i +m2
i ) (44)

The Green’s functions are calculated using the Feynmann rules and are proportional to momentum con-
serving delta functions i.e.

Gn(p1, p2, · · · , pn) ∝ δD(p1, p2, · · · , pn) (45)
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For the connected processes, for n ≥ 3, the identity part of the S-matrix vanishes and Sc = iTc. For
n = 2, however, A2 = 0. To see this consider a scalar field with mass m. Then

iT 2
c = G2(p1, p2)(p

2
1 +m2)2 ∝ δD(p1 + p2)

(p21 +m2)
(p21 +m2)2

p21→−m2

−−−−−→ 0 (46)

This can be shown for other fields as well. Consequently, we have Sc
2 = I2 and this is understood to

capture the following:

1. The recursive definition of scattering amplitudes, consistent with cluster decomposition, requires a
non-zero two-point tree-level amplitude.

2. The two-point amplitude can be thought of as corresponding to the normalization of single-particle
states.

3. A single particle coming from the far past and going to the far future without interaction is a
connected physical process.

4. The unitarity of 2 point amplitudes [1] requires a non-zero two point amplitude.

Thus, a self-consistent definition of scattering amplitudes requires a non-zero two-point scattering am-
plitude. The usual LSZ procedure gives a zero answer because it assumes a zero overlap between the in
and the out state, which is not the case for a two-point amplitude. The above requirements suggest the
following form for the complete two-point tree-level amplitude

A2(p, p
′) = 2p0(2π)D−1δD−1

(
p⃗− p⃗′

)
Notice that we denote it by A2 to distinguish it from A2 which is zero (and represents only the S − iT

part).
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