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Abstract

We describe a simple and efficient Python code to perform Bayesian forecasting for grav-
itational waves (GW) produced by Extreme-Mass-Ratio-Inspiral systems (EMRIs). The
code runs on GPUs for an efficient parallelised computation of thousands of waveforms
and sampling of the posterior through a Markov-Chain-Monte-Carlo (MCMC) algorithm.
emri_mc generates EMRI waveforms based on the so–called kludge scheme, and prop-
agates it to the observer accounting for cosmological effects in the observed waveform
due to modified gravity/dark energy. The code provides a helpful resource for forecasts
for interferometry missions in the milli-Hz scale, e.g the satellite-mission LISA.
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1 Introduction11

Parameter forecasting for EMRI signals is not an easy task because of the complex nature of12

these signals and the high-dimensional parameter space that needs be explored. Most of the13

attempts in the literature to date are based on the kludge scheme for the waveform generation,14

as well as on the Fisher information matrix approach for the parameter forecast; see, e.g.,15

[1–6]. An early attempt at parameter estimation using Bayesian inference was performed16

in [7] and, more recently, in [8,9]17

Exploring the high-dimensional parameter space with accuracy is hindered by the multi-18

modality of the likelihood, meaning that different sets of parameters can produce waveforms19

that look very similar to one another; see, e.g., [10]. The resulting parameter degeneracy cre-20

ates local maxima in the likelihood function, making it difficult to locate the global maximum.21

Navigating this multi-modal landscape requires sophisticated sampling methods.22

Yet another fundamental challenge in parameter estimation is the difficulty to distinguish23

between an EMRI signal and other non-negligible overlapping signals that originate from dif-24

ferent astrophysical sources, such as galactic compact binaries. Addressing this challenge is25

crucial for LISA data analysis and usually requires fitting the global signal with efficient sam-26

pling algorithms [11–13].27

Nowadays, modeling of EMRI waveform is achieving sufficient accuracy to detect and an-28

alyze EMRI signals in the data from future detectors like LISA. This involves refining self-force29

calculations [14] and improving computational methods for waveform generation [15].30

In view of the burst of GW astronomy and the need for parameter estimation [16–19], in-31

cluding possible effects of modified gravity, EMRI_MC 1 provides a simple, yet efficient code for32

the GW community of astrophysics and cosmology towards parameter estimation and forecasts33

for the future LISA detector [17,20–22].34

EMRI_MC relies on four main elements: i) the waveform generator; ii) the inclusion of the35

amplitude damping and modified speed of GWs; iii) the posterior sampling through MCMC36

methods; iv) the GPU-based vectorisation of quantities such as the likelihood, in order to37

accelerate computations. Our code aims to provide a simple and efficient tool that could38

be of help for the community working on the interface of GWs and modified gravity. We39

emphasise that the structure of the code provides for enough flexibility to allow extension and40

improvements in each of its elements, according to the need of the specific task.41

i) The waveform generator.42

Our choice for the waveform generator relies on the popular Analytic Kludge (AK) model43

for the generation of inspiraling EMRI waveforms [1, 2]. The generation, as well as44

its Fast Fourier Transform (FTT), is implemented using appropriate GPU vectorisation45

techniques in cuda.46

Though the AK model is not the most accurate waveform model to date, this choice47

is justified as follows. AK waveforms provide a sufficiently good approximation of the48

binary’s dynamics, as long as one remains sufficiently far away from the merger. Addi-49

tionally, AK waveforms allows for an analytic handle on the physics. The equations can50

be consistently extended with new post-Newtonian and self-force corrections, as well51

as the inclusion of new physics such as dark matter effects. In this regard, they pro-52

vide an excellent proxy to perform parameter estimation for future missions, as well as53

investigate the significance of effects related to new physics.54

The AK model can be replaced with a more accurate waveform model generator. Exam-55

ples are the Augmented Analytic Kludge [4, 23], the Numerical Kludge [24–27], the Fast56

EMRI Waveforms [28,29], and the Effective One-Body approach [30–33].57

1The code is available at: https://doi.org/10.5281/zenodo.10204186.
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ii) The inclusion of modified gravity effects.58

We include effects beyond General Relativity during the propagation of GWs on the cos-59

mological background. Specifically, we include the effects of damping of the amplitude60

and modification of the GW speed [34–36].61

iii) The posterior sampling.62

Most of the codes currently available for posterior samplings for EMRIs parameter space63

make use of the Fisher information matrix. We adopt a Bayesian approach using Markov-64

Chain-Monte-Carlo (MCMC) methods. These are implemented via the MCMC package65

emcee [37], which employs an affine-invariant ensemble sampler [38]. The posterior66

sampling is performed using GPU vectorisation: the likelihood function is computed for67

each MCMC walker in parallel.68

iv) The GPU-based vectorisation and parallelisation features.69

Bayesian inferences through MCMC methods are rather expensive for CPUs, especially70

when posteriors evaluations involve high-dimensional parameter space. To overcome71

this computational limitation, the code adopts GPU-based vectorisation and parallelisa-72

tion features, notably for the generation of the waveform and for the posterior sampling..73

2 Theoretical background74

Waveform generation: The generation of accurate GW waveforms for binary systems and75

efficient parameter estimation is key for current and future GW missions such as LISA. For76

EMRIs, the accuracy of the waveform in the inspiral phase requires adiabatic, post-adiabatic77

and self-force approximations [14,28,29,39–44].78

The AK model we adopt in our code relies on the Peters-Mathews formalism [45,46], where79

adiabatic and post-Newtonian approximations are adopted. The main advantage thereof, for80

our purposes, is the analytic command over the waveform generation and its parameter space.81

AK model can also be easily extended and modified in the presence of new physics. For tech-82

nical details on the theoretical framework and equations we will be using, we refer to [1] and83

references therein.84

The system of equations consists of two main parts: i) the equations describing the orbital85

dynamics of the small body with mass µ around the central black hole with mass M and86

spin S/M2, and ii) the equations for the generation of the waveform under the quadrupole87

approximation. The first ones form a system of ordinary differential equations (ODEs) as88

dY

dt
= f (Y(t );θ ), (1)

where the vector Y denotes the orbital parameters Y = {Φ,ν, e,γ,α}, i.e., the phase (Φ),89

the orbital frequency (ν), the eccentricity (e) and two precession angles (γ,α). The vector90

θ denotes the free parameters in our waveform generation model θ = {M ,µ, S, . . .}, i.e.,91

the masses, spin, angles, parameters due to propagation, etc. We note that we work in cgs92

units. For example, we restore powers of G and c, define the post-Newtonian order parameter93

x = 2πνGM/c3, and the spin magnitude of the central black hole as 0 ≤ S/M2 ≤ 1.94

The solution of the orbital equations under the quadrupole approximation allows for the95

computation of the waveform as96

hi j(t ) =
nmax
∑

n=1

hn
i j(t ) =

nmax
∑

n=1

A+
(n)
(t ,θ )e+i j(t ) + A×

(n)
(t ,θ )e×i j(t ), (2)
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where it is understood that A = A [Y(t ),θ ]. The polarisation coefficients are computed under97

a harmonic decomposition up to some overtone nmax, according to [45]. We notice that the98

detector response function, assumed to be included in the above expression, introduces three99

extra angles on top of the ones related to the orbital dynamics of the system. We assume an100

ideal detector and a perfect knowledge of the the detector response function. In other words,101

variations of the LISA detector response because of different noises and signals are neglected.102

The LISA response function used in the present work can be found, e.g., in [1].103

104

Waveform propagation: Assuming a plane GW travelling far away from the source through105

the cosmological medium, we can write Eq. (2) as hi j(t ) = h(t )ei j , and expand the amplitude106

of each mode of the wave in Fourier modes with spatial wavenumber k as107

ḧ + 3H(τ)(2+αM)ḣ + k2(1+αT)h = 0. (3)

H(τ) is the Hubble parameter, τ the cosmological time, and the quantitiesαM,αT parameterise108

effects beyond General Relativity modifying the friction and the wave’s propagation speed109

respectively [34–36, 47]. In redshift domain, and under the WKB approximation, one can110

solve analytically Eq. (3) to find [35]111

h(z) = hMG × hGR ≡
1

Ξ
× e−ik∆T × hGR, (4)

with112

Ξ(z) ≡
dGW(z)
dEM(z)

exp

�

1

2

∫ z

0

d z̃
αM(z̃)

1+ z̃

�

, ∆T ≡ exp

�

−ik

∫ z

0

d z̃
αT(z̃)

1+ z̃

�

, (5)

z the redshift to the source, and hGR the contribution one gets from solving Eq. (3) forαM = 0 = αT.113

The possible cosmological evolution of αM(z),αT(z) is model-dependent, however, they are114

in principle very slowly-varying functions of redshift, tracing the evolution of the dark en-115

ergy density fraction. For a discussion on parametrisations of their time dependence we refer116

to [48]. For the sake of an example, we choose to parametrise Ξ(z) through the physically117

well-motivated parametrisation of [49] (see also [50])118

Ξ(z) = Ξ0 +
1−Ξ0

(1+ z)n
, (6)

with Ξ0 a free parameter. Of course, any other physically-motivated parametrisation is equally119

good. There are scenarios where the parameters αM and αT are also frequency-dependent120

quantities (see e.g [36] for a detailed exploration) as121

αM = F(z, f ), αT = G(z, f ), (7)

with F, G some well-motivated functions of GW frequency ( f ) and redshift (z). An example122

includes a power series expansion
∑

n an(z) ( f / f∗)
n . Numerically, such frequency-dependent123

terms need to act upon a tabulated waveform in frequency space.124

3 Numerical approach and statistical pipeline125

Overview: Our goal is to streamline an efficient parameter estimation pipeline to get joint126

constraints on the free parameters of the model.127

As a first step, we define a fiducial model with an associated set of fiducial parameters θ0,128

which we use to generate the expected waveform h[θ0]( f ) in Fourier space for this model.129

4
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This waveform is then used as the (mock) dataset at the heart of our MCMC analysis. At each130

step of our MCMC, the orbital equations are solved for the current set of parameters θ , and the131

time-domain waveform computed. The latter is then Fourier-transformed into the frequency132

domain, yielding the waveform h[θ ]( f ). It is then compared to the mock dataset via the133

computation of the log-likelihood, as follows134

logL∝
1

2

(h[θ ]( f )− h[θ0]( f ))
2

Snoise( f )
, (8)

with Snoise( f ) the LISA noise function. In the code, we have implemented two noise models;135

the one presented in [1] and the more recent LISA noise model of [51, 52]. In our example136

below we use the original noise model of [1].137

138

We emphasize that, as already mentioned below Eq. (2), the waveform h[θ ]( f ) is under-139

stood to be the waveform projected on LISA arms. In particular, the two polarization modes140

are projected to the LISA frame using the LISA antenna patterns (see e.g., [1]). The explicit141

expressions of the two polarizations of the waveform signals in the LISA frame can be read off142

the code in the waveform.py module. We further note that we assume noise-less waveforms,143

that is, our waveforms are perfect in their production and the noise enters through the so–144

called noise curve as a weight in the construction of the likelihood.145

146

Waveform computation: The orbital equations (1) are solved as an initial-value problem147

on a time grid using standard ODE methods, such as the 7th-order Runge-Kutta scheme. Ini-148

tial conditions are set at the Last Stable Orbit (LSO) and the equations are integrated back-149

wards for a given time window, typically ranging between few months to one year. The150

resolution of the time grid is set at 0.1 Hz, which is the typical choice for LISA. As regards151

the initial value for eccentricity and angles of the system at LSO, we fix these geometrical152

quantities for both fiducial model and MCMC analysis and vary only masses, spin and other153

physical parameters. The initial value for the frequency ν at LSO is set according to [1],154

νLSO = c3/(2πGM)((1 − e2
LSO)/(6 + 2eLSO))3/2. For the transition to the frequency domain,155

we use the method of a Fast Fourier Transform (FFT), under an appropriate normalisation156

choice.157

The other parameters of the system are fixed to their true values. However, this assumption is158

not restrictive: the user may keep any of the parameter free to vary during the sampling.159

160

Posterior sampling: The posterior sampling is performed through the Python MCMC package161

emcee, which allows for various sampling techniques and parallelisation features. Paralleli-162

sation is implemented in two ways, from which the user can choose. The first one uses the163

multi-processing library to parallelise the walkers. In this case, each walker runs inde-164

pendently of the others, and the input to the MCMC at each step is a 1D vector of dimension165

Ndim with the parameters of the step. The second parallelisation feature works differently. At166

each MCMC step, it creates a matrix of dimension (nwalkers × ndim), which is fed as the input167

into the MCMC engine. This parallelisation feature will tend to be more efficient with a large168

number of parameters.169

170

Functionality overview: GPU vectorisation is achieved mainly through appropriate use of171

the ElementwiseKernel functionality which exploits the GPU parallelisation for mathemat-172

ical operations, and is implemented through Python’s cupy library. Computations such as the173

waveform and the likelihood are GPU-vectorised reducing significantly the evaluation time.174

For the MCMC exploration we have introduced two different parallelisation methods, for CPUs175

and GPUs respectively. The first one parallelises the walkers on different CPUs through the176

5
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multi-processing framework. The second approach feeds into the MCMC algorithm a177

super-matrix of all parameters at given MCMC step, which is then computed in a vectorised178

manner. For 4 free parameters and 8 walkers, this brings down the evaluation of each MCMC179

step to about 2.2 seconds, assuming a waveform integrated over 1 year at resolution of 0.1 Hz.180

181

The code’s architecture consists of the following main files:182

183

1. global_parameters.py: This module defines the values of physical constants in cgs units,184

the parameters of the fiducial model, geometrical parameters and initial conditions of the185

binary system, parameters for the ODE solver (e.g., integration time window and grid resolu-186

tion), and MCMC-related definitions. It also defines the maximum number of orbital overtones187

n_max in the computation of the waveform. A change in the number of the parameters in the188

MCMC requires adjusting the parameter vector in this module.189

190

2. waveform.py: This module defines the set of kludge ODE equations (see Eq. (1)), the191

waveform generator according to Eq. (2), and some GPU-related functionality. Its main func-192

tions reads as follows:193

194

– eqs(): Defines the set of kludge ODE equations and returns the right-hand-side of them in195

the sense of Eq. (1). Notice that in the case of the use of an ODE solver other than the native196

ones in Python, currently used, the return statement of this function might need to be changed.197

198

– compute_orbit(): Computes the solutions of the kludge ODE equations defined in eqs().199

To solve the system of ODEs, we use the Pythonic framework of solve_ivp(). This choice200

allowed to switch between the different native solvers in this library.201

202

– waveform(): It calls eqs() and compute_orbit(), computes the time-domain wave-203

form including the LISA response function (2) and then performs its FFT, via the function204

FFT_gpu(). The computation of waveforms is implemented fully on cuda. GPU vectorisation205

and acceleration is implemented with appropriate use of ElementwiseKernel. For compu-206

tational convenience, the ouputted waveform does not include the overall factor of the GW207

luminosity distance. This is included in the function iterate_mcmc() below.208

209

– compute_fiducial(): Computes the fiducial model based on the fiducual values defined210

in global_parameters.py. The parameter vector defined in this function needs adjustment when211

adding/removing parameters in the MCMC run.212

213

3. mcmc.py: This module defines the MCMC-related functions and the MCMC iterator. Its214

main functions reads as follows:215

216

– lnprior(), lnprob(): These functions define the log-prior and the log-probability, re-217

spectively. They need be adjusted when the set of parameters in the MCMC run is modi-218

fied. Their counterparts for the case when the liklelihood is computed through a vectoriza-219

tion process (see module description "run_code.py" below) are labelled as lnprior_vec(),220

lnprob_vec().221

222

– iterate_mcmc(): It calls waveform() to compute the waveform, and the likelihood in223

frequency domain for a given choice of parameters around the fiducial model using GPU vec-224

torisation.225

226

6
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– get_noise(): This defines the LISA noise function for GPU parallelisation through an227

ElementwiseKernel.228

229

– get_Likelihood(): This function computes the likelihood according to Eq. (8) in GPU230

vectorised form through an ElementwiseKernel. It is used in iterate_mcmc() to compute231

the likelihood at each MCMC step. Modifications to the GW luminosity distance enter here.232

This function needs to be adjusted according to any change of parameters in the MCMC run.233

234

4. propagation.py: This module defines the functions needed for the propagation of the235

GW wave through the cosmological background in the presence of any modified gravity ef-236

fects.237

238

– get_damping(), get_modified_speed(): This defines the possible frequency-dependent239

damping of the waveform’s amplitude, or the respective change in its propagation speed, due240

to modified gravity. It is defined through an ElementwiseKernel for an efficient evaluation241

on the frequency grid. After defining the functional form of the frequency-dependent damping242

and/or GW speed, one should modify appropriately the computation of the likelihood in the243

function iterate_mcmc(). Detailed comments are provided in the code.244

245

– dL(): This function defines the electromagnetic luminosity.246

247

– dGW_Xi(): This function defines a redshift-dependent parametrisation of the GW lumi-248

nosity distance due to modified gravity according to Eq. (6). It should appear as an overall249

multiplicative factor of the waveform in the likelihood computation in iterate_mcmc(). We250

remind that the function waveform() does not include in the outputted waveform the lumi-251

nosity distance factor.252

253

5. run_code.py: This module starts the MCMC run, building on the parameter definitions254

in global_parameters.py. If vectorize = True, the code inputs the data of the parameter255

configuration at a given step into the MCMC engine as a matrix (nwalkers × ndim), and par-256

allelises the computation on GPU. If vectorize = False, the code parallelises instead the257

walkers on CPUs through the multi-processing framework.258

259

6. main.ipynb: Assuming all parameters and fiducial model are properly defined as ex-260

plained earlier, this Jupyter notebook serves as an example demonstration of the code. It261

essentially calls the main functions to initiate the MCMC run, using the package emcee. As a262

simple choice, we have currently set throughout the numerical computation the source loca-263

tion {θS,φS} = {π/4, 0}, the orientation of the spin {θK ,φK} = {π/8, 0}, αLSO = 0, the angle264

λ = π/6, the initial eccentricity eLSO = 0.3, and γLSO = 0, ΦLSO = 0, for the respective initial265

conditions. These can be straighforwardly modified in the file waveform.py.266

267

Extending the parameters in the MCMC run: First we notice that, in the vector p defin-268

ing the parameters to be varied in the MCMC, the first three values should be by default the269

central mass (M), the orbiting mass (µ), and the spin (S/M2). These are needed by the ODE270

solver to solve the equations and are passed as args = [p[0], p[1], p[2]]. Therefore, it is271

advisable to always keep this convention. Now, to add new parameters in the MCMC run one272

needs to make changes at the following points in the code:273

274

– global_parameters.py: Edit the sections on parameters for the MCMC run and parameter275

values for the fiducial model.276
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277

– mcmc.py: Edit the vector p in the functions lnprior() and lnprob(). Edit the parame-278

ters to be varied in the MCMC in the function iterate_mcmc(), including possible modifi-279

cations in the GW luminosity distance which enters in the computation of the likelihood in280

iterate_mcmc().281

282

– main.ipynb: Extend the vector p_init_MC which initialises the walkers with the new param-283

eters. Ensure that values for the initialisation of the walkers is meaningful given the problem284

at hand, otherwise the MCMC will not converge as expected.285

286

– propagation.py: Any new parameters which affect the GW luminosity distance must be also287

reflected in this module where the definitions of the luminosity distances are placed.288

289

Computational overhead, ODE solver, overtones summation: An important computational290

overhead in the evaluation of each MCMC step comes from the choice of the ODE solver. We291

currently use the native ODE solvers provided by Python’s numerical libraries. However, this292

can be improved using different, external solvers, such as the ones provided by the Fast EMRI293

Waveforms scheme [28,29]. We notice that the choice of the ODE solver enters in the functions294

waveform() and compute_fiducial(). We should also notice that, the choice of different295

solvers (e.g. RK23 or LSODA) leads to different computation times. Contrary to the ODE296

solver, the for-loop which sums over overtones in the function waveform(), does not seem to297

cause any sizable computational overhead for reasonable choices of the maximum overtone298

(nmax ), we therefore decided not to implement any vectorisation on it, but we plan to explore299

this feature further in the future.300

4 Installing and running the code301

Installation of the code essentially requires the installation of the supporting packages, ex-302

plained in the README file of the code. Running the code is particularly simple. Placing all303

files in the same folder, and setting up all parameters as explained above, one starts the note-304

book main.ipynb, and executes the cells. The first cell computes the fiducial model, and the305

following cells start the MCMC run around the chosen fiducial. The MCMC results are stored306

in a .txt file. Currently, for the sake of an example we consider a 4-parameter case: 3 source307

parameters (2 masses and 1 spin), and 1 propagation parameter (Ξ0).308

As an illustration, in Figure 1 we plot the computed waveforms for characteristic values309

of the eccentricity and spin, as computed by the function plot_waveform(). The orbital310

angles have been fixed according to the conventions mentioned earlier. What is more, Figure311

2 shows an example corner plot from a MCMC run with 4 free parameters - 3 for the generation312

(masses+spin) and 1 for the propagation of the waveform respectively (Ξ0). As it can be seen,313

our constraints on the parameter Ξ0 (see equation (6)), which relates to a modified gravity314

effect in the propagation of the waveform, are within the same order of magnitude as with315

very recent results in the literature [9]. It is also interesting to compare our results with those316

of [6]. Despite the similarity, the differences in the numbers can be due to a multitude of317

factors, for example, the fact that our MCMC exploration covers a smaller EMRIs’ parameter318

space, the different choice of the noise function, the use of noise-less waveforms, or even the319

different choice of overtones. We remind that our particular example considers the orientation320

of the binary parameters fixed, but these can be allowed to vary in the code.321
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Figure 1: The kludge waveform computed for the last hour before the plunge at
the Last Stable Orbit (LSO). Parameters: M = 106M⊙ (central mass), µ = 10M⊙
(orbiting mass), (θS,φS) = (π/4, 0), (θK ,φK ) = (π/8, 0), λ = π/6 (frame angles),
D = 1 Gpc (distance to the source). First row: S/M2 = 0 (dimensionless spin of
the central black hole), eLSO = 0, 0.3, 0.6 (eccentricity). Second row: S/M2 = 0.4,
eLSO = 0, 0.3, 0.6. Third row: S/M2 = 0.8, eLSO = 0, 0.3, 0.6.
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Figure 2: An example corner plot from an MCMC exploration with fiducial/injected
values M = 106M⊙ (central mass), µ = 10M⊙ (orbiting mass), S/M2 = 0.1 (di-
mensionless spin of the central black hole), Ξ0 = 1 (no modified GR effects; see
Eq. (6)), 2000 steps and 8 walkers. We have assumed an observation of one year. Me-
dian and 90% C.I. are M/(106M⊙) = 1.28+0.148

−0.2604
, µ/M⊙ = 10.0000021+0.0000010

−0.0000019,
S/M2 = 0.1000010+0.0000005

−0.0000009, and Ξ = 1.1685571+0.1043108
−0.1965527

. We have assumed
that the distance (redshift) to the source is known, and equal to 1 Gpc. We note that
the constraints are somewhat tighter than those in the literature [6]. Some factors
contributing to this difference is that our MCMC exploration covers a smaller EMRIs’
parameter space, the different choice of the noise function, and the use of noise-less
waveforms. The eccentricity and the orbital angles at LSO have been kept fixed in
the MCMC run. We have used the LISA noise model of [1].

5 Future directions322

Surely the current implementation of this code can be expanded in different interesting and323

more accurate ways, for example: i) The inclusion of environmental effects in the production324
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of the waveform, such as dark matter or baryonic effects due to accretion of the central black325

hole. Such effects would introduce amongst other things, a new dissipating channel due to326

the force of the dynamical friction encountered by the orbiting mass. ii) Our current use of327

the standard kludge equations has been based on a trade-off between simplicity and accuracy,328

combined with the popularity of this formalism for parameter estimation in the literature.329

However, its waveforms are known to suffer from certain inaccuracies. Improvement can be330

achieved by implementing the so–called Augmented Kludge Formalism, or the waveforms of331

Fast EMRI Waveforms discussed earlier, which would need a more involved implementation.332

iii) Moreover, the implementation of a more efficient ODE solver for the orbital equations could333

allow us to achieve even faster iterations in the MCMC sampling run. iv) Finally, it is note-334

worthy to consider implementing a Bayesian approach by means of deep learning techniques335

tailored to explore the EMRI parameter space, as recently proposed in [53].336
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