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Abstract

This study presents a novel method for the definition of signal regions in searches for
new physics at collider experiments. By leveraging multi-dimensional histograms with
precise arithmetic and utilizing the SparkDensityTree library, it is possible to identify
high-density regions within the available phase space, potentially improving sensitivity to
very small signals. Inspired by a search for dark mesons at the ATLAS experiment, CMS
open data is used for this proof-of-concept intentionally targeting an already excluded
signal. Signal regions are defined based on density estimates of signal and background.
These preliminary regions align well with the physical properties of the signal while
effectively rejecting background events.
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1 Introduction12

Collider experiments in high-energy physics often deal with large amounts of experimental13

data. The two general-purpose experiments at CERN’s Large Hadron Collider (LHC),14

ATLAS and CMS, record about 10 PB of data per year. These data are then analysed15

for, e.g., consistency with different theoretical models, which involves both isolating a16

small signal from large background and data-driven corrections to background estimates.17

A pre-selection of data is performed based on the particles involved in the experimental18

signature of the signal. Subsequently, the resulting dataset is explored with the objective19

to create a phase-space region enriched in signal events. This enriched region allows20

for a statistical analysis that is sensitive to the signal. Optimising the region involves21

using theoretical knowledge of the signatures and kinematic behaviour of the signal and22

background processes to define new variables, and a tedious process of exploring the data23

using 1D or 2D histograms. Machine learning classifiers are also commonly used at this24

stage, which both hone in on the region without the same need for manual optimisation and25

utilise complex relationships between variables. The downside of these methods is that the26

interdependence of the variables is never made explicit, and the analysis becomes harder to27

understand than one defined in terms of intervals in each variable. This matters not only28

for the understanding of the individual physicist, but also matters for reinterpretations of29

the results. This paper is a proof-of-concept of a new method which has the potential to30

produce a more sensitive signal region in a shorter time than manual optimisation, while31

keeping the analysis and interpretability as simple as possible.32

This work builds on multi-dimensional histograms as implemented in the SparkDen-33

sityTree library [1], following [2–4]. SparkDensityTree has the following advantages com-34

pared to other density estimation methods.35

Firstly, unlike most density estimation methods, including various regularization and36

Bayesian methods based on the likelihood, the minimum distance estimate (MDE) re-37

turned by SparkDensityTree as a multidimensional histogram is guaranteed to be within38

an L1 distance or integrated absolute distance bound from the unknown density f for39

any given sample size n, no matter what the underlying density f happens to be, i.e.,40

any density in L1, the space of Lebesgue integrable functions, and is thus said to have41

universal performance guarantees [3].42

Secondly, the method scales to arbitrarily large sample sizes in high dimensions due43

to a scalable implementation with sparse binary trees for representing the data. A sparse44

binary tree can represent only the existing data in its leaves by implicitly encoding the45

unrepresented leaves without data as zero akin to sparse vectors and matrices.46

Thirdly, SparkDensityTree provides various further statistical insights from the MDE.47

In particular, calculating the coverage or highest density regions of the MDE histogram of48

the signal and background data allows for finding the region of phase space with the largest49

probability density in the signal and background. The highest density region covering the50

sample space for a given probability 1 − α, should have the smallest possible volume such51

that every point inside the region should have a probability density at least as large as52

every point outside the region. The method takes measured or simulated data for signal53

or background processes as input and returns the highest density region of its density54

estimate (MDE histogram). The signal region is given as a union of intervals, rectangles,55

cuboids and hyper-cuboids over the domain of the input variables.56

The current proof-of-concept is largely inspired by a search for dark mesons in ATLAS57

data [5]. This search explores prompt decays of dark pions and dark rho mesons into stan-58

dard model particles in LHC data. The data and simulation used in the following sections,59

as well as the selections applied, loosely follow the analysis. The full ATLAS analysis is60
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however quite complex, and so, comparing directly with this work is not completely pos-61

sible. The signal point chosen in this study has already been excluded by ATLAS [5], and62

so the data will be used as background.63

2 Datasets and event selection64

The dark sector signals searched by ATLAS [5] produce two final states: tttb and ttbb.65

The one lepton final state is the most sensitive and it is characterized by events with one66

lepton and from 6 to 8 jets where at least 4 are identified as coming from the decay of a67

b-quark.68

The study uses 2.3 fb−1 of
√

s = 13 TeV proton–proton (pp) collision data collected by69

the CMS experiment [6] in 2015 to model the background to the dark meson signal. The70

analysed data correspond to the SingleElectron [7] and SingleMuon [8] datasets released71

on the CERN Open Data portal [9]. Only events in the list of validated runs [10] are72

retained for the study. A total of about 110 million single electron and 70 million single73

muon pp events are available for analysis.74

The datasets are provided in the CMS miniAOD format, which contains high-level75

reconstructed objects that can be used for analysis [11]. This study is based on such re-76

constructed electrons, muons and jets. The data is accessed and processed using the CMS77

analysis code provided with the CMS open data [12]. Within this framework, jets are78

reconstructed using the anti-kt algorithm [13] with a fixed radius parameter R = 0.4 and79

are tagged as containing a bottom hadron (b-tagged) based on the Combined Secondary80

Vertex (CSV) tagging algorithm. In a complete data analysis, the fact that b-tagging81

efficiencies can differ significantly between data and simulation, has to be taken into ac-82

count. This is however not critical for this study and so, no dedicated strategy has been83

implemented to address this.84

The matrix element calculation for the dark meson production is performed at next-85

to-leading order (NLO) in QCD based on the model described in Ref. [14], using the corre-86

sponding UFO model files [15]. A signal sample is simulated using MadGraph5_aMC@NLO87

3.5.1 [16] interfaced with Pythia 8.306 [17] for the modeling of parton showering, hadroniza-88

tion and underlying event with the A14 set of tuned parameters [18] and the NNPDF2.3lo [19]89

set of parton distribution functions (PDF). Fast simulation of the detector is done with90

Delphes 3.5.0 [20] using the standard CMS detector card.91

Within Delphes, jets are determined with the FastJet 3.3.4 [21] software package and92

the anti-kt algorithm [13]. The default b-tagging of the CMS Delphes card is used to93

identify b-jets. The dark pion mass is set to mπD = 500 GeV and the dark rho mass94

to mρD = 2 TeV. The signal cross-section is extracted from MadGraph5_aMC@NLO95

2.9.9 [16] and amounts to 18.9 fb. As previously mentioned, this signal point has been96

excluded by the ATLAS collaboration [5]. A total of 50k signal events are simulated and97

the sample is normalized to the integrated luminosity of the data sample.98

Events are further selected for the study based on kinematic and quality criteria im-99

posed on the reconstructed leptons and jets. In the MC events, any electron or muon100

with transverse momentum pT > 28 GeV is considered as a signal lepton. In data events,101

the signal lepton must additionally pass the Tight selection criteria [22, 23]. Only events102

containing exactly one signal lepton are retained for the study.103

All jets are required to have a transverse momentum pT > 20 GeV and to satisfy104

|η| < 2.5. In addition, any jet is required to have an angular distance ∆R > 0.4 from105

the signal lepton in the event, in order to resolve any reconstruction ambiguities between106

the lepton and jets. If these requirements are not met, the jet is discarded. Events are107
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eventually required to have at least four jets, out of which at least two must be b-tagged.108

Events passing all requirements listed here are selected for analysis. A total of 120k109

and 6.47 events pass this baseline selection in data and signal respectively.110

3 Discriminating variables111

The method is demonstrated on four event-level quantities that are suitable as discrimi-112

nating variables. The first three are; ∆R(l, b2), defined as the angle between the lepton113

and the second closest b-jet; mbb∆Rmin
, defined as the invariant mass of the two b-jets in114

the event that are closest to each other; and HT, defined as the scalar sum of the pT of the115

jets in the event. The final variable is based on R = 1.2 jets reclustered from the R = 0.4116

jets using the anti-kt algorithm with a fixed radius parameter of R = 1.2 [24]. The lepton117

is added to the R = 0.4 jet collection before the reclustering and the highest-pT large-R jet118

containing the lepton is referred to as Jlep while the highest-pT fully hadronic large-R jet119

is referred to as Jhad. The sum of the masses of these two jets is used as a discriminating120

variable and is denoted by mJhad + mJlep . Distributions of the discriminating variables in121

data and signal are shown in Fig. 1 for events passing the baseline selection described in122

the previous section.
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Figure 1: Distributions of the discriminating variables in data and signal for
selected events, normalized to 1. (Top, Left): ∆R(l, b2); (Top, Right): mbb∆Rmin

;
(Bottom, Left): HT; and (Bottom, Right): mJhad + mJlep .
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4 Method124

The SparkDensityTree library is a library of statistical methods, with the base class being125

a multi-dimensional density estimator that for any sample generated from an unknown126

density returns an optimally smoothed histogram. The optimally smoothed histogram is127

taken to be the one that, per estimation, minimizes the L1 distance to the true underlying128

distribution, using the MDE method. The statistical methods on these MDE histograms129

include arithmetic operations, conditional densities, coverage regions, and marginal den-130

sities. Recall that the marginal probability density of a subset of variables is obtained by131

integrating out all other variables in the joint probability density of all the variables.132

The histogram object is represented as a binary tree in which each node represents a133

bisection of the phase space, and the leaves contain the event count in the finest resolution134

boxes thus obtained. The histogram construction begins with the definition of the root135

box, ideally the smallest hypercube containing all data points. From the root box, xρ, the136

support is iteratively bisected until a stopping criterion is reached, as visualized in Fig. 2.137

The underlying the tree structure [2] allows for giving each box in the splitting a unique138

address. The combination of the leaf address and the counts is defined as the label of the139

box, (ρv, #xρv).140

The MDE histogram is described in [3], and is taken as the optimal density estimate141

in this work. This quantity, fn(x), is defined as following [3]:142

fn(x) = 1
n

∑
ρv∈L(s)

#xρv

vol(xρv)Ixρv (x), (1)

where the volume of a d-dimensional box is defined in detail in [2], L corresponds to the143

full set of leafs, and n is the amount of data points in the root box s. This quantity is found144

by an adaptive search in sequentially coarser histograms, starting at the one obtained by145

the splitting.146

The splitting is an inherently sequential process, but a distributed solution was devel-147

oped in [4,25]. This requires an initial splitting of the root box down to the finest resolution148

that might be needed instantaneously – possibly to the point that each leaf only has a149

count of one – and then merged again. This is accomplished by only representing the150

leaves with at least one data point using sparse binary trees.151

In the distributed method, therefore, an additional step is added between the splitting152

and the MDE, which consists of merging the cells to a stopping criterion on the counts in153

each box, effectively representing the initial histogram for finding the MDE.154

For a more in-depth explanation of the steps, the reader is referred to [2–4,25,26]. The155

procedure is sketched below:156

Stage 1: Find the root box containing all the data points.157

Stage 2: Define a stopping criterion for the splitting, such as a maximum box size. The root158

box is split until this criterion is reached, giving the finest resolution histogram. In159

this work, the finest splitting is determined by the stopping criterion that no leaf-box160

has any side length longer than the parameter finestResSideLength.161

Stage 3: Merge leaves such that the counts are maximized, while not going higher than some162

limit minimumCountLimit and keeping the leaf depth as small as possible.163

Stage 4: Starting from the histogram obtained in stage 3, find the optimally smoothed his-164

togram using MDE as described in [25,26].165
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Additionally, two user-defined parameters concerning the distributed aspect of the166

method are available: numTrainingPartitions and sampleSizeHint. Respectively, they167

correspond to how many times the training data is partitioned, related to distribution of168

work among computing nodes, and an initial guess of points connected to the size of the169

node batches [27].170

The value of this method for data exploration in high-energy physics lies in the next171

step. When the MDE histogram is obtained, the highest density regions can be extracted172

by calculating the pdf coverage regions; and accordingly the highest and lowest density173

regions.174

For simplicity, marginal densities are considered in this work, but the method can be175

extended to take the full density into account simultaneously.176

The marginal densities for all unique pairs of the variables can be obtained from the177

4-dimensional MDE histogram. In this paper, (4
2) = 6 unique pairs of variables are chosen178

and these six combinations are what the highest density regions are computed from. This179

is done separately for signal and background. The signal and background highest density180

regions can be defined independently of each other, and can, crucially, be flipped around181

to allow for finding the least dense region in the background density. From here, the user182

has to consider the best ways to use these marginal densities, and an example is given183

below.184
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Figure 2: A sequence of splittings along the first widest coordinate, starting from
the root box in two dimensions. Obtained from [2].

5 Results185

The results presented in this work are documented in a Github repository [28]. All compu-186

tations for the upcoming results have been performed on Virtual Machines (VMs) hosted187

by Google as a part of a dataproc cluster. The cluster contains three VM instances, all188

of which run four Intel Skylake vCPUs and has 15 GB of RAM; all in order to utilize the189

distributed aspect of the method.190

Figure 3 shows a comparison between a 2D frequency or count histogram of the data191

over a uniform grid and that over the optimally smoothed nonuniform partition corre-192

sponding to the MDE histogram of this method. All distributions considered in this work193

have been compared in this way to ensure sensible density estimates are returned by the194

method.195
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The density estimate is presented at three different highest density regions for back-196

ground in Fig. 4, and for signal in Fig. 5 for the mJhad + mJlep vs. ∆R(l, b2) combination.197
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Figure 3: Comparison between a regular 2D histogram representation (Left) and
the distribution obtained in this method (Right) of mJhad + mJlep vs. ∆R(l, b2)
in background from data.

Comparisons between signal and background distributions can also be made at different198

levels. Figure 6 shows the 3D and 2D combinations, together with the highest 50% density199

regions for mJhad + mJlep and HT.200

The density estimates for signal and background are combined to form Xsig ⊗ Y bkg201

density regions, where Xsig indicates the X% highest signal density region and Y bkg indi-202

cates the complement of the Y % highest background density region. These combinations203

are used to design kinematic regions corresponding to the most dense signal and the least204

dense background. The regions are achieved from the X% highest signal density region205

and the Y % highest background density region using a bounding box around the density206

region in each pair of variables. From the bounding box, the sensitive interval of each207

variable is taken as the projection of the box onto that axis. The intersection of the signal208

interval and the complement of the background interval forms the final interval of inter-209

est for each variable pair. Each variable is associated with exactly three intervals from210

its participation in three variable pairs. In this work, the final region is defined by the211

union of these intervals in each variable. Three combinations are presented: 50% ⊗ 50%,212

90% ⊗ 20% and 90% ⊗ 10%. As an example, the obtained intervals for the 90% ⊗ 10%213

combination are:214

∆R(l, b2) : [0.6, 1.1] HT : [625, 2172] GeV
mbb∆Rmin

: [312, 634] GeV mJhad + mJlep : [552, 996] GeV

When compared to the one-dimensional distributions in Fig. 1 it is clear that these corre-215

spond to regions with discrimination power between signal and background. While direct216

comparison with the ATLAS analysis [5] cannot be done, since for example mJhad + mJlep217

is used as discriminant variable for the final fit, the intervals selected in this case are all218

fully contained in the signal region of the actual analysis.219

The event selection corresponding to the intervals is applied to signal and data and220

the number of events passing the requirements are presented and compared in Table I.221

The method results on less than one signal event on all tested scenarios and no back-222

ground events pass the selections in the most aggressive selection. Dark meson signals are223

usually very small, and unlikely to be accessible in 2.3 fb−1 of data. It is possible however224

to naively scale the 0.57 expected events in the 50% ⊗ 50% scenario to, e.g. the full Run225

2 data set collected by ATLAS, containing 140 fb−1, to more than 30 events, a reasonable226

signal for a new physics search.227
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Figure 4: Full background density estimate of the mJhad + mJlep vs. ∆R(l, b2)
combination in 3D (Top Left) and 2D (Top Right) together with the highest 75%
density region (Bottom Left) and the highest 50% density region (Bottom Right).
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Figure 5: Full signal density estimate of the mJhad +mJlep vs. ∆R(l, b2) combina-
tion in 3D (Top Left) and 2D (Top Right) together with the highest 75% density
region (Bottom Left) and the highest 50% density region (Bottom Right).
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Figure 6: Full density estimate of the mJhad + mJlep vs. HT combination in 3D
(Top), 2D (Middle) and the highest 50% density region (Bottom) for signal (Left)
and background (Right).
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Table I: Number of signal and background events passing the baseline analysis event
selection and the selections derived from the density regions applied on top of the baseline.
Relative numbers of events with respect to the baseline analysis selection are given within
brackets. The signal numbers are normalized to the integrated luminosity of the dataset.

Selection Signal Background

Baseline 6.47 (100.00%) 123951 (100.00%)
50% ⊗ 50% 0.57 (8.74%) 364 (0.29%)
90% ⊗ 20% 0.30 (4.57%) 16 (0.01%)
90% ⊗ 10% 0.07 (1.11%) 0 (0.00%)

The method could further be developed to identify the highest density region directly in228

the 4D histogram, and then project this onto the four axes. The SparkDensityTree library229

allows for defining arithmetic on the histograms, and it might be possible to combine the230

signal and background histograms and find the densest region in, e.g., number of signal231

events divided by number of background events, or the difference between the histograms.232

Finally, scalability is a very powerful aspect of this approach. This study did not delve233

into it, but as mentioned in [4, 25, 26], the original method has been tested on several234

terabytes of simulations, and great decreases in computational time can be seen with the235

increase of cores. In this work, for example, the time required (averaged over 5 runs) to236

run over the CMS open data was 42.9 seconds, while the time require to run over the237

signal was 26.9 seconds.238

This is something of interest for the field of high-energy physics, as it would be straight-239

forward to run directly on the full collision datasets from the LHC.240

6 Conclusion and Outlook241

This paper introduces a scalable method, originally formulated in a purely mathemati-242

cal context, applied for the first time in a high-energy setting. The approach relies on243

optimally smoothed multi-dimensional histograms with universal performance guarantees244

through scalable sparse binary tree arithmetic, incorporated in the SparkDensityTree li-245

brary. It enables a rigorous definition of phase space regions enriched in signal, using246

multiple variables at a time. This method suggests promising avenues for the exploration247

of new physics phenomena at the LHC.248

A large number of additional options is available from the SparkDensityTree library.249

This library contains several arithmetic operations and statistical methods (not covered250

here) that can be advantageous for studies on histograms, naturally interesting in a high-251

energy physics context.252
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