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Abstract

Based on two-band time-dependent Ginzburg-Landau theory, we study the electromag-
netic properties of mesoscopic type-1.5 superconductors with different defect configu-
rations. We perform the numerical simulations with the finite element method, and give
the direct evidence for the existence of vortex cluster phase in the presence of nonmag-
netic impurities. In addition, we also investigate the effects of impurity number and
anisotropic defect structure on the patterns of magnetic vortex distributions. Our the-
oretical results thus indicate that the diversity of impurity deposition has a significant
influence on the semi-Meissner state in type-1.5 superconductors.
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1 Introduction11

Over the past two decades, two-band superconductivity has become an important research12

subject in condensed matter physics. This field started from the discovery of superconductivity13
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in MgB2 [1], where the existence of two distinct superconducting gaps reveals the complexity14

of Fermi surface topology in this system. Since then, extensive theoretical and experimental15

studies have been performed to provide novel insights into unconventional superconducting16

pairing mechanisms and physical properties in these materials. For example, the multi-gap17

superconductivity signals a new pathway to achieve more superconducting pairing modes,18

which can induce phase competition or coexistence between multiple bands by adjusting the19

external magnetic field or impurity distribution. Furthermore, the magnetic vortex behavior20

can be optimized through rational design of multi-band structures and its interaction with21

impurities can improve the overall performance of superconducting devices [2,3].22

As we know, each condensate in two-band superconductors is predicted to support vortex23

excitation with fractional quantum flux [4, 5]. Due to the interband Josephson coupling, the24

vortices from different condensates are bounded together with the string interaction and their25

normal cores will be locked to form a composite vortex with the standard integer quantum26

flux. Therefore, the vortex physics in two-band systems is influenced by the coherence lengths27

ξ1 and ξ2 as well as the magnetic field penetration depth λ. When the particular condition28

ξ1 <
p

2λ < ξ2 is satisfied, there may exhibit a new superconducting state that combines29

characteristics of both type-1 and type-2 superconductors. This so-called semi-Meissner phase30

or vortex cluster phase is formed due to the interaction of long-range attraction and short-31

range repulsion between composite vortex excitations [6–8]. The existence of this novel32

vortex pattern was first visualized by Bitter decorations on high quality MgB2 single crystal33

in 2009 [9]. Thereafter, zero-field muon spin experiments have also revealed the presence of34

this type-1.5 superconducting state in unconventional superconductors Sr2RuO4 [10,11] and35

LaPt3Si [12,13].36

In the present paper, we study the electromagnetic effect of mesoscopic type-1.5 supercon-37

ductors with different impurity distributions based on the time-dependent Ginzburg-Landau38

(TDGL) theory. With the COMSOL Multiphysics software and the finite element method, our39

results directly show the crossover of this mesoscopic system from the diamagnetic Meiss-40

ner state to the vortex cluster phase, and ultimately to the Abrikosov lattice phase. We also41

observe that with the increase of isotropic defect number, multiple vortex clusters will be gen-42

erated around the pinning centers and each cluster exhibits the identical configuration with43

hexagonal symmetry. Furthermore, we discuss the possible pattern of vortex cluster induced44

by an anisotropic impurity in this superconductor. All of our theoretical results indicate that45

the diversity of impurity deposition has a significant influence on the collective behaviors of46

magnetic vortices in the type-1.5 superconducting system.47

The rest of this article is organized as follows. In Sec. 2, we introduce the two-band48

TDGL theory and apply this formalism to the type-1.5 superconductors. In Sec. 3, we give the49

procedure of numerical simulations based on the finite element method. Then in Sec. 4, we50

discuss the impurity effect and vortex cluster phase in the mesoscopic system. Finally, Sec. 551

gives the conclusion of the paper.52

2 Model and formalism53

The simplest GL free energy functional of two-gap superconductors can be written as [14–18]54

55
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Here Ψi (i = 1, 2) represents the superconducting order parameter and mi is the effective56

mass for each band. The coefficient αi is a function of temperature, while βi is independent57

of temperature. In the presence of impurities, the parameters α1 and α2 can be approximately58
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expressed as αi = αi0 f (r ). Here we introduce a function f (r ) between −1 and +1 to model59

the defect sites which will deplete the superconducting state at specific positions [19, 20].60

B =∇× A is the magnetic field and A is the vector potential.61

If the superconductor is driven out of equilibrium, the order parameter should relax back62

to its equilibrium value. It is well known that this deviation of superconducting materials63

can be conveniently described by the TDGL theories. The single-band TDGL equations were64

first proposed by Schmid [21] and derived from the microscopic BCS theory by Gor’kov and65

Éliashberg [22]. The extension of TDGL equations to the multi-component superconducting66

system can be written as [23–25]67

−Γi
∂Ψi

∂ t
=
δF

δΨ∗i
and −σn

∂ A

∂ t
=
δF

δA
(2)

where Γi is the relaxation time of order parameters and σn represents the electrical conduc-68

tivity of the normal sample in the two-band case. Therefore, minimization of the free energy69

F with respect to Ψi and A leads to the following dimensionless TDGL equations in the zero-70

electrostatic potential gauge71
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Here in the clean limit with the impurity function f = 1, we at first introduce the co-75

herence length ξ2
i = ħh

2/
�

2miαi0
�

, the London penetration depth λ−2 = λ−2
1 + λ

−2
2 with76

λ−2
i = 4πe2Ψ2

i0/(mic
2) and Ψi0 =

p

αi0/βi , and the GL parameter κ1 = λ1/ξ1. We then take77

the coordinate r in units of ξ1, the time t in units of t0 = m1σn/
�

4e2Ψ2
10

�

, Γi in units of78

α10 t0 and the order parameter Ψi in units of Ψ10. We also set the magnetic field B in units79

of H0 = Φ0/
�

2πξ2
1

�

with the flux quantum Φ0 = πħhc/e and the vector potential A in units of80

A0 = H0ξ1.81

Following Ref. [6], multi-component systems allow a type of superconductivity that is dis-82

tinct from type-1 or type-2 superconductor. With the condition ξ1 <
p

2λ < ξ2, the type-1.583

superconducting state will originate from a peculiar vortex interaction which exhibits short-84

range repulsion and long-range attraction characteristics. The short-range repulsion prevents85

adjacent vortices from overlapping, while the long-range attraction facilitates the clustering86

of composite vortices. Consequently, this state is different from type-1 superconductors that87

completely repel magnetic flux and type-2 superconductors which allow considerable mag-88

netic flux penetration and the formation of vortex lattice. In the ideal sample, the constraint89

mentioned above can be specifically expressed as90
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In this circumstance, the magnetic composite vortices will form vortex clusters and coexist91

with domains of the two-component Meissner state in the framework of the GL theory.92

In order to numerically solve Eqs. (3)-(5), we need to specify appropriate boundary con-93

ditions of the superconducting sample. We use the following superconductor-insulator (or94

vacuum) boundary conditions [26–28]95

∇Ψi · n = 0, A · n = 0 and ∇× A= He (8)

where n is the outward unit vector normal to the boundary and the external applied mag-96

netic field is set as He = He ẑ. The first two conditions just indicate that any current passing97

through the interface between a superconducting domain and vacuum/insulator would be98

nonphysical. The third equation represents the continuity of magnetic field across the bound-99

ary. The partial differential equations (3)-(5) will be solved numerically for the mesoscopic100

geometry in the two-dimensional space. The initial conditions at t = 0 are taken as |Ψi|= 1101

and A = (0, 0) on the x y-plane, corresponding to the Meissner state and zero magnetic field102

inside the superconductor.103

3 Finite element method and numerical computations104

Based on the COMSOL Multiphysics software platform [29], we will describe the procedure105

of the numerical simulations on the TDGL equations in this section. We first split the order106

parameters into the real and imaginary parts, i.e. Ψ1 = u1+ iu2 and Ψ2 = u3+ iu4. The mag-107

netic potential is also written in component form as A = (u5, u6). In order to implement the108

boundary conditions, we will introduce an auxiliary variable u7(x , y, t) for reasons explained109

below. In the procedure of simulations, we set Γ1 = Γ2 = 5 and m1 = 2m2. To stabilize the110

semi-Meissner state, we also take α10 = α20 and β1 = β2 in the calculations.111

In this way, we can transform the TDGL equations into the general form of partial differ-112

ential equations in this software package113

∑

k

µ jk
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∂ t
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∑

l

∂lν jl = η j . (9)

Here we have j, k = 1, 2, · · ·, 7, l = 1, 2 and (∂1,∂2) = (∂x ,∂y). The 7× 7 matrix µ jk and the114

7× 2 column vector ν jl take the form115

µ jk =
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and116
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Noting that the subscript x or y denotes the partial derivative with respect to the correspond-117

ing variable here. Meanwhile, the driving force η j contains all other terms in the TDGL118

equations except the left handed side of Eq. (9), and detailed calculations will give all the119

components explicitly as120
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η7 = u5x + u6y + u7. (18)

Now we can examine the boundary conditions in this formalism. With the normal vector121

n = (n1, n2) and the column vector ν jl , the boundary conditions in Eq. (8) can be simply122

casted into the compact form as123
∑

l

nlν jl = 0 (19)

which is best suited to the COMSOL Multiphysics simulations. We also note that from the last124

equation ( j = 7) in (9), our manipulations will give a trivial solution u7 = 0 for this auxiliary125

variable and it insures the self-consistency of our problem.126

COMSOL Multiphysics is a versatile and advanced simulation platform which is designed127

to tackle complex engineering and scientific problems. Its core principle is to numerically128

solve partial differential equations based on finite element method [30–32]. The process be-129

gins with discretizing the computational domain and subdividing the lattice cell into small130

subregions called elements. Triangular elements are preferred due to their flexibility in han-131

dling complex and irregular shapes. It will transform the continuous domain into a finite ele-132

ment mesh and enable precise numerical computations. Following this step, a function space133

typically composed of piecewise continuous polynomials is constructed to ensure smooth-134

ness across element boundaries. Subsequently, Lagrangian shape functions are selected as135

basis functions for their ability to achieve high computational accuracy and numerical stabili-136

ty [33]. Finally, the software employs an implicit solver that typically incorporates consistent137

initialization of the backward Euler method to ensure significant stability for time-dependent138
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simulations. In our numerical computations, we take the time step∆t = 0.5t0 and the relative139

tolerance 10−8 to control the convergence of the transient calculations for our system.140

4 Results and discussions141

In this section, we will set the external magnetic field to He = 0.8H0 and discuss the effect of142

impurity on the patterns of magnetic vortex distribution in the 15ξ1 × 15ξ1 type-1.5 super-143

conductor. Following Refs. [19] and [20], we have chosen the impurity function f to take the144

phenomenological form145

f (r ) =
N
∏

n=1

fn(r ) with fn(r ) =







−0.5, if |r − r0n|< R
�

�cos
�

p (θ +π/4)
�

�

�

1 , otherwise
. (20)

It is easy to see that the shape of impurities centered at r0n = (x0n, y0n) with n = 1, 2, ..., N ,146

depends on the angle θ and different integer values of p. This means that the defect sites can147

be isotropic with radius R when p = 0 and anisotropic with 2p-fold symmetry at p 6= 0. We148

take R= 0.5ξ1 for each pinning state in the simulations.149

Figure 1: Evolution of the magnetic flux density Bz (a-c) and the order parame-
ter of the first condensate

�

�Ψ1

�

� (d-f) at the presence of an isotropic defect in the
15ξ1 × 15ξ1 type-1.5 superconductor. The snapshots show the Meissner phase
(a,d), vortex cluster phase (b,e) and vortex lattice phase (c,f) at the GL parameter
κ1 = 0.70, 1.30 and 2.10 respectively. The magnetization only has the component
perpendicular to the superconducting plane.

To verify the availability of the method, we first take the impurity function with N = 1,150

p = 0 and insert this pinning site at the center of the superconducting square. We then plot151

the magnetic flux density Bz = u6x − u5y in units of H0 (a-c) and the order parameter of152

the first condensate
�

�Ψ1

�

� =
p

u2
1+ u2

2 in units of Ψ10 (d-f) at t = 104 t0 in Fig. 1. With153

the GL parameter κ1 taken as 0.70, 1.30 and 2.10 sequentially, we can clearly observe the154

crossover of this type-1.5 system from the perfect diamagnetism state to the vortex cluster155
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Figure 2: Evolution of the magnetic flux density Bz (a-c) and the order param-
eter of the first condensate

�

�Ψ1

�

� (d-f) at the presence of two isotropic defects in
the 15ξ1 × 15ξ1 type-1.5 superconductor. The snapshots show the Meissner phase
(a,d), multiple cluster phase (b,e) and vortex lattice phase (c,f) at the GL parameter
κ1 = 0.70, 1.30 and 2.10 respectively. The magnetization only has the component
perpendicular to the superconducting plane.

phase, and ultimately to the Abrikosov vortex lattice. Our numerical simulations also show156

that the cluster phase presents the vortex pattern with octagonal symmetry and appears in the157

region of 1.08< κ1 < 1.58. Meanwhile, from Eq. (7) we expect to discover the semi-Meissner158

state within 1.22 < κ1 < 1.73 in the clean limit. According to Ref. [34], the introduction of159

impurity into the material will enhance the effective magnetic penetration depth, thus leading160

to a larger effective GL parameter. Therefore, this allows the magnetic vortex phases to be161

observed at smaller κ1 values in type-1.5 superconductors. Moreover, it is easy to see that the162

isotropic defect induces the localized distortions of the flux lattice without breaking the C4163

rotational symmetry of the superconducting square.164

Furthermore, we also perform the simulations on time evolution of the mesoscopic type-165

1.5 superconductor with multiple isotropic defects. For N = 2 and p = 0, we select the166

pinning centers at (±3ξ1, 0) and plot the Bz and
�

�Ψ1

�

� at t = 104 t0 in Fig. 2. Different167

from the single impurity case, multiple vortex clusters are generated around the pinning sites168

within 0.87 < κ1 < 1.40. With the GL parameter κ1 = 1.30, we can see from Fig. 2(b,e) that169

each vortex cluster exhibits the identical pattern with hexagonal symmetry. Meanwhile for170

κ1 = 2.10, as shown in Fig. 2(c,f), we can clearly observe multiple localized distortions in the171

flux lattice around the pinning positions due to the attraction of vortices by impurities.172

Besides that, we perform the simulations on this mesoscopic type-1.5 system with an173

anisotropic defect. For N = 1 and p = 2, we still take the impurity site at the center of the174

superconducting square and plot the Bz and
�

�Ψ1

�

� at t = 104 t0 in Fig. 3. By setting κ1 as 1.30175

and 2.10, we can observe the novel vortex cluster with C4 (not C8 in isotropic impurity case)176

symmetry shown in Fig. 3(b,e) and the distorted flux lattice in Fig. 3(c,f) respectively. Our nu-177

merical data also indicate that the vortex cluster phase exists in the regime 1.15 < κ1 < 1.67178

for this mesoscopic superconductor. As we see the anisotropic defect occupies the smaller179

normal area compared with its isotropic counterpart, this will lead to the greater κ1 for the180

emergence of the magnetic vortex phases.181
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Figure 3: Evolution of the magnetic flux density Bz (a-c) and the order parame-
ter of the first condensate

�

�Ψ1

�

� (d-f) at the presence of an anisotropic defect in
the 15ξ1 × 15ξ1 type-1.5 superconductor. The snapshots show the Meissner phase
(a,d), vortex cluster phase (b,e) and vortex lattice phase (c,f) at the GL parameter
κ1 = 0.70, 1.30 and 2.10 respectively. The magnetization only has the component
perpendicular to the superconducting plane.

5 Conclusion182

Based on two-band TDGL theory, we investigate the impurity effect on the vortex collective183

behaviors in the mesoscopic type-1.5 superconductor. With the finite element method, our184

numerical results give the direct evidence for the existence of vortex cluster phase at the185

presence of nonmagnetic defects in this system. We also discuss the possible patterns of186

vortex cluster state with multiple impurities and anisotropic defect structure. We hope that our187

theoretical results will inspire further research on better understanding novel vortex dynamics188

and transport properties in two-band superconductors.189
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[15] R. M. Silva, M. V. Milošević, D. Domínguez, F. M. Peeters and J. A. Aguiar, Distinct mag-239

netic signatures of fractional vortex configurations in multiband superconductors, Appl.240

Phys. Lett. 105, 232601 (2014), doi:10.1063/1.4904010.241

[16] S. Maiti, M. Sigrist and A. Chubukov, Spontaneous currents in a superconductor with s+ is242

symmetry, Phys. Rev. B 91, 161102 (2015), doi:10.1103/PhysRevB.91.161102.243

9

http://dx.doi.org/10.1088/0953-2048/26/4/043001
http://dx.doi.org/10.1103/PhysRevB.107.174516
http://dx.doi.org/10.1103/PhysRevLett.88.017002
http://dx.doi.org/10.1103/PhysRevLett.89.067001
http://dx.doi.org/10.1103/PhysRevB.72.180502
http://dx.doi.org/10.1103/PhysRevB.83.174509
http://dx.doi.org/10.1103/PhysRevB.84.134518
http://dx.doi.org/10.1103/PhysRevLett.102.117001
http://dx.doi.org/10.1103/PhysRevB.81.214501
http://dx.doi.org/10.1103/PhysRevB.89.094504
http://dx.doi.org/10.7566/JPSJ.82.084713
http://dx.doi.org/10.7567/JJAP.54.048001
http://dx.doi.org/10.1063/1.2737547
http://dx.doi.org/10.1063/1.4904010
http://dx.doi.org/10.1103/PhysRevB.91.161102


SciPost Physics Submission

[17] J. Garaud, M. Silaev and E. Babaev, Thermoelectric signatures of time-reversal symme-244

try breaking states in multiband superconductors, Phys. Rev. Lett. 116, 097002 (2016),245

doi:10.1103/PhysRevLett.116.097002.246

[18] V. L. Vadimov and M. A. Silaev, Polarization of the spontaneous magnetic field and mag-247

netic fluctuations in s+ is anisotropic multiband superconductors, Phys. Rev. B 98, 104504248

(2018), doi:10.1103/PhysRevB.98.104504.249

[19] S. Z. Lin, S. Maiti and A. Chubukov, Distinguishing between s+ id and s+ is pairing sym-250

metries in multiband superconductors through spontaneous magnetization pattern induced251

by a defect, Phys. Rev. B 94, 064519 (2016), doi:10.1103/PhysRevB.94.064519.252

[20] M. P. Srensen, N. F. Pedersenand and M. Ögren, The dynamics of magnetic vortices in253
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