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Abstract

We study abelian M5-brane field configurations representing BPS bound states of

self-dual string solitons whose locations correspond to the endlines of M2-branes ending

on the M5-branes. The BPS equations are obtained from appropriate Bogomolny

completion of the effective abelian low energy functional with two transverse scalars,

using two vectors representing the directions along which these endline strings extend.

Then we impose boundary conditions on the scalars near the string soliton cores. This

leads to a molecule-like equilibrium structure of two non-parallel string solitons at

fixed transverse separations, with the M5-brane “prong” deformations comprising two

“spikes”, each shaped like a ridge. The resulting picture becomes increasingly accurate

as one approaches the wall of marginal stability, on which these states decay. There are

various parallels with wall-crossing phenomena for string web configurations obtained

from D3-brane deformations.
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1 Introduction

M5-branes are fascinating objects in M-theory. The theory on a single M5-brane in flat space

is free, comprising a self-dual anti-symmetric 3-form tensor field strength and five scalar fields

and fermions. A stack of coincident M5-branes is described by an interacting non-abelian

3-form theory with massless scalars. Since the self-dual 3-form field strength arises from a

2-form potential which couples to a string-like object, the M5-brane theory appears to be

a theory of interacting self-dual strings: these strings can be thought of as the endlines of

M2-branes that end on the M5-brane. A succinct description of various aspects appears in

[1] and some early nice papers include e.g. [2, 3, 4, 5]. While we do not understand this

theory fully, we do know several aspects from various points of view: a classic old review is

[6]. More recent reviews of several aspects include e.g. [7, 8]. The extensive investigations

of holography [9, 10, 11] over the last several years suggest that the M5-brane (2, 0) theory

can be aptly regarded as an abstract conformal field theory (see e.g. [12] for a bootstrap

formulation) and the self-dual strings above are then solitonic objects.

When the M5-branes in a stack are separated, the M2-branes stretched between them

lead to charged massive states in the M5-theory “Higgsed”, loosely speaking (more precisely,

the M5-theory on the tensor branch). A single M2-brane stretched between two parallel

separated M5-branes ends on a line in the M5-worldvolume thus giving rise to a half-BPS self-

dual string soliton state in the worldvolume M5-brane theory [13, 14]. As a field configuration

in the full “Higgsed” M5-brane nonabelian tensor theory, this is perhaps a line-charge analog
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of the BPS ’t Hooft-Polyakov monopole in super Yang-Mills theory (see e.g. [16] for a review),

and can be described at least in the low energy abelian “Higgsed” theory in a simple way

(as we will review below). Consider the theory of three parallel M5-branes: two non-parallel

M2-branes stretching between one M5 and the other two energetically lead to a nontrivial

M5-M2-M2 bound state. These sorts of states can be recognized readily in a different regime.

They simply correspond to nontrivial string webs stretching between three parallel separated

D3-branes in the IIB string theory obtained by compactifying M-theory on T 2: see [17], where

these M2-brane webs in M-theory were in fact already anticipated. The M5-branes become

D3-branes while the M2-branes wrapping appropriate T 2-cycles become various (p, q)-strings

(as reviewed in e.g. [18]). The line charges from the M2-branes ending on the M5-brane

compactify to point charges in the Higgsed gauge theory on the D3-branes.

These string webs can in fact be obtained as nontrivial brane deformations in the D3-

brane worldvolume super Yang-Mills theory. As a BPS state, a single string ending on a

single D3-brane is described in the low energy abelian theory by the BPS bound equation

E⃗ = ∇X with E⃗ the electric field and X one of the transverse scalars. The resulting field

configuration X ∼ qe
|r⃗−r⃗0|−X0 can be interpreted as a “brane spike” worldvolume deformation

emanating from the D3-brane at the location of the charge [19]. Likewise string web states

can also be described as more general “brane prongs” in the low energy abelian theory of

three or more Higgsed D3-branes [20, 21, 22]: this low energy description was developed

from several previous investigations of such states including [23] as well as e.g. [25]-[35] (see

also the review [36]). These are nontrivial molecule-like dyon bound states in the Higgsed

vacua of the N=4 U(N) super Yang-Mills theory on the D3-branes: they decay across walls

of marginal stability and the wall-crossing phenomena are in fact well-described by these

brane prong field configurations in the low energy abelian theory (the qualitative picture has

parallels with similar observations in BPS black hole bound states [37]).

Motivated by these investigations, in this paper, we consider abelian M5-brane field

configurations representing BPS bound states of self-dual string solitons whose locations

correspond to the endlines of M2-branes ending on the M5-branes. A single M2-brane

ending on a single M5-brane leads to a 1
2
-BPS state described by a ridge-shaped “spike”

deformation of the M5-brane with one transverse scalar excited as X ∼ q
|ρ⃗−ρ⃗0|2 −X0 . This

M5-brane “spike” field configuration characterizes the self-dual string that is the endline of

the M2-brane ending on the M5-brane and was discussed in [13, 14] (reviewed in [6]); see

also [15] on supergravity-based work. Appropriate combinations of multiple M2-branes give
1
4
-BPS states described by M5-brane “prong” deformations: the structure of these is more

intricate. They can be thought of as a superposition of two spikes corresponding to a bound

state of two non-parallel string solitons at fixed separation transverse to their extended

directions, which dovetails with nontrivial boundary conditions on the scalar moduli in the
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vicinity of the string soliton “cores”. Under M → IIB duality obtained from compactifying

M-theory on T 2, they are expected to reduce to D3-brane prongs representing string webs

stretched between multiple parallel non-coincident D3-branes described above.

The BPS bound equations in the M5-brane are obtained by performing a Bogomolny

completion of the M5-brane energy functional comprising a free self-dual 3-form field strength

Habc and two transverse scalars. This was already set up in a preliminary manner in [23]:

here we will develop this more elaborately. It is convenient to recast Habc in terms of a

spatially “dual” 2-form object H̃ab ≡ ⋆5H (where a, b are 5-space indices alone, reflecting

the self-duality of H): this is then Bogomolny-squared with the scalar derivatives using

two vectors ζa to obtain BPS bound equations (in one form, these were obtained from

supersymmetry in [24]; our analysis, complementing that, is more fuelled by wall-crossing

considerations and the D3-brane string web descriptions). These ζ-vectors have support

only in a 2-dim (4-5) subspace of the 5-dim worldvolume of the M5-brane: this simulates

the intuition that upon compactifying this 2-subspace as T 2 the line charges wrap the ζ-

directions becoming point charges in the noncompact 3-dimensions. In this light, these

equations can be decomposed into components along the 4− and/or 5− directions, and

some of these components then resemble the BPS equations for the D3-brane. Another

crucial ingredient in the M5-description is the fact that the scalar field configurations are

subject to “line source conditions” encoding translation invariance along the string, reflected

in the ridge-shape. These alongwith the BPS bound equations and the moduli boundary

conditions lead us to the spike superpositions in the prong field configurations.

The moduli boundary conditions in the vicinity of the string cores we impose are Dirichlet

boundary conditions on the scalars at the closest point of approach of the two strings: these

imply fixed separations transverse to the extended directions of the strings. For generic

finite separation, these lead to nontrivial variations in the moduli as we go far along the

strings, which amounts to nontrivial M5-brane bendings. However in the limit of approaching

the wall of marginal stability, we show that these variations become negligible and the

moduli values become near constant all along the strings. Thus our formulation reveals self-

consistent approximate configurations which become increasingly accurate in the marginal

stability limit, as we will describe elaborately.

In sec. 2, we describe the Bogomolny completion in the M5-brane low energy abelian the-

ory, while sec. 3 describes the simplest M5-brane prong configurations and the corresponding

string soliton bound states with the effective 1-string tension and the wall-crossing limit in

sec. 3.3 (with some further comments in sec. 3.4). More general states appear in sec. 4. In

sec. 5 we discuss embedding these field configurations in multiple abelian “Higgsed” M5-

brane theories. A Discussion comprising an overview and related questions appears in 6,

and some technical details in Appendices.
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2 Bogomolny completion in M5 effective field theory

To describe the M5-brane spatial worldvolume for the field configurations and states to

follow, we will find it useful to define the notation

ρ⃗ = (x1, x2, x3, x4, x5) ≡ (r⃗, x⃗) ; ρX ≡ (r⃗, x5) ; ρY ≡ (r⃗, x4) ,

ρζ ≡ (r⃗, x⃗), with x⃗ · ζ = 0 . (2.1)

i.e. ρ⃗ is the coordinate describing the 5-dimensional spatial worldvolume of the M5-brane

which decomposes into a 3-dim subspace spanned by {x1, x2, x3} and the remaining 2-dim

subspace which {x4, x5} spans. r⃗ ≡ (x1, x2, x3) denotes the coordinate in the 3-dim subspace.

ρ⃗X denotes the coordinate in the 4-dimensional subspace orthogonal to the x4-direction and

likewise ρ⃗Y the coordinate in the 4-dim subspace orthogonal to the x5-direction. In the last

line, we have chosen a general vector ζ ∈ (x4, x5) in the 45-plane and denoted the 4-dim

subspace orthogonal to ζ by the coordinates ρ⃗ζ .

Now we introduce ζ1, ζ2 ∈ (x4, x5) as two unit vectors in the 45-subspace in the 5-dim

worldvolume, and define (with a, .., e only spatial indices {1, 2, 3, 4, 5})

ζ1, ζ2 ∈ (x4, x5) : H̃ab =
1

6
ϵabcdeHcde , |H̃|2 = H̃abH̃cdδacδbd ,

|∂X|2 = δab∂aX∂bX , ∂[aXζ1b] =
1

2

(
∂aXζ1b − ∂bXζ1a

)
. (2.2)

Since these are all spatial indices with a flat metric, we will not distinguish up/down indices.

The presence of precisely two ζ-vectors dovetails with including only two of the five

transverse scalars to the M5-brane. This corresponds to including only two M2-branes ending

on the M5-brane: in an essential sense, this is incomplete from the point of view of M5-M2

systems. However restricting to this, which reflects the decomposition (2.1), is adequate

from the point of view of uplifts of D3-brane configurations describing string webs. In other

words, this restriction implicitly encodes this subspace of M → IIB dualities obtained from

compactifications of M-theory on T 2 ≡ (x4, x5). With this in mind, the energy functional for

static configurations in a single free M5-brane theory comprising the self-dual 3-form field

strength and two transverse scalars is

E =
1

2

(
|∂X|2 + |∂Y |2 + 1

2
|H̃|2

)
. (2.3)

The sum here is over only spatial indices in H̃ : this incorporates the fact that H is a

self-dual 3-form field strength with H = ⋆6H. This can be abstracted from a superbrane

formulation as discussed in [6] (see also e.g. [38, 14, 23]). We will find it adequate to focus

on the minimal low energy point of view of a single free M5-brane and its field content here,

4



obtained by retaining only the lowest mass dimension terms. The action for an M5-brane

with tension T6 ∼ 1
l611

(with l11 the 11-dim Planck length) [18] is written in terms of the

M5-brane coordinates xI in transverse space: these are redefined to M5-brane worldvolume

field theory scalars as

1

l611

∫
d6s (∂xI)2 ≡

∫
d6s (∂XI)2 ; XI ≡ 1

l311
xI , (2.4)

so the transverse scalar fields XI ≡ X, Y, . . . are manifestly dimension-2, and are the relevant

observables in the field theory regime. The 2-form Bµν has mass dimension-2 (so the Wilson

surface operator
∫
B is dimensionless) and the scalars have mass dimension-2, so all terms

in E are dimension-6.

Upon Bogomolny completion of squares using the above ζ-decomposition, as in fact

anticipated in [23] (see Appendix A for some useful details), this gives

E =

∣∣∣∣∂[aXζ1b] + ∂[aY ζ2b] −
1

2
δacδbdH̃cd

∣∣∣∣2 +
1

2

(
ζ1a∂aX + ζ2a∂aY

)2
(2.5)

+ ∂aXH̃abζ1b + ∂aY H̃abζ2b −
∑
a̸=b

ζ1aζ
2
b (∂aX∂bY − ∂bX∂aY )−

(
ζ1 · ζ2

)
(∂X · ∂Y )

Then the energy functional is minimized when the BPS bound equations

∂[aXζ1b] + ∂[aY ζ2b] −
1

2
δacδbdH̃cd = 0 ,

ζ1a∂aX + ζ2a∂aY = 0 , (2.6)

are satisfied. We will study these equations and the resulting configurations alongwith ap-

propriate boundary conditions in what follows. The above essentially ignores the last two

sets of terms in (2.5): we will argue later in sec. 3.3, sec. 3.4 and sec. 4.3 that these terms

in fact give negligible contribution in the limit of approaching the wall of marginal stability,

and thereby lead to a self-consistent energy minimization via the Bogomolny completion.

The 3-form field strength and its equation of motion can be recast giving

Habc = ϵabcdeH̃de → d ⋆ H = 0 → ∂aH̃ab = 0 . (2.7)

Thus ∑
a

a̸=b

∂a(∂aXζ1b − ∂bXζ1a) +
∑
a

a̸=b

∂a(∂aY ζ2b − ∂bY ζ2a) = 0 . (2.8)

Imposing line source conditions along ζ1, ζ2 directions leads to harmonicity in 4-dim sub-

spaces orthogonal to the ζ-vectors, and thereby to harmonic field configurations transverse

to string soliton line sources stretched along ζ1, ζ2, roughly “superposing” the two string

solitons as we will describe.
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It turns out that these are best described in component form, which we will now proceed

to do. In component form (a = 1, 2, 3), we define

Ea = H̃a4 , Ba = H̃a5 , Π = H̃45 ; E⃗ = Eax̂a , B⃗ = Bax̂a . (2.9)

It is consistent to set Ka = 1
2
ϵabcH̃bc = 0. In terms of the 3-form H, these components are

Ba = 1
2
ϵabcHbc4, Ea = 1

2
ϵabcHbc5, Π = H123, Ka = Ha45.

Taking ζ1, ζ2 to lie in the {x4, x5}-plane (i.e. no components in {1, 2, 3}), the BPS

equations (2.6) in component form become

Ea = ∂a(Xζ14 + Y ζ24 ) , Ba = ∂a(Xζ15 + Y ζ25 ) , Π = ∂4(Xζ15 + Y ζ25 )− ∂5(Xζ14 + Y ζ24 ) ,

(ζ14∂4 + ζ15∂5)X + (ζ14∂4 + ζ15∂5)Y = ∂4(Xζ14 + Y ζ24 ) + ∂5(Xζ15 + Y ζ25 ) = 0 . (2.10)

Defining appropriate X ′, Y ′, leads to somewhat simpler expressions:

X ′ ≡ Xζ14 + Y ζ24 , Y ′ ≡ Xζ15 + Y ζ25 ,

E⃗ = ∇X ′ , B⃗ = ∇Y ′ , Π = ∂4Y
′ − ∂5X

′ , ∂4X
′ + ∂5Y

′ = 0 . (2.11)

The equations in this form were also obtained via supersymmetry in [24]. Our analysis

of the resulting field configurations is motivated by wall-crossing phenomena and string

webs via D3-brane prongs: as we will see, the map between X ′, Y ′ and X, Y , involving

arbitrary vectors ζ1,2 in the (x4, x5)-plane allows for constructing string-string bound states

for arbitrary charges. The Bogomolny completion (2.5) can be written as

E =
1

2

∣∣E⃗ −∇X ′∣∣2 + 1

2

∣∣B⃗ −∇Y ′∣∣2 + E⃗ · ∇X ′ + B⃗ · ∇Y ′

+
1

2
(ζ1a∂aX + ζ2a∂aY )2 +

1

2

∣∣Π+ ∂5X
′ − ∂4Y

′∣∣2 +Π(∂4Y
′ − ∂5X

′)

−
∑
a̸=b

ζ1aζ
2
b (∂aX∂bY − ∂bX∂aY )−

(
ζ1 · ζ2

)
(∂X · ∂Y ) (2.12)

The simplest case with two orthogonal vectors ζ1 = (1, 0), ζ2 = (0, 1), givesX ′ = X, Y ′ = Y .

Taking further derivatives of the last condition in (2.11) gives

∂2
4X

′ + ∂4∂5Y
′ = 0 , ∂4∂5X

′ + ∂2
5Y

′ = 0 . (2.13)

The equations of motion then give

∂aH̃
a4 = 0 : ∇ · E⃗ − ∂5Π = 0 = ∇2

iX
′ + ∂2

4X
′ + ∂2

5X
′ ,

∂aH̃
a5 = 0 : ∇ · B⃗ + ∂4Π = 0 = ∇2

iY
′ + ∂2

4Y
′ + ∂2

5Y
′ . (2.14)
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In other words, X ′, Y ′ are harmonic in the 5-dim spatial M5-worldvolume. Since X, Y are

linear combinations of X ′, Y ′, this implies that X, Y are also similarly harmonic.

We have in mind two M2-branes ending on the M5-brane: each M2-brane endline defines

a self-dual string soliton in the M5-brane. So we have two string solitons stretching along

the ζ1 and ζ2 directions, which we restrict to lie in the {x4, x5} plane but take as general

otherwise. This suggests that the two scalar field configurations enjoy translation invariance

along ζ1 and ζ2 directions respectively. In the M5-brane effective field theory this implies

that the transverse scalars obey “line source” conditions. One might imagine imposing these

line source conditions on X ′, Y ′, but for various technical reasons, it turns out more natural

to impose

ζ1a∂aX = 0 , ζ2a∂aY = 0 , (2.15)

on X, Y . Thus

∇2
iX + (ζ1⊥m ∂m)

2X = 0 , ∇2
iY + (ζ2⊥m ∂m)

2Y = 0 , (2.16)

i.e. X, Y are harmonic in 4-dim subspaces transverse to ζ1 and ζ2 respectively. This follows

from the 5-space harmonicity of X, Y upon imposing the line source conditions. So

X =
cX

|ρ⃗ζ1 − ρ⃗0ζ1|2
−X0, Y =

cY
|ρ⃗ζ2 − ρ⃗0ζ2 |2

− Y0, (2.17)

using the notation (2.1), with cX , cY being arbitrary coefficients here. We then use (2.11)

to write the field configurations/states. Then (2.11) shows that the X ′, Y ′ scalars being

arbitrary linear combinations of the “basis” fields X, Y (2.17) give spike legs at general

angles.

We take the two strings to be located at r⃗ = r⃗1 and r⃗ = r⃗2, i.e. separated in the 3-

space directions, and stretched along lines in the (x4, x5)-plane in the ζ1 and ζ2 directions.

By using overall translation invariance along the x4, x5-directions, we can always orient the

strings to pass through the origin (x4, x5) = (0, 0). Thus, using (2.1) we can parametrize the

coordinates of the two strings as

ρ⃗1 = (r⃗, x4, x5)1 = (r⃗1, x1ζ
4
1 , x1ζ

5
1 ), ρ⃗2 = (r⃗, x4, x5)2 = (r⃗2, x2ζ

4
2 , x2ζ

5
2 ), ∀ x1, x2.

(2.18)

Thus the closest point of approach is at (x4, x5) = (0, 0), the separation being |r⃗1 − r⃗2|
(see Figure 1 (c) for a specific case discussed later). Now we impose boundary conditions

mapping the worldvolume core locations and moduli space: it might seem natural to impose

moduli boundary conditions all along the string spatial extents, i.e. for ρ⃗ζ1 → ρ⃗0ζ1 and

ρ⃗ζ2 → ρ⃗0ζ2 , but this turns out to be overconstraining at generic points on the M5-vacuum

moduli space. Instead we impose only the weaker boundary conditions below, at the closest
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approach between the two string solitons:

ρ⃗→ (r⃗1, 0, 0) : (X, Y )→ (X1, 0) ⇒ (X ′, Y ′)→ (X1ζ
1
4 , X1ζ

1
5 ) ,

ρ⃗→ (r⃗2, 0, 0) : (X, Y )→ (0, Y1) ⇒ (X ′, Y ′)→ (Y1ζ
2
4 , Y1ζ

2
5 ) . (2.19)

In what follows, we will analyse the consequences of these boundary conditions on the field

configurations and the resulting M5-brane bending geometry.

The boundary conditions suggest that X ′, Y ′ lead to spike legs at angles defined by

ζ1 and ζ2 which being general imply that general prong shapes are captured by the field

configurations (2.11) in terms of X ′, Y ′. Thus we take X ′, Y ′ as the generic transverse

scalars to the M5-brane. We will now illustrate this with several examples. The simplest

case (1, 0), (0, 1) has X ′ = X, Y ′ = Y , which we will discuss in detail next.

3 The simplest M5-M2 BPS states

A simple family of states is obtained when the two M2-branes end on the M5-brane on

orthogonal string solitons. Then the ζ-vectors are orthogonal: without loss of generality we

can take them to be

ζ1 = x̂4 ≡ (1, 0) , ζ2 = x̂5 ≡ (0, 1) . (3.1)

Then (2.11) and (2.6) give

X ′ = X , Y ′ = Y ; E⃗ = ∇X , B⃗ = ∇Y , Π = ∂4Y − ∂5X . (3.2)

The line source conditions (2.15) become

ζ1 · ∂X = ∂4X = 0 , ζ2 · ∂Y = ∂5Y = 0 . (3.3)

The 3-form field equations (2.14) alongwith (3.3) now give

∇2
iX + ∂2

5X = 0 , ∇2
iY + ∂2

4Y = 0 , (3.4)

so the scalars X, Y are harmonic in 4-subspaces orthogonal to x4 and x5 respectively.

3.1 A single string soliton: the M5-brane spike

Consider first a single M2-brane ending on the M5-brane giving a self-dual string soliton

stretched along say the x4-direction so ζX = (1, 0). The field configuration and boundary

condition are

X =
qe

|ρ⃗− ρ⃗0|2
−X0 =

qe
|ρ⃗X − ρ⃗X,0|2

−X0 ≡
qe

(r⃗ − r⃗0)2 + (x5)2
−X0 ,

H̃a4x̂a = E⃗ = ∇X , H̃45 = Π = −∂5X ; ζX = (1, 0) : ρ⃗X = (r⃗, x5) . (3.5)
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The first expression for X is written in terms of the 5-dim coordinate ρ⃗ while the second

expression specifies the fact that X is harmonic in the 4-dim subspace transverse to the x4-

direction ζX that the string soliton stretches along (the last expression makes this explicit).

We see that there is a 1
ρ2

divergence in X(ρ⃗) at the location of the string, parametrized as

ρ⃗ = (r⃗0, x
4, 0) using (2.18): the M2-brane ending on the M5-brane creates an infinitely long

spike on the M5-brane at the worldvolume string location where the M2-brane intersects

the M5-brane [13, 14]. The fact that the M2-brane extends along the x4 direction means

that the “spike” is shaped like a “ridge” with the “flat ridge-top” stretching along x4 in the

M5-brane worldvolume, as reviewed in [6]: Figure 1 (a) (or (b)) shows this ridge-shaped

M5-brane “spike”. We can now impose a boundary condition on the scalar X,

ρ⃗→ ρ⃗X,0 : X → X1 . (3.6)

This represents a long distance cutoff in the X-space transverse to the M5-brane, which

translates to a short distance cutoff around the string soliton core: now the spike is of finite

length. Later we will embed these scalar configurations into the theory of multiple M5-branes

separated (“Higgsed”) and the cutoff will translate to the distance between the M5-branes.

As ρ⃗ → ∞, we see that X → −X0 : i.e. far from the string soliton core, the M5-brane

deformation becomes vanishingly small and the scalar X relaxes to its modulus value −X0

characterizing the M5-brane vacuum. Now the boundary condition at ρ⃗0X above gives

qeα00 −X0 ∼ X1 ⇒ 1

α00

≡ lim
ρ⃗→ρ⃗+0

|ρ⃗− ρ⃗0|2 = (r⃗c − r⃗0)
2 + (x5

c)
2 ∼ qe

X0 +X1

, (3.7)

where ρ⃗+0 means that ρ⃗ approaches ρ⃗0 but is cut off at ρ⃗c = (r⃗c, x
5
c) . This leads to a finite

“core size”: roughly speaking, we obtain a thickened (fuzzy) cylindrical tube. Thus the

cross-sectional size, or thickness, of the string core is given by the inverse length of the

M5-brane spike in transverse (moduli) space.

For what follows we will find it useful to write the configuration (3.5) more generally as

X =
qe

|ρ⃗ζ − ρ⃗ζ,0|2
−X0 =

qe
(r⃗ − r⃗0)2 + (ζ⊥ · (x⃗− x⃗0))2

−X0 , x⃗ · ζ = 0 , (3.8)

where ζ⊥ ∈ (x4, x5) is a unit vector orthogonal to ζ. For instance ζX = (1, 0) has ζ⊥X = (0, 1)

recovering the field configuration in (3.5). It is also instructive to note that we can like-

wise construct similar M5-brane spike configurations carrying generic dyonic charge (qe, qm):

consider

ζ1 =
1√

q2e + q2m
(qe, qm) ≡ γ(qe, qm) , ζ2 = 0 ,

X ′ =
qe

(r⃗ − r⃗0)2 + (ζ⊥ · (x⃗− x⃗0))2
−X ′

0 , Y ′ =
qm

(r⃗ − r⃗0)2 + (ζ⊥ · (x⃗− x⃗0))2
− Y ′

0 ,

H̃a4x̂a = E⃗ = ∇X ′ , H̃a5x̂a = B⃗ = ∇Y ′ , H̃45 = Π = ∂4Y
′ − ∂5X

′ . (3.9)
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We see that (E⃗, B⃗) ∝ (qe, qm). We have constructed X ′, Y ′ using a single “basis” field X

with Y = 0: the coefficients in (2.17) are cX = 1/γ, cY = 0 . This can be thought of as an

electric string “rotated” through a single nontrivial ζ1-vector to give a dyonic string soliton.

Figure 1: (a) and (b) depict the M5-brane ridge-shaped spike deformations X ∼ 1
ρ⃗2
X

and Y ∼ 1
ρ⃗2
Y

along

the transverse X- and Y -directions respectively (the other worldvolume directions are suppressed). Fig.(c)

shows the string soliton locations ρ⃗1 = (r⃗1, x1, 0) and ρ⃗2 = (r⃗2, 0, x2) in the M5-worldvolume (the strings

are orthogonal, stretching along the x4 and x5 axes): the vertical axis represents the 3-dim subspace r⃗. The

M5-brane prong is roughly a superposition of spikes (a), (b). Fig.(d) shows the shape in (X,Y )-transverse

space of the M5 prong stretching out from the M5-brane at (−X0,−Y0) (with individual spike-legs along X

and Y ), in the limit X0, Y0 ≪ X1, Y1, near the wall of marginal stability (circle).
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3.2 String soliton bound states: M5-brane prongs

Now we describe field configurations given by two scalars on a single M5-brane: the M5-

brane worldvolume deformation, roughly speaking, is now two-pronged. In an essential

sense, this arises by trying to superpose two string solitons, each being the endline of an

M2-brane ending on the M5-brane. These are stretched along two distinct non-parallel M5-

worldvolume spatial directions, creating a superposition of two M5-brane spikes, one along

the X ′-direction and the other along the Y ′-direction. Imposing boundary conditions on the

scalar moduli in the vicinity of the string “cores” ensures that the resulting configuration

is a molecule-like bound state of the two non-parallel string solitons with fixed transverse

separation along the r⃗-direction, as we will see. Intuition for these boundary conditions arises

from string web states in N=4 SYM theories arising on D3-branes (a brief recap appears in

Appendix B). We will call the resulting M5-brane deformations as M5-brane “prongs”.

(1, 1)− (1, 0)− (0, 1) prong : The simplest such configuration is described by the (1, 1) −
(1, 0) − (0, 1) state: in the D3-brane limit, this is described by the bound state of a fun-

damental F1- and D1-string ending on a D3-brane. This can be viewed as M-theory with

the 45-directions compactified on a torus T 2
45: in the uncompactified M-theory description

we have an M5-brane with two M2-branes stretched along say the x6- and x7-directions,

and ending on lines stretching along the x4- and x5-directions in the M5-brane worldvolume:

upon compactification the M5-brane becomes the D3-brane while the M2-branes stretched

along x4 and x5 become respectively the F1- and D1-string.

The M5-M2 brane orientations are (suppressing directions that do not enter)

0 1 2 3 4 5 6 7

D3 • • • •
F1 • •
D1 • •

. . . ←→

0 1 2 3 4 5 6 7

M5 • • • • • •
M2 • • •
M2 • • •

. . .

(3.10)

In the D3-brane effective field theory, this is described as a bound state representing a

(1, 1)-charge molecule, with constituent charges (1, 0) and (0, 1): geometrically this can be

described by a “prong web” obtained by deformations of the D3-brane worldvolume with two

scalars. We expect and are looking for a similar prong-web description in the uncompactified

M-theory, with two scalars characterizing nontrivial M5-brane worldvolume deformations

representing a nontrivial bound state of the two string solitons resulting from the end-lines

of the two M2-branes ending on the M5-brane.

We will take the strings to be stretched along the x4 and x5 directions but separated in

the r⃗-directions (Figure 1 (c)): the ζ-vectors and string coordinate parametrizations (2.18)
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are

ζ1 = (1, 0) : ρ⃗1 = (r⃗, x4, x5)1 = (r⃗1, x1, 0) ∀ x1 ;

ζ2 = (0, 1) : ρ⃗2 = (r⃗, x4, x5)2 = (r⃗2, 0, x2) ∀ x2 . (3.11)

We have used the translation symmetry along the x5 direction to set the locations x5
1 and

x4
2 of the string solitons to be x5

1 = 0 and x4
2 = 0 : in other words, we have taken the strings

to lie along the x4 and x5 axes, without loss of generality. We expect this system can be

described by the scalar field configurations (using the notation (2.1))

X =
qe

|ρ⃗X − ρ⃗1X |2
−X0 =

qe
(r⃗ − r⃗1)2 + (x5)2

−X0 , ρ⃗X · ζ1 = 0 ,

Y =
qm

|ρ⃗Y − ρ⃗2Y |2
−X0 =

qm
(r⃗ − r⃗2)2 + (x4)2

− Y0 , ρ⃗Y · ζ2 = 0 ,

H̃a4x̂a = E⃗ = ∇X , H̃a5x̂a = B⃗ = ∇Y , H̃45 = Π = ∂4Y − ∂5X . (3.12)

These are roughly the superposition of an electric spike (3.5) along X and a magnetic one

along Y , as shown in Figure 1 (a) and (b). (Note that electric/magnetic here are simply

labels for 4/5-directions of the strings which are self-dual solitons in 6-dimensions; upon 45-

compactification, these will map to electric/magnetic point charges in 4-dimensions.) They

can be seen to be a valid solution to the BPS bound equations (2.11) alongwith the line source

conditions (2.15) with the ζ-vectors above (and thereby also satisfy harmonicity (2.16) in

the appropriate transverse 4-subspaces). We can rewrite the field configurations (3.12) as

X =
qe

(r⃗ − r⃗1)2 + (ζ⊥1 · x⃗)2
−X0 , Y =

qm
(r⃗ − r⃗2)2 + (ζ⊥2 · x⃗)2

− Y0 . (3.13)

The distance elements here correspond to the distance in the subspace transverse to the

string soliton, which thus is conveniently expressed using the unit normals ζ⊥1 , ζ⊥2 to the

string orientations ζ1, ζ2 (similar to (3.8)).

We will now examine the M5-brane deformation geometry described by these field con-

figurations. Firstly, as we go out to infinity on the M5-brane, we expect the deformations

(3.12) become vanishingly small, i.e.

ρ⃗→∞ : (X, Y )→ (−X0,−Y0) , (3.14)

which is the location of the M5-brane. The strings extend in one of the x4, x5-directions: if

we go out to infinity in the 3-space directions, the deformations (3.12) scale as

r⃗ →∞, x4, x5 finite : X ∼ qe
|r⃗|2
−X0 , Y ∼ qm

|r⃗|2
− Y0 . (3.15)
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Thus when
1

qe
X0 =

1

qm
Y0 , (3.16)

the M5-brane deformation in this asymptotic regime traces a line along (1, 1) in the X, Y -

space transverse to the M5-brane in qe, qm-units. Likewise the electric and magnetic field

components in (3.12) scale as (E⃗, B⃗) ∝ (1, 1), thereby encoding charge (1, 1). This relation

(3.16) on the asymptotic moduli also arises from an understanding of the effective tension

of these configurations, as we will see in Sec. 3.3.

Let us now study the scalar field configurations as we approach string1 stretched along

ρ⃗1 = (r⃗1, x1, 0) in 3.11). We see that the X scalar displays a spike as expected, similar to

(3.5), (3.7). Looking at both scalars, we find in this limit,

X ∼ lim
ρ⃗→ρ⃗+1

qe
|ρ⃗− ρ⃗1|2

−X0 → X1 ; Y ∼ qm
(r⃗1 − r⃗2)2 + (x1)2

− Y0 . (3.17)

X1 is the cutoff value of the divergent X spike, similar to (3.6). The Y scalar on the other

hand has no singularity anywhere. Since x1 here labels the coordinate along string1, if we

go out to large x1 along the string, the first term dies and we obtain Y → −Y0. However at

x1 = 0 we obtain

x1 = 0 : Y ∼ qm
(r⃗1 − r⃗2)2

− Y0 . (3.18)

Likewise as we approach string2 stretched along ρ⃗ = (r⃗2, 0, x2) in 3.11), we see that the Y

scalar displays a spike as expected, similar to (3.5), (3.7), but the X scalar appears finite.

The scalars approach

X ∼ qe
(r⃗1 − r⃗2)2 + (x2)2

−X0 ; Y ∼ lim
ρ⃗→ρ⃗+2

qm
|ρ⃗− ρ⃗2|2

− Y0 → Y1 . (3.19)

Y1 is the cutoff value of the Y spike similar to (3.6), and X exhibits no singularity anywhere.

x2 here labels the coordinate along string2, so for large x2 along the string, the first term

dies and we obtain X → −X0. However at x2 = 0 we obtain

x2 = 0 : X ∼ qe
(r⃗1 − r⃗2)2

−X0 . (3.20)

These points (3.20), (3.18), are special: they lie on the closest point of approach between

the two strings. The distance between a point on string1 and any point on string2 is given

by (r⃗1 − r⃗2)
2 + (x1)

2 + (x2)
2 which is minimum when x1 = x2 = 0 : projecting onto the

(x4, x5)-plane, this is simply the intersection of the lines along (x1, 0) and (0, x2).

From similar bound state configurations arising from D3-brane prongs (Appendix B),

we know that the separation between the constituent charge cores is fixed and scales as the

inverse distance from the wall of marginal stability. Using this intuition, let us imagine that
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the transverse distance |r⃗1 − r⃗2| between the strings is fixed. It is then consistent to impose

from (3.18), (3.20), that
1

(r⃗1 − r⃗2)2
=

1

qe
X0 =

1

qm
Y0 . (3.21)

Overall, this suggests the boundary conditions (2.19),

ρ⃗→ (r⃗1, 0, 0) : (X, Y )→ (X1, 0) ; ρ⃗→ (r⃗2, 0, 0) : (X, Y )→ (0, Y1) , (3.22)

imposed at the closest point of approach of the two orthogonal strings. These boundary

conditions are equivalent to fixing the transverse separations between the strings as (3.21).

As we have seen, the scalar moduli values vary in the various asymptotic M5-brane world-

volume limits (3.15), (3.17), (3.18), (3.19), (3.20): these variations, summarized in Table 1,

are consistent with (3.22) and follow from the field configurations (3.12).

(X, Y )→ (X1, 0) r⃗ → r⃗1 x1 = 0

(X, Y )→ (X1,−Y0) r⃗ → r⃗1 |x1| → ∞
(X, Y )→ (0, Y1) r⃗ → r⃗2 x2 = 0

(X, Y )→ (−X0, Y1) r⃗ → r⃗2 |x2| → ∞
(X, Y )→ (−X0,−Y0) r⃗ →∞ |x⃗| → ∞

Table 1: The (X, Y ) scalar moduli values at various regimes along the two strings.

Now, along with the transverse separations (3.21), we also obtain the inverse cross-

sectional core sizes of the two string solitons from (3.17), (3.19),

αii ≡ lim
ρ⃗→ρ⃗+i

1

|ρ⃗− ρ⃗i|2
; α11 =

X0 +X1

qe
, α22 =

Y0 + Y1

qm
, (3.23)

similar to the cutoff core size in (3.7) for a single spike.

From (3.21) and (3.23), we see that

X0, Y0 → 0 : |r⃗1 − r⃗2| → ∞ , α−1
11 ∼

qe
X1

, α−1
22 ∼

qm
Y1

, (3.24)

i.e. the constituent string solitons are infinitely separated in the 3-space directions transverse

to their extended directions, while their core sizes α−1
ii are finite (and small ifX1, Y1 are large).

Thus the bound state becomes arbitrarily loosely bound, i.e. it decays and disappears from

the spectrum. There is no physical bound state solution with (r⃗1 − r⃗2)
2 > 0 to (3.21) for

X0 < 0 (the other side of the wall).

From Table 1 summarizing the moduli variations, we note from (3.19) that the M5-brane

X-deformation along string2 varies from X = 0 at x2 = 0 to X = −X0 at large x2, and
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likewise the M5-brane Y -deformation along string1 interpolates from Y = 0 at x1 = 0 to

Y = −Y0 at large x1. Thus the M5-brane bending is nontrivial as we go out to infinity along

the strings. Note that this does not happen for a single string soliton obtained from a single

M2-brane ending on the M5-brane (there are some qualitative parallels with the M5-brane

descriptions of N=2 theories [55], although the brane bending is less severe in the present

discussions). Overall however, in the limit of the M5-brane approaching the wall of marginal

stability

X0, Y0 ≪ X1, Y1 , (3.25)

this variation of X, Y is negligible compared with the individual spike legs which are much

larger. Thus in this limit X0, Y0 ≪ X1, Y1, the shape of the M5-brane in the transverse

X, Y -space resembles Figure 1 (d): this refinement of the scalar boundary conditions and

their asymptotics is similar to that in [20] for D3-brane SYM theories (but with additional

intricacies due to the string-nature of the constituents). There are also parallels in the

qualitative picture of the decay across the wall of marginal stability: wall-crossing amounts

to the state becoming arbitrarily loosely bound, and is qualitatively similar to wall-crossing

for black holes [37]. The limit X0, Y0 → 0 of approaching the wall of marginal stability (circle

in Fig. 1 (d)) means the shortest leg approaches zero size, i.e. the M5-brane at (−X0,−Y0)

approaches (0, 0).

It is also instructive to note that far from both of the string solitons, we obtain

X ∼ qe
(r⃗)2 + (x2)2

−X0 , Y ∼ qm
(r⃗)2 + (x1)2

− Y0 , (3.26)

and the field configurations appear to describe two string solitons intersecting at (x1, x2) =

(0, 0). In other words the transverse r⃗-separation is not discernable and the two M2-branes

now appear to approximately intersect each other on the M5-brane when viewed from afar.

Note that this appears slightly different from the D3-brane limit where the two pointlike cores

appear to effectively coalesce: the string solitons being extended objects along orthogonal

directions remain orthogonal and extended.

Another interesting point, using the relation (2.4) between the worldvolume scalars in

the field theory regime and the M5-brane coordinates, is

(r⃗1 − r⃗2)
2 ∼ 1

X0

∼ l311
x0

. (3.27)

If we consider holding the M5-brane coordinate distance x0 fixed, taking l11 → 0 implies

that |r⃗1 − r⃗2| → 0 generically, which suggests a junction-like configuration: the exception

occurs when x0 = 0 beyond which point the bound state ceases to exist. This appears to

pertain to comments on M2-brane junctions in e.g. [39] and [40], as well as [17]. On the

other hand, we have been describing the field theory regime, which arises by taking l11 → 0
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holding the “field theory distance” X0 fixed (essentially, as in [9]). In this limit we obtain a

smooth description of the string soliton molecule decaying at the wall of marginal stability

as X0 → 0 (with no “junction” per se). Something similar occurs for D3-branes and string

webs in the field theory regime, as discussed in [20, 21].

3.2.1 M5-brane prong for (n,m)− (n, 0)− (0,m)

Along very similar lines, we can describe the (n,m) − (n, 0) − (0,m) M5-brane prong web

representing a charge-(n,m) string soliton molecule, with constituent string solitons of elec-

tric and magnetic charges (n, 0) and (0,m). The ζ-vectors are again orthogonal, as in (3.11)

with ζ1 = (1, 0), ζ2 = (0, 1), so the scalar field configurations again satisfy X ′ = X, Y ′ = Y .

This is a 2-parameter family of string soliton bound states but the description is very similar

overall to the case we just described, with n = 1, m = 1, so we will be brief here. The scalar

field configurations are

X =
n qe

(r⃗ − r⃗1)2 + (x5)2
−X0 , Y =

mqm
(r⃗ − r⃗2)2 + (x4)2

− Y0 , (3.28)

very similar to (3.12). The (X, Y )-moduli asymptotically, as ρ⃗→∞, trace out a line along

(n,m) in the moduli space when
m

qe
X0 =

n

qm
Y0 . (3.29)

Imposing the boundary conditions (3.22) on the scalars leads to

1

(r⃗1 − r⃗2)2
=

1

nqe
X0 =

1

mqm
Y0 , (3.30)

as the transverse separation between the two orthogonal string solitons in the M5-brane

worldvolume. We then also obtain the inverse core sizes

α11 =
X0 +X1

nqe
, α22 =

Y0 + Y1

mqm
. (3.31)

The asymptotic behaviour of the field configurations, as well as the picture of the decay as the

M5-brane approaches the wall of marginal stability, is very similar to the (1, 1)−(1, 0)−(0, 1)
case discussed earlier.

3.3 1-string tension, marginal stability and wall-crossing

We will now calculate the tension of the string soliton bound states we have been describing.

It is useful to note that the ζ-vectors we have been using admit a rotation by an overall

angle φ (which is just an overall rotation of the x4-x5 axes): this gives a slightly more

general representation of the orthogonal ζ-vectors in (3.11) as

ζ1 = cosφ x̂4 − sinφ x̂5 , ζ2 = sinφ x̂4 + cosφ x̂5 . (3.32)
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while retaining the geometry and physics of the field configurations. Then using (2.11), the

Bogomolny completion (2.12) becomes (with ζ1 · ζ2 = 0)

E = 1
2

∣∣E⃗ − cosφ∇X − sinφ∇Y
∣∣2 + 1

2

∣∣B⃗ + sinφ∇X − cosφ∇Y
∣∣2

+ 1
2

∣∣Π+ cosφ(∂5X − ∂4Y ) + sinφ(∂4X + ∂5Y )
∣∣2

+ 1
2

(
sinφ(∂5X − ∂4Y )− cosφ(∂4X + ∂5Y )

)2
+ E⃗ · (cosφ∇X + sinφ∇Y ) + B⃗ · (− sinφ∇X + cosφ∇Y )

− Π
(
∂5(cosφX + sinφY )− ∂4(− sinφX + cosφY )

)
− (∂4X∂5Y − ∂5X∂4Y ) (3.33)

We will now show that the cross-terms ∂4X∂5Y − ∂5X∂4Y in (3.33) upon integrating

over 5-space have negligible contribution on-shell. With nonzero φ, the expressions for the

X and Y fields using (3.13) with (3.32) become

X =
qe

(r⃗ − r⃗1)
2 + (sinφx4 + cosφx5)2

−X0 , Y =
qm

(r⃗ − r⃗2)
2 + (cosφx4 − sinφx5)2

− Y0 .

(3.34)

The cross term under the 5-space integral is∫
d3rdx4dx5 (∂4X∂5Y − ∂5X∂4Y ) (3.35)

It is convenient to consider an overall rotation by φ in the x4 − x5 plane by defining

x′4 = cosφx4 − sinφx5 , x′5 = sinφx4 + cosφx5 . (3.36)

Then (3.34) takes a simpler form

X =
qe

(r⃗ − r⃗1)
2 + (x′5)2

−X0 , Y =
qm

(r⃗ − r⃗2)
2 + (x′4)2

− Y0 , (3.37)

and the form of the cross-terms in (3.35) remains the same1∫
d3rdx′4dx′5 (∂4′X∂5′Y − ∂5′X∂4′Y ) (3.38)

The first term ∂4′X∂5′Y vanishes and the second term upon integration by parts gives

−
∫

d3rdx′4
[
X∂4′Y

∣∣∣∞
x′5=0+

+ X∂4′Y
∣∣∣x′5=0−

−∞

]
(3.39)

1Essentially these terms have the structure of the corresponding terms in the wedge-product
∫
dX ∧ dY

so they are manifestly unchanged under the coordinate transformation. This can also be checked using

∂4 = cosφ ∂
∂x′4 + sinφ ∂

∂x′5 and ∂5 = − sinφ ∂
∂x′4 + cosφ ∂

∂x′5 and evaluating explicitly.
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In the above, we have introduced boundary values near x5 = 0 value due to string1 when

r⃗ = r⃗1. When r⃗ ̸= r⃗1 the effect of doing this in the integral expression is negligible.

∂4′Y can be factored out here since it is independent of x′5 and another integration by

parts can be done here w.r.t. dx′4 giving

−
∫

d3r

[
X
∣∣∣∞
x′5=0+

+ X
∣∣∣x′5=0−

−∞

] [
Y
∣∣∣∞
x′4=0+

+ Y
∣∣∣x′4=0−

−∞

]
(3.40)

Since the X and Y fields do not depend on the signs of x′5 and x′4 coordinates, we conclude

that the square bracket terms vanish. Note that this vanishing of these cross-terms (last line

in (3.33)) is on-shell, using (3.37).

Now, the terms in lines 4 and 5 in (3.33) upon integrating over 5-space can be recast as∫
dx4

∫
d3rdx5 H̃a4 (cosφ∂aX + sinφ∂aY ) +

∫
dx5

∫
d3rdx4 H̃a5 (− sinφ∂aX + cosφ∂aY )

(3.41)

which upon doing the integration by parts and subsequently using the equation of motion

∂aH̃ab = 0 become∫
dx4

∮
S3

dŝa H̃a4 (cosφX + sinφY ) +

∫
dx5

∮
S3

dŝa H̃a5 (− sinφX + cosφY ) . (3.42)

We are considering two strings with charges

(Qi
E, Q

i
B), i = 1, 2 : Qi

E =

∮
S3
X,i

H̃a4dsa , Qi
B =

∮
S3
Y,i

H̃a5dsa , (3.43)

with scalar moduli values at their cores (X ′
i, Y

′
i ). At spatial infinity far from both strings,

charge conservation gives (Q0
E, Q

0
B) = −

∑
i(Q

i
E, Q

i
B) and the moduli values are (−X0,−Y0).

For a single string, the asymptotic boundary to the 4-dim transverse space is S3. For the

combined configuration of two strings we are discussing, integrating over 5-space requires

incorporating the appropriate S3
X,i and S3

Y,i, giving

L
∑
i

cosφ
(
(Xi +X0)Q

i
E + (Yi + Y0)Q

i
B

)
+ sinφ

(
(Yi + Y0)Q

i
E − (Xi +X0)Q

i
B

)
, (3.44)

with L ≡
∫
dx4 ∼

∫
dx5 the regulated length of both strings. Extremizing w.r.t. φ gives

T ≡ M

L
=

√(
(Xi +X0)Qi

E + (Yi + Y0)Qi
B

)2
+
(
(Yi + Y0)Qi

E − (Xi +X0)Qi
B

)2
(3.45)

as the string tension obtained with the tightest bound, with

tanφ =
(Yi + Y0)Q

i
E − (Xi +X0)Q

i
B

(Xi +X0)Qi
E + (Yi + Y0)Qi

B

(3.46)
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This extremization analysis for these boundary terms cares only about the transverse (X, Y )-

space and the charges and is very similar to that in the D3-brane case reviewed briefly in

App. B. In the simplest case of one electric and one magnetic string, we have (Q1
E, Q

1
B) =

(qe, 0) and (Q2
E, Q

2
B) = (0, qm), and the moduli values are (X1, 0) and (0, Y1), so

tanφ =
(0 + Y0)Q

1
E − (0 +X0)Q

2
B

(X1 +X0)Q1
E + (Y1 + Y0)Q2

B

→ 0 ⇒ 1

qe
X0 =

1

qm
Y0 . (3.47)

This is the moduli constraint (3.16) encoding the asymptotic shape of the M5-brane defor-

mation. So

T = (X1 +X0)qe + (Y1 + Y0)qm . (3.48)

This effective tension can be interpreted in a simple way from the geometry in Figure 1 (d),

as the sum of the tensions of a 3-pronged M2-brane web comprising

leg0 , charge(1, 1) : (−X0,−Y0)→ (0, 0) ,

leg1 , charge(1, 0) : (0, 0)→ (X1, 0) ,

leg2 , charge(0, 1) : (0, 0)→ (0, Y1) , (3.49)

Taking the membrane tension of a (m,n) charge M2-brane as
√

m2q2e + n2q2m , the tension

of the composite M2-brane web above, comprising legs 0,1,2, is

T =
√
q2e + q2m

√
X2

0 + Y 2
0 +

√
q2e + 0X1 +

√
0 + q2m Y1 (3.50)

which is identical to (3.48) using (3.16). We note that as a 1-string state tension, T ≤ T1+T2,

i.e. T is always less than the 2-string tension

T1 + T2 = qe
√
(X1 +X0)2 + (Y0)2 + qm

√
(X0)2 + (Y1 + Y0)2 , (3.51)

which is obtained from the lengths of two independent M2-branes stretched between the

(X, Y )-locations
{
(−X0,−Y0), (X1, 0)

}
and

{
(−X0,−Y0), (0, Y1)

}
respectively (see the

transverse geometry in Figure 1 (d)). The location in moduli space where the 1-string state

becomes equal in tension to the 2-string state is the wall of marginal stability (represented

by the circle in X, Y -space in Figure 1 (d)):

X0, Y0 → 0 : T → T1 + T2 . (3.52)

This confirms the decay process of the string soliton bound state into the 2-string state at the

wall of marginal stability discussed around (3.24) using the field configurations earlier. It is

worth noting that the effective tension (3.45) is simply a phrase for the mass per unit length

of this composite object near marginal stability where it can be interpreted as approaching

the combined tension of the two constituent strings.
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Finally, to recognize the geometry of the locus of marginal stability as a circle here, it is

helpful to define the 2-dimensional vectors in the (X, Y )-plane,

ξE ≡ (X1, 0)− (−X0,−Y0) = (X1 +X0, Y0) , ξB ≡ (0, Y1)− (−X0,−Y0) = (X0, Y1 +Y0) .

(3.53)

From Figure 1 (d)), we see that ξE, ξB stretch between the locations {(−X0,−Y0), (X1, 0)}
and {(−X0,−Y0), (0, Y1)} respectively. Then, using the cross-product for 2-vectors, we have

q2e(ξE · ξE) + q2m(ξB · ξB) + 2qeqm|ξE × ξB|
= q2e

(
(X1 +X0)

2 + Y 2
0

)
+ q2m

(
X2

0 + (Y1 + Y0)
2
)
+ 2qeqm ((X1 +X0)(Y1 + Y0)−X0Y0)

= (qe(X1 +X0) + qm(Y1 + Y0))
2 + (qeY0 − qmX0)

2 . (3.54)

This is identical to T 2 simplifying T in (3.45) with the (single electric and single magnetic)

charges (Q1
E, Q

1
B) = (qe, 0) and (Q2

E, Q
2
B) = (0, qm) here, and the corresponding moduli values

(X1, 0) and (0, Y1) respectively2. Thus, using ξE, ξB in (3.53), we see that the effective 1-

string tension T in (3.45) and the 2-string tension (3.51) can be recast as

T =
√

q2e(ξE · ξE) + q2m(ξB · ξB) + 2qeqm|ξE × ξB| ,

T1 + T2 = qe
√

(ξE · ξE) + qm
√
(ξB · ξB) . (3.55)

Thus T = T1 + T2 when |ξE × ξB| = |ξE||ξB|, i.e. when ξE is perpendicular to ξB, which

is equivalent to the limit (3.52). This describes a circle in the (X, Y )-plane (with ξE, ξB

then subtending an angle π
2
on the circle), which is the locus of marginal stability shown

in Figure 1 (d). The algebraic manipulations here are of course more or less identical to

those in the D3-brane case (App. B) with point particle bound states in [20, 21, 22]: in

particular see Fig. 4 in [20]. This apparent similarity in these expressions between the

M5-brane and the D3-brane cases stems from the shape of the M5-prong geometry in the

transverse space approaching two separate spikes in the marginal stability limit. In this

limit, as we have seen, the two strings are well-separated with the moduli variations along

the strings “straightening out” (Table 1). Away from this limit, the shape of the M5-prong

configuration is “blob-like” and ill-defined in the transverse (X, Y )-space. This also reflects

in the M5-brane worldvolume, where the two strings are not well-separated relative to their

“thickness”. In the analysis above recasting the boundary terms in terms of an effective

1-string tension approaching the 2-string tension, it was crucial to write the boundaries in

terms of distinct 3-spheres surrounding the strings. We will discuss this in greater detail in

what follows, obtaining further perspective on this analysis near marginal stability.

2If we use (3.16), then the last bracket vanishes giving T in (3.48); the angle φ amounts to an overall

(X,Y )-rotation ensuring that electric/magnetic string spikes stretch along X/Y -directions respectively.
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3.4 More on Bogomolny and the 1-string tension on-shell

In the previous section 3.3, we have seen that the effective 1-string tension obtained upon in-

tegrating the energy functional (2.5) acquires a relatively simple form near marginal stability,

as in eq. (3.50). In particular, note that the energy functional (2.5) is not written in strict

Bogomolny form (perfect squares plus boundary terms off-shell, such as in eq.(B.1) in the

D3-brane case reviewed in App. B) since there are extra cross-terms, which however give van-

ishing contribution on-shell in the vicinity of marginal stability (note that the 4, 5-directions

are noncompact here; compactifying these is tantamount to regarding the 4, 5-component

terms as negligible, which then effectively reduces (3.33) to (B.1) upon integrating over 5-

space). We will discuss this in a slightly more general way now, noting that near marginal

stability we have two well-separated constituent strings that are loosely bound.

The energy functional (2.5) contains two sets of cross-terms: the second set containing

ζ1 · ζ2 vanishes when the constituent strings are orthogonal. The first set can be recast as∑
a̸=b

ζ1aζ
2
b (∂aX∂bY − ∂bX∂aY ) =

∑
a̸=b

(
ζ1aζ

2
b − ζ1b ζ

2
a

)
∂aX∂bY

=
∑
a̸=b

[
∂b

( (
ζ1aζ

2
b − ζ1b ζ

2
a

)
(∂aX)Y

)
−

(
ζ1aζ

2
b − ζ1b ζ

2
a

)
(∂b∂aX)Y

]
. (3.56)

The second set of terms here vanishes (summing symmetric and antisymmetric pieces),

leaving a total derivative term. Integrating the first set of terms over 5-space with boundaries

being S3
∞ and the two S3s enclosing each of the two (well-separated) strings gives∫

dlstring1

∑
a̸=b

∫ (
dŜ3

)b ( (
ζ1aζ

2
b − ζ1b ζ

2
a

)
(∂aX)Y

)∣∣∣
string1

+

∫
dlstring2

∑
a̸=b

∫ (
dŜ3

)b ( (
ζ1aζ

2
b − ζ1b ζ

2
a

)
(∂aX)Y

)∣∣∣
string2

(3.57)

since the S3 at infinity is at constant modulus value X = −X0 (so its derivative vanishes).

Each string in 5-dimensions is akin to a point particle in the transverse 4-dimensions: we

draw a 3-sphere S3 surrounding the string. The measure dlstringi is the length element along

the string i with i = 1, 2, and (dŜ3)b are the differential 3-volume elements transverse to

the strings, and the b-index indicates its orientation in the 4-dim spatial boundary defined

surrounding the respective strings. The string orientations are defined by the ζ-vectors which

lie in the (x4, x5)-plane and the b-index takes values accordingly. Near marginal stability we

have X0, Y0 small: the strings are well-separated. We now recast the above as∫
dlstring1

∑
a̸=b⊥1

∫ (
dŜ3

)b=b⊥1
((

ζ1aζ
2
b⊥1
− ζ1b⊥1

ζ2a

)
(∂aX)Y

)∣∣∣
string1

+

∫
dlstring2

∑
a̸=b⊥2

∫ (
dŜ3

)b=b⊥2
((

ζ1aζ
2
b⊥2
− ζ1b⊥2

ζ2a

)
(∂aX)Y

)∣∣∣
string2

(3.58)
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Here b⊥ indicates the direction in the (x4, x5)-plane orthogonal to the respective strings.

Analysing further, in the string-1 terms (second line above), the component ζ1b⊥1
is zero

(since ζ1 has no component orthogonal to string1), and further ζ1a∂aX = 0 from translation

invariance along string-1. Thus these string-1 terms in the second line vanish.

Likewise in the string-2 terms (third line above), the component ζ2b⊥2
is zero (since ζ2 has

no component orthogonal to string2). The remaining term can be rewritten as

−
∑
a̸=b⊥2

∫ (
dŜ3

)b=b⊥2

∫
dlstring2

((
ζ1b⊥2

ζ2a

)
(∂aX)

)∣∣∣
string2

× Y1 . (3.59)

(recall that Y1 is a constant cut-off value for the scalar Y near the location of string2) Now

we note that X is an even function along string-2 (symmetric about the point of closest

approach of string-2 with string-1). Thus its derivative ζ2a∂aX is an odd function along

string-2: so integrating along the entire length of string-2 gives a vanishing contribution.

Thus this term also vanishes.

Let us consider the simplest case of two orthogonal strings to illustrate how the above

arguments work. To compare with our analysis in sec. 3.3, recall that (from (3.12)) ∂4X = 0,

and X = q
|r⃗−r⃗1|2+(x5)2

−X0. Thus the first set of terms gives∫
dlstring1

∫ (
dŜ3

)b⊥1
=5 ( (

ζ14ζ
2
5

)
(∂4X)Y

)∣∣∣
string1

(3.60)

which thus vanishes. Note that the S3 here surrounds string1 embedded in the R4 orthogonal

to the x4-direction, so that only b⊥1 = 5 appears in the S3-element above. Likewise, the

terms (3.59) here become

−
∫ (

dŜ3
)b⊥2

=4
∫

dx5
((

ζ1b⊥2
=4 ζ

2
5

)
(∂5X)

)∣∣∣
string2

× Y1 , (3.61)

and ∂5X is odd, so the integral vanishes.

Thus overall, we find these extra cross-terms in the Bogomolny completion vanish on-

shell, when integrated over the 5-space with appropriate boundaries around the two well-

separated strings near marginal stability (when the constituent strings are not orthogonal

there are further terms as well, the ζ1 · ζ2 terms in (2.5)). Of course, in effect we have simply

recast the earlier analysis leading to (3.50) in a slightly more general manner, but this is

perhaps useful in illustrating these extra terms as vanishing boundary terms on-shell. The

essential ingredients here of course is that the strings are well-separated so one can break up

the 5-space integral into boundary terms over appropriate separate S3s surrounding the two

strings. This is of course justified near marginal stability and becomes increasingly accurate

here, and is consistent with the fact that our entire analysis is only reliable near marginal
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stability. However it begs the question of finding “strict Bogomolny completions” that are

manifestly of the form “perfect-squares plus boundary terms” but at an off-shell level.

From the point of view of regarding one string as background and the other as a probe,

we expect that the probe string will feel larger 3-form and scalar forces near its “bulk” which

is closer to the bulk of the background string. This suggests that it will bend resulting in

curved string profiles, unlike the straight string configurations (Figure 1 (c)) we have been

studying. These bent (or curved) string equilibrium configurations will likely be solutions to

different BPS equations following from some possibly different Bogomolny energy extrem-

ization, holding different boundary terms fixed, with no extra cross-terms (looking for such

bent string configurations appears difficult however!). Near marginal stability, the strings

are well-separated and so will straighten out (with negligible bending), thus coinciding with

our picture of straight non-parallel loosely bound strings near marginal stability. In this

light, it is perhaps not surprising that these cross-terms above only vanish on-shell.

4 More general M5-M2 prong states

We now consider more general M5-M2 prong bound states: in general these have charges

(p1+p2, q1+q2)−(p1, q1)−(p2, q2) and corresponding nontrivial angles between the constituent

legs. The field configurations can be constructed using two general ζ-vectors with X ′, Y ′

defined appropriately as in (2.11). We will however find it more instructive to discuss these

illustrating them with two concrete nontrivial examples.

4.1 (2, 1)− (1, 0)− (1, 1)

Consider the charges (2, 1)−(1, 0)−(1, 1). We will keep the factors qe, qm explicit. This config-

uration is captured by the ζ-vectors and the string parametrizations via (x4, x5)-coordinates,

ζ1 = (1, 0) : x⃗1 ≡ (x4, x5)1 = x1(1, 0) ∀ x1 , r⃗ = r⃗1 , (4.1a)

ζ2 =
1√

1 + q2e
q2m

( qe
qm

, 1
)
≡ γ(β, 1) : x⃗2 ≡ (x4, x5)2 = x2(β, 1) ∀ x2 , r⃗ = r⃗2 . (4.1b)

We have used the translation symmetry along the x4 and x5 directions to parametrize the

string coordinates so that they always pass through the origin (x4, x5) = (0, 0). Projecting

these lines onto the (x4, x5)-plane, these lines can always be seen to intersect at the origin

which is their closest point of approach in this convenient parametrization.

Using the “basis” field configurations (2.17) with cY ≡ qm/γ and cX ≡ qe , the BPS
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equations (2.11) give the solutions

X ′ =
qe

(r⃗ − r⃗1)2 + (ζ⊥1 · (x⃗− x⃗1))2
+

qe
(r⃗ − r⃗2)2 + (ζ⊥2 · (x⃗− x⃗2))2

−X ′
0 ,

Y ′ =
qm

(r⃗ − r⃗2)2 + (ζ⊥2 · (x⃗− x⃗2))2
− Y ′

0 . (4.2)

The denominators here encode the transverse distance from any point on string1 or string2:

since we have translation invariance along the strings, this means the “equipotential surfaces”

for string1 are concentric cylinders around it, and likewise for string2. Thus if we translate

along the string, the corresponding field configuration must remain constant so the location

along the string should scale away from these expressions: this can be seen explicitly by

noting that ζ⊥1 · x⃗1 = 0 and ζ⊥2 · x⃗2 = 0 using the parametrizations (4.1). This gives

X ′ =
qe

(r⃗ − r⃗1)2 + (ζ⊥1 · x⃗)2
+

qe
(r⃗ − r⃗2)2 + (ζ⊥2 · x⃗)2

−X ′
0 ,

Y ′ =
qm

(r⃗ − r⃗2)2 + (ζ⊥2 · x⃗)2
− Y ′

0 . (4.3)

These then give the electric and magnetic components E⃗, B⃗ of the field strength. As r⃗ →∞
we have

r⃗ →∞, x4, x5 finite : X ′ ∼ 2qe
|r⃗|2
−X ′

0 , Y ′ ∼ qm
|r⃗|2
− Y ′

0 , (4.4)

so we find (E⃗, B⃗) = (∇X ′,∇Y ′) ∼ (2, 1) encoding the asymptotic charge of this configura-

tion. Thus this M5-brane deformation in this asymptotic regime traces a line along (2, 1) in

the (X ′, Y ′) moduli space transverse to the M5-brane when

1

qe
X ′

0 =
2

qm
Y ′
0 . (4.5)

Now we study the scalar field configurations as we approach the strings. First, analogous

to (3.22), let us impose the boundary conditions (2.19). Then from the Y ′ configuration, we

have Y ′ → 0 which gives
1

(r⃗1 − r⃗2)2
=

1

qm
Y ′
0 =

1

2qe
X ′

0 . (4.6)

This holds at (x4, x5) = (0, 0). Away from this, as we go along string1 stretched along

ρ⃗ = (r⃗1, x1, 0), the Y ′ scalar behaves as

Y ′ ∼ qm
(r⃗1 − r⃗2)2 + γ2x2

1

− Y ′
0

|x1|→∞−−−−−→ −Y ′
0 , (4.7)

using ζ⊥2 = γ(1,−β). Likewise one can analyse the X ′, Y ′ field configurations in various

asymptotic limits, as we go along string1 or string2. This is most efficiently done using the

relations (2.11) in terms of the “basis fields” X, Y : using (4.1) these become

X ′ = X + βγ Y , Y ′ = γ Y , (4.8)
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so

Y ′
0 = γY0 , X ′

0 = X0 + βγ Y0 , X ′
1 = X1 , Y ′

1 = γY1 . (4.9)

The resulting scalar asymptotics on the moduli space for X ′, Y ′, in various limits can be

written by using those for X, Y in Appendix C and are tabulated in Table 2.

(X ′, Y ′)→ (X ′
1 , 0) r⃗ → r⃗1 x1 = 0

(X ′, Y ′)→ (X ′
1 − β Y ′

0 ,−Y ′
0) r⃗ → r⃗1 |x1| → ∞

(X ′, Y ′)→ (β Y ′
1 , Y ′

1) r⃗ → r⃗2 x2 = 0

(X ′, Y ′)→ (− (X ′
0 − βY ′

0) + βY ′
1 , Y

′
1) r⃗ → r⃗2 |x2| → ∞

(X ′, Y ′)→ (−X ′
0 ,−Y ′

0) r⃗ →∞ |x1|, |x2| → ∞

Table 2: X ′, Y ′ moduli asymptotics

It is clear that in the limit of approaching the wall of marginal stability

X ′
0, Y ′

0 ≪ X ′
1, Y ′

1 , (4.10)

the M5-brane bendings “straighten out” and the moduli approach (i) (X ′
1, 0) along the

entire string1, i.e. as ρ⃗ → (r⃗1, x1, 0), and (ii) (βY ′
1 , Y

′
1) along the entire string2, i.e. as

ρ⃗ → (r⃗2, βx2, x2). This is similar to the results in the previous section where we discussed

the (1, 1)− (1, 0)− (0, 1) M5-brane prongs.

4.2 (3, 2)− (1, 1)− (2, 1)

The analysis for this example is similar to the previous case but is a bit more involved. This

configuration has the ζ-vectors and the coordinate parametrizations on the strings,

ζ1 =
1√

1 + q2m
q2e

(
1 ,

qm
qe

)
≡ γ1(1 , β1) : x⃗1 ≡ (x4, x5)1 = x1(1 , β1) ∀ x1 , r⃗ = r⃗1 ,

(4.11a)

ζ2 =
1√

1 + (2qe)2

q2m

(2qe
qm

, 1
)
≡ γ2(β2 , 1) : x⃗2 ≡ (x4, x5)2 = x2(β2, 1) ∀ x2 , r⃗ = r⃗2 .

(4.11b)

Using the field configurations in (2.17) with cX ≡ qe/γ1 and cY ≡ qm/γ2 , the BPS equations

(2.11) give the solutions

X ′ =
qe

(r⃗ − r⃗1)2 + (ζ⊥1 · x⃗)2
+

2qe
(r⃗ − r⃗2)2 + (ζ⊥2 · x⃗)2

−X ′
0 ,

Y ′ =
qm

(r⃗ − r⃗1)2 + (ζ⊥1 · x⃗)2
+

qm
(r⃗ − r⃗2)2 + (ζ⊥2 · x⃗)2

− Y ′
0 , (4.12)
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which also give the E⃗, B⃗ components of the field strength tensor. As r⃗ →∞ we see that

r⃗ →∞, x4, x5 finite : X ′ ∼ 3qe
|r⃗|2
−X ′

0 , Y ′ ∼ 2qm
|r⃗|2
− Y ′

0 , (4.13)

and the electric and magnetic field components scale as (E⃗, B⃗) ∝ (3, 2), thereby encoding

charge (3, 2). The M5-brane deformation in this asymptotic regime traces a line along (3, 2)

in the (X ′, Y ′) moduli space when

2

qe
X ′

0 =
3

qm
Y ′
0 . (4.14)

We impose the boundary conditions

ρ⃗→ (r⃗1, 0, 0) : (X ′, Y ′)→ γ1

(
X1,

qm
qe

X1

)
; ρ⃗→ (r⃗2, 0, 0) : (X ′, Y ′)→ γ2

(
Y1

2qe
qm

, Y1

)
.

(4.15)

This fixes the transverse distance between the strings in terms of the scalar moduli values

1

(r⃗1 − r⃗2)2
=

1

2qm
Y ′
0 =

1

3qe
X ′

0 . (4.16)

As in the previous example, we can analyse the X ′, Y ′ field configurations in various asymp-

totic limits, as we go along string1 or string2. This is most efficiently done using the relations

(2.11) in terms of the “basis fields” X, Y : using (4.11) these become

X ′ = γ1X + β2γ2 Y , Y ′ = γ1β1X + γ2 Y , (4.17)

so

X ′
0 = γ1X0 + β2γ2 Y0 , Y ′

0 = γ1β1X0 + γ2 Y0,

X ′
1 = γ1X1 , Y ′

1 = γ2Y1 (4.18)

The resulting scalar asymptotics on the moduli space for X ′, Y ′ are tabulated in Table 3 (see

Appendix C).

(X ′, Y ′)→ (X ′
1 , β1X

′
1) r⃗ → r⃗1 x1 = 0

(X ′, Y ′)→ (X ′
1 − (2X ′

0 − β2Y
′
0) , β1X

′
1 − (β1X

′
0 − Y ′

0) ) r⃗ → r⃗1 |x1| → ∞
(X ′, Y ′)→ (β2 Y

′
1 , Y ′

1) r⃗ → r⃗2 x2 = 0

(X ′, Y ′)→ ( β2Y
′
1 − (β2Y

′
0 −X ′

0) , Y
′
1 − (2Y ′

0 − β1X
′
0) ) r⃗ → r⃗2 |x2| → ∞

(X ′, Y ′)→ (−X ′
0 ,−Y ′

0) r⃗ →∞ |x1|, |x2| → ∞

Table 3: X ′, Y ′ moduli asymptotics for (3, 2)− (1, 1)− (2, 1)
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As we approach the wall of marginal stability,

X ′
0, Y ′

0 ≪ X ′
1, Y ′

1 , (4.19)

the moduli approach (i) (X ′
1, β1X

′
1) along the entire string1, i.e. as ρ⃗→ (r⃗1, x1, β1x1), and (ii)

(β2Y
′
1 , Y

′
1) along the entire string2, i.e. as ρ⃗ → (r⃗2, β2x2, x2). This is similar to the previous

cases, (1, 1)− (1, 0)− (0, 1) and (2, 1)− (1, 0)− (1, 1).

4.3 1-string tension

Along the same lines as in Sec. 3.3, we can calculate the tension of the M2-brane web for

the configurations we have described. For the (2, 1)− (1, 0)− (1, 1) M2-web, we obtain

T(2,1) = L ( (X ′
1 + β Y ′

1 + 2X ′
0) qe + (Y ′

1 + Y ′
0) qm ) , (4.20)

while for the (3, 2)− (1, 1)− (2, 1) M2-web, we obtain

T(3,2) = L ( (X ′
1 + 2β2 Y

′
1 + 3X ′

0) qe + (β1X
′
1 + Y ′

1 + 2Y ′
0) qm ) . (4.21)

These can again be interpreted in terms of the tensions of three M2-brane legs of appropriate

charge and shapes, along the lines of (3.49) and (3.50), using the (m,n) membrane tension

and the moduli constraints in (4.5) and (4.14) respectively. Various details are described in

App. C and specifically App. C.3.

In the formula for energy functional (2.12) there is another term which could give con-

tribution to the tensions in (4.20) and (4.21). The cross term: (ζ1 · ζ2) (∂X · ∂Y ) in (2.12)

is non-zero for the examples above with two non-orthogonal strings. However, in the limit

where we consider the transverse distance between the line sources to be large, we find that

the contribution from this cross term becomes negligible. Thus near the wall of marginal sta-

bility limit (where X0, Y0 ∼ 0) the collective tensions of the configuration in these examples

essentially approach those in (4.20) and (4.21), respectively.

5 Embedding in “Higgsed” M5-brane theories

We now consider embedding our description of M5-brane prongs into the theory of three M5-

branes, parallel and “Higgsed” (i.e. on the tensor branch). The schematics with multiple

M5s here is similar to that with multiple D3-branes in [20, 22]. The energy functional is

E =
1

2

∑
i=1,2,3

(
|∂X(i)|2 + |∂Y (i)|2 + 1

2
|H̃(i)|2

)
, (5.1)
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where each M5–brane i is regarded as independent of the other two. This is essentially

three copies of (2.3). This is reasonable in the low energy abelian approximation where the

only interaction between the branes arises at the locations where the M2-brane spike legs

from one M5-brane join those from another. These locations necessarily include nonabelian

contributions, lying outside our approximations: we incorporate their effects through the

moduli boundary conditions.

Since the branes are decoupled, we carry out Bogomolny completions (2.5) independently

within each branei sector, giving (2.6) for each sector. Componentwise these lead via (2.10)

to (2.11) for each branei. Since the M2-brane stretching out from one M5-brane ends on

another M5-brane, the line source conditions (2.15) for these must be correlated: likewise the

boundary conditions (2.19) are correlated. It is easiest to illustrate this via simple examples.

A simple electrically charged configuration of a single M2-brane stretching between two

M5-branes is described by juxtaposing two configurations (3.5). Using the form (3.8), we

have

X(1) =
qe

(r⃗ − r⃗
(1)
0 )2 + (ζ⊥ · (x⃗− x⃗

(1)
0 ))2

−X
(1)
0 ; E⃗(1) = ∇X(1) , Π(1) = −∂5X(1) ,

X(2) = − qe

(r⃗ − r⃗
(2)
0 )2 + (ζ⊥ · (x⃗− x⃗

(2)
0 ))2

−X
(2)
0 ; E⃗(2) = ∇X(2) , Π(2) = −∂5X(2) .(5.2)

In order that the M5-spike1 joins with M5-spike2, we must have

r⃗
(1)
0 = r⃗

(2)
0 , x⃗

(1)
0 = x⃗

(2)
0 . (5.3)

The fact that E⃗(1) and E⃗(2) are opposite in sign is tantamount to the statement that the M2-

brane stretching between the two separated M5-branes describes a charge (1, 0)1 − (−1, 0)2
from the point of view of the U(1)1 × U(1)2 theory, “Higgsed” from the U(2) theory of two

M5-branes.

Now in addition, the fact that the two spike “cores” join at the same location in moduli

space requires that they be the same “core size” within this abelian approximation: using

(3.7), this gives

qeα
(1)
00 −X

(1)
0 ∼ X

(1)
1 = X

(2)
1 ∼ −qeα

(2)
00 −X

(2)
0 ,

α
(1)
00 = α

(2)
00 ⇒ X

(1)
0 +X

(1)
1 = −X(1)

1 −X
(2)
0 ,

⇒ X
(1)
1 = −1

2
(X

(1)
0 +X

(2)
0 ) , α

(1)
00 = α

(2)
00 =

1

2qe
(X

(1)
0 −X

(2)
0 ) . (5.4)

The core size thus scales as the inverse distance between the M5-branes which are located

at −X(1)
0 and −X(2)

0 (where the deformations in (5.2) vanish). Also, we see that the gluing

location in moduli space is at the midpoint between the two M5-branes. This is the location
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Figure 2: Cartoon of three parallel separated

M5-branes with a prong deformation stretching be-

tween them in the transverse (X,Y )-space. The solid

red and dashed green lines depict the non-parallel

M2-endlines in the M5-brane worldvolumes (spanning

{0, 1, 2, 3, 4, 5}). The solid black circles represent the

gluing locations, where the prong legs are joined to

the corresponding spike legs.

of enhanced U(2) symmetry in moduli space where new light nonabelian tensor modes must

be added to the low energy theory for a nonsingular description.

Along similar lines, we can embed the simplest M5-brane prong configurations in a theory

of three parallel separated M5-branes located as in Figure 2 (drawing this accurately requires

more dimensions than possible(!); the directions are as in (3.10)), which completes Fig. 1

(d):

M5 0 : (−X(0)
0 ,−Y (0)

0 ); M5 1 : (X
(1)
0 , 0); M5 2 : (0, Y

(2)
0 );

X
(0)
0 , Y

(0)
0 ≪ X

(1)
0 , Y

(2)
0 . (5.5)

The last condition encodes the fact that M5-brane 0 is near the wall of marginal stability so its

X, Y scalars are turned on in a prong-like field configuration (3.12). Each constituent spike

leg of this prong is glued onto a corresponding spike (3.5) from one of the other M5-branes.

The field configurations then are (with Y (1) = 0 and X(2) = 0)

E⃗(0) = ∇X(0) , X(0) =
qe

(r⃗ − r⃗
(0)
1 )2 + (ζ⊥1 · (x⃗− x⃗

(0)
1 ))2

−X
(0)
0 ,

B⃗(0) = ∇Y (0) , Y (0) =
qm

(r⃗ − r⃗
(0)
2 )2 + (ζ⊥2 · (x⃗− x⃗

(0)
2 ))2

− Y
(0)
0 ,

Π(0) = ∂4Y
(0) − ∂5X

(0) , (5.6)

E⃗(1) = ∇X(1) , X(1) = − qe

(r⃗ − r⃗
(1)
0 )2 + (ζ⊥1 · (x⃗− x⃗

(1)
0 ))2

+X
(1)
0 , Π(1) = −∂5X(1) ,

B⃗(2) = ∇Y (2) , Y (2) = − qm

(r⃗ − r⃗
(2)
0 )2 + (ζ⊥2 · (x⃗− x⃗

(2)
0 ))2

+ Y
(2)
0 , Π(2) = ∂4Y

(2) .

The fact that the E⃗(0), E⃗(1) are of opposite sign (and likewise B⃗(0), B⃗(2)) indicates the fact that

the M2-branes stretching between the three parallel separated M5-branes describes a charge
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(1, 1)0− (−1, 0)1− (0,−1)2 configuration from the point of view of the U(1)0×U(1)1×U(1)2

theory, “Higgsed” from the U(3) theory of three M5-branes.

In order that the prong leg-X(0) joins with spike1 and correspondingly prong leg-Y (0)

joins with spike2, we must have

r⃗
(0)
1 = r⃗

(1)
0 , x⃗

(0)
1 = x⃗

(1)
0 ; r⃗

(0)
2 = r⃗

(2)
0 , x⃗

(0)
2 = x⃗

(2)
0 , (5.7)

i.e. the string locations in the various M5-branes must match, or equivalently the M2-brane

stretching between M5-brane 0 and M5-brane 1 (and likewise M5-brane 0 and M5-brane 2)

creates endlines whose worldvolume locations must match.

In addition, the string “core sizes” must match between M5-brane 0 and M5-brane 1

(and likewise M5-brane 0 and M5-brane 2). Applying (3.23) and (3.7) to the M5-branes

appropriately, this matching requires

qeα
(0)
11 −X

(0)
0 ∼ X

(0)
1 = X

(1)
1 ∼ −qeα

(1)
00 +X

(1)
0 , α

(0)
11 = α

(1)
00 ;

qmα
(0)
22 − Y

(0)
0 ∼ Y

(0)
1 = Y

(2)
1 ∼ −qmα(2)

00 + Y
(2)
0 , α

(0)
22 = α

(2)
00 . (5.8)

Solving for the moduli locations (X
(0)
1 , 0) and (0, Y

(0)
1 ) at which we perform the gluing and

the inverse core sizes αii, we obtain

X
(0)
0 +X

(0)
1 = −X(0)

1 +X
(1)
0 ; Y

(0)
0 + Y

(0)
1 = −Y (0)

1 + Y
(2)
0 ,

⇒ X
(0)
1 =

1

2
(X

(1)
0 −X

(0)
0 ) , α

(0)
11 = α

(1)
00 =

1

2qe
(X

(0)
0 +X

(1)
0 ) ,

⇒ Y
(0)
1 =

1

2
(Y

(2)
0 − Y

(0)
0 ) , α

(0)
22 = α

(2)
00 =

1

2qm
(Y

(0)
0 + Y

(2)
0 ) . (5.9)

Using the locations (5.5) of the three M5-branes, we see that the gluing occurs at the midpoint

between M5-brane 0 and M5-brane 1 (and likewise M5-brane 0 and M5-brane 2). These are

the locations of enhanced gauge symmetry where the stretched M2-branes become massless

signalling light nonabelian degrees of freedom. The inverse core sizes scale as the distance

between the corresponding pairs of M5-branes. Finally, analysing the moduli values in the

vicinity of the string soliton cores as in e.g. (3.20) suggests the boundary conditions

ρ⃗→ (r⃗
(0)
1 , 0, 0) : (X(0), Y (0))→ (X

(0)
1 , 0) ← (X(1), Y (1)) ,

ρ⃗→ (r⃗
(0)
2 , 0, 0) : (X(0), Y (0))→ (0, Y

(0)
1 ) ← (X(2), Y (2)) , (5.10)

analogous to (3.22). This leads to the transverse separation between the string solitons on

M5 0 as (r⃗
(0)
1 − r⃗

(0)
2 )2 = qe

X
(0)
0

, analogous to (3.21), with a similar wall-crossing limit X
(0)
0 → 0.
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6 Discussion

We have constructed and described field configurations representing self-dual string soli-

ton bound states in the M5-brane abelian effective field theory. These resemble M5-brane

“prongs” as we have seen: the simplest such configuration is depicted in Figure 1 (to the

extent possible: a more full picture requires more dimensions than can be drawn!). While

the Bogomolny completion (2.5) and the resulting BPS bound equations (2.6) appear general

and written in terms of intrinsically M5-brane structures, the explicit field configurations are

best expressed and understood in terms of the component forms (2.10), (2.11) and (2.12),

which decompose the self-dual 3-form tensor field strength (2.2) into appropriate electric

and magnetic components (2.9). It may be interesting to understand how our starting point,

the effective low energy functional (2.3), gels with the recent action formulations of self-dual

forms [41, 42] (see also [43]).

A single string soliton representing the endline of an M2-brane ending on the M5-brane

is described by an M5-brane spike deformation (3.5) sourced by a single scalar field: an

electric string has field strength components H̃a4, H̃45 (a = 1, 2, 3). Bound states of two

string solitons described by M5-brane prong deformations, have nonvanishing field strength

components H̃a4, H̃a5, H̃45, sourced by two scalar fields. To describe bound states of

string solitons, operationally, we wrote down solutions to the BPS equations that describe

a superposition of two non-parallel string solitons (the 6-dim theory has only self-dual

strings so “electric/magnetic” simply label the 4/5-directions that the strings are stretched

along; the non-parallelness of the strings leads to electric/magnetic in 4-dimensions upon

45-compactification). In the simplest case of two orthogonal strings, these are (3.12), with

behaviour as described subsequently. We then impose boundary conditions describing the

scalar moduli values as we approach the string locations: these are imposed at the closest

point of approach of the two strings, given by (3.22) in the simplest case (analogous to (3.6)

for a single string but with more features). This is equivalent to fixing the separation between

the strings transverse to their extended directions in terms of the distance from the wall of

marginal stability, as in (3.21). As we have seen, imposing these boundary conditions or

more generally (2.19) at the closest approach becomes an increasingly better approximation

to imposing them all along the strings (i.e. at ρ⃗ζ1 → ρ⃗0ζ1 and ρ⃗ζ2 → ρ⃗0ζ2), in the limit of

approaching the wall of marginal stability in moduli space, as we discussed in detail around

(3.22). In this limit, the separation between the solitons increases and eventually diverges

(3.24), so the state then becomes unbound (and disappears from the spectrum as one crosses

the wall). While there are clear parallels with string web states in super Yang-Mills theories,

it may be of importance to understand wall-crossing phenomena more systematically for

such string-string bound state molecules and the role played by the extended nature of the
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constituents, for instance in regard to their degeneracies which are likely to have more fea-

tures compared with [44, 45] (more generally see e.g. [46, 47] for discussions on wall-crossing

in relation to black hole microstate counting).

Our description of these bound states has been indirect in a sense: we have used the

BPS bound equations and imposed appropriate boundary conditions whose intuition stems

from the M5-M2-M2 brane geometry we expect in the space transverse to the M5-brane

(and corresponding descriptions of string web states via D3-brane deformations [20, 22]).

Our equilibrium configurations (reliable in the limit of approaching the wall of marginal

stability) suggest that the scalar forces balance the 3-form forces between the constituent

string solitons. It would be most interesting to understand the nature of these bound states

more intrinsically in the M5-brane tensor theory, e.g. in terms of the way the 3-form field

lines behave for such composite configurations and the corresponding forces, more directly,

between the constituent string solitons.

A related point is the following. As we have seen, we have imposed boundary conditions

(3.22) (and more generally (2.19)) at the point of closest approach of the two strings: this

leads to the moduli variations and associated brane-bendings, as in Table 1, which become

refined as we approach marginal stability. One might ask if, instead, one could impose

boundary conditions that amount to holding the strings fixed far along them (at infinity),

and allowing the rest of the two-string geometry (at finite distances) to be determined by

energetics. It would seem that in this case the scalar configurations will be different from

(3.12), leading to brane-bendings that reflect in the two strings deformed towards each other

in their near regions. This might possibly be a different energy extremization than (2.5) with

different boundary terms held fixed (see sec. 3.4 for some comments on strict Bogomolny

completions versus the extra terms in (2.5)). In a sense this might be more natural if we

consider the dynamical problem of a self-dual string probe moving in the background field of

another non-parallel self-dual string: the forces will be less severe far along the string probe

(at infinity) while the string bulk will deform more. In the limit of approaching marginal

stability, from our discussions of the field configurations, moduli variations and the tension

in sec. 3.3 and sec. 3.4, it is clear that the above description will approach our formulation.

In some sense this sort of string-string dynamics might be describable by appropriate string

uplifts of the particle dynamics in [32], [33]. It would be instructive to understand these

issues better, and we hope to do so.

Perhaps understanding these string-string effective potentials could be explored building

on [48] (see e.g. [49, 50] for some interesting related discussions). One might hope thereby to

gain valuable insight into the dynamics of self-dual string solitons and thence that of self-dual

3-forms in the nonabelian M5-brane theory (see e.g. [51, 52] for nonabelian self-dual strings,

which may bear on our discussions in sec. 5 on embedding into multiple abelian M5-brane
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theories). Relatedly, it would be interesting to understand more systematically the role of

supersymmetry with regard to our Bogomolny completion, appropriately generalizing [53]:

this may dovetail with the role of fermionic zero modes in the effective supersymmetric sigma

model for small string-string fluctuations.

It is worth noting that our Bogomolny completion is in a sense tied to the existence of two

ζ-vectors in the (x4, x5)-plane: this means the two M2-branes ending on the M5-brane stretch

in this 2-dim subspace alone so the 3-dim r⃗-subspace is untouched. In some essential sense,

this dovetails with the intuition that the these M5-M2-M2 configurations will compactify to

become appropriate D3-brane string-web configurations with the r⃗-subspace being the D3-

brane worldvolume. On the other hand, one could imagine more general configurations such

as with three or more M2-branes ending on the M5-brane (see [24] for some investigations

on these). These may relate to the D3-brane prong configurations in [20, 22] pertaining to

three or more charge centers (see e.g. [54] for multiple center black hole configurations). It

would be interesting to explore these further.

There are also a few other interesting questions that come to mind. One pertains to

generalizing these M5-brane prong configurations to less supersymmetric theories such as

those in e.g. [55] and [56], possibly interlinking with [40], [57]: these might be related to D3-

brane prong descriptions [20] of string webs [58, 59, 60] in N=2 SYM theories [61], and might

exhibit appropriate s-rules in regard to the BPS spectrum. Another pertains to whether

these sorts of string soliton bound states in the 6-dim (2, 0) theory can be realized explicitly

as field configurations in the nonperturbative 5-dim SYM theory description discussed in

[62, 63]. A third involves understanding 5-brane webs e.g. [64] (see also [65]) as connected

prong-like brane-deformations. A still further question has to do with whether an M2-brane

web (regarded as an object in itself, with no M5-brane) can be described from the point of

view of the M2-brane worldvolume theory itself [66, 67, 68, 69]: in some sense this might be

analogous to the description of a string web (in the absence of a D3-brane) from the point

of view of the D-string worldvolume gauge theory [70]. Perhaps more general M2-brane

networks in M-theory might be related to IIB string networks [71].

Our analysis of the M5-brane prong configurations may also be useful in understanding

other BPS observables in the 6d worldvolume theory. The analysis of surface observables in

[72], [73] uses a similar M2-M5 brane construction to study various geometric features and

non-perturbative aspects associated with them in the 6d (2, 0) theory. In this regard, our

single M5-brane spike configuration is similar to the half-BPS surface observable in these

references. But while those works involved the use of AdS7 × S4 holography [72] or used

geometric constructions on special manifolds [73], a detailed analysis in the theory on a single

M5 worldvolume is not done in this way. It would be interesting to see if our configurations

with the M5-prong structures help uncover more about these BPS surface observables.
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A Useful identities

This appendix contains some details on intermediate steps involved in obtaining the Bogo-

molnyi completion in (2.5) from the energy functional expression (2.3).

• First we have∣∣∣∂[aXζ
(1)
b]

∣∣∣2 = 1

2

∑
a̸=b

(∂aX)2
(
ζ
(1)
b

)2

− 1

2

∑
a̸=b

(
∂aXζ(1)a

) (
∂bXζ

(1)
b

)
(A.1)

• The expansion of
(
∂aXζ

(1)
a

)2

is the following∑
a,b

(
∂aXζ(1)a

) (
∂bXζ

(1)
b

)
=

∑
a

(∂aX)2
(
ζ(1)a

)2
+

∑
a̸=b

(
∂aXζ(1)a

) (
∂bXζ

(1)
b

)
(A.2)

And the sum
∣∣∣∂[aXζ

(1)
b]

∣∣∣2 + 1
2
×

(
∂aXζ

(1)
a

)2

is equal to 1
2
|∂X|2.

• The dot product (∂[aXζ
(1)
b] ) · (∂[aY ζ

(2)
b] ) can be expanded as

∂[aXζ
(1)
b] ∂[cY ζ

(2)
d] δ

acδbd =
1

2

∑
a̸=b

(∂aX∂aY )
(
ζ
(1)
b ζ

(2)
b

)
− 1

2

∑
a̸=b

(
∂aXζ(2)a

) (
∂bY ζ

(1)
b

)
(A.3)

The addition: 2× (∂[aXζ
(1)
b] ) · (∂[aY ζ

(2)
b] ) +

(
∂aXζ

(1)
a

)(
∂bY ζ

(2)
b

)
gives the following answer∑

a,b

(∂aX∂aY )
(
ζ
(1)
b ζ

(2)
b

)
+

∑
a̸=b

ζ(1)a ζ
(2)
b (∂aX∂bY − ∂bX∂aY ) . (A.4)

B A brief review: D3-brane prongs and string webs

Here we give a short recap of the D3-brane prong description of string web states in [20,

21, 22]. The low energy abelian effective action on a D3-brane leads to an energy functional

E⃗2 + B⃗2 + (∇X)2 + (∇Y )2 : integrating over 3-space with charge boundary conditions gives

the mass for the configuration as

M =

∫
d3x

1

2

[
(E⃗ −∇X ′)2 + (B⃗ −∇Y ′)2

]
+

∮
S2
I

da⃗ ·
(
E⃗ X ′ + B⃗ Y ′) (B.1)

where X ′ = X cosφ+Y sinφ and Y ′ = −X sinφ+Y cosφ. The boundaries S2
I are 2-spheres

around each of several charge cores in the system and one sphere at infinity, and we have
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used the divergence-free equations for the electric and magnetic fields ∇⃗ · E⃗ = ∇⃗ · B⃗ = 0

away from the cores to write the boundary term. We label the I = 0 boundary as the

one at infinity and the I ̸= 0 ones as those around the charge cores. Within the abelian

approximation, the scalars X, Y can be regarded as taking constant values Xi, Yi at the i-th

boundary while at infinity they take their asymptotic vacuum values (−X0,−Y 0). With the

electric/magnetic charges
∮
S2
i
E⃗ ·da⃗ = Qi

E ,
∮
S2
i
B⃗ ·da⃗ = Qi

B, of the various cores, the charges

at infinity are (Q0
E, Q

0
B) = −

∑n
i=1(Q

i
E, Q

i
B), by charge conservation. Then (B.1) becomes∑

i

cosφ
(
(Xi +X0)Q

i
E + (Yi + Y0)Q

i
B

)
+ sinφ

(
(Yi + Y0)Q

i
E − (Xi +X0)Q

i
B

)
. (B.2)

Extremizing with the angle φ gives the tightest bound (with a condition analogous to (3.46)),

thereby leading to the BPS mass formula

M =

√(
(Xi +X0)Qi

E + (Yi + Y0)Qi
B

)2
+
(
(Yi + Y0)Qi

E − (Xi +X0)Qi
B

)2
. (B.3)

This is essentially identical to the right hand side of (3.45) (the scalars above have mass

dimension one though, unlike in the M5-case; see comments after (2.4)). Although we have

an effective particle bound state mass here, rather than the effective string tension in (3.45),

the algebra of the Bogomolny bound, in particular (3.44), (3.46), leading to M is similar

(for more details, see [20, 21, 22], and earlier work e.g. [25, 26, 29]). As an example, a single

core dyon charge (QE, QB) and a single scalar X gives M =
√

Q2
E +Q2

B (X1 + X0). For

the simple case with one electric and one magnetic particle, we have (Q1
E, Q

1
B) = (qe, 0) and

(Q2
E, Q

2
B) = (0, qm), with moduli values (X1, 0) and (0, Y1). So this gives for φ an expression

identical to (3.47), amounting to an overall rotation of X, Y , which leads to an analog of the

moduli constraint e.g. (3.16) mapping the charge to the asymptotic shape of the D3-brane

deformation. We thus obtain the BPS bound equations

E⃗ = ∇X , B⃗ = ∇Y ; ∇ · E⃗ = ∇2X = 0 , ∇ · B⃗ = ∇2Y = 0 . (B.4)

so the scalars X, Y are harmonic in the D3-brane spatial worldvolume. The rotation to ϕ = 0

implies that electric charge configurations are sourced by nontrivial X scalar deformations of

the D3-brane worldvolume (in the transverse X-direction) while magnetic ones are sourced

by nontrivial Y scalar D3-brane deformations. Generic solutions to these represent string

web states in the gauge theory. A simple example is the field configuration

X =
qe

|r⃗ − r⃗1|
−X0 , Y =

qm
|r⃗ − r⃗2|

− Y0 , (B.5)

representing a charge (1, 1)− (1, 0)− (0, 1) state, with one electric and one magnetic charge

center. Its asymptotic behaviour is

|r⃗| → ∞ : X ∼ qe
|r⃗|
−X0 , Y ∼ qm

|r⃗|
− Y0 , (B.6)
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so (E⃗, B⃗) ∝ (1, 1) encodes charge (1, 1) in qe, qm units. This deformation traces a line along

(1, 1) in the moduli space if 1
qe
X0 =

1
qm

Y0. Further as we approach either charge core, we see

r⃗ → r⃗1 : Y ∼ qm
|r⃗1 − r⃗2|

− Y0 ; r⃗ → r⃗2 : X ∼ qe
|r⃗1 − r⃗2|

−X0 , (B.7)

while X → X1 and Y → Y1 develop long spikes respectively (which we have cut off). It is

then consistent to impose the boundary conditions on the moduli as

r⃗ → r⃗1 : (X, Y )→ (X1, 0) ; r⃗ → r⃗2 : (X, Y )→ (0, Y1) . (B.8)

This leads to fixing the separation between the charge cores

1

|r⃗1 − r⃗2|
∼ 1

qm
Y0 =

1

qe
X0 , (B.9)

which is large relative to the core sizes (which scale as 1
X1

and 1
Y1
) in the limit of approaching

the wall of marginal stability, with X0, Y0 ≪ X1, Y1. As we hit this wall, i.e. X0, Y0 → 0,

the state becomes arbitrarily loosely bound and decays. No bound state solutions exist on

the other side of the wall (for X0 < 0).

More general field configurations can be written as solutions to the BPS bound equations,

with similar reliable behaviour near the wall of marginal stability.

More details on mapping these low energy field theory prong configurations to string

webs stretched in the transverse space between D-branes appears in [20, 21, 22].

C Some details on more general M5-M2 states

In this appendix we give some details of use in analyzing the brane deformations presented

in the main section (4). The expression for the “basis fields” X and Y are the following

X =
cX

(r⃗ − r⃗1)2 + (ζ⊥1 · x⃗)2
−X0 , Y =

cY
(r⃗ − r⃗2)2 + (ζ⊥2 · x⃗)2

− Y0 (C.1)

C.1 (2,1) - (1,0) - (1,1)

For the (2, 1)− (1, 0)− (1, 1) M5-prongs we consider X, Y with cX = qe and cY = qm/γ.

At large radial distance from the string sources |r⃗| → ∞ these “basis” fields approach

|r⃗| → ∞ : X ∼ −X0 Y ∼ −Y0 . (C.2)

As we approach string1, with coordinates in (4.1a), the X field develops a spike while the Y

field is nonsingular:

ρ⃗→ (r⃗1, x1, 0) : X → X1 Y ∼ cY

(r⃗1 − r⃗2)
2 + γ2 (x1)

2 − Y0 (C.3)
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Analogous to the (1, 1)− (1, 0)− (0, 1) example, at (r1, 0, 0) we impose

Y = 0 =⇒ cY

(r⃗1 − r⃗2)
2 = Y0 (C.4)

On approaching string2 (onto (4.1b)) the Y field develops a spike while X is nonsingular:

ρ⃗→ (r2 , β x2 , x2) : X ∼ qe
(r⃗2 − r⃗1)2 + (x2)2

−X0 Y → Y1 , (C.5)

so at (r2, 0, 0), we impose

X = 0 =⇒ qe

(r⃗2 − r⃗1)
2 = X0 (C.6)

Here we see that the values of X and Y fields interpolate as we move along the two strings

away from the origin. These values are tabulated in Table 1, except they are to be interpreted

as values for the “basis” fields for our purposes now. Using these asymptotics for X, Y and

the relations (4.8), we obtain the asymptotics for X ′, Y ′ in Table 2.

x4

r

x5

r2

r1

Figure 3: This depicts the orientations and the positions of the two strings in the 5-dimensional space on

the worldvolume. The two strings are not orthogonal when projected on the x4-x5 plane.

C.2 (3,2) - (1,1) - (2,1)

For the (3, 2) − (1, 1) − (2, 1) prongs we consider X, Y in (C.1) with cX = qe/γ1 and

cY = qm/γ2.

When the radial distance is large from the string sources |r⃗| → ∞ these “basis” fields

approach (−X0,−Y0) as before. As in the previous example as we approach string1 with

coordinates in (4.11a)), the X field develops a spike and the Y field is nonsingular:

ρ⃗→ (r⃗1, x1, β1x1) : X → X1 Y ∼ cY

(r⃗1 − r⃗2)
2 + γ2

2 (x1)
2 − Y0 (C.7)
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Analogous to the previous example, at (r1, 0, 0) we impose

Y = 0 =⇒ cY

(r⃗1 − r⃗2)
2 = Y0 (C.8)

On approaching string2 (see (4.11b)) there is a spike in the value of the Y field while the X

field is nonsingular:

ρ⃗→ (r2 , β2 x2 , x2) : X ∼ cX
(r⃗2 − r⃗1)2 + γ2

1(x2)2
−X0 Y → Y1 (C.9)

So at (r2, 0, 0), we impose

X = 0 =⇒ cX

(r⃗2 − r⃗1)
2 = X0 (C.10)

Again we see that the values of X and Y fields interpolate as we move along the two strings

away from the origin. Using their asymptotic values from Table 1 and the relations (4.17),

we obtain the asymptotics for X ′, Y ′ in Table 3.

C.3 1-string tension

First we consider the (2, 1)−(1, 0)−(1, 1) web. The boundary terms in (2.12) upon integrating

become ∫
dx4dx5

∫
d3r H̃a4∂aX

′ +

∫
dx4dx5

∫
d3r H̃a5 ∂aY

′ (C.11)

In terms of X, Y fields this is∫
dx4dx5

∫
d3r H̃a4 (∂aX + βγ ∂aY ) +

∫
dx4dx5

∫
d3r H̃a5 γ ∂aY (C.12)

We are considering two strings with charges

(Qi
E, Q

i
B), i = 1, 2 : Qi

E =

∮
S3
i

H̃a4dsa , Qi
B =

∮
S3
i

H̃a5dsa , (C.13)

and scalar moduli values at their cores as given in Table (1). At spatial infinity far from

both strings, charge conservation gives (Q0
E, Q

0
B) = −

∑
i(Q

i
E, Q

i
B) and the moduli values

are (−X0,−Y0).

We do the integration in C.12 over 5-space, and so at appropriate S3
i , gives

L

(
(X1 +X0 + βγ Y0) qe + βγ

(
Y1 + Y0 +

X0

βγ

)
qe + γ(Y1 + Y0)qm

)
(C.14)

with L being the regulated length of both strings. For this particular example: (Q1
E, Q

1
B) =

(qe, 0) and (Q2
E, Q

2
B) = (qe, qm).

38



Further, the above formula can also be written in terms of X ′ and Y ′ field values as given

in (4.20) in section 4.3.

Likewise, for the (3, 2)− (1, 1)− (2, 1) web, the boundary terms upon integrating become∫
dx4dx5

∫
d3r H̃a4∂aX

′ +

∫
dx4dx5

∫
d3r H̃a5 ∂aY

′ (C.15)

In terms of X, Y fields this is∫
dx4dx5

∫
d3r H̃a4 (γ1∂aX + β2γ2 ∂aY ) +

∫
dx4dx5

∫
d3r H̃a5 (β1γ1 ∂aX + γ2 ∂aY )

(C.16)

As before, we have two string charges (Qi
E, Q

i
B), i = 1, 2, with scalar moduli values at their

cores as in Table (1). At spatial infinity far from both strings, charge conservation gives

(Q0
E, Q

0
B) = −

∑
i(Q

i
E, Q

i
B). Integrating over 5-space, with appropriate S3

i , gives

L
[
(γ1X1 + γ1X0 + β2γ2 Y0)Q

1
E + (β1γ1X1 + β1γ1X0 + γ2 Y0)Q

1
B

]
+ L

[
(β2γ2 Y1 + β2γ2 Y0 + γ1X0)Q

2
E + (γ2 Y1 + γ2 Y0 + β1γ1X0)Q

2
B

]
. (C.17)

The charge associated here are: (Q1
E, Q

1
B) = (qe, qm); (Q

2
E, Q

2
B) = (2qe, qm); and we re-write

the above formula using the X ′ and Y ′ field values to obtain (4.21) in section 4.3.

Finally, the term (ζ1 · ζ2) (∂X · ∂Y ) in (2.12) is nonvanishing for non-orthogonal strings:

however this can also be shown to vanish near marginal stability X0, Y0 → 0, where we have

large transverse separation |r⃗1 − r⃗2| between the two strings.
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