
SciPost Physics Codebases Submission

DanceQ: High-performance library for number-conserving bases

Robin Schäfer1⋆, David J. Luitz2†

1 Department of Physics, Boston University, Boston, Massachusetts 02215, USA
2 Institute of Physics, University of Bonn, Nussallee 12, 53115 Bonn, Germany

⋆ rschaefe@bu.edu , † david.luitz@uni-bonn.de

Abstract

The complexity of quantum many-body problems scales exponentially with the size of
the system, rendering any finite-size scaling analysis a formidable challenge. This is par-
ticularly true for methods based on the full representation of the wave function, where
one simply accepts the enormous Hilbert space dimensions and performs linear algebra
operations, e.g., for finding the ground state of the Hamiltonian. If the system satis-
fies an underlying symmetry where an operator with a degenerate spectrum commutes
with the Hamiltonian, it can be block-diagonalized, thus reducing the complexity at the
expense of additional bookkeeping. At the most basic level required for Krylov space
techniques (like the Lanczos algorithm), it is necessary to implement a matrix-vector
product of a block of the Hamiltonian with arbitrary block-wavefunctions, potentially
without holding the Hamiltonian block in memory. An efficient implementation of this
operation requires the calculation of the position of an arbitrary basis vector in the
canonical ordering of the basis of the block. We present here an elegant and power-
ful, multi-dimensional approach to this problem for the U(1) symmetry appearing in
problems with particle number conservation. Our divide-and-conquer algorithm uses
multiple subsystems and hence generalizes previous approaches to make them scalable.
In addition to the theoretical presentation of our algorithm, we provide DanceQ, a flex-
ible and modern – header only – C++20 implementation to manipulate, enumerate, and
map to its index any basis state in a given particle number sector as open source software
under https://DanceQ.gitlab.io/danceq.

Copyright attribution to authors.
This work is a submission to SciPost Physics Codebases.
License information to appear upon publication.
Publication information to appear upon publication.

Received Date TBE
Accepted Date TBE
Published Date TBE

1

Contents2

1 Introduction 23

2 Overview 44

2.1 The problem 45

2.2 The code 66

3 The algorithm 67

3.1 A concrete example 88

3.2 General recipe 99

3.2.1 The Offset 1110

1

mailto:rschaefe@bu.edu
mailto:david.luitz@uni-bonn.de
https://DanceQ.gitlab.io/danceq

SciPost Physics Codebases Submission

3.2.2 The Stride 1211

3.3 Two important limits 1312

3.3.1 Two subsystems (N = 2) 1313

3.3.2 L subsystems (N = L) 1414

3.4 Enumerative encoding 1415

4 DanceQ 1616

4.1 Core Modules and Usage 1717

4.2 Lookup tables 1918

4.3 Performance 2019

4.4 Matrix-free multiplication 2320

5 Conclusion 2521

A Hilbert space dimension 2722

B Pseudo code 2823

C Sparse tensor storage 2924

D Example code 3125

References 3326

27

28

1 Introduction29

For quantum many-body problems, the size of the Hilbert space grows exponentially with the30

size of the system. Since there are only a handful of exactly solvable and non-trivial interacting31

models [1–3], we have to rely on approximations of various degrees of sophistication [4–6] and32

numerical methods [7–10] to study interacting systems. Numerical approaches started to pick33

up momentum in the 1950s with the increasing availability of computational power motivating34

new algorithmic developments of particular relevance for condensed matter physics [11–14]35

and the subsequent birth of computational physics [15–19]. In particular, it became possible36

to compute the spectrum of small but generic interacting many-body systems [20]. In 1958,37

for example, R. Orbach used an IBM 701 to compute eigenvalues of a chain of ten spins [21].38

The success of numerical simulations of one-dimensional systems [22–25] quickly swapped39

over to higher dimensions [26–28] due to the exponentially growth in computer power [29,40

30]. This steady growth of computer power makes it possible today to compute ground states41

for magnetic systems containing up to 50 spin-1/2 particles [31–35] with total Hilbert space42

dimensions exceeding 1015.43

Brute force methods directly tackle the exponentially increasing complexity of the Hilbert44

space by encoding all details of the wave function fall under the category of exact diagonal-45

ization. Compared to other computational techniques frequently used in the field [8,9], their46

advantages are their wide applicability and unbiased nature, particularly for cases where wave47

functions are strongly entangled. Naturally, the exponential growth in complexity of the prob-48

lem imposed by quantum mechanics is a major obstacle to the solution of larger systems,49

which, in turn, are required for a valid finite size scaling analysis to address the thermody-50

namic limit. Therefore, any reduction of the problem – such as by exploiting symmetries to51

2

SciPost Physics Codebases Submission

block-diagonalize the Hamiltonian – should be employed. Besides lattice symmetries that de-52

pend on the precise geometry of the problem [33–38], more intrinsic properties independent of53

the spatial structure play a crucial role in many physical systems. One such property is the con-54

servation of the particle number, which leads to the simplest scheme for block-diagonalization,55

which is the focus of this work. Number conservation naturally arises in simple tight-binding56

type models [39] and in magnetic spin systems where the equivalent symmetry is related to57

the total magnetization. While organizing and managing the basis states may seem straight-58

forward at first glance, the task becomes increasingly complex as the number of particles and59

system size grows, as outlined below [7,40,41].60

In this work, we present an efficient algorithm to handle and organize the basis states61

of number-conserving systems based on a general divide-and-conquer approach. Specifically,62

consider a system consisting of L individual sites, where each site hosts a quantum degree of63

freedom (qudit) with a local Hilbert space dimension Q with the basis states64

|σi〉 ∈ {|0〉, |1〉, . . . , |Q− 1〉}. (1)

The total particle number of the many-body system is65

n=
L
∑

i=1

σi . (2)

In the language of Bosons, σi refers to the number of particles located at a discrete lattice site66

where the maximal number of particles per site is Q − 1. Alternatively, we can think of the67

total magnetization of L spin-S instances with 2S + 1 = Q. In this scenario, the total particle68

number is replaced by the total magnetization along the z-axis:69

Sz
tot =

L
∑

i=1

Sz
i . (3)

Throughout the manuscript, we mainly use the Bosonic language and label the Hilbert70

space sectors by the particle number n or filling fraction f := n
L(Q−1) defined with respect71

to the maximal particle number L(Q − 1). The filling fraction can be translated to the total72

maximization in the spin language: Sz
tot = SL(2 f − 1). The half-filling case refers to the zero-73

magnetization sector.74

Our algorithm efficiently manages the comprehensive organization and manipulation of75

these basis states, which is a crucial element for methods based on exact diagonalization.76

Naively organizing all basis states with a fixed particle number in a list, hash tables [42],77

or in lexicographical order [43] quickly suffers from an exponentially increasing overhead. For78

example, considering L = 32 spin-1/2 particles at half-filling allocates approximately 18 GiB79

of additional memory, which may be needed elsewhere. To overcome this barrier and to make80

larger systems accessible, Lin [7,40] proposed the decomposition into two subsystems reduc-81

ing the memory consumption of lookup tables from O
�

eL
�

to O
�

eL/2
�

(a high-performance82

implementation is for example provided in Ref. [44]). However, with the advancement of tech-83

nology and massive parallelization over the past decades, even larger systems have become84

accessible, necessitating an even greater compression of lookup tables in massively parallel85

codes. Inspired by Lin’s approach, we have generalized this idea into a “divide-and-conquer”86

ansatz, allowing the decomposition into N subsystems yielding a reduction of O
�

eL/N
�

.87

The newly achieved reduction is extremely important for large, dilute systems and for mas-88

sively parallel sparse and matrix-free applications. In the former case, the critical bottleneck in89

state enumeration can be circumvented, while in the latter case, the reduced required storage90

for index lookup makes it possible for each worker, dealing with a part of the Hilbert space,91

3

SciPost Physics Codebases Submission

to hold thread-local lookup tables for fast and synchronization-free state-to-index mapping92

(details below).93

We have integrated our multi-dimensional search algorithm into a modern C++20 imple-94

mentation — DanceQ [45, 46] available as open source software under https://gitlab.com/95

DanceQ/danceq — capable of generating arbitrary particle number preserving Hamiltonians96

for arbitrary Q.97

It features both Message Passing Interface (MPI) and openMP implementations. Our imple-98

mentation features a MPI-based, matrix-free version of the Lanczos algorithm for ground-state99

searches [11], along with a frontend for advanced parallel libraries such as Petsc [47,48] and100

Slepc [49, 50]. It provides a user-friendly interface that is ready to exploit the full potential101

of current high-performance computing facilities.102

While our motivation is driven by the application to physical systems, the problem of effi-103

ciently computing a lexicographic one-to-one mapping is a well-known problem in computer104

science and combinatorics and referred to as enumerative encoding [51, 52]. Our generic al-105

gorithm and previous variants [7,40,53], can be derived from the general ansatz provided by106

Cover in 1973 [52], a link we establish in Sec. 3.4.107

This paper is organized as follows: In Sec. 2, we introduce the problem and the desired108

features needed to efficiently construct an operator acting on a particle number sector. Then,109

Sec. 3 focuses on our divide-and-conquer algorithm. We start by discussing a concrete example110

followed by the general algorithm. For further clarification, we present two important limits:111

Lin’s original proposal [7, 40] with two subsystems and the limit dividing the system into L112

subsystems containing a single site each [53]. Next, we refer to Cover’s formulation [52].113

Sec. 4 introduces the core modules and usage of the DanceQ library. It discusses different114

implementations of the lookup tables and analyzes their performance in order to identify the115

optimal choice of partitioning. Next, we benchmark the performance of matrix-free matrix-116

vector multiplication. The extensive documentation [46] offers further information for using117

DanceQ and provides numerous examples. Lastly, Sec. 5 summarizes our work.118

2 Overview119

This section briefly introduces the problem and the most important features of the code nec-120

essary to carry out a (matrix-free) matrix-vector product using parallel working threads.121

2.1 The problem122

We begin with a single lattice site with Q degrees of freedom, corresponding to a local Hilbert123

space dimension Q, and label the basis states by |0〉, . . . , |Q − 1〉. A product state of the full124

system composed of L such sites is represented by the tensor product of basis states of the125

individual sites:126

|σ⃗〉 :=
L
⊗

i=1

|σi〉= |σ1; . . . ;σL〉 (4)

with |σi〉 ∈ {|0〉, . . . , |Q− 1〉} (5)

This induces a total Hilbert space dimension of QL for the full system of L sites. For systems127

with particle number conservation, it is useful to systematically focus on states with a fixed128

particle number n ∈ {0, . . . , (Q− 1)L}:129

n̂|σ1; . . . ;σL〉=

� L
∑

i=1

σi

�

|σ⃗〉= n|σ⃗〉 (6)

4

https://gitlab.com/DanceQ/danceq
https://gitlab.com/DanceQ/danceq
https://gitlab.com/DanceQ/danceq

SciPost Physics Codebases Submission

The number of such basis states with fixed particle number n is the dimension of the cor-130

responding symmetry sector. For the case Q = 2, it is well known that the number of basis131

states for n particles on a total of L is given by132

DQ=2(L, n) =
�

L
n

�

, (7)

since it corresponds to the number of distinct ways to distribute n indistinguishable items133

(particles) on L sites.134

For the general case with arbitrary Q ≥ 2, the dimension of the symmetry sector with n135

particles on L sites is given by136

DQ(L, n) =
⌊n/Q⌋
∑

k=0

(−1)k
�

L
k

��

L − 1+ n−Qk
L − 1

�

, (8)

where ⌊•⌋ = floor(•) is the lower Gauss bracket defined by the integer part of the argument.137

We provide an explicit elementary derivation of this result in Appendix A in the appendix. The138

result in Eq. (8) was proven by Ref. [54] (cf. Eqs. (11), (12) in [54]), where it was also traced139

back to early work by De Moivre. It has also been used to enumerate permanents in Bosonic140

systems [55,56] and was derived in an alternative way by Ref. [57] in appendix B.141

In order to represent wave functions as vectors and operators as matrices on a computer,142

it is necessary to impose a canonical order of all DQ(L, n) basis states in a symmetry sector.143

This order can be arbitrary but must not be changed during the calculation. In condensed144

matter physics and chemistry, the regime of interest is typically large L and n, and hence,145

the goal is to obtain, for example, the low energy behavior of a model Hamiltonian, i.e., to146

calculate the ground state in a given particle number sector. This can be achieved using Krylov147

space techniques like the Lanczos algorithm [11, 12, 58], for which it is sufficient to be able148

to calculate the action of the Hamiltonian H on an arbitrary many-body wavefunction H|ψ〉,149

without storing the (large and usually very sparse) matrix representation of H.150

To carry out the matrix vector product H|ψ〉 efficiently, it is crucial to be able to access151

basis states by their index, i.e., the forward map152

index→ |σ0,σ1, . . . ,σL−1〉, (9)

as well as to retrieve the index of a given basis state, i.e., the reverse map153

|σ0,σ1, . . . ,σL−1〉 → index, (10)

because the action of an off-diagonal matrix element of H effectively changes the basis state,154

and we have to determine the corresponding row index in the result vector. This task can in155

principle, be fulfilled by a lookup table of size DQ(L, n) for the forward lookup (state from156

index) and a lookup table of size QL for the reverse lookup (index to state), but this requires157

an exponential memory overhead (by far exceeding the memory needed for storing wavefunc-158

tions) and the goal of divide-and-conquer approaches as the one presented here is precisely159

to avoid this overhead. Note that even though a forward lookup table of size DQ(L, n) for the160

map161

index→ |σ0,σ1, . . .σL−1〉 (11)

can in principle be stored (its size is the size of a wavefunction in the n particle sector), a162

simple binary search in this table for reverse lookup of cost O(ln DQ(L, n)) (memory access) is163

expensive.164

5

SciPost Physics Codebases Submission

2.2 The code165

An efficient code requires a versatile enumeration scheme for the basis states. In the absence of166

number conservation, one can either use simple integer counting or implement more advanced167

schemes like Gray codes [59, 60]. The DanceQ library generates all basis states in any given168

particle number sector to represent the corresponding block of an operator in this sector. A169

parallelized program requires a three different functions:170

(i) get_index(|σ⃗〉)171

Maps a valid (correct particle number) basis state |σ⃗〉 to a unique index in the canonical172

basis order ranging from 0 to DQ(L, n)− 1.173

(ii) increment(|σ⃗〉)174

Returns the next valid basis state in the canonical basis order such that175

get_index(|σ⃗′〉) = get_index(|σ⃗〉)+1176

with |σ⃗′〉= increment(|σ⃗〉).177

(iii) get_state(k)178

The reversed mapping of function (i), i.e., it returns the basis state with a given index k179

in the canonical basis order, such that180

get_index(get_state(k)) = k.181

The matrix-free matrix-vector product H|ψ〉 for any wave function |ψ〉 with coefficients182

〈 σ⃗ |ψ 〉 is generated by iterating over all basis states of the particle number sector using func-183

tion (ii). Function (iii) is only executed to obtain the initial state, which becomes non-trivial184

in parallel programs, in which each worker transverses a different segment of the basis. An185

operator in matrix form is obtained by applying it to a specific state defining the current row.186

Then, function (i) is applied to obtain the respective column indices. Pictorially, a parallel187

program would split the Hamiltonian matrix into rectangular blocks (left) and the input wave188

function vector (center) and output vector (right) into subvectors like this:189

=

190

While functions (i) and (ii) are frequently executed during the construction of the operator,191

function (iii) is only used once per worker process. Each worker handling one consecutive part192

of the basis (consecutive rows in the input wave function) executes the function (iii) in the193

beginning to access its part. Pseudo codes for each function are attached in the Appendix B in194

the appendix.195

3 The algorithm196

The key idea to efficiently handle fixed-n basis states |σ1,σ2 . . .σL〉 and to overcome the expo-197

nential memory overhead is a “divide-and-conquer” ansatz where we divide the whole system198

of size L into a partition with N subsystems.199

P0 P1 P2 P3
. . . PN−1200

6

SciPost Physics Codebases Submission

|~σ C
〉 →

i C

000→
0

001→
0

010→
1

100→
2

011→
0

101→
1

110→
2

111→
0|~σB〉 → iB

0
0

0
→

0

0
0

1
→

0

0
1

0
→

1

1
0

0
→

2

0
1

1
→

0

1
0

1
→

1

1
1

0
→

2

1
1

1
→

0

|~σ
A
〉 →

i
A

000→ 0

001→ 0

010→ 1

100→ 2

011→ 0

101→ 1

110→ 2

111→ 0

0 1 2

3
4

5

6
7

8

9
10

11

12
13

14
15

16
17

18

19
20

21

22
23

24

25
26

27

28
29

30

31
32

33

34

35

36
37

38

39
40

41

42
43

44

45
46

47

48
49

50

51
52

53

54

55

56
57

58

59
60

61

62
63

64

65
66

67

68
69

70

71
72

73

74
75

76
77

78
79

80

81
82

83

84
85

86

87 88 89
90

91
92

93
94

95

96
97

98

99
100

101

102 103 104
105

106
107

108
109

110

111
112

113

114
115

116

117 118 119

120
121

122

123 124 125

Figure 1: Illustration of the three-dimensional search structure emerging from three
subsystems, A, B, and C . Each subsystem consists of three sites; the full system has
hence length L = 9, and the figure shows all D2(9,4) = 126 basis states for Q = 2 and
n= 4 particles. (Light) blue and red colored balls connected by blue and green lines
indicate the path to finding the index 50 of the state |σ⃗〉= |010〉A⊗ |101〉B ⊗ |100〉C
using the divide and conquer approach. We start with the state |010〉A on the A
subsystem. It is in the nA = 1 block, which has an offset of 15 (light blue). Within
this block, |010〉A has the index iA = 1, and the stride of this block is strideA = 20.
Hence, the contribution cA to the final index is cA = offsetA + iAstrideA= 35 (dark
blue). The state on subsystem B, |101〉B has the index iB = 1 in the nB = 2 block
with offsetB = 10 and strideB = 3, yielding cB = 13. This brings us to the index
cA+ cB = 48 (dark blue) and by finally considering |100〉C with index 2 in the nC = 1
block (with offset 0 and stride 1 since this is the last subsystem), we get cC = 1.
Hence, the final result for the desired index is cA+ cB + cC = 50 (red ball).

We note that despite the pictorial representation in one dimension, this technique can be201

used for any geometry of the physical system. It is, however, crucial to introduce an order of202

the sites in the system, and this is reflected in the partitioning. The index of a specific state203

is obtained by adding contributions from the individual subsystems, as we elaborate on in the204

following section.205

We label the subsystems by Pk, where k indicates the k-th part. Because our basis states206

|σ⃗〉 are simple product states of single site states, they are also products of the individual207

subsystem states:208

|σ⃗〉= |σ⃗(0)〉P0
⊗ |σ⃗(1)〉P1

⊗ · · · ⊗ |σ⃗(N−1)〉PN−1
(12)

The remainder of this section is structured as follows. We begin by discussing an illustra-209

tive example using three subsystems, which are depicted in Fig. 1, Fig. 2, and Fig. 3. After210

the example, we discuss the generalization of the algorithm to N subsystems. To connect to211

prior work, we present two important limits, including Lin’s original approach [7], which cor-212

responds to the case of two subsystems and the limit of N = L subsystems [53] of size one213

which both follow trivially from the general formalism.214

7

SciPost Physics Codebases Submission

3.1 A concrete example215

To understand the general idea of the multidimensional index lookup, it is useful to begin216

with an illustrative example. We consider a system of L = 9 sites with Q = 2 and a total217

of n = 4 particles, split into N = 3 subsystems which we label A ≡ P0, B ≡ P1, C ≡ P2 for218

simplicity. The total number of states is D2(9,4) = 126. We take all systems to have the same219

length LA = LB = LC = 3. While the allowed states of the total system are limited by the fixed220

particle number n = 4, each subsystem can in principle be in any of the QLA = 23 = 8 states:221

|000〉, |001〉, |010〉, |100〉, |011〉, |101〉, |110〉, and |111〉, however, if A is in state |111〉, B can222

only be in |000〉, |001〉, |010〉, or |100〉 due to the global constraint and it is precisely this kind223

of restriction which we need to deal with when enumerating all valid states.224

Suppose we order the states in each subsystem by the number of particles in the subsys-225

tem (the above list is already ordered in this way), and plot the subsystem states in the x ,226

y , and z axes of the 3d plot in Fig. 1. In that case, we can enumerate all allowed states227

|σ⃗〉A⊗|σ⃗〉B⊗|σ⃗〉C and draw a point at the appropriate position of the coordinate system along228

with the corresponding index of the obtained state in the full basis. The emerging structure in229

Fig. 1 are dense blocks of states, while the voids between the blocks correspond to states that230

do not fulfill the global constraint n= 4. Each dense cuboid block is made from all states with231

fixed subsystem particle numbers, i.e., with fixed (nA, nB, nC). This structure highlights the232

importance of ordering the subsystem bases by particle numbers and makes the key concept233

clear: We now have a structure of dense blocks of states in which we can efficiently retrieve234

the index of any state if we are able to skip all prior blocks in a straightforward way. To do235

this, we first explain how we organize the global basis states, i.e., in which sequence we walk236

through the structure shown in Fig. 1.237

We choose to first increment the state of the C subsystem, keeping the order of states238

organized by the subsystem particle number nC , as pointed out before. Once the subsystem239

state |σ⃗〉C has cycled through all possible states (which sometimes are single choices as visible240

for states 0, 1, and 2 in Fig. 1) for fixed states on A and B, we increment the B state and only241

once also B has exhausted its allowed states, the A state is incremented, moving up to the next242

‘layer’ in the z direction in Fig. 1. This imposes a hierarchy where the state on subsystem C243

changes the fastest when we iterate through all global basis states. The subsystem state on244

A is the leading part and defines horizontal cuts perpendicular to the z-axis in Fig. 1. Within245

each layer, fixing the subsystem state B reduces accessible basis states to a column, which only246

differ by the C state. Finally, specifying the state on subsystem C fully determines the global247

state (which is a point) within the layer defined by A and the column additionally defined by248

B.249

This structure is advantageous for retrieving the index of a particular state |σ⃗〉A⊗|σ⃗〉B⊗|σ⃗〉C250

with the help of a few lookup tables. Each subsystem contributes an additive part cA, cB, or cC251

to the final index, which is then given by the sum of these parts. Here, cA identifies the correct252

layer, cA+ cB points to the beginning of the column, and cA+ cB + cC yields the final index. In253

Fig. 1, we discuss the example to retrieve the index of the state |010〉A⊗|101〉B⊗|100〉C . For this254

case, the correct layer is the third from the bottom and determined by the state |σ⃗〉A = |010〉A.255

The contribution cA points to the first state (with index 35) in this layer, and it is clear that256

cA therefore counts the number of all states prior to the target layer in the first and second257

layers in Fig. 1. In Fig. 2, we provide a more detailed view of the same structure by showing258

each of the eight layers in an individual panel. cA = 35 then corresponds to the first state in259

the third (target) panel in Fig. 2.260

Similarly, we next consider the state on subsystem B, |σ⃗〉B = |101〉B, which allows us to261

skip forward in the global basis to the target column in Fig. 2 where our final state is located.262

The number of states to skip depends on the particles in B and A. The column determined263

by |σ⃗〉A and |σ⃗〉B starts with index cA + cB = 48. The third panel in Fig. 2 highlights the264

8

SciPost Physics Codebases Submission

000→ 0

001→ 0

010→ 1

100→ 2

011→ 0

101→ 1

110→ 2

111→ 0

|ψ
B
〉
→
i B

|ψA〉 = 000

nA = 0

offsetA=15 0

1

2

3 4 5

6 7 8

9 10 11

12 13 14 |ψA〉 = 001

nA = 1

strideA=20 15

16 17 18

19 20 21

22 23 24

25 26 27

28 29 30

31 32 33

34 |ψA〉 = 010

offsetB=10

strideB=3

c
A

=
3
5

c
B

=
1
3

cC = 2

index =
∑
p cp

35

36 37 38

39 40 41

42 43 44

45 46 47

48 49 50

51 52 53

54 |ψA〉 = 100

55

56 57 58

59 60 61

62 63 64

65 66 67

68 69 70

71 72 73

74

0
0

0
→

0

0
0

1
→

0

0
1

0
→

1

1
0

0
→

2

0
1

1
→

0

1
0

1
→

1

1
1

0
→

2

1
1

1
→

0

|ψC〉 → iC

000→ 0

001→ 0

010→ 1

100→ 2

011→ 0

101→ 1

110→ 2

111→ 0

|ψ
B
〉
→
i B

|ψA〉 = 011

nA = 2

75 76 77

78 79 80

81 82 83

84 85 86

87

88

89

0
0

0
→

0

0
0

1
→

0

0
1

0
→

1

1
0

0
→

2

0
1

1
→

0

1
0

1
→

1

1
1

0
→

2

1
1

1
→

0

|ψC〉 → iC

|ψA〉 = 101

90 91 92

93 94 95

96 97 98

99 100 101

102

103

104

0
0

0
→

0

0
0

1
→

0

0
1

0
→

1

1
0

0
→

2

0
1

1
→

0

1
0

1
→

1

1
1

0
→

2

1
1

1
→

0

|ψC〉 → iC

|ψA〉 = 110

105 106 107

108 109 110

111 112 113

114 115 116

117

118

119

0
0

0
→

0

0
0

1
→

0

0
1

0
→

1

1
0

0
→

2

0
1

1
→

0

1
0

1
→

1

1
1

0
→

2

1
1

1
→

0

|ψC〉 → iC

|ψA〉 = 111

nA = 3

120 121 122

123

124

125

Figure 2: Indexing of all basis states in the n= 4 particles sector on L = 9 sites with
Q = 2 states each based on partitioning of the system into three subsystems A, B, and
C . The subsystem basis states are grouped by the subsystem particle number, and
the indices within each subsystem particle number sector are illustrated by 100→ 2,
which means that the state |100〉 has index 2 in the sector where the subsystem has
one particle. The different panels correspond to horizontal slices (one for each basis
state on the A subsystem in Fig. 1). The emerging block structure in this figure is the
key concept behind the algorithm; each block corresponds to fixed particle numbers
for all subsystems. Since each subsystem particle number may have a different size,
there is a hierarchy of offsets (first index in the global ordering where the subsystem
particle number sector begins) and strides (by how much the global index grows if a
subsystem state is incremented to the next legal option within the sector).

contribution cB = 13, which can be illustrated as the number of states in the layer occurring265

before we reach the target state on B.266

Finally, the state of the C subsystem |σ⃗〉C = |100〉C determines the location within the col-267

umn which corresponds to the index of the C state in the nC sector of the C basis: cA+cB+cC = 50268

with cC = 2.269

3.2 General recipe270

The idea illustrated in the previous section can be formalized and generalized to any number271

of subsystems and particles. Similarly to the example from Sec. 3.1, the global index of a basis272

state |σ⃗〉 is obtained by summing up contributions from all subsystems:273

index(|σ⃗〉) =
N−1
∑

k=0

ck(nk,λk, σ⃗(k)), (13)

Each coefficient ck is positive and depends on the number of particles nk in the subsystem Pk,274

the number of particles λk in the previous subsystems P0 . . . Pk−1 and on the subsystem state275

on Pk, |σ⃗(k)〉. Hence, the final index monotonously increases while traversing through the276

subsystems. It corresponds to the cumulative number of global basis states occurring in our277

chosen canonical order before the subsystem state reaches the target state. By cumulative, we278

mean here that we first count such states to fix the P0 state and from here we start counting279

from zero again to determine the number of global states we have to increment before P1280

reaches the target state, i.e. we keep the state on P0 fixed (analogous to first fixing the layer,281

9

SciPost Physics Codebases Submission

offsetA strideA offsetB strideB strideC · 3

0

0

0

0

0

1

1

1

1

0

0

0

0

1

0

1

1

1

0

0

0

1

0

0

1

1

1

0

0

0

0

1

1

0

1

1

0

0

0

0

1

1

1

0

1

0

0

0

0

1

1

1

1

0

0

0

0

1

0

1

0

1

1

0

0

0

1

0

1

1

0

1

0

0

0

1

0

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

0

1

1

0

1

0

1

0

0

0

1

1

0

1

1

0

0

0

0

1

1

1

0

0

1

0

0

0

1

1

1

0

1

0

0

0

0

1

1

1

1

0

0

0

0

1

0

0

0

1

1

1

0

0

1

0

0

1

0

1

1

0

0

1

0

0

1

1

0

1

0

0

1

0

0

1

1

1

0

0

0

1

0

1

0

0

1

1

0

0

1

0

1

0

1

0

1

0

0

1

0

1

0

1

1

0

0

0

1

1

0

0

0

1

1

0

0

1

1

0

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

1

0

1

1

0

0

1

0

0

1

0

1

1

0

1

0

0

0

1

0

1

1

1

0

0

0

0

1

1

0

1

0

0

1

0

0

1

1

0

1

0

1

0

0

0

1

1

0

1

1

0

0

0

0

1

1

1

0

0

0

1

0

0

1

1

1

0

0

1

0

0

0

1

1

1

0

1

0

0

0

0

1

1

1

1

0

0

0

0

1

0

0

0

0

1

1

1

0

1

0

0

0

1

0

1

1

0

1

0

0

0

1

1

0

1

0

1

0

0

0

1

1

1

0

0

1

0

0

1

0

0

1

1

0

1

0

0

1

0

1

0

1

0

1

0

0

1

0

1

1

0

0

1

0

1

0

0

0

1

1

0

1

0

1

0

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

0

0

1

1

0

0

1

0

1

0

0

1

1

0

1

0

0

1

0

0

1

1

1

0

0

0

1

0

1

0

1

0

0

1

0

1

0

1

0

1

0

1

0

0

1

0

1

0

1

1

0

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50states

A

B

C

Figure 3: Example breakdown for finding the index of the 50-th state (red)
|010〉A⊗|101〉B ⊗|100〉C following the example Fig. 1 and Fig. 2. We explicitly show
the first 50 states in the basis and highlight the contribution of the three subsys-
tems A, B, and C in yellow, light green, and dark green, respectively. Beginning
with |010〉A, we find that it has nA = 1, and we hence skip ahead to the first state
with nA = 1, which is state offsetA (nA,λA) = 15. Incrementing the state in A in
this sector increases the global index by 20; this is strideA (nA,λA) = 20. |010〉A has
indexA(σ⃗(A)) = 1, see Table 1, in the subsystem basis of the nA = 1 sector and we
hence skip forward to the global index cA = offsetA + indexA · strideA = 35. We ob-
serve that in the slice ahead from global index 35 to our target index 50, the A state
no longer changes and we can now move on to subsystem B. The state of subsystem
B is |101〉B, which is located in the nB = 2 sector. We have to skip ahead the global
index by offsetB (nB,λB) = 10 to reach the first state in the nA = 1, nB = 2 sector.
In this sector, we see that the global index increases by strideB (nB,λB) = 3 if we
increment the B state. The state |101〉B has indexB(σ⃗(B)) = 1 in the subsystem basis,
again see Table 1, of the nB = 2 sector and we hence have to increment the global
index by cB = offsetB (nB,λB) + strideB (nB,λB) · indexB(σ⃗(B)) = 13 to reach the first
state in the global basis with the correct subsystem states on A and B. This state has
the index cA+ cB = 48 and fulfills the constraint |σ⃗(A)〉 = |010〉 and |σ⃗(B)〉 = |101〉B.
Since C is the last subsystem, it does not have an offset, offsetC (nC ,λC) = 0, and its
strideC (nC ,λC) = 1. Therefore, incrementing the state on subsystem C directly in-
crements the global basis index by one. Its index is indexC(σ⃗(C)) = 3 yielding cC = 2,
and the final index is retrieved cA+ cB + cC = 50.

and then counting the number of states to reach the target column in the three-dimensional282

example).283

Therefore, we traverse through all subsystems, beginning with P0, respecting the total284

particle number constraint of n. All allowed states 1 on P0 are sorted with regard to their285

particle number which we denote n0. For fixed subsystem particle number n0, each subsystem286

state has a unique, zero based index index0(|σ⃗〉0). An example of such an order is given in287

Table 1. Given a subsystem state |σ⃗〉0 with n0 particles on the first subsystem P0, there are288

DQ(L−L0, n−n0) possible states in the complement of P0 of size L−L0 with n−n0 particles that289

fulfill the global particle number constraint of n. The coefficient c0 from Eq. (13) counts all290

states in the global basis that occur before P0 reaches the target state. For each prior subsystem291

state on P0, we hence have to take into account all configurations on the complement of P0,292

which can be paired with the P0 state while fulfilling the global constraint of fixed particle293

number n.294

1If a subsystem can host more than n particles, or if all other subsystems together can not host all n particles,
the global constraint may disallow certain subsystem states and limit accessible subsystem states.

10

SciPost Physics Codebases Submission

Once we have determined c0, the P0 state is fixed and the dimensionality of the problem is295

effectively reduced from N to N −1 subsystems. Now, the same strategy can be applied to P1.296

Since we no longer have to worry about P0, to determine c1, we only have to count combina-297

tions with legal states in the remaining subsystems P2, P3, . . . PN−1 of total size L− L0− L1 and298

the effective particle number constraint is n − n0 since n0 particles are already bound to P0.299

This recursive scheme is carried out through the entire system until the last subsystem PN−1 is300

reached, and the final index is recovered.301

Each contribution ck is composed of two parts: (i) an offset counting all basis states with302

subsystem particle number lower than nk and (ii) a stride determined by how much the global303

index increases if the subsystem state is incremented within the particle number sector nk.304

Together with the zero-based index of the subsystem state |σ⃗(k)〉 in the subsystem particle305

number sector, we then have the explicit expression306

ck = offsetk(nk,λk) + stridek(nk,λk) · indexk(σ⃗
(k)) (14)

Here, nk is the local particle number within the k-th subsystem, and λk is the total particle307

number contained in the subsystems P0 to Pk−1 to the left of Pk:308

λk =
k−1
∑

i=0

ni . (15)

The state of the subsystem is |σ⃗(k)〉 and has a zero based indexk(σ⃗(k)) in each subsystem particle309

number sector. Similarly to the two-dimensional search [7], indexk(σ⃗(k)) refers to a local310

lookup table of Pk that maps |σ⃗(k)〉 to an integer running from zero to DQ(Lk, nk) − 1. The311

mapping within a particle number sector nk can be arbitrary but has to be bijective such that312

each subsystem state maps to a unique number within the given interval. One possible lookup313

table for subsystems of length Lk = 3 with Q = 2 is listed in Table 1, which is used in the314

example Fig. 1 and Fig. 2.315

nA |σ⃗A〉 indexAσ⃗A

0 |000〉 0
1 |001〉 0
1 |010〉 1
1 |100〉 2

nA |σ⃗A〉 indexAσ⃗A

2 |011〉 0
2 |101〉 1
2 |110〉 2
3 |111〉 0

Table 1: Example for a lookup table-for subsystem A from Fig. 1 and Fig. 2. The
choice within each particle number sector can be arbitrary.

316

3.2.1 The Offset317

To derive the expression for the required offsets, we start from the first subsystem P0 and a318

given state |σ⃗(0)〉 with n0 particles. The offset counts all possible states with a lower particle319

number than n0. Due to the globally fixed particle number n, there is a lower bound for the320

number of particles nlow
0 that must be placed in the subsystem P0. If the complement of P0 is321

large enough to accommodate all n particles, nlow
0 = 0, else, it has to reflect the fact that at least322

nlow
0 = max (0, n− (Q− 1)(L − L0)) need to be placed in the subsystem P0 to satisfy the con-323

straint. For each valid particle number k0 on P0, there are DQ(L0, k0) possible configurations324

for states on P0. Each such state can be combined with any state in the complement (all other325

subsystems) of length L− L0 with n−k0 particles in it, and there are DQ(L− L0, n−k0) choices326

11

SciPost Physics Codebases Submission

for this. Therefore, we find a total of DQ(L0, k0)DQ(L− L0, n−k0) states with the constraints of327

k0 particles in P0 and n particles in total. In sum, to account for each valid subsystem particle328

number sector k0 that is lower than n0, we find329

offset0(n0) =
n0−1
∑

k0=nlow
0

DQ(L0, k0)DQ(L − L0, n− k0) . (16)

For the next subsystem, P1, it is crucial to realize that the state and particle number on P0330

is already fixed, effectively reducing the dimensionality of the remaining problem by one. We,331

hence, only need to consider the remaining n − n0 particles. The length of the complement332

C1 = P0 ∪ P1 is333

Γ1 = L − L0 − L1 (17)

and it needs to host n− n0 − k1 particles, if P1 hosts k1 particles. With the minimal allowed334

number of particles in P1 given by nlow
1 =max(0, n− n0 − (Q− 1)Γ1), the offset for P1 is given335

by336

offset1(n1,λ1) =
n1−1
∑

k1=nlow
1

DQ(L1, k1)DQ(Γ1, n−λ1 − k1), (18)

where λ1 = n0, the number of particles already locked into P0.337

Taking the general form for the length of complement Ci of subsystem Pi ,338

Γi = L −
i−1
∑

l=0

Ll , (19)

we can generalize the offset for subsystem Pi to339

offseti(ni ,λi) =
ni−1
∑

ki=nlow
i

DQ(Li , ki)DQ(Γi , n−λi − ki) . (20)

Depending on the particle number and the subsystem length, there might be a minimal amount340

of nlow
i particles that must be placed in Pi to match the global constraint of n particles. The341

general form is given by nlow
i =max(0, n−λi − (Q− 1)Γi). Importantly, for the last subsystem342

PN−1, since the global number of particles is fixed, its particle number equals the lower bound343

nlow
N−1 yielding offsetN−1 (nN−1,λN−1) = 0.344

3.2.2 The Stride345

In addition to the offsets, which bring us to the beginning of the relevant subsystem particle346

number sectors, we need to determine the increase in the global index if the subsystem state347

is incremented within the particle number sector nk.348

To understand the stride, let us start again with the first state |σ⃗(0)〉 on P0 with n0 particles.349

The lookup table for P0 assigns a unique index i0 = index0(σ⃗(0)) to |σ⃗(0)〉, which means that350

i0 subsystem states are ranked lower than |σ⃗(0)〉 within the same particle number sector n0.351

Sec. 4.2 discusses the tables and their construction in more detail. As pointed out in the352

previous paragraph, the complement C0 of P0 contains all subsystems P1 to PN−1 and is of size353

Γ0 = L − L0. The stride is the number of states in the complement such that the total particle354

number constraint n is fulfilled. For any state in P0 with n0 particles, this number is355

stride0 (n0,λ0) = DQ(L − L0, n− n0) . (21)

12

SciPost Physics Codebases Submission

Hence, the number of all possible basis states that can be constructed with the i0 subsystem356

states that are ranked lower than |σ⃗(0)〉 is simply DQ(L − L0, n− n0) · i0.357

Similarly to the offset, this reduces the dimensionality of the problem when we move to358

the second subsystem P1. Again, we use its lookup table to obtain the index i1 = index1(σ⃗(1))359

of |σ⃗(1)〉 with n1 particles. Since n0 particles are a already placed in P1 its complement C1 of360

size Γ1 = L − L0 − L1 has to contain n− n0 − n1 particles leading to (λ1 = n0)361

stride1 (n1,λ1) = DQ(L − L0 − L1, n− n0 − n1) (22)

possibilities for each state with n1 particles in P1. Therefore, the stride contribution, counting362

all states with the constraint |σ⃗(0)〉 on P0 and a lower index than i1 on P1, is363

DQ(L − L0 − L1, n− n0 − n1) · i1. (23)

Following this scheme, we can generalize the stride contribution for the i-th subsystem364

with the state |σ⃗(i)〉 and ni particles. Its index is again retrieved from Pi ’s lookup table:365

ii = indexi(σ⃗(i)). The previous subsystems P0 to Pi−1 contain λi =
∑i−1

i=0 ni particles reducing366

the global constraint to n − λi particles on Pi and its complement Ci . The general form of367

stride counting the number of possible states with n − λi − ni in the complement Ci of size368

Γi = L −
∑i−1

i=0 Li is369

stridei (ni ,λi) = DQ(Γi , n−λi − ni) . (24)

Hence, the number of states with the constraints |σ⃗(i)〉 on Pi for i = 0, . . . , i − 1 and lower370

ranked subsystem states on Pi with ni particles is DQ(Γi , n−λi−ni)· ii . Since the last subsystem371

does not have a complement, its stride is simply one: strideN (nN ,λN) = 1.372

We have transformed the three-dimensional example from Fig. 1 into a list shown in Fig. 3,373

which highlights the individual contributions in the form of offsets and strides. A detailed374

explanation is given in the caption.375

3.3 Two important limits376

Next, we want to discuss two important limits of the algorithm: N = 2 and N = L. We start377

by discussing the original approach by Lin [7] that is based on two subsystems. Then, we378

illustrate the opposite limit [53], which consists of N = L subsystems of size one.379

3.3.1 Two subsystems (N = 2)380

The case with two subsystems is special as a state in P0 with n0 particles fixes the number381

of particles in P1 due to the global constraint: n1 = n − n0. In this case, we can store the382

individual contributions c0 and c1 directly into two lookup tables that label the local basis383

states as shown in Table 1. Since P1 is the last subsystem, the offset is zero, and the stride is384

always one. Hence, c1 reduces to index1(σ⃗(1)), simply the bare lookup table we discussed. This385

corresponds to system A with Ja(Ia) in table II of Ref. [7]. Note that Ref. [7] does not work386

with zero-based indexing, which is used throughout this manuscript and the accompanying387

code.388

Now, to incorporate the contribution of the first subsystem P0, we overwrite its original389

lookup table – which maps |σ⃗(0)〉 to a unique index index0(σ⃗(0)) – simply by its total contri-390

bution:391

c0 = offset0 (n0,λ0) + stride0 (n0,λ0) index0(σ⃗
(0)) (25)

13

SciPost Physics Codebases Submission

The offset and stride are given by Eq. (16) and Eq. (21):392

offset0 (n0,λ0) =
n0−1
∑

k0=nlow
0

DQ(L0, k0)DQ(L1, n− k0)

stride0 (n0,λ0) = DQ(L1, n− n0)

The newly overwritten table corresponds to part B with Jb(Ib) in the table II from Ref. [7].393

While the trick to store the coefficients directly into the lookup table works for N = 2 due394

to the global constraint, the scheme is not possible for N > 2, and we have to account for this395

by tracking the particle number using λi .396

3.3.2 L subsystems (N = L)397

, The opposite limit, evaluating N = L subsystems of size one, can be done “on-the-fly” as it398

does not require the use of lookup tables. Since each system is of size one, it can have at most399

Q different states |qi〉 with qi = 0, . . . ,Q−1. Therefore, there is only one state in each particle400

number sector in Pi inducing indexi(σ⃗(i)) = 0 Then, the contribution of the i-th subsystem401

simplifies to:402

ci = offseti(qi ,λi) =
qi−1
∑

ki=nlow
i

DQ(Γi , n−λi − ki) (26)

We have outlined the algorithm for N = L in Algo. 1 and refer it as the “on-the-fly” implemen-403

tation throughout the rest of the manuscript.404

In the binary case (Q = 2), the formula to compute the index was already derived in405

Ref. [51,52]. Ref. [53] explicitly applied this scheme to enumerate product states in physical406

systems for arbitrary Q.407

Algorithm 1: On-the-fly
Data: |σ⃗〉= |q0; . . . ; qL−1〉
index, λ= 0 /* initializing variables */
Γ = L − 1
for 0≤ i < L − 1 do

for 0≤ k < qi do
if n−λ− 1− k ≤ (Q− 1)Γ then

index= index+ DQ(Γ , n−λ)
end
λ= λ+ 1

end
Γ = Γ − 1

end
return index;

3.4 Enumerative encoding408

The presented enumeration of basis states is an old problem in computer science and combi-409

natorics [61]. In particular, Cover presented a generic ansatz in 1973 to compute the lexico-410

graphic one-to-one mapping and its inverse [52]. The idea behind his approach reflects the411

14

SciPost Physics Codebases Submission

divide-and-conquer ansatz used in the derivation of our multidimensional search algorithm.412

In fact, we can use his formulation to derive our algorithm.413

To formulate the problem in a computer science language, let x⃗ = (x0, . . . , xN−1) be a414

word of length N and x i ∈ {0, . . . ,Q − 1} the letters from an alphabet of size Q. Then, the415

lexicographic order, x⃗ < y⃗ , is defined by x i < yi where i is the smallest index with x i ̸= yi .416

Given any arbitrary subset S of all possible words of length N , we can use Cover’s formula417

given in proposition 2 in Ref. [52] to find the lexicographic one-to-one mapping:418

S → {0, . . . , |S| − 1}. (27)

There, he defines the number of elements in S for which the first k letters are (x0, . . . , xk) by419

nS(x0, . . . , xk). The general formula that provides the desired mapping for x⃗ is:420

index(x⃗) =
N−1
∑

k=0

xk−1
∑

l=0

nS(x0, . . . , xk−1, l) (28)

To demonstrate the generality of this ansatz, we have chosen a generic – not number421

conserving – set:422

S = {(0,2, 0), (0, 2,1), (1, 0,1), (2,0, 0), (2,2, 0), (2,2, 1)} .

The set is already lexicographically ordered, and we can illustrate the counting of nS . For423

example, the number of elements starting with (1) is nS(1) = 1 and with (0, 2) is nS(0, 2) = 2.424

Following the Eq. (28), we derive the index of the last element x⃗ = (2,2, 1) which is 5:425

index(x⃗)

=nS(0) + nS(1)
︸ ︷︷ ︸

k=0

+nS(2,0) + nS(2,1)
︸ ︷︷ ︸

k=1

+nS(2,2, 0)
︸ ︷︷ ︸

k=2

=2+ 1+ 1+ 0+ 1= 5

Similarly to our multidimensional search algorithm, the first contribution, k = 0, takes426

care of all elements in S that have a smaller letter than x0. This refers to the first contribution427

cA in Fig. 1 that identifies the correct plane. The second part, k = 1, refers to cB and jumps to428

the correct column. Lastly, k = 2 takes care of the last part and refers to the contribution cC .429

To relate this ansatz to our number constraint, we first use Eq. (28) to derive the N = L430

limit with arbitrary Q. The contribution of the k-th subsystem is431

ck =
xk−1
∑

lk=0

nS(x0, . . . , xk−1, lk) . (29)

The number of possible configurations in S that begin with (x0, . . . , xk−1) and fulfill the particle432

number constraint n=
∑

k xk are433

nS(x0, . . . , xk−1, lk) = DQ(L − 1− k, n−λk − lk) .

L − 1− k is the length of the complement defined earlier by Γk. λk is the number of particles434

contained up to subsystem Pk: λk =
∑k−1

s=0 xs. As we discussed in the preceding section, there435

might be a constraint on lk restricting the sum in Eq. (29) to lk ∈ {nlow
k , . . . , xk − 1}. This can436

be extracted from the definition of nS(. . .) which is simply zero if lk < nlow
k . We have derived437

the same contribution for N = L given in Eq. (26) using the general formalism from Cover.438

Similarly, we can derive the offset and stride for the generic case. For simplicity, we choose439

an equal partitioning where all subsystem sizes are identical. In this case, the alphabet is grow-440

ing exponentially with system size and each subsystem can have M = 2L/N states. Therefore,441

15

SciPost Physics Codebases Submission

each x i = 0, . . . , M − 1 can take exponentially many values. To define a lexicographical order,442

we first have to impose a canonical ordering within each subsystem. Following the previous443

section, all M states are ordered by particle their number (lower number first), and we use a444

lookup table, cf. Table 1, to impose the order within each particle number sector. Each letter445

x i refers to a substate on Pk and has an associated particle number n(x i) = 0, . . . , L/N(Q−1).446

The subset S is defined by the global particle number constraint n, and we use Eq. (28) to447

derive the index of x⃗ ∈ S. The contribution of the k-th subsystem is:448

ck =
xk−1
∑

lk=0

nS(x1, . . . , xk−1, lk) (30)

Note that the sum runs over exponentially many letters. To avoid adding this exponential449

overhead, we simply group letter lk ∈ {0, . . . , xk − 1} into particle number sectors mk on Pk:450

xk−1
∑

lk=0

→
n(xk)
∑

mk=0

xk−1
∑

lk=0

δmk ,n(lk)

n(lk) is the number of particles of the lk-th state on Pk. For a given particle number mk < n(xk),451

the number of states contained in the sum are DQ(L/N , mk). Crucially, note that the number452

of words in S starting with (x0, . . . , xk−1, lk) only depends on number of particles contained453

in subsystem P0 to Pk: λk + n(lk). Therefore, grouping the states according to their particle454

number greatly simplifies the equation as we can replace nS(x1, . . . , xk−1, lk) by nS(λk, mk):455

ck =
n(xk)−1
∑

mk=0

DQ(L/N , mk)nS(λk, mk) .

+ indexk(σ⃗
(k))nS(λk, n(xk))

Here, |σ⃗(k)〉 refers to the state associated with the letter xk and indexk(σ⃗(k)) is the index in the456

particle number sector nk = n(xk). This form makes the origin of the offset and stride clear. To457

finally determine nS(λk, mk), we can use the same argument as in the previous section. Given458

the total constraint n, we already have n− λk −mk particles distributed on subsystems P0 to459

Pk. Therefore, the number of possible configurations in S starting with any string (x0, . . . , xk)460

that contains λk+mk particles is nS(λk, mk) = DQ(Γk, n−λk−mk)where Γk is the length of the461

complement. Note that Cover’s formula implicitly includes the lower bound on the particles462

on Pk as nS(λk, mk) = 0 of mk < nlow
k . Hence, we have derived our expression for ck from463

Eq. (14) with the same offsets Eq. (20) and strides Eq. (24).464

4 DanceQ465

DanceQ [45] is a high-performance library designed for a wide range of exact diagonaliza-466

tion techniques, serving as a frontend to state-of-the-art numerical libraries like Intel’s Math467

Kernel Library or Petsc [47,48] and Slepc [49,50]. It achieves scalability and efficiency468

by leveraging the divide-and-conquer algorithm outlined before.469

This section provides an overview of DanceQ’s core modules, usage, and performance470

benchmarks. Sec. 4.1 begins by introducing the general layout and its usage. Sec. 4.2 in-471

troduces different implementations of the lookup tables and their performance is evaluated472

in Sec. 4.3. Finally, in Sec. 4.4, we explore DanceQ’s performance in executing MPI-based473

matrix-free matrix-vector multiplication – a key task of the library. For further details, please474

refer to the full documentation [46].475

16

SciPost Physics Codebases Submission

4.1 Core Modules and Usage476

DanceQ’s architecture is built on a hierarchy of interconnected core modules. These include477

the State, Basis, and Operator classes, each playing a pivotal role in enabling high-performance478

computations.479

State class The State class forms the inner core of DanceQ and uses a primitive bit-level480

structure for efficient storage and manipulation of product states. It provides the full func-481

tionality needed by more abstract modules such as the Basis and Operator class. To allow for482

maximal efficiency, the integer length representing a product state must be specified at com-483

pile time. This is done by defining the maximum number of sites potentially used via MaxSites484

and the local Hilbert Space dimension Q. When executed, smaller system sizes can be used485

without any concern.486

#include "State.h"487

488

/* Maximal system size */489

#define MaxSites 128490

491

/* Hilbert space dimension */492

#define Q 2493

494

/* Definition of the State class */495

using State = danceq :: internal ::State <MaxSites ,Q>;496

Basis Class The BasisU1 class, referred to as Basis class, builds upon the State class and im-497

plements our number-conserving algorithm. It manages the lookup tables through a Container498

class, which comes in three implementations described in the next subsection: (i) memory-499

aligned list (default, ContainerTable), (ii) lexicographical order (ContainerDict), and (iii) com-500

binatorial on-the-fly approach (ContainerFly). Users can specify the number of sites and par-501

ticles at runtime, provided the number of sites does not exceed MaxSites and offers sufficient502

space to host the requested particle number.503

#include "BasisU1.h"504

505

/* Definition of the Container class */506

using Container = danceq :: internal :: ContainerTable <State >;507

508

/* Definition of the Basis class */509

using Basis = danceq :: internal ::BasisU1 <Container >;510

Operator Class The Operator Class serves as the interface for the user. It can be constructed511

from the Basis class and supports the input of generic operator strings. Besides its number-512

conserving implementation, it allows for not number-considering systems when built from the513

State class. It further supports different float types by using ScalarType.514

#include "Operator.h"515

516

/* Scalar type for computation */517

using ScalarType = std::complex <double >518

519

/* Definition of the Hamiltonian class from the BasisU1 class520

*/521

using Hamiltonian_U1 = danceq :: internal ::Operator <Basis ,522

ScalarType ,danceq :: Hamiltonian >;523

17

SciPost Physics Codebases Submission

524

/* Definition of the Hamiltonian class from the State class */525

using Hamiltonian_NoU1 = danceq :: internal ::Operator <State ,526

ScalarType ,danceq :: Hamiltonian >;527

This class handles Hamiltonian operators acting on the Hilbert space, as well as Lind-528

bladians operating on the space of density matrices. This flexibility applies to both number-529

conserving and non-number-conserving systems.530

/* Definition of the Lindbladian class from the BasisU1 class531

*/532

using Lindbladian_U1 = danceq :: internal ::Operator <Basis ,533

ScalarType ,danceq :: Lindbladian >;534

535

/* Definition of the Lindbladian class from the State class */536

using Lindbladian_NoU1 = danceq :: internal ::Operator <State ,537

ScalarType ,danceq :: Lindbladian >;538

The interface is inspired by the ITensor library [62], which provides a straightforward input539

via strings. It comes with pre-implemented local operators like S x , S y , and Sz , but also allows540

for the definition of custom local operators. Below you can find an example for a Lindbladian541

operator with a dephasing term acting on site zero.542

/* System size and particle number */543

uint64_t N = 10;544

uint64_t n = 5;545

546

/* Lindbladian with number conservation */547

Linbladian_U1 L(N,n);548

549

/* Heisenberg model with OBC */550

for(uint64_t i = 0; i < N-1; i++){551

L.add_operator (1., {i,(i+1)}, {"Sx","Sx"});552

L.add_operator (1., {i,(i+1)}, {"Sy","Sy"});553

L.add_operator (1., {i,(i+1)}, {"Sz","Sz"});554

}555

556

/* Jump operator acting on the first site */557

L.add_jump_operator (1., {0}, {"Sz"});558

The Operator class is a versatile tool, offering multiple formats for retrieving the matrix.559

In addition to supporting third-party matrix formats, it provides a custom-built sparse matrix560

and shell matrix. The latter one is used for matrix-free applications.561

/* Dense matrix using std::vector <std::vector <std::complex <562

double >>> */563

auto L_dense = L.create_DenseMatrix ();564

565

/* Dense matrix with Eigen using the type Operator ::566

EigenMatrixType */567

auto L_eigen = L.create_EigenDense ();568

569

/* Sparse matrix using the SparseMatrix class */570

auto L_sparse = L.create_SparseMatrix ();571

572

/* Shell matrix using the ShellMatrix class for matrix -free573

multiplication */574

auto L_shell = L.create_ShellMatrix ();575

576

18

SciPost Physics Codebases Submission

/* Sparse matrix with Petsc MatType MATMPIAIJ */577

auto L_sparse_petsc = L.create_PetscSparseMatrix ();578

579

/* Shell matrix with Petsc using the ShellMatrix class */580

auto L_shell_petsc = L.create_PetscShellMatrix ();581

Internally, the Operator class uses a sparse tensor storage to act on any product state. Details582

about the idea and the implementation can be found in Appendix C.583

Setup The core modules are bundled in the header file DanceQ.h. By defining MaxSites and584

Q (the maximum number of sites and the local Hilbert space dimension) before including the585

file, all classes become predefined and ready for use. A full example using the header file is586

given in Appendix D.587

We strongly recommend using CMake to compile the code. Once the necessary paths are set588

correctly (a simple configuration script is included), building and utilizing DanceQ is straight-589

forward. To fully leverage advanced C++ features, such as large-scale sparse MPI operators590

provided by Petsc, additional dependencies are required. We provide preconfigured Docker591

containers with all necessary software installed for various platforms to simplify the installa-592

tion process. This allows for a straightforward setup.593

The repository further includes several physical examples and test cases, exploring Lindbla-594

dian and Hamiltonian systems likewise. These examples demonstrate how to use the different595

frontends and features provided by DanceQ. Once the paths are set correctly—either by edit-596

ing the configuration file or using Docker—the examples can be compiled and executed easily.597

A detailed list of examples, along with instructions on how to run them, can be found in the598

documentation [46].599

4.2 Lookup tables600

An efficient implementation of our multidimensional search algorithm uses two kinds of lookup601

tables. One is used to store the offsets and strides that are computed with Eq. (20) and Eq. (24).602

Both the offsets and strides depend on ni and λi that can not be greater than n ≤ (Q − 1)L.603

Therefore, the memory required to store all possible coefficients for all N subsystems is smaller604

than Nn2 and fits easily on any hardware.605

However, the size of the other type of lookup table scales exponentially with the subsystem606

size, and reducing its volume is the motivation behind our work by introducing more subsys-607

tems. To recall, each subsystem has a lookup table that defines a canonical order within Pi ,608

ignoring the rest of the system: For each subsystem particle number sector ni , the table pro-609

vides a one-to-one mapping between subsystem states |σ⃗(i)〉 and an index, indexi(σ⃗(i)), from610

zero to DQ(Li , ni) − 1. Note that the system Pi has different particle number sectors where611

each has its own zero-based labeling. An example is shown Table 1. The index, together with612

the offset and stride, defines the subsystem contribution ci .613

The size of the lookup table indexi(σ⃗(i)) scales exponentially with the subsystem size: QLi .614

While the overhead coming from this table is manageable and does not hamper performance615

for Li ∼ 10, it quickly becomes a bottleneck for matrix-free applications in large eigenvalue616

problems. Therefore, in order to break the exponential increase, the system is split into multi-617

ple parts, keeping the individual subsystem sizes small. Splitting the system into N = 2 parts,618

as proposed by Ref. [7], helps to delay the problem, but it is an unsatisfying approach for619

L ≳ 30. In these cases, partitioning the system in more than two subsystems is required to620

reduce the memory overhead.621

19

https://www.docker.com/

SciPost Physics Codebases Submission

0 20 40 60 80 100 120

L

0.0

0.2

0.4

0.6

0.8

1.0

ti
m

e
in

a
rb

it
ra

ry
u
n
it

N = 2

N = 3

N = 4

N = 5

N = 6

N = 7

Figure 4: Runtime in arbitrary units to enumerate randomly generated trial states
for a system of size L with Q = 2. N refers to the number of subsystems that are
distributed “most” equally. The vertical lines mark the system size where the memory
of the lookup table with size 2ceil(L/N) exceeds the cache, here 4MB, of the processor.
All computations were done using two unsigned integers with 64 bits each for state
representation.

Implementation622

We have implemented and tested three approaches to encode the lookup table indexi(σ⃗(i)):623

(i) memory-aligned list624

(ii) lexicographical order in a tree-based associative map625

(iii) combinatorial on-the-fly626

The first option uses memory-aligned indices that are accessed using the integer representation627

of the state |σ⃗(i)〉 similar to Ref. [7]. For example, we require two bits to encode a single state628

|q〉 for q = 0, . . . , 3 with Q = 4. We denote the number of bits necessary to store a single state629

by NbitsQ = ceil(log(Q)/ log(2)). The state |3; 2;1; 0〉 with L = 4 spans over eight bits:630

(11100100) where two consecutive bits refer to a single qudit state. The bit string encodes the631

integer 228 and we, therefore, store the index of the state |3;2; 1;0〉 at the 228-th position.632

The second implementation (ii) might be advantageous in the limit of small filling fractions633

n≪ L. A table encoding a system of size L using the (i) requires 2NbitsQ·L entries. However, in634

the limit of small fillings, most entries will never be used. By using a lexicographical order that635

only includes the valid states, the subsystem length can be chosen significantly bigger than in636

the first case.637

Lastly, we can simply exploit Algo. 1 to compute the indices on-the-fly without actually638

storing the subsystem states. We actually use the algorithm to assign the unique indices to the639

subsystem states when tables in form (i) and (ii) are constructed. Again, the precise order is640

arbitrary as long as the mapping is one-to-one.641

4.3 Performance642

For a given length and filling fraction, the performance of the algorithm depends on the number643

of subsystems and their partitioning. To find the optimal choice, we randomly generate a fixed644

20

SciPost Physics Codebases Submission

number of trial states and benchmark the time it takes to retrieve their basis index following645

the general recipe implemented in [46]. The number of states is of order 106. We used an646

Intel i7-7500U (2.70 GHz) processor with a cache size of 4MB for these benchmarks.647

21

SciPost Physics Codebases Submission

8 24 48 64

L

0.125

0.250

0.375

0.500

f

Q = 2

8 16 24 32

L

Q = 3

8 16 24 32

L

Q = 4

1 2 3 4 5

number of subsystems

8 24 48 64

L

0.125

0.250

0.375

0.500

f

Q = 2

8 16 24 32

L

Q = 3

8 16 24 32

L

Q = 4

2 4 6 8 10

number of subsystems

Figure 5: Optimal number of subsystems for two different implementations of the
lookup tables using the memory-aligned list (left) and a lexicographical order (right).
To determine the optimal Nopt

Q , we have chosen the most equal partition and mea-
sured the time it takes to retrieve indices of randomly generated trial states. The
optimal Nopt

Q has the lowest runtime. L refers to the total system size, and Q to
the local Hilbert space dimension. The filling fraction is defined by the number of
particles in the total system divided by the maximal number of particles possible:
f = n

(Q−1)L . We have not shown a computation for the on-the-fly approach (iii), as
the optimal number of subsystems is simply N = L for all cases. We further find that
option (i) is superior for all filling fractions considered here. All computations were
done using a single unsigned integer with 64 bits for state representation.

22

SciPost Physics Codebases Submission

As a first observation, we find that the performance drops significantly when the memory648

of the lookup tables exceeds the L3 cache of the processor. This is demonstrated in Fig. 4,649

which shows the runtime versus system size for different N . The vertical lines mark the point650

where the table exceeds the cache size. Hence, for optimal performance, the required memory651

should not exceed this limit.652

Given the number of subsystems N , the partitioning with the lowest memory usage is the653

one that divides the whole system into the “most” equal parts. At most two different subsystem654

sizes Li are present: ceil(L/N) and floor(L/N). This comes with another advantage, as655

we can use the same lookup tables for all subsystems of equal length, reducing the memory656

consumption further. Hence, we only consider the most equal partitioning of the system for657

the rest of the manuscript.658

We find that the first container option (memory-aligned list) is in almost all cases the best659

choice. This is also true for dilute systems containing only a few particles. Fig. 5 displays the660

optimal number of subsystems for the first two lookup table implementations using the uniform661

partition. The left panel refers to the memory-aligned list (i), and the right panel refers to the662

lexicographical order (ii). By an optimal number of subsystems Nopt
Q , we mean that an equally663

sized partition with N = Nopt
Q has the lowest runtime for our randomly generated test setup.664

We have evaluated the optimal number of subsystems in both cases for fixed filling fraction665

f = n
(Q−1)L and length. In both cases, we see a clear trend that larger systems and larger filling666

fractions require more subsystems for an ideal performance. We note that the figure shows667

some deviations from this trend for larger system sizes for Q > 2.668

To understand the scaling of the Nopt
Q with Q, we look into the most prominent case at669

half-filling using the memory-aligned list. Fig. 6 displays the Nopt
Q versus L ·NbitsQ. To recall,670

NbitsQ = ceil(log(Q)/ log(2)) is the number of bits required to encode a single state of671

dimension Q. We find that the optimal number of subsystems scales linearly with L · NbitsQ:672

Nopt
Q = ceil
�

mQ(L · NbitsQ) + bQ

�

(31)

We find good agreement for different values of Q and mQ ∼ 0.05. This can be understood673

as an optimal subsystem length L/Nopt
Q such that the table can be stored in the cache:674

2
NbitsQ

L

N
opt
Q ≈ 21/mQ for b≪ mQ(L · NbitsQ) (32)

To summarize, we recommend using the most equal partition such that at most two tables675

have to be stored. Eq. (31) can be used to determine the optimal number of subsystems.676

However, in practice, the length should be chosen such that the lookup table footprint is smaller677

since other data needs to be stored in the L3 cache as well.678

4.4 Matrix-free multiplication679

Many algorithms in computational quantum many-body physics rely solely on matrix-vector680

multiplications to build, for example, a Krylov subspace which can used to perform real-time681

evolution, to calculate equilibrium properties via canonical typicality, or to compute ground682

states and excitations (e.g., by deflation techniques [58]), or other eigenvectors using spec-683

tral transformations [63–65]. Krylov space methods are particularly powerful and frequently684

applied to many physical problems due to the sparseness of the Hamiltonian as it reduces the685

complexity from a cubic for a full diagonalization to an often linear scaling with the Hilbert686

space dimension (which itself remains of course exponential in L).687

The bottleneck for exact methods is usually the memory requirement to store the sparse688

Hamiltonian matrix, which scales with the Hilbert space dimension times the number of off-689

diagonal matrix elements per row (which is typical of order L in the case of nearest-neighbor690

23

SciPost Physics Codebases Submission

0 50 100 150 200 250 300 350 400

L · NbitsQ

1

5

9

13

17

21

25

n
u
m

b
e
r

o
f

su
b
sy

st
e
m

s
N

Q = 2, NbitsQ = 1, (m2, b2) = (0.066, 0.178)

Q = 3, NbitsQ = 2, (m3, b3) = (0.049, 0.823)

Q = 4, NbitsQ = 2, (m4, b4) = (0.050, 1.453)

Q = 5, NbitsQ = 3, (m5, b5) = (0.040, 1.794)

Q = 6, NbitsQ = 3, (m6, b6) = (0.039, 2.332)

Figure 6: Optimal number of subsystems for different Q at half filling
(n = L(Q − 1)/2) versus LNbitsQ. For each system size, we use our test setup
with randomly generated trial states and identify the optimal system size plotted on
the y-axis. We find a linear scaling and fit Nopt

Q = mQ(L · NbitsQ + bQ) to extract
the optimal scaling. NbitsQ = ceil(log(Q)/ log(2)) refers to the number of bits
required to encode a single site with local Hilbert space dimension Q.

interactions) for sparse matrix-vector multiplication. Therefore, to reduce the memory further,691

state-of-the-art computations [31–33,38,66–68] do not store this matrix and instead compute692

the action of its elements on the input vector on the fly in a massively parallel way. However, to693

ensure fast computations, each worker process must know the basis states and their associated694

indices. This is the main contribution of our algorithm, as it allows a memory-efficient way to695

perform this type of bookkeeping.696

To understand the scaling of the subsystem size within the full matrix-free multiplica-697

tion [46], we monitored the time it take to perform one such matrix-vector operation. While698

the performance depended crucially on N and the available cache in the last subsection, where699

we only focused on the lookup, we do not observe this behavior in this case. In fact, we find700

that the time depends only slightly on the number of subsystems, and the best performance was701

achieved by using a single “subsystem” of size L (N = 1) – if it fits in the RAM. The dependence702

of the runtime for a single matrix-free matrix-multiplication is shown in Fig. 7. We interpret703

this finding to indicate strong cache interference between data required for the actual multi-704

plications of matrix elements on the vector and data for lookup tables, which means that the705

lookup and the retrieval of the indices play only a secondary role during the full matrix-vector706

multiplication and other operations that take place have to be considered. For example, the707

output wave function (which usually fills up the whole RAM) is constantly edited, and states708

have to be incremented and manipulated throughout the process. Therefore, to obtain the709

best performance, we recommend choosing N small but without consuming any meaningful710

memory. In other words, the memory footprint of each worker process should be the guiding711

principle when choosing N since the computing time in real-world applications only depends712

weakly on N .713

The memory-core ratio is of the order of 4GiB on modern platforms, and we will use a 4 GB714

limit per core as an example for the following discussion. Since memory is the constraining part715

for Krylov space techniques we do not want to block any significant amount of it. However,716

storing the lookup table for a single subsystem N = 1 blocks the available memory, which717

should be used by the wave function and is quickly exhausted (L = 27 for Q = 2). In Fig. 8,718

24

SciPost Physics Codebases Submission

1 2 3 4 5 6

N

0.5

1.0

1.5

2.0

2.5

3.0

t
im

e
in

a
r
b
it

r
a
r
y

u
n
it

H
il

b
e
r
t
s
p
a
c
e

d
im

e
n
s
io

n

L = 64, n = 5

L = 48, n = 6

L = 32, n = 8

L = 24, n = 12

optimal N

Figure 7: Runtime for a single matrix-free matrix-vector multiplication (isotropic
Heisenberg chain) divided by the dimensionality of the problem versus the number
of subsystems. Computations are carried out with the two MPI threads. The red
crosses mark the optimal number of subsystems, as stated in Eq. (33).

we show the memory required by the lookup table. In MPI-based programs in this scenario,719

each worker process is in charge of 4 GiB and has to store its own table. Therefore, it is not720

possible that the lookup table takes more than 4 GiB. This is indicated by the red-shaded area721

where the more subsystems are required to reduce the memory consumption. Blue (yellow)722

color refers to large (exponentially small) fractions of the 4 GiB limits used by the table. The723

default setting of our code and our recommendation is 512kiB, which refers to a subsystem724

length of Li = 16 for Q = 2 [46]:725

Nopt
Q = ceil
�NbitsQ · L

16

�

(33)

This choice is also in agreement with Eq. (31) (bQ = 0) and the linear scaling from Fig. 6 with726

m2 ∼ 1/16. Note that, at most, two lookup tables are required for the most equal partition.727

Red crosses in Fig. 7 mark the optimal number of subsystems for the respective system sizes728

tested.729

5 Conclusion730

We presented an elegant solution to efficiently deal with number-conserving systems in very731

large-scale, massively parallel calculations where the available memory per core limits space732

available for lookup tables to map basis states to their index. While an on-the-fly algorithm733

Algo. 1 exists as the extreme limit with negligible memory requirements, it is the slowest734

solution. The traditional approach [7] using two subsystems is much faster but requires too735

much memory for system sizes coming within reach on exascale machines. Our general divide-736

and-conquer algorithm interpolates between these two limits and provides an optimal balance737

between computational cost and available memory to overcome these limitations.738

We have implemented this algorithm in a general, state-of-the-art, and header-only C++20739

library available at Ref. [46]. The data used in the figures is publicly accessible at Ref. [69].740

The code is user-friendly and allows the exploitation of the full power of large-scale comput-741

ing facilities, making ground-state searches and time evolution for large systems possible. By742

25

SciPost Physics Codebases Submission

1 2 3 4 5 6 7

N

16
24
32
40
48
56
64
72
80
88
96

104
112
120
128

L

memory exceeds
the 4GiB limit

10−9 10−7 10−5 10−2
default
512KB

memory per
core limit

required memory in GiB

Figure 8: The figure displays the fraction of memory used to store the largest lookup
table to the available memory per processor, which we set to 4 GiB here for different
system sizes L and number of equally sized subsystems N (Q = 2). The blue (yellow)
color indicates that a large (exponentially small) portion is used by the lookup table.
The red-shaded area indicates system sizes that require more subsystems in order to
fit the table within the memory of the processor. The bottleneck of exact diagonaliza-
tion is usually memory, and the fraction of memory associated with the table should
be chosen rather small. For each system size L, we have marked the optimal number
of subsystems with a black box where the memory required by the lookup table does
not exceed our default setting of 512kiB [46]. Note that the memory consumption
of the table is independent of the particle sector.

26

SciPost Physics Codebases Submission

combining several nodes via MPI, our implementation is capable of computing ground states743

for systems containing 46 spins (Q = 2) within the zero-magnetization sector. The required744

memory to store the necessary two wave functions is about 120 TiB which can be provided by745

∼ 256 nodes with 512GiB each. Similar to SPINPACK [34] and XDiag [35,38], the forthcom-746

ing version of DanceQ [45] will support the use and automatic detection of spatial symmetries747

following the ansatz developed in Ref. [37]. This makes larger systems accessible as the com-748

plexity is typically reduced by the system size, requiring only ∼ 6 nodes in the example above.749

While the focus of this paper and the accompanying code is on quantum magnetism, it is750

applicable to other problems of many Fermions or Bosons with conserved total particle number.751

The problem of efficiently enumerating states or sequences in lexicographical order extends752

beyond physics and is important in various areas of computer science [51,52].753

We note in closing that our method is formulated for L identical qudits with Q states per754

site. At the expense of additional bookkeeping, it is straightforward to generalize our approach755

to different Q for each site, which is relevant for systems of mixed spin S or, for example, Bose-756

Fermi mixtures [55].757

Acknowledgements758

This work was financially supported by the Deutsche Forschungsgemeinschaft through the clus-759

ter of excellence ML4Q (EXC 2004, project-id 390534769). DJL acknowledges support from760

the QuantERA II Programme that has received funding from the European Union’s Horizon761

2020 research innovation programme (GA 101017733), and from the Deutsche Forschungs-762

gemeinschaft through the project DQUANT (project-id 499347025). We further acknowledge763

support by the Deutsche Forschungsgemeinschaft through CRC 1639 NuMeriQS (project-id764

511713970). RS acknowledges the AFOSR Grant No. FA9550-20-1-0235.765

A Hilbert space dimension766

We consider a tensor product Hilbert space of local Q-dimensional spaces, subject to the con-767

straint that the sum of local excitations n is fixed.768

For Q = 2, the Hilbert space dimension of a sector n= 0, · · · , L can be derived combinato-769

rially and is well known to be determined by the binomial coefficient:770

D2(L, n) =
�

L
n

�

(A.1)

However, determining the dimension of each sector for larger local dimension Q is more771

involved. It is related to the probability of scoring a fixed sum in the throw of L dices with Q772

faces, cf. p. 284, problem 18 in Ref. [70]. In the context of Hilbert space dimensions, one of773

the early applications can be found in Refs. [54,57].774

Here, we provide an elementary derivation of this closed-form equation. We approach this775

problem by defining an equal superposition of all possible computational states776

|Ψ〉=
L
⊗

i=1

�Q−1
∑

i=0

|i〉

�

. (A.2)

Now, to determine the dimension of a sector with a certain magnetization n, we need to identify777

all states exhibiting the correct magnetization. This problem is equivalent to determining the778

27

SciPost Physics Codebases Submission

coefficient of xn of the polynomial f (x) =
�

1+ x + · · ·+ xQ−1
�L

:779

DQ(L, n) = coefxn

�

�

1+ x + · · ·+ xQ−1
�L�

(A.3)

Here, we identified the state |k〉1 with xk. Each computational state exhibiting the correct780

magnetization contributes to the coefficient of xn.781

We evaluate the polynomial using the finite geometric sum782

f (x) =

�Q−1
∑

i=0

x i

�L

=

�

xQ − 1
x − 1

�L

=

�

xQ − 1
�L

(x − 1)L
(A.4)

Then, the denominator is expanded using its Taylor series around x = 0:783

(x − 1)−L = (−1)−L
∞
∑

k=0

1
k!

�k−1
∏

s=0

(L + s)

�

xk = (−1)−L
∞
∑

k=0

�

L − 1+ k
L − 1

�

xk (A.5)

and the nominator is evaluated using the binomial coefficients:784

�

xQ − 1
�L
=

L
∑

k=0

�

L
k

�

xQk(−1)L−k. (A.6)

To obtain the dimension of the sector, Eq. (A.5) and Eq. (A.6) are multiplied and we evaluate785

the coefficient of xn:786

DQ(L, n) =
⌊n/Q⌋
∑

k=0

(−1)k
�

L
k

��

L − 1+ n−Qk
L − 1

�

(A.7)

⌊⌋ is the lower Gauss bracket.787

B Pseudo code788

This section presents the pseudo-code of the most important functions (i), (ii), and (iii) from789

Sec. 2.2. Our DanceQ library initiates the lookup tables that provide the index within a particle790

number sector and all necessary offsets and strides from Eq. (20) and Eq. (24). The following791

functions are implemented by an underlying State class:792

• get_n (|σ⃗〉, k):793

Returns the number of particles in the subsystem Pk.794

• get_minimal_state (l, n):795

Returns the state with index 0 for a system with l sites and n particles. It has to be796

consistent with the lookup tables.797

• is_maximal (|σ⃗〉, k):798

Returns True if the subsystem state on Pk is the last state for its particle number sector799

in P. It has to be consistent with the lookup tables.800

• increment_local (|σ⃗〉, k):801

Returns the next state within the same particle number sector of |σ⃗(k)〉 on subsystem Pk802

according to the lookup table.803

28

SciPost Physics Codebases Submission

Note that all functions have to be consistent with the chosen lookup table. A possible imple-804

mentation to derive lookup tables and the required functions is as follows: We iterate from805

the “right” side to the “left” side of the respective subsystem. If the local state at site i is not806

maximal (̸= |Q−1〉) and the number of excitations nprev on previous sites is greater than one,807

we can increase the state at site i and set the previous sites to the right of i to its minimal state808

defined by nprev−1. This is obtained by setting the remaining excitations nprev−1 as much to809

the “right” as possible.810

We further defined a “container class” that is in charge of the lookup table.811

• get_local_index (|σ⃗〉, k):812

Returns the subsystem index for subsystem Pk: indexk(σ⃗(k)).813

• get_local_state (index, k):814

Returns the subsystem |σ⃗(k)〉 on subsystem Pk with index= indexk(σ⃗(k)) = get_local_index (|σ⃗〉, k).815

This is the reverse function of the previous one.816

Algorithm 2: Function (i): get_index
Data: |σ⃗〉
index= 0 /* initializing variables */
λ= 0
for 0≤ k < N do

nk = get_n(|σ⃗〉, k) /* local particle number in Pk */
ik = get_local_index(|σ⃗〉, k) /* index from the lookup table */
ck = offsetk(nk,λ) + ik · stridek(nk,λ) /* contribution of Pk as defined in
Eq. (14) */
index= index+ ck
λ= λ+ nk

end
return index;

C Sparse tensor storage817

A core module of the DanceQ library is the Operator class, which provides an easy interface818

to handle arbitrary tensor products defined on a system consisting of L sites with a local Hilbert819

space dimension Q. Besides handling and organizing any input, it allows for a highly optimized820

on-the-fly matrix-vector multiplication without storing the exponentially large matrix. For op-821

timal performance, the Operator class employs a similar divide-and-conquer approach. This822

involves merging several local terms that act on the same sites, a strategy that enhances effi-823

ciency and reduces computational complexity. In particular, we identify subclusters of Ntensor824

sites of the system and merge all local operators fully supported in this subcluster into a single825

sparse matrix of size QNtensor .826

Consider for example a one-dimensional spin chain of length L = 30 (we use periodic827

boundary conditions where we identify site 30 refers site 0):828

H =
29
∑

i=0

S x
i S x

i+1 + S y
i S y

i+1 + Sz
i Sz

i+1 +
29
∑

i=0

Sz
i (C.1)

To apply the Hamiltonian to a product state, we have execute all 4 · 30 local operators. In829

order to reduce this complexity that scales with L, we assign three overlapping subclusters of830

29

SciPost Physics Codebases Submission

Algorithm 3: Function (ii): increment
Data: |σ⃗〉
λ= 0
Γ = 0
for 1≤ j ≤ N do

k = N − j /* iterate backwards through all subsystems starting with the
last */

nk = get_n(|σ⃗〉, k)
if not is_maximal(|σ⃗〉, k) then /* increase state while persevering the
particle number nk */
|γ⃗(k)〉= increment_local (|σ⃗〉, k) /* increase the state |Ψ〉 locally on

Pk within the sector nk */
|γ⃗(k+1,...,N−1)〉= get_minimal_state (Γ ,λ) /* minimal state on Pk+1 to

PN−1 with length Γ and λ particles */
|γ⃗〉= |σ⃗(0,...,k−1)〉

⊗

|γ⃗(k)〉
⊗

|γ⃗(k+1,...,N−1)〉
return |γ⃗〉

else if λ > 0 and nk < (Q−1)Lk then /* increase state particle number in Pk

*/
|γ⃗(k)〉= get_minimal_state (Lk, nk + 1) /* get the minimal state on Pk

with length Lk and nk + 1 particles */
|γ⃗(k+1,...,N−1)〉= get_minimal_state (Γ ,λ− 1) /* minimal state on Pk+1

to PN−1 with length Γ and λ− 1 particles */
|γ⃗〉= |σ⃗(0,...,k−1)〉

⊗

|γ⃗(k)〉
⊗

|γ⃗(k+1,...,N−1)〉
return |γ⃗〉

end
Γ = Γ + Lk
λ= λ+ nk

end
return get_minimal_state (L, n) /* the input state is maximal; return the
minimal state */

Algorithm 4: Function (iii): get_state
Data: index
λ= 0
Γ = L
for 0≤ k < N − 1 do

Determine nk s.t. offsetk (nk,λ)≤ index< offsetk (nk + 1,λ) /* determine the
correct particle number on Pk */
index= index− offsetk (nk,λ)
ik = index/stridek (nk,λk) /* determine the local index in the particle
number sector nk */
|σ⃗(k)〉= get_local_state (ik, k) /* reverse lookup table */
index= index− ik · stridek (nk,λk)
λ= λ+ nk

end
|σ⃗(N−1)〉= get_local_state (index, k) /* last subsystem */
|σ⃗〉=
⊗

k |σ⃗(k)〉
return |σ⃗〉

30

SciPost Physics Codebases Submission

size Ntensor = 11:831

C0 = {0, . . . , 10}, C1 = {10, . . . , 20}, C2 = {0, 20, . . . , 29}

Note that the subclusters need to overlap to encompass all terms. This allows us only to832

store three sparse matrices Si of size 211, each containing all operators fully supported on the833

individual clusters Ci . For example, all terms that act solely on C0,834

HC0
=

9
∑

i=0

S x
i S x

i+1 + S y
i S y

i+1 + Sz
i Sz

i+1 +
10
∑

i=0

Sz
i (C.2)

are compressed into S0. Thus, applying the large tensor matrix reduces the complexity of835

iterating over 4 ·30 local operators to only three operators resulting in less state manipulations836

and computational overhead. Despite the enhanced dimension of the matrices Si compared837

to the two-body terms in Eq. (C.1), it is bounded by Ntensor and can be chosen such it easily838

fits in the cache of the processor. We have chosen the default such that the dimension does839

not exceed QNtensor = 2048.840

Now, given an input stateψ, we can extract the corresponding columnindex of the sparse841

matrix for a given cluster Ci by:842

columnindex=
|Ck|−1
∑

k=0

Qkψ[k] (C.3)

In our implementation, this index points directly to the memory-aligned coefficients and ele-843

ments of Si . To further enhance the computation, the class works with statemasks which are844

stored within the sparse matrix. Hence, instead of storing the sparse matrix of size QNtensor×QNtensor ,845

we directly store each column of this matrix as a sparse vector.846

While the above description refers to only nearest-neighbor operators acting on two sites,847

its generalization is straightforward and implemented in the class. Note that the choice of848

subclusters does not correspond the partition of our multidimensional search algorithm.849

To apply a column of the cluster-local operator to an element of the input vector (with a850

corresponding basis state), we effectively iterate over all configurations on the complement of851

the cluster for each nonzero element of the sparse matrix to calculate the contributions to the852

result vector. The bookkeeping in the innermost loop is performed using cheap bitwise logical853

operations.854

D Example code855

This section presents a brief example demonstrating how to compute the ground state and856

first excited state of a spin chain in a tilted field, along with the magnetization measurement857

at the first site. The code utilizes MPI and our native Lanczos implementation. The code858

prints the energies Ek together with their expectation value 〈Ψk |O |Ψk 〉. The Hamiltonian859

and observable are defined as follows:860

H =
L−1
∑

i=0

1
2

�

S+i S−i+1 + S−i S+i+1

�

+ Sz
i Sz

i+1 + iSz
i (D.1)

O = Sz
0 (D.2)

861

31

SciPost Physics Codebases Submission

#include <iostream >862

#include <mpi.h>863

864

/* Eigen is required to diagonalize the projection onto the865

Krylov subspace */866

#include <Eigen/Dense >867

#include <Eigen/Eigenvalues >868

869

/* Maximal system size */870

#define MaxSites 64871

872

/* Hilbert space dimension */873

#define Q 2874

875

/* ScalarType */876

#define ScalarType double877

878

#include "DanceQ.h"879

using namespace danceq;880

881

882

int main(int argc , char *argv []) {883

884

/* Rank number */885

int myrank = 0;886

887

/* Initializes MPI */888

MPI_Init (&argc , &argv);889

890

/* Number of MPI ranks */891

int world_size;892

MPI_Comm_size(MPI_COMM_WORLD , &world_size);893

894

/* Rank number */895

MPI_Comm_rank(MPI_COMM_WORLD , &myrank);896

897

/* Number of particles */898

uint64_t n = 14;899

900

/* System size */901

uint64_t L = 28;902

903

/* number of states */904

uint64_t number_of_states = 4;905

906

/* Hamiltonian */907

Hamiltonian_U1 H(L,n);908

909

/* XXX -Heisenberg model with open boundary conditions and a910

tilted field */911

for(uint64_t i = 0; i < L-1; i++){912

H.add_operator (.5, {i,(i+1)%L}, {"S+","S-"});913

H.add_operator (.5, {i,(i+1)%L}, {"S-","S+"});914

H.add_operator (1., {i,(i+1)%L}, {"Sz","Sz"});915

H.add_operator(static_cast <double >(i), {i}, {"Sz"});916

}917

918

32

SciPost Physics Codebases Submission

/* Information */919

H.info();920

921

/* Observable */922

Hamiltonian_U1 O(L,n);923

924

/* Operator measuring the magnetization of the first site925

*/926

O.add_operator (1., {0}, {"Sz"});927

928

auto O_matrix = O.create_ShellMatrix ();929

930

std::vector <Vector > states;931

auto data = lanczos(H, number_of_states , &states /* returns932

eigen states if this is not nullptr */);933

for(uint64_t s_for = 0UL; s_for < data.size(); s_for ++){934

auto obs = O_matrix.get_expectation_value(states[s_for935

]);936

if(myrank == 0){937

std::cout << "[main] - E_" << s_for << " = " <<938

data[s_for] << ", O_" << s_for << " = " << obs << std::endl;939

}940

}941

942

/* Finalizes MPI *.943

MPI_Finalize ();944

945

return 0;946

}947

References948

[1] H. Bethe, Zur Theorie der Metalle, Zeitschrift für Physik 71(3), 205 (1931),949

doi:10.1007/BF01341708.950

[2] A. J. Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics 303(1), 2951

(2003), doi:https://doi.org/10.1016/S0003-4916(02)00018-0.952

[3] A. J. Kitaev, Anyons in an exactly solved model and beyond, Annals of Physics 321(1), 2953

(2006), doi:https://doi.org/10.1016/j.aop.2005.10.005.954

[4] A. Georges, G. Kotliar, W. Krauth and M. J. Rozenberg, Dynamical mean-field theory of955

strongly correlated fermion systems and the limit of infinite dimensions, Reviews of Modern956

Physics 68(1), 13 (1996), doi:10.1103/RevModPhys.68.13.957

[5] T. Giamarchi, Quantum Physics in One Dimension, Oxford University Press, ISBN958

9780198525004, doi:10.1093/acprof:oso/9780198525004.001.0001 (2003).959

[6] M. Hermele, M. P. A. Fisher and L. Balents, Pyrochlore photons: The U(1) spin liq-960

uid in a S = 1
2 three-dimensional frustrated magnet, Phys. Rev. B 69, 064404 (2004),961

doi:10.1103/PhysRevB.69.064404.962

[7] H. Q. Lin, Exact diagonalization of quantum-spin models, Phys. Rev. B 42, 6561 (1990),963

doi:10.1103/PhysRevB.42.6561.964

33

https://doi.org/10.1007/BF01341708
https://doi.org/https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1093/acprof:oso/9780198525004.001.0001
https://doi.org/10.1103/PhysRevB.69.064404
https://doi.org/10.1103/PhysRevB.42.6561

SciPost Physics Codebases Submission

[8] A. W. Sandvik and J. Kurkijärvi, Quantum Monte Carlo simulation method for spin systems,965

Phys. Rev. B 43, 5950 (1991), doi:10.1103/PhysRevB.43.5950.966

[9] S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev.967

Lett. 69, 2863 (1992), doi:10.1103/PhysRevLett.69.2863.968

[10] U. Schollwöck, The density-matrix renormalization group in the age of matrix product969

states, Annals of Physics 326(1), 96 (2011), doi:10.1016/j.aop.2010.09.012.970

[11] C. Lanczos, An iteration method for the solution of the eigenvalue problem of lin-971

ear differential and integral operators, J. Res. Natl. Bur. Stand. B 45, 255 (1950),972

doi:10.6028/jres.045.026.973

[12] W. E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue974

problem, Quarterly of Applied Mathematics 9(1), 17 (1951).975

[13] A. S. Householder, Unitary triangularization of a nonsymmetric matrix, J. ACM 5(4),976

339–342 (1958), doi:10.1145/320941.320947.977

[14] G. H. Golub and H. A. van der Vorst, Eigenvalue computation in the 20th cen-978

tury, Journal of Computational and Applied Mathematics 123(1), 35 (2000),979

doi:https://doi.org/10.1016/S0377-0427(00)00413-1.980

[15] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equation of981

State Calculations by Fast Computing Machines, The Journal of Chemical Physics 21(6),982

1087 (1953), doi:10.1063/1.1699114.983

[16] E. Fermi, J. R. Pasta and S. M. Ulam, Studies of nonlinear problems i, Tech. rep., Los984

Alamos Report LA-1940, doi:10.2172/4376203 (1955).985

[17] B. J. Alder and T. E. Wainwright, Studies in Molecular Dynamics. I. General Method, The986

Journal of Chemical Physics 31(2), 459 (1959), doi:10.1063/1.1730376.987

[18] E. N. Lorenz, Deterministic nonperiodic flow, Journal of Atmospheric Sciences 20(2), 130988

(1963), doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.989

[19] W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications,990

Biometrika 57(1), 97 (1970), doi:10.1093/biomet/57.1.97.991

[20] H. O. Pritchard, F. H. Sumner and G. Gee, The application of electronic digital computers992

to molecular orbital problems i. the calculation of bond lengths in aromatic hydrocarbons,993

Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences994

226(1164), 128 (1954), doi:10.1098/rspa.1954.0243.995

[21] R. Orbach, Antiferromagnetic magnon dispersion law and bloch wall energies in ferromag-996

nets and antiferromagnets, Phys. Rev. 115, 1181 (1959), doi:10.1103/PhysRev.115.1181.997

[22] L. F. Mattheiss, Antiferromagnetic linear chain, Phys. Rev. 123, 1209 (1961),998

doi:10.1103/PhysRev.123.1209.999

[23] G. Dresselhaus, Ferro- and antiferromagnetism in a cubic cluster of spins, Phys. Rev. 126,1000

1664 (1962), doi:10.1103/PhysRev.126.1664.1001

[24] J. C. Bonner and M. E. Fisher, The entropy of an antiferromagnet in a magnetic field, Pro-1002

ceedings of the Physical Society 80(2), 508 (1962), doi:10.1088/0370-1328/80/2/318.1003

34

https://doi.org/10.1103/PhysRevB.43.5950
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.6028/jres.045.026
https://doi.org/10.1145/320941.320947
https://doi.org/https://doi.org/10.1016/S0377-0427(00)00413-1
https://doi.org/10.1063/1.1699114
https://doi.org/10.2172/4376203
https://doi.org/10.1063/1.1730376
https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1098/rspa.1954.0243
https://doi.org/10.1103/PhysRev.115.1181
https://doi.org/10.1103/PhysRev.123.1209
https://doi.org/10.1103/PhysRev.126.1664
https://doi.org/10.1088/0370-1328/80/2/318

SciPost Physics Codebases Submission

[25] J. C. Bonner and M. E. Fisher, Linear magnetic chains with anisotropic coupling, Phys.1004

Rev. 135, A640 (1964), doi:10.1103/PhysRev.135.A640.1005

[26] C. Kawabata, Statistical Mechanics of the Finite Heisenberg Model. II, Journal of the1006

Physical Society of Japan 28(4), 861 (1970), doi:10.1143/JPSJ.28.861.1007

[27] V. Mubayi, C. K. Majumdar and K. Krishan, Distribution of Zeros of the Partition Func-1008

tion for the Finite Two-Dimensional Heisenberg Model, Phys. Rev. B 8, 3305 (1973),1009

doi:10.1103/PhysRevB.8.3305.1010

[28] J. Oitmaa and D. D. Betts, The ground state of two quantum models of magnetism, Cana-1011

dian Journal of Physics 56(7), 897 (1978), doi:10.1139/p78-120.1012

[29] G. E. Moore, Cramming more components onto integrated circuits, Electronics Magazine1013

38 (1965).1014

[30] G. E. Moore, Cramming more components onto integrated circuits, Reprinted from Elec-1015

tronics, volume 38, number 8, April 19, 1965, pp.114 ff., IEEE Solid-State Circuits Society1016

Newsletter 11(3), 33 (2006), doi:10.1109/N-SSC.2006.4785860.1017

[31] A. Wietek, Topological states of matter in frustrated quantum magnetism, Universität1018

Innsbruck, Ph.D. thesis (2017).1019

[32] A. M. Läuchli, J. Sudan and R. Moessner, S = 1
2 kagome Heisenberg antiferromagnet1020

revisited, Phys. Rev. B 100, 155142 (2019), doi:10.1103/PhysRevB.100.155142.1021

[33] R. Schäfer, Magnetic Frustration in Three Dimensions, TU Dresden, Ph.D. thesis (2022).1022

[34] Joerg Schulenburg, Spinpack (2016).1023

[35] Alexander Wietek, XDiag (2024).1024

[36] A. Weiße, Divide and conquer the Hilbert space of translation-symmetric spin systems, Phys.1025

Rev. E 87, 043305 (2013), doi:10.1103/PhysRevE.87.043305.1026

[37] R. Schäfer, I. Hagymási, R. Moessner and D. J. Luitz, Pyrochlore S = 1
2 Heisen-1027

berg antiferromagnet at finite temperature, Phys. Rev. B 102, 054408 (2020),1028

doi:10.1103/PhysRevB.102.054408.1029

[38] A. Wietek and A. M. Läuchli, Sublattice coding algorithm and distributed memory paral-1030

lelization for large-scale exact diagonalizations of quantum many-body systems, Phys. Rev.1031

E 98, 033309 (2018), doi:10.1103/PhysRevE.98.033309.1032

[39] J. Hubbard, Electron correlations in narrow energy bands, Proc. Roy. Soc. (London), Ser.1033

A (1963).1034

[40] H. Lin, J. Gubernatis, H. Gould and J. Tobochnik, Exact Diagonalization Methods for1035

Quantum Systems, Computer in Physics 7(4), 400 (1993), doi:10.1063/1.4823192.1036

[41] M. Sharma and M. Ahsan, Organization of the Hilbert space for exact diagonal-1037

ization of Hubbard model, Computer Physics Communications 193, 19 (2015),1038

doi:https://doi.org/10.1016/j.cpc.2015.03.014.1039

[42] E. R. Gagliano, E. Dagotto, A. Moreo and F. C. Alcaraz, Correlation functions of the anti-1040

ferromagnetic Heisenberg model using a modified Lanczos method, Phys. Rev. B 34, 16771041

(1986), doi:10.1103/PhysRevB.34.1677.1042

35

https://doi.org/10.1103/PhysRev.135.A640
https://doi.org/10.1143/JPSJ.28.861
https://doi.org/10.1103/PhysRevB.8.3305
https://doi.org/10.1139/p78-120
https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.1103/PhysRevB.100.155142
https://doi.org/10.1103/PhysRevE.87.043305
https://doi.org/10.1103/PhysRevB.102.054408
https://doi.org/10.1103/PhysRevE.98.033309
https://doi.org/10.1063/1.4823192
https://doi.org/https://doi.org/10.1016/j.cpc.2015.03.014
https://doi.org/10.1103/PhysRevB.34.1677

SciPost Physics Codebases Submission

[43] J. M. Zhang and R. X. Dong, Exact diagonalization: the bose–hubbard model as an example,1043

European Journal of Physics 31(3), 591 (2010), doi:10.1088/0143-0807/31/3/016.1044

[44] M. Kawamura, K. Yoshimi, T. Misawa, Y. Yamaji, S. Todo and N. Kawashima, Quan-1045

tum lattice model solver Hφ, Computer Physics Communications 217, 180 (2017),1046

doi:10.1016/j.cpc.2017.04.006.1047

[45] Source code of DanceQ, https://gitlab.com/DanceQ/danceq.1048

[46] Documentation of DanceQ, https://DanceQ.gitlab.io/danceq.1049

[47] S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman,1050

E. Constantinescu, L. Dalcin, A. Dener, V. Eijkhout, J. Faibussowitsch et al., PETSc/-1051

TAO users manual, Tech. Rep. ANL-21/39 - Revision 3.21, Argonne National Laboratory,1052

doi:10.2172/2205494 (2024).1053

[48] S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman, E. M.1054

Constantinescu, L. Dalcin, A. Dener, V. Eijkhout, J. Faibussowitsch et al., PETSc Web page,1055

https://petsc.org/ (2024).1056

[49] V. Hernández, J. E. Román and V. Vidal, Slepc: Scalable library for eigenvalue prob-1057

lem computations, In J. M. L. M. Palma, A. A. Sousa, J. Dongarra and V. Hernán-1058

dez, eds., High Performance Computing for Computational Science — VECPAR 2002, pp.1059

377–391. Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN 978-3-540-36569-3,1060

doi:https://doi.org/10.1007/3-540-36569-9_25 (2003).1061

[50] V. Hernandez, J. E. Roman and V. Vidal, Slepc: A scalable and flexible toolkit for the1062

solution of eigenvalue problems, ACM Trans. Math. Softw. 31(3), 351–362 (2005),1063

doi:10.1145/1089014.1089019.1064

[51] J. P. M. Schalkwijk, An algorithm for source coding, IEEE Transactions on Information1065

Theory 18(3), 395 (1972), doi:10.1109/TIT.1972.1054832.1066

[52] T. M. Cover, Enumerative source encoding, IEEE Transactions on Information Theory1067

19(1), 73 (1973), doi:10.1109/TIT.1973.1054929.1068

[53] J. Schnack, P. Hage and H.-J. Schmidt, Efficient implementation of the Lanczos1069

method for magnetic systems, Journal of Computational Physics 227(9), 4512 (2008),1070

doi:10.1016/j.jcp.2008.01.027.1071

[54] K. Bärwinkel, H. J. Schmidt and J. Schnack, Structure and relevant dimension of the1072

Heisenberg model and applications to spin rings, Journal of Magnetism and Magnetic1073

Materials 212(1), 240 (2000), doi:10.1016/S0304-8853(99)00579-X.1074

[55] A. I. Streltsov, O. E. Alon and L. S. Cederbaum, General mapping for bosonic1075

and fermionic operators in Fock space, Phys. Rev. A 81, 022124 (2010),1076

doi:10.1103/PhysRevA.81.022124.1077

[56] A. Szabados, P. Jeszenszki and P. R. Surján, Efficient iterative diagonalization of the1078

bose–hubbard model for ultracold bosons in a periodic optical trap, Chemical Physics 401,1079

208 (2012), doi:https://doi.org/10.1016/j.chemphys.2011.10.003, Recent advances in1080

electron correlation methods and applications.1081

[57] L. Maciej, S. Anna, A. Veronica, D. Bogdan, S. Aditi and S. Ujjwal, Ultracold atomic gases1082

in optical lattices: mimicking condensed matter physics and beyond, Advances in Physics1083

56(2), 243 (2007), doi:10.1080/00018730701223200.1084

36

https://doi.org/10.1088/0143-0807/31/3/016
https://doi.org/10.1016/j.cpc.2017.04.006
https://gitlab.com/DanceQ/danceq
https://DanceQ.gitlab.io/danceq
https://doi.org/10.2172/2205494
https://petsc.org/
https://doi.org/https://doi.org/10.1007/3-540-36569-9_25
https://doi.org/10.1145/1089014.1089019
https://doi.org/10.1109/TIT.1972.1054832
https://doi.org/10.1109/TIT.1973.1054929
https://doi.org/10.1016/j.jcp.2008.01.027
https://doi.org/10.1016/S0304-8853(99)00579-X
https://doi.org/10.1103/PhysRevA.81.022124
https://doi.org/https://doi.org/10.1016/j.chemphys.2011.10.003
https://doi.org/10.1080/00018730701223200

SciPost Physics Codebases Submission

[58] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Society for Industrial and1085

Applied Mathematics, doi:10.1137/1.9781611970739 (2011).1086

[59] F. Gray, Pulse code communication., United States Patent Number 2632058. (1953).1087

[60] O. Di Matteo, A. McCoy, P. Gysbers, T. Miyagi, R. M. Woloshyn and P. Navrátil, Im-1088

proving hamiltonian encodings with the gray code, Phys. Rev. A 103, 042405 (2021),1089

doi:10.1103/PhysRevA.103.042405.1090

[61] D. H. Lehmer, Teaching combinatorial tricks to a computer (1960).1091

[62] M. Fishman, S. R. White and E. M. Stoudenmire, The ITensor Software Li-1092

brary for Tensor Network Calculations, SciPost Phys. Codebases p. 4 (2022),1093

doi:10.21468/SciPostPhysCodeb.4.1094

[63] D. J. Luitz, N. Laflorencie and F. Alet, Many-body localization edge in1095

the random-field Heisenberg chain, Phys. Rev. B 91(8), 081103 (2015),1096

doi:10.1103/PhysRevB.91.081103.1097

[64] P. Sierant, M. Lewenstein and J. Zakrzewski, Polynomially Filtered Exact Diagonalization1098

Approach to Many-Body Localization, Physical Review Letters 125(15), 156601 (2020),1099

doi:10.1103/PhysRevLett.125.156601.1100

[65] D. J. Luitz, Polynomial filter diagonalization of large Floquet unitary operators, SciPost1101

Phys. 11(2), 021 (2021), doi:10.21468/SciPostPhys.11.2.021.1102

[66] K. De Raedt, K. Michielsen, H. De Raedt, B. Trieu, G. Arnold, M. Richter,1103

T. Lippert, H. Watanabe and N. Ito, Massively parallel quantum com-1104

puter simulator, Computer Physics Communications 176(2), 121 (2007),1105

doi:https://doi.org/10.1016/j.cpc.2006.08.007.1106

[67] H. De Raedt, F. Jin, D. Willsch, M. Willsch, N. Yoshioka, N. Ito, S. Yuan and K. Michielsen,1107

Massively parallel quantum computer simulator, eleven years later, Computer Physics Com-1108

munications 237, 47 (2019), doi:https://doi.org/10.1016/j.cpc.2018.11.005.1109

[68] R. Schäfer, B. Placke, O. Benton and R. Moessner, Abundance of Hard-Hexagon Crys-1110

tals in the Quantum Pyrochlore Antiferromagnet, Phys. Rev. Lett. 131, 096702 (2023),1111

doi:10.1103/PhysRevLett.131.096702.1112

[69] R. Schäfer and D. J. Luitz, Data for "DanceQ: High-performance library for number con-1113

serving bases" [arXiv:2407.14591], doi:10.5281/zenodo.12798598 (2024).1114

[70] W. Feller, An Introduction to Probability Theory and Its Applications, Bd. 1-2. Wiley, ISBN1115

9780471257097 (1957).1116

37

https://doi.org/10.1137/1.9781611970739
https://doi.org/10.1103/PhysRevA.103.042405
https://doi.org/10.21468/SciPostPhysCodeb.4
https://doi.org/10.1103/PhysRevB.91.081103
https://doi.org/10.1103/PhysRevLett.125.156601
https://doi.org/10.21468/SciPostPhys.11.2.021
https://doi.org/https://doi.org/10.1016/j.cpc.2006.08.007
https://doi.org/https://doi.org/10.1016/j.cpc.2018.11.005
https://doi.org/10.1103/PhysRevLett.131.096702
https://doi.org/10.5281/zenodo.12798598

	Introduction
	Overview
	The problem
	The code

	The algorithm
	A concrete example
	General recipe
	The Offset
	The Stride

	Two important limits
	Two subsystems (N=2)
	L subsystems (N=L)

	Enumerative encoding

	DanceQ
	Core Modules and Usage
	Lookup tables
	Performance
	Matrix-free multiplication

	Conclusion
	Hilbert space dimension
	Pseudo code
	Sparse tensor storage
	Example code
	References

