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1 Introduction and Summary

High-energy states of Quantum Field Theory (QFT) and their various properties remain
a largely unexplored terrain. Such states are very interesting, however, as they are
believed to offer important insights into chaos, thermalization, and the emergence of
nontrivial phases of matter including hydrodynamics and superfluids among others
[1–4]. In the case of conformal field theories (CFTs), one at least has the advantage
that high-energy data is intrinsically discrete and thus, perhaps, the connection between
chaos and CFTs can more easily be studied. In addition, high energy CFT data is useful
in order to study more general QFTs, which can be thought of as relevant deformations
of CFTs. Specifically, in the Hamiltonian Truncation framework for describing such
QFTs, the more high-energy CFT data is available, the more accurately one can capture
generic QFT observables [5]. Yet despite the need for such high-energy data, until
recently, it has been very challenging to access high-energy CFT states using existing
methods. The fuzzy sphere approach to CFT data offers a new tool that can obtain
such states [6–15]. Indeed, these high-energy states can be computed numerically by
diagonalizing the Hamiltonian of a dynamical system of a large number of interacting
fermions in the lowest Landau level (LLL), living on a sphere in a monopole background.
As the number of fermions is enlarged, with their interactions tuned appropriately to
quantum criticality, one realizes an increasing number of approximate CFT states near
the ground-state of the system.

A natural question which then arises is how to test that these numerically computed
states approximate CFT physics rather than simply a set of interacting non-relativistic
fermions. For example - how does one determine the effective UV-cutoff for the emer-
gent IR CFT states? One way to do this is to examine the conformal structure by
constructing the special conformal generators using the operators of the microscopic
fermionic theory and then employ these to directly test conformality.1 In this paper,
we will take a step in this direction, by focusing on the fuzzy sphere realization of the
3d Ising CFT. Our goal will be to build approximate conformal generators and check
aspects of conformality, including the conformal algebra, numerically, for the IR CFT
states. We will also use the algebra as a way of extracting a rough CFT UV-cutoff from
the numerical data. The hope is then that quantifying the range of emergent confor-
mality will aid in identifying reliable high-energy CFT states for future work.

The fuzzy sphere framework has two important advantages which allow for a sys-
tematic improvement of CFT measurements: The first, is that it preserves rotational

1A similar approach has been taken in 2d lattice models with a CFT fixed point [16, 17], where
one constructs all the generators of the conformal algebra in terms of the underlying lattice operators.
See also [18] for a different construction of the 2d conformal algebra.
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invariance perfectly, allowing one to more easily classify states and to relate microscopic
fermionic operators to emergent IR CFT operators. The second, is that the interactions
on the sphere are local and there is a large energy gap for single particle excitations
above the LLL. Consequently, all corrections to CFT observables are also local. In other
words, at criticality all CFT violations come from local irrelevant operators generated
along the RG-flow to the Ising CFT. We can then significantly improve the results
through the use of effective theory and conformal perturbation theory [19].

In particular, it is important to emphasize that our goal will not be to use the fuzzy
sphere to independently verify the precise results of the conformal bootstrap. Rather,
as we are ultimately interested in higher-energy CFT states, we are going to use the
most accurate low-energy data of the conformal bootstrap in order to tune to the critical
point. As we describe in detail in section 4.2, we will choose microscopic couplings in
order to set both the coefficients of ϵ and ϵ′ approximately to zero. However, we will
find that this tuning is insufficient to obtain accurate special conformal generators.
The generators are naturally constructed from the fuzzy sphere energy density local
operator, but this operator near the IR CFT fixed point contains corrections from both
irrelevant primary operators as well as irrelevant descendant operators. The irrelevant
descendant operators do not contribute to the spectrum, but do modify the conformal
generators. Therefore, we will require additional tuning in order to obtain improved
generators. Our procedure for tuning is described in section 4.3.

Armed with these improved special conformal generators (whose matrix elements
agree with CFT expectations at the few percent level for low-energy states), we will
report on various detailed checks of the conformal structure. These include numerical
tests of the conformal algebra, the existence of primary states (as states annihilated
by the special conformal generator), as well as the spectrum of the conformal Casimir.
The results are presented in sections 5.1, 5.3, and 5.4. Very roughly, we find that for
N = 16, the conformal structure appears to break down at energies of ∼ 6. Beyond
that scale, for example, it is difficult to reliably identify primaries.

The results presented here can be used to improve the fuzzy sphere program in
various directions: perhaps of utmost importance is the need to push numerically to
higher values of N so that the cutoff is increased. This would be highly desirable for
both the study of chaos as well as for Hamiltonian truncation applications. Relatedly,
it would be useful to improve the accuracy of CFT measurements. This can be done
by considering a larger space of couplings in the UV Hamiltonian. Using the larger
parameter space should then allow for better tuning to criticality, for example by con-
sidering more of the λn terms (defined in section 2) to set several irrelevant operator
coefficients to zero. The generators can similarly be improved systematically. The
result should be sensible conformal structure stretching to higher energies, indicating

– 3 –



many more healthy states. Finally, for the above mentioned applications, it would also
be advantageous to use the same tuning approach to improve any local operators, by
constructing combinations of UV operators, which come closer to representing IR CFT
operators. Such combinations can then be used to extract more accurate CFT OPE
coefficients for excited states, starting from the results in [7].

Comment on notation: capital letters (A,B) denote indices for the embedding space
description of S2, lower-case letters (a, b) denote intrinsic S2 indices (θ, ϕ), and Greek
letters (µ, ν) denote R× S2 indices (t, θ, ϕ).

2 Lightning Fuzzy Sphere Review

The system of the lowest Landau level (LLL) at half-filling on a fuzzy sphere has been
covered in many places (see e.g. [20]), and the following review will be extremely brief
and is mainly to establish conventions. We restrict to the case where the action is a
sum of terms that are quadratic or quartic in nonrelativistic fermion fields ψ:

S = S2 + S4,

S2 =

∫
dtd2x

√
g

[
ψ†(iDt −

D2

2M
+ hσx)ψ

]
,

S4 = −
∫
dtd2x

√
g
∑
n

[
λn(ψ

†ψ)∇⃗2n(ψ†ψ)− λn,z(ψ†σzψ)∇⃗2n(ψ†σzψ)
]
.

(2.1)

The covariant derivative is Da = ∇a+ iAa, where Aa is a background gauge field.
We then take space to be a sphere S2 with radius R, ds2 = gabdx

adxb = R2(dθ2 +

sin2 θdϕ2), and the background gauge field to be that of a magnetic monopole,

A = s cos θdϕ, (2.2)

with flux through the surface of the sphere given by
∫
dA = 4πs.2 Because of the

background flux, the lowest energy states are the LLL states. Restricting to the LLL
contains 2s+1 degenerate orbitals for each spin, in which the fermions can be expanded

2We have used differential forms on S2 to express A, but one also commonly sees these formulas
for the monopole in vector calculus notation in R3, as follows. The unit vector êϕ ≡ (− cos θ, sin θ, 0)

is related to dϕ by dϕ ∼=
√
gϕϕêϕ = 1

R sin θ êϕ, and then the vector A can be written A⃗ = −êϕ s
R cot θ.

The magnetic field is B⃗ = ∇× A⃗ = s
R2 r̂, and the flux is R2

∫
d2Ωr̂ · B⃗ =

∫
dA.
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as

ψi(Ω) =
1

R

s∑
m=−s

Φm(Ω)cm,i, (i =↑, ↓), (2.3)

with

Φm(Ω) = Nme
imϕ coss+m

(
θ

2

)
sins−m

(
θ

2

)
, N2

m =
(2s+ 1)!

4π(s+m)!(s−m)!
. (2.4)

Each state at half-filling has N = 2s+ 1 fermions.
The restriction to the LLL is a UV regulator, which implements a rotationally

invariant UV cutoff on length scales shorter than Λ−1UV ∼ |B|−1/2, where |B| is the
background magnetic field. One way to see this is to look at how the completeness
relation for the sum over modes is modified by discarding the higher LLs:

{ψ†i (Ω), ψi(Ω′)} =
1

R2

s∑
m=−s

Φ∗m(Ω)Φm(Ω
′) =

2s+ 1

4πR2
cos2s

δθ

2
, (2.5)

where Ω · Ω′ ≡ cos δθ. At large s, (2.5) approaches a δ function smeared out over
angles, δθ ∼ 1/

√
s, or equivalently over lengths δx = Rδθ ∼ |B|−1/2. It is convenient

to use units set by this UV scale, and in particular we will take |B| ≡ 1/2 so that
R2 = N − 1.

Finally, the Hamiltonian restricted to the LLL states follows from the action and is
the integral H = R2

∫
d2ΩH over the Hamiltonian density H:

H =
∑
n

(
λn(ψ

†ψ)
∇2n
S2
1

R2n
(ψ†ψ)− λn,z(ψ†σzψ)

∇2n
S2
1

R2n
(ψ†σzψ)

)
− hψ†σxψ, (2.6)

plus an implicit vacuum energy. The operators are not normal ordered. The factors of
R2n in the denominator come from writing the Laplacian in terms of the Laplacian ∇2

S2
1

on the unit sphere, ∇⃗2 = ∇2
S2
1
/R2. From now on, we will work only with ∇2

S2
1

and so
will drop the subscript. We will also follow [6] and restrict to the case λn,z = λn.3

3The combination (ψ†ψ)2 + (ψ†σzψ)2 is proportional to the identity on the LLL, so changing
λ0 → λ0 + c, λ0,z → λ0,z − c has no effect on the theory, and one can set λ0 = λ0,z without loss of
generality.
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3 Constructing the Conformal Algebra Generators

3.1 Generators from T µν

In a conformal theory, all the Noether currents jµϵ for the conformal symmetries
xµ → xµ + ϵµ(x) can be written in terms of the energy-momentum tensor,

jµϵ (x) = ϵν(x)T µν(x) (3.1)

and so the corresponding generators Qϵ of the transformations are all spatial integrals
over T 00 and T 0a of the form Qϵ =

∫
dd−1x

√
gj0ϵ (x).4 We review how to derive the

conformal generators on R×S2 in terms of T µν in appendix A. The Dilatation generator
is just (proportional to) the Hamiltonian and depends only on T 0

0:

D =

∫
d2ΩT 0

0. (3.2)

The rotation generators Jz, J± are given by the following integrals of T 0
a:

Jz ∝
∫
d2ΩT 0

ϕ, J± ∝ ±i
∫
d2Ωe±iϕ(T 0

θ ± i cot θT 0
ϕ), (3.3)

and can be written in embedding space notation (see appendix A) for S2 ⊂ R3 as

JB ∝
∫
d2ΩϵABC x̂CT 0A. (3.4)

The generators PA of translations and KA of special conformal transformations (SCTs)
can be written in embedding space notation as

PA =

∫
d2Ω(x̂AT 0

0 + iT 0A), KA =

∫
d2Ω(x̂AT 0

0 − iT 0A). (3.5)

Note that P + K depends only on T 0
0 and P − K depends only on T 0A, and P †A =

KA.
4In the 3d Ising model, there is no ambiguity about which operator is the correct energy-momentum

tensor, because it is the unique dimension-3 spin-2 operator; in a sense, this is the ‘generic’ case, since
the presence of multiple such operators requires additional symmetries.
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3.2 Conformal Generators from H

3.2.1 H vs T 0
0

If we had direct access to the energy momentum tensor of the CFT, the above expres-
sions would be all we would need to construct the conformal generators. In practice,
however, the fuzzy sphere construction is only conformal in the infrared (IR), and the
emergent stress tensor in the CFT does not correspond to a simple local operator in
the microscopic description. Instead, there is a nontrivial mapping between UV and
IR operators, and a local operator in the UV will generically be represented as an
infinite sum over all local operators in the CFT allowed by symmetry. Consequently,
a conceptually straightforward strategy for obtaining the CFT stress tensor is to take
the microscopic Hamiltonian density H and analyze its expansion in a basis of CFT
operators, e.g.

H = γT 0
0 +

∑
O

gOO. (3.6)

By symmetry, the operators O in this expansion should be scalars under SO(3) rota-
tions, including for instance scalar components of spinning operators such as T 00.

Aside from being a fairly natural choice, starting the construction of T 0
0 with the

Hamiltonian density H has some practical advantages. The first is that the dilatation
operator is (proportional to) the Hamiltonian on R× S2, and so

H = R2

∫
d2Ω H (3.7)

is the exact generator (by definition) of time translations, even away from the critical
point. A second, related, advantage of using H is that it is straightforward to show
that at linear order, any operators with time derivatives in the expansion above can be
removed by a basis rotation.5

Moreover, because the Hamiltonian is the integral over H, the same expansion of
H above shows up for the expansion of the Hamiltonian around the CFT limit:

H = γHCFT +
∑

O primary

gO

∫
d2Ω O(Ω). (3.8)

Any descendant operators in the expansion are total spatial derivatives and vanish by
integration by parts, so only primaries survive. The fact that these coefficients gO for

5The argument is essentially the one given in [19] for time derivatives in the Hamiltonian itself.
For any operator O, consider the basis rotation U ≡ eiλ

∫
d2ŷO(ŷ). Under this basis change, H(x̂) →

UH(x̂)U† = H(x̂) + iλ
∫
d2ŷ[O(ŷ),H(x̂)] +O(λ2) = H(x̂) + λ d

dtO(x̂) +O(λ
2).
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primary operators in the Hamiltonian are the same as in the expansion of H is useful
for two practical reasons. First, it means that slightly away from the critical point,
the values of the gOs can be inferred by inspection of the spectrum of eigenvalues of
H and comparison with conformal perturbation theory. Second, it means that we can
actually set a finite number of the gOs to zero simply by tuning the parameters in the
microscopic theory to bring us closer to the critical point.6 Consequently, the main
new feature that arises in the expansion of H is that one must also consider the effect
of descendant operators, which have no effect on the spectrum of energies but do affect
the conformal generators.

As reviewed in section 2, at the critical point there are two intrinsic physical energy
scales in the system we study, which we can call the UV scale or “lattice” scale ΛUV

(though the fuzzy sphere does not have a lattice, it is still convenient to use the language
of lattice regularizations) and the IR scale ΛIR, which we define as the size of the energy
gap in the spectrum and which is inversely proportional to the radius R of the sphere.
Restoring units of ΛUV,

H =
∑
O

ĝOΛ
3−∆O
UV O, (3.9)

where ĝO is dimensionless and set by the microscopic theory, and therefore independent
of the size of N . However, as N increases, the sphere increases in size, and consequently
the gap (at the critical coupling) ΛIR ∼ 1/R will decrease, so that

Λ2
IR/Λ

2
UV ∼ 1/N. (3.10)

At each value of N , one rescales energies to get dimensions by fixing the dimension of
the stress tensor to be ∆T = γET ≡ 3, so γ = 3/ET ∼ 1/ΛIR and γ2 is proportional
to Λ2

UV/Λ
2
IR. In Fig. 1, we show the numerical dependence of γ2 on N , where one sees

that to very good approximation Λ2
UV/Λ

2
IR ≈ N−0.25.7 After rescaling all dimensional

quantities by γ, the expansion of H takes the form

H =
∑
O

ĝO

(
ΛUV

ΛIR

)3−∆O

O ∼
∑
O

ĝON
∆O−3

2 O. (3.11)

6The details of this tuning will be described in detail in subsequent sections, but the idea is that at
any finite size of the fuzzy sphere, there are an infinite number of irrelevant operators in the expansion
of H around HCFT, and their presence can be detected by comparing the spectrum of H to the
spectrum of HCFT when the latter is known.

7See also [6] Fig. 7 for an equivalent result.
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Figure 1. Dependence of γ2 ∝ Λ2
UV/Λ

2
IR on N ; to good approximation, Λ2

UV/Λ
2
IR ∝ N−0.25.

3.2.2 Recipe for Constructing Generators

From the expressions (3.5), it might seem most natural to construct PA and KA sep-
arately by constructing T 00 and T 0A. However, we will take a different approach and
first construct the combination

ΛA ≡ PA +KA = 2

∫
d2Ωx̂AT 0

0, (3.12)

since this combination depends only on T 0
0. Because Lorentz invariance is broken along

the RG flow, a priori we do not have any simple relation between the representation of
T 00 and T 0A in terms of microscopic operators. One might hope that since rotations are
exactly preserved by the fuzzy sphere regulator, that might provide a useful handle on
T 0A as a local operator built from the Noether charge density VA for rotations. Unfor-
tunately, as we discuss in appendix B, VA does not appear to be useful for constructing
PA −KA.

However, there is a more practical approach that we can take for obtaining PA

and KA once we have the combination ΛA ≡ PA +KA. One way to see that it is not
necessary to independently construct P − K is that the entire conformal algebra is
generated by D, JA and Pz +Kz. So, one could obtain P −K from the relation

P −K = [D,P +K]. (3.13)

In fact, the approach we will follow is even easier in practice. The key point is
that in the CFT, P acting on a state raises its dimension by 1 and K acting on a
state lowers it by 1. Since we are numerically diagonalizing D, the dimension of all
states is known, and so one can separate out the contributions to P +K coming from
P versus those coming from K by looking at the difference in dimension between the
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bra and ket state. In Fig. 2, we plot the size of |(Pz +Kz)ij| against the difference in
dimension ∆ij ≡ ∆i − ∆j for all eigenstates up to dimension 5.5. There are clearly
two large spikes, around ∆ij = ±1, with the size of the matrix elements decreasing
away from these points. In fact, the extent to which acting with P or K on a state
mostly produces only states with ∆→ ∆± 1 provides a useful quantitative measure of
the validity of the CFT generators being constructed. The construction we will use in
this paper is that PA includes all the matrix elements of ΛA that raise the dimension
and KA includes all the matrix elements of ΛA that lower the dimension.8 One could
easily use a different construction by imposing different restrictions on the change in
dimensions for the PA and KA components, but this definition seems natural to us in
that it preserves the fact that PA +KA = ΛA.

In appendix C, we provide expressions for constructing ΛA from the fuzzy sphere
Hamiltonian density. In practice, we will only ever compute the matrix elements of
Λz, and moreover we will only compute them in the jz = 0 and jz = 1 sectors. By
the Wigner-Eckart theorem, we can obtain all other matrix elements of ΛA between all
other states from this subset alone.

4 Matching and Tuning the Generators

4.1 Conformal Perturbation Theory for K + P

Our main goal in this section will be to see how to remove as much as possible the cor-
rections to the generators for (P +K)A in order to obtain their values in the conformal
limit. Because corrections to T 0

0 coming from primary operators affect the Hamilto-
nian whereas corrections from descendant operators do not, the role of primaries and
descendants will be qualitatively different. Primary operators contribute both directly
to the matrix elements of (P +K) through their explicit presence in the operator, as
well as through the fact that they modify the Hamiltonian and therefore affect the
eigenstates. Our strategy will be to try tune them away directly at the level of the
microscopic Lagrangian as much as possible by analyzing the spectrum of eigenvalues.
Then the dominant corrections to the matrix elements of (P +K) will all come from
descendant operators, making the analysis cleaner and simpler.

In the CFT limit, the matrix elements of Pz and Kz are nonzero only between
states within a single representation, by definition. Given a primary operator O, with
a corresponding primary state |O⟩, the ‘level-n’ descendants are all states obtained
from |O⟩ by acting with n factors of PA.

8Since the operator ΛA carries spin 1, its diagonal matrix elements vanish by rotational invariance.
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Figure 2. Plot of the size of |(Pz+Kz)ij | versus the difference in dimension ∆ij ≡ ∆i−∆j for
all eigenstates up to dimension 5.75, using N = 16, and setting jz = 0 but otherwise including
all symmetry sectors. Matrix elements less then 10−2 are not shown. There are clearly two
large features centered around ∆ij = ±1, indicating that for the vast majority of nonnegligible
matrix elements looking at ∆ij provides a simple way to separate out the contributions of P
vs K to the sum P + K. Parameters were V0 = 4.825, h = 3.158, and we have used three
parameters to tune away derivative contributions inside T 0

0 as described in section 4.3.

Consider first for simplicity the case where the primary O is a scalar operator.
Then in 3d, at each level n there is a unique state with spin ℓ for allowed values of
spin, 0 ≤ ℓ ≤ n, n − ℓ = 0 (mod 2). Let (n, ℓ) denote the descendant at level n with
spin ℓ. The matrix elements of Pz are nonzero only between (n, ℓ) and (n+1, ℓ+1) or
between (n, ℓ) and (n+ 1, ℓ− 1); in appendix E we show that

⟨n+ 1, ℓ′|Pz|n, ℓ⟩2CFT =

{
ℓ2(n−ℓ+2)(2∆+n−ℓ−1)

(2ℓ+1)(2ℓ−1) (ℓ′ = ℓ− 1)
(ℓ+1)2(n+ℓ+3)(2∆+n+ℓ)

(2ℓ+1)(2ℓ+3)
(ℓ′ = ℓ+ 1)

, (4.1)

where ∆ is the dimension of the scalar primary state of the representation. For the case
of primaries with general spin, appendix E additionally contains an efficient recursion
relation for obtaining the matrix elements of PA. The results for several low-lying states
are depicted in Fig. 3.

In practice, it is not generally possible to tune away all deviations from the conformal
limit. Even at the critical coupling, there will be irrelevant interactions that scale to
zero only in the infinite IR, which is not possible to access numerically. Instead, as in
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Figure 3. CFT predictions for the matrix elements of Λz for some low-lying states, for a spin-
0 primary (top) and spin-ℓ0 primary (bottom) of dimension ∆0. Parity-even (odd) states are
depicted with circles (squares). When ℓ0 > 0, there are two states at dimension ∆ = ∆0 + 2
and spin ℓ = ℓ0.

(3.6),
H = γT 0

0 +
∑
O

gOO,

H = γHCFT + V, V ≡
∑
O

gO

∫
d2ΩO,

(4.2)

where H and H are the Hamiltonian density and Hamiltonian in the deformed theory.
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When we diagonalize H, if V is sufficiently small, then each eigenstate |Õn⟩ can be
identified as a CFT state |On⟩ plus corrections. At linear order in the deformation
V ,

|Õn⟩ = |On⟩+
∑
m

⟨Om|V |On⟩
∆n −∆m

|Om⟩. (4.3)

The sum over m here is over all states, including descendants.
The matrix elements of H differ from those of T 0

0 in the CFT because of two types
of effects. The first comes directly from the difference H − T 0

0 as an operator. The
second difference is indirect, due to the difference |Õn⟩ − |On⟩ between the eigenstates
in the CFT and in the deformed theory. We can separate out these two effects as
follows:

F̃OrTOn(x) ≡ ⟨Õr|H(x)|Õn⟩ = F̃
(op)
OrTOn

(x) + F̃
(state)
OrTOn

(x),

F̃
(op)
OrTOn

(x) ≡ γ⟨Or|T 00(x)|On⟩+
∑
O

gO⟨Or|O(x)|On⟩,

F̃
(state)
OrTOn

(x) ≡
∑

O primary

gO
∑
m

[⟨Or|T 00(x)|Om⟩⟨Om|
∫
d2y
√
gO(y)|On⟩

∆n −∆m

+
⟨Or|

∫
d2y
√
gO(y)|Om⟩⟨Om|T 00(x)|On⟩

∆r −∆m

]
.

(4.4)
By inspection, these sums can be rewritten in the form of integrals over time-ordered
correlators. The sum over m is just a sum over states with an energy denominator,
which can be written as a sum over states with an integral over time, with time-ordered
operators. Assuming that ∆m > ∆n,∆r,9 the integrals converge and one finds

F̃
(state)
OrTOn

(x) =
∑

O primary

gO

∫ ∞(1−iϵ)

−∞(1−iϵ)
(−i)dt

∫
d2y
√
g⟨Or|T{O(t, y)T 00(0, x)}|On⟩

= −
∑

O primary

gO

∫ ∞
−∞

dtE

∫
d2y
√
g⟨Or|O(−itE, y)T 00(0, x)|On⟩,

(4.5)

where in the second line we have Wick rotated to obtain an integral over Euclidean time
tE = it. In general, evaluating F̃ (state)

OrTOn
(x) requires knowledge of the four-point function

that appears above. However, we will usually restrict to the main case of interest where
9More generally, a finite number of terms with ∆m < ∆n,∆r may be separated out and dealt with

independently.
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|On⟩ and |Or⟩ have spins ℓn and ℓr that differ by 1 (|ℓn − ℓr| = 1). In this case, by
rotational invariance the only part of T 00(0, x) that contributes is its integral against x̂,
which therefore reduces it to Λz = Kz +Pz, and the correlator reduces to a three-point
function. If |Or⟩ or |On⟩ is the vacuum, then the correlator reduces even further, to a
two-point function.

In appendix D, we work out FOrTOn in detail for the case where Or = 1 is the
identity and On = O1,1 is a level-1, spin-1 descendant of a scalar primary O. In this
case, the result is

F̃1TO1,1(x̂) = cos θ

(
gO

√
2

3∆

∆− 3

∆ + 2
+
∞∑
n=1

(−2)ng∇2nO

√
2∆

3

)
, (4.6)

where ∆ = ∆O. If O is allowed by symmetry to appear in H, then so are all of its
scalar descendants, and generically one would expect all of them to be present. By
inspection of this formula, their contributions cannot be distinguished from each other
based on their x̂ dependence (which is also clear from the symmetries of the bra and ket
states). On the other hand, the coefficients g∇2nO all have different scaling dimensions,
and they can be distinguished from each other based on their dependence on the size
of the fuzzy sphere, i.e. on ΛUV/ΛIR.

4.2 Matching and Tuning the Spectrum

As discussed in Sec. 3.2.1, we can think about the UV Hamiltonian as an expansion
around the CFT one plus contributions from Z2-even primaries. To define our critical
point we can therefore think of tuning the λn and h parameters in H to minimize the
corrections to the spectrum coming from relevant and slightly irrelevant operators. At
first order in perturbation theory

H = γHCFT +
∑
O

gO

∫
d2ΩO(Ω) , H |Oi⟩ = Ei |Oi⟩

Ei = γ∆i + δE
(O)
i , δE

(O)
i =

⟨Oi|
∑
O gO

∫
d2ΩO(Ω) |Oi⟩

⟨Oi|Oi⟩
.

(4.7)

The expression for δEi depends on both the spin of the external state and whether it
is a primary or a descendant. If we focus on cases where Oi is either scalar primary or
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Figure 4. Plot of extracted values for the Wilson coefficients gϵ (dashed) and gϵ′ (solid) of
the operators ϵ and ϵ′ in the Hamiltonian, as a function of V0 and h in the microscopic theory
at N = 12. One can see that both gϵ and gϵ′ vanish at approximately V0 = 4.825, h = 3.158.

its first descendant state, the corresponding expressions for δEi [19] are:

δE
(O)
i =

gOfÕiOÕi
Oi = Õi primary ,

gOfÕiOÕi

(
1 + ∆O(∆O−3)

6∆Õi

)
Oi = ∂Õi ,

(4.8)

with fÕiOÕi
the OPE coefficient.

In practice, in our analysis we consider corrections coming from ϵ and ϵ′, the low-
est dimension Z2-even scalar primary.10 Focusing on a subset of operators, Oi =

ϵ, σ, ϵ′, ∂ϵ ∂σ, we determine gϵ, gϵ′ , γ by minimizing

min
γ,gϵ,gϵ′

∑
Oi

(
Ei − γ∆i − δE(ϵ)

i − δE
(ϵ′)
i

)2
. (4.9)

In Fig. 4 we show the Wilson coefficients gϵ and gϵ′ , extracted at N = 12, as a
function of h and the Haldane pseudopotentials V0, V1 = 1, which are related to the

10See appendix F for all the necessary OPE data.
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microscopic parameters λn as (see appendix C for more details)

λ0
R2

=
2π

(2s+ 1)2
((4s+ 1)V0 + (4s− 1)V1) ,

λ1
R4

=
2π

(2s+ 1)2
· (4s− 1)V1

s
.

(4.10)

We then define the critical point as the values of V0 and h such that

gϵ = 0 = gϵ′ ⇐⇒ V0 = 4.825, h = 3.158, (and V1 = 1). (4.11)

In Fig. 5, we compare this point to the original choice of parameters in [6] and
the one minimizing the errors between the dimensions obtained and known conformal
bootstrap results for some low dimensional operators. Notice how both our choice of
parameters and the one in [6] lie inside the regions minimizing the errors and therefore
they are equivalently good at the level of the spectrum. The reason why we opted
to define the critical point as (4.11) is that this method is a more direct attempt to
isolate and remove the most relevant deformations to the Hamiltonian, which is what
one would want to do in order to obtain the fastest convergence with N .

4.3 Tuning the Generators

Next, we will turn to the issue of tuning away descendant operators in H − T 0
0. In

Fig. 6, we show the result for the matrix element ⟨vac|Λ̃z|∂ϵ⟩ of Λ̃z between the vacuum
and the spin-1, level-1 descendant state |∂ϵ⟩, and the analogous plot for ⟨vac|Λ̃z|∂ϵ′⟩,
computed in the fuzzy sphere at V0 = 4.825, h = 3.158 for N = 6, 8, . . . , 16. The
expected CFT result is that these matrix elements should vanish in the IR, at N =∞.
Interestingly, up to N = 16, the highest we consider, the result for ⟨vac|Λ̃z|∂ϵ⟩ appears
to be getting worse as N increases. However, if one fits all the data as a function of
N to a power series with the expected powers based on the dimension of ϵ, the fit is
fairly stable and correctly predicts that the result at N =∞ should vanish (to within
numeric error). The coefficients in the fit for the ∂ϵ′ case are larger than those for
∂ϵ, which is expected based on the higher dimension ∆∂ϵ′/∆∂ϵ ≈ 1.9, so the IR scale

ΛIR is correspondingly higher and therefore the expansion parameter
(

ΛIR

ΛUV

)2
∝ Λ2

IR

N
is

roughly a factor of 4 larger.
The main takeaway from Fig. 6 is that convergence with N is extremely slow even

if one tunes to the critical coupling for V0 and h. This slow convergence is due to the
descendant operator ∇2ϵ, which has dimension ∼ 3.41 and therefore converges with N
like N−0.206. In the fits, this contribution shows up as a ‘nosedive’ to the correct value
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Figure 5. Plot of the χ2 for the comparison of fuzzy sphere dimensions versus bootstrap
data, where χ2 ≡ 100

Nops

∑Nops

i=1 (∆i−∆
(CB)
i )2/∆

(CB)
i . Various choices are depicted for the states

included in the χ2; in all cases, the contours are χ2 = 0.01. Also shown is the point where
gϵ = gϵ′ = 0 from Fig. 4.

at 1/N = 0, and to suppress it by taking large N would require taking impractically
large values of N . Instead, it will be vastly more efficient to correct Λ̃A by adding
additional local microscopic operators to H and tuning their coefficients to remove the
contamination from ∇2ϵ. Fortunately, we can easily do better than removing ∇2ϵ. At
a fixed N , the contributions to Λ̃ from descendant operators of the same primary are
indistinguishable from each other, and can be removed in one fell swoop. To make this
explicit, write out the expansion of

∫
d2ΩxAH in terms of CFT operators, and focus

on operators in the O representation:

Λ̃A ≡ 2

∫
d2Ω xAH ⊃ 2

∫
d2Ω xA

∞∑
n=0

g∇2nO∇2nO = 2

[
∞∑
n=0

(−2)ng∇2nO

]∫
d2Ω xAO,

(4.12)
where we have integrated by parts and used the fact that ∇2xA = −2xA.

When we construct ΛA in the microscopic description, we will add terms that are
total derivatives of operators made from the LLL fermion fields in order to try to
remove some number of leading deformation terms ∼ g∇2nO∇2nO. Any total derivative
will have no effect on the Hamiltonian, but in terms of the effect on Λ̃ it will be
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Figure 6. Matrix element of Λ̃z between the vacuum and the spin-1, level-1 descendant state
|∂ϵ⟩ (top) and |∂ϵ′⟩ (bottom), computed in the fuzzy sphere at V0 = 4.825, h = 3.158 for
N = 6, 8, . . . , 16. We also show fits to the data, where the powers in the Taylor series are
those expected based on the dimensions of ϵ, ϵ′ and its descendants. The expected result in
the CFT is 0, shown as a red dot, which is not included as an input to the fit but rather is an
output used to test the reliability of the fit.

equivalent to shifting the coefficient gO of the primary operator. This means that for
all practical purposes, when we construct ΛA, without loss of generality we can treat
all couplings in H as additional independent parameters compared to their values in
the Hamiltonian!11

To implement the procedure just outlined, we will compute the contributions to Λ̃A

11Note however that the values of the coefficients g∇2nO all scale like different powers of N , so
although their contribution to Λ̃ collapses to the combination [

∑∞
n=0(−2)ng∇2nO], one should keep in

mind the implicit N -dependence of this expression when comparing different values of N .

– 18 –



from the terms proportional to V0, V1, and h independently, and then we will fix these
coefficients in order to try to remove total derivatives from H − T 0

0. We expect that
the largest corrections come from derivatives of the lowest dimension operators, so we
set one condition to be that the following matrix element should vanish:

⟨vac|Λ̃z|∂Aϵ⟩ = 0, (4.13)

where the state |∂Aϵ⟩ is the spin-1 state with dimension closest to ∆ϵ + 1 = 2.41. For
the second condition, one could impose

⟨vac|Λ̃z|∂A∂2ϵ⟩ = 0 or ⟨vac|Λ̃z|∂Aϵ′⟩ = 0, (4.14)

where the state |∂A∂2ϵ⟩ is the spin-1 state with dimension closest to ∆ϵ+3 = 4.41, and
|∂Aϵ′⟩ is the spin-1 state with dimension closest to ∆ϵ′ + 1 = 4.83. We will choose the
former condition, though in practice we have found that the difference between them
is very small (about 1% in the value of V0 and 0.01% in the value of h). Alternatively,
one one could consider tuning V0 and h by minimizing the norm ∥Λ̃z |vac⟩∥2;12 applying
this prescription would adjust the optimal value of V0 by approximately 8% and h by
∼ 0.03%, and would have only a minor impact on the results presented in section 5.1,
the main difference being a slight improvement in matrix elements of Λ̃z between higher-
energy states and a slight increase in error for lower-energy ones. It would be interesting
to explore whether different conditions can lead to parametric improvements.

Finally, using only V0, V1, and h, we still have one more free parameter, which is
equivalent to setting the overall scale of Λ̃z; the reason the overall rescaling of Λ̃A differs
from that of the Hamiltonian H is that H in general will contain descendants of the
energy-momentum tensor, e.g. ∇2T 0

0. We fix this overall scale by demanding

⟨ϵ|Λ̃z|∂Aϵ⟩ =
√

2∆ϵ, (4.15)

as predicted by the conformal algebra.

5 Numeric Results

5.1 Matrix Elements

The most direct test of our construction of the conformal generators is to compare
their matrix elements between energy eigenstates with the predictions from conformal
symmetry, given in (4.1) for scalar primaries and in appendix E for spinning primaries

12We thank Yin-Chen He for suggesting this approach.
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Figure 7. Quality of matrix elements of Λz for various scalar primaries and their
descendants. Energy eigenstates are shown as black dots (parity even) and squares
(parity odd) and labelled by their dimension from the fuzzy sphere numerics. Matrix
elements of Λz between eigenstates are shown as arrows and labelled by the fuzzy sphere
and CFT results, (Λz,FS,Λz,CFT), for the matrix elements, as well as the relative error
between the two. The color of the arrows is intended to be a graphical depiction of
the relative error, and varies from red to purple for small to large errors. For the CFT
‘prediction’, we use the formulas in appendix E and substitute the dimension of the
primary from the conformal bootstrap. For descendant states, we choose the states that
have the largest overlap with the state predicted by acting with Λz on the eigenstates
at lower levels.
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Figure 8. Quality of matrix elements of Λz for various spinning primaries and their
descendants. The format is the same as in Fig. 7. Parity-even (top-left) and parity-odd
(top-right) descendants of T are shown separately for clarity.
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Figure 9. Quality of matrix elements of Λz for the spin-2 primary operator T ′ and some
of its descendants (top), and the spin-4 primary operator Cµνρσ and some of its descendants
(bottom). The format is the same as in Fig. 7. (Left:) The states are all chosen to be energy
eigenstates. (Right:) The states are chosen by first identifying the primaries T ′ and C by
looking for states that are nearly annihilated by KA, and then by building up the descendants
by acting on these primaries with PA. The primary states T ′ and C chosen in the latter case
are linear combinations with large overlaps with multiple eigenstates, and so identifying the
primaries by using K leads to a significant improvement in the matrix elements.
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(see also Fig. 3). For simplicity, we will compare only the matrix elements of Λz in the
jz = 0 sector (for scalar primaries, these are sufficient to determine all other matrix
elements of ΛA). The first comparison is shown in Fig. 7, for four scalar primaries
(σ, σ′, ϵ and ϵ′) and their descendants. One matrix element, connecting ϵ to ∂ϵ, is exact
by construction since it was used to fix the linear combination of microscopic operators
for T 0

0, but all the other matrix elements are predictions. Black dots/squares indicate
respectively parity-even/-odd energy eigenstates, and are labelled by their dimension
from the fuzzy sphere numerics. We depict the matrix elements of Λz between these
eigenstates as arrows labelled by the fuzzy sphere and CFT results for the matrix
elements, as well as the relative error between the two. We show similar plots for
spinning primaries in Fig. 8 and Fig. 9.

In general, one can see that the error begins small for the low energy states, typically
around 1%, and increases as one moves to descendants at higher energies. Note, how-
ever, that there are some outliers in this respect, where the errors are noticeably larger
than similar matrix elements at the same dimension. In the case of the σ multiplet,
these all appear to be cases where the matrix elements themselves are unusually small,
because the dimension of σ is very close to 1/2, the dimension of a free scalar field in
d = 3. Consequently, ∂2σ is very close to being a null state, and the CFT prediction
for the matrix elements is that they should be suppressed by a power of ∆σ − 1/2. We
suspect that this suppression is what increases the sensitivity of these matrix elements
to small deviations from conformality.

Another potential source of error is that conformal symmetry breaking leads to
mixing among the different primaries. As a result, it is not guaranteed that descendant
states will be dominantly given by any one single energy eigenstate, but instead can
be a linear combination of eigenstates. In fact, we emphasize that purely looking at
the energies of the states, and looking for shifts by +1 between descendants, does not
always uniquely pick out a ‘best’ eigenstate at each level. Instead, the way we chose
the eigenstates in these tables was by looking at the states with the largest overlap
with Pz acting on descendants at one level below. One of the more striking examples
of this effect is shown in Fig. 9, where we consider the T ′ (spin-2, dimension ≈ 5.6)
and C (spin-4, dimension ≈ 5.0) primaries. In both of these cases, we find that even
the matrix elements of Λz between the primary and its level-1 descendants has rather
large errors. As we will discuss in section 5.3, the main source of error here appears
to be the fact that at N = 16, the primary state itself is not dominantly an energy
eigenstate, but rather is much more accurately described as a linear combination of
multiple energy eigenstates.
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Figure 10. Quality of the commutation relation [Kz, Pz] = 2D at N = 10, for all 5476
jz = 0 states. For each eigenstate |∆⟩, we show ⟨∆|[Kz, Pz]|∆⟩/2 evaluated on the state on
the y-axis, and its dimension ∆ on the x-axis, so that if the conformal algebra is exact then
states should fall on the dashed diagonal line. A vertical line indicates roughly where the
cutoff appears to be by eye.

5.2 Commutator

Another fairly direct test of our construction of the conformal generators is how accu-
rately they satisfy the conformal algebra. Such a test is similar to the direct test of the
matrix elements in the previous subsection, but has a conceptual advantage that it is
relies less heavily on the specific choice of basis. In other words, one can consider an
operator equation such as

[Kz, Pz] = 2D, (5.1)

and evaluate it between any bra and ket states one chooses.
Because acting with Pz raises the energy of states, to obtain an accurate calculation

of the commutator (5.1) in a given state |ψ⟩, one needs to obtain eigenstates |n⟩ with
energies ∼ +1 larger than that of |ψ⟩:

⟨ψ|[Kz, Pz]|ψ⟩ =
∑
n

|⟨n|Pz|ψ⟩|2 −
∑
n

|⟨n|Kz|ψ⟩|2. (5.2)
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When the energy of |ψ⟩ is small, obtaining such eigenstates is not an issue. But when
the energy of |ψ⟩ is large ∼ O(7), numerically finding all eigenstates with energies
up to ∆ψ + 1 can be significantly more computationally expensive than finding all
eigenstates with energies up to ∆ψ. Therefore, our numeric results for the commutator
are affected by an unphysical ‘eigenvalue cutoff’ which arises purely from the fact that
we only find a subset of all eigenvalues of the (finite dimensional) fuzzy sphere Hilbert
space. At N = 10, the total dimension of the fuzzy sphere Hilbert space in the jz = 0

sector is dim = 5476, which is small enough to fully diagonalize the Hamiltonian and
so avoid having to introduce an eigenvalue cutoff. In this case, we show in Fig. 10
the expectation value of the commutator [Kz, Pz]/2 for all Z2-even eigenstates, versus
their dimension ∆. At low dimensions, one sees that [Kz, Pz]/2 is very close to ∆,
as predicted by the conformal algebra. However, as the dimension grows, the errors
become large, and one finds negative values of [Kz, Pz] at ∆ ∼ 5.25, as indicated by a
vertical line in the figure. We take this to be a rough estimate of the UV cutoff of the
CFT description, above which the fuzzy sphere regulator becomes significant and leads
to large corrections to the CFT description.

Another qualitative feature of Fig. 10 that can be readily understood is that once
the deviations from the CFT algebra become large, there are many negative values of
[Kz, Pz]. Because the size of the Hilbert space is finite, the trace of the commutator
must vanish, which means that the sum over the y-values of all the dots in the figure
must identically add up to zero. Since by unitarity, [Kz, Pz] must be positive in the
regime where the CFT algebra holds, this low energy regime creates a deficit of positive
values that must be compensated for at high energies by negative values.

More generally, we can look at the quality of the commutator at various values of
N . In Fig. 11, we show the same commutator plot for N = 6, 8, 10, 12, 14 and 16. Up to
N ≤ 10, we obtain all eigenstates of the fuzzy sphere Hamiltonian, so there is no effect
from an eigenvalue cutoff (though x-axis of the plots themselves only go up to ∆ = 7,
all intermediate states are included when evaluating the commutator). For N = 12, 14

and 16, we obtain all eigenstates up to ∆ = 9.06, 9.03, 7.44, respectively. We also show
a vertical line on each plot indicating a rough estimate of the cutoff. To obtain this
estimate, we take our estimate ΛUV ≈ 5.25 from N = 10 and in each plot we rescale it
proportionally to

√
N :

ΛUV ≈ 1.66
√
N. (5.3)

The cutoff obtained this way lines up by eye with where one sees the corrections to the
commutators become large at the various values of N .
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** ** **

** ** **

Figure 11. Quality of the commutation relation [Kz, Pz] = 2D, as in Fig. 10, for N =
6, 8, 10, 12, 14, 16. In computing the commutator, we keep all states on the fuzzy sphere for
N = 6, 8, 10, but only up to ∆ = 9.06, 9.03, 7.44 respectively for N = 12, 14, 16. The magenta
asterisk represents the point fixed by the condition (4.15). The vertical line in each plot is
the cutoff chosen at N = 10 from Fig. 10, but scaled by

√
N ; note that this scaling lines up

reasonably well with where the accuracy of the commutator starts to fail by eye at different
values of N .

5.3 Identifying Primaries

One of the motivations for constructing the conformal generators is that we would like
to use them to identify primary states with a more precise method than looking at in-
teger shifts in the dimensions of operators, since the latter method becomes intractable
when the spectrum is very dense. Moreover, when the spectrum is dense, even small
deviations from the critical point will lead to large operator mixing, and one might hope
that states can still be divided into primaries and descendants if one looks at general
linear combinations of eigenstates. In this subsection, we will see that indeed this is
possible. In particular, we will try to identify primary operators based on the condition
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Figure 12. Eigenstates of |K2|, for Z2-even (top) and Z2-odd (bottom). Each dot represents
an eigenstate labelled by its (∆, ℓ), and its location indicates its |K2| eigenvalue as well as
the error in the [Kz, Pz] commutator evaluated on the state. Primaries should have |K2| ≪ 1,
and moreover we demand that there is a small error in the commutator in order to test that
the value of |K2| is reliable. The lower-left region which contains such primaries is shown
magnified. As discussed in the body of the text, the (∆, ℓ) = (6.05, 3) ‘almost primary state’
in the upper plot is a spin-3 descendant ∼ ∂µC

µνρσ of C that is almost null because C is
almost a conserved higher-spin current; similarly, the (∆, ℓ) = (2.5, 0) state in the bottom
plot is ∂2σ, which is almost null because ∆σ ≈ 1/2.
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that they are approximately annihilated by K± and Kz, or equivalently that

⟨ψ||K2||ψ⟩ ≡
3∑

A=1

⟨ψ|K†AKA|ψ⟩ ≪ 1. (5.4)

Crucially, |ψ⟩ here does not need to be an energy eigenstate. Rather, the way we
will find primaries is by diagonalizing the matrix |K2| and looking for small eigenval-
ues.

An important consideration when interpreting these eigenstates of |K2| is that we
have already seen the matrix elements of K start to deviate significantly from the CFT
predictions at high energies. Consequently, for each potential primary state that we
find among the small eigenvalues of |K2|, we also test whether or not the conformal
commutator [Kz, Pz] = 2D is still accurately reproduced on that state. We present
these results in Fig. 12 at N = 16, where all eigenstates of |K2| are shown as dots
labeled by their dimension13 and spin (∆, ℓ) and located according to their eigenvalue
under |K2| and their error in the [Kz, Pz] commutator; reliable primaries should have
both small values for |K2| and for the error in the commutator, and therefore appear
in the lower left-hand corner. We have magnified this lower left-hand corner, so that
one can see there are a subset of states identified as primaries by this method.

Interestingly, this approach is still too naive in one important respect, which one
can see by inspection of the figure. The problem is that the magnified region, both in
the Z2-even and Z2-odd sectors, contains one interloper that is actually a descendant.
In the Z2-even sector, this interloper is the (∆, ℓ) = (6.05, 3) descendant of Cµνρσ, and
in the Z2-odd sector, it is the (∆, ℓ) = (2.5, 0) descendant of σ. In both cases, note
that the interloper still has a significantly larger value of |K|2 than the true primaries,
and so could potentially be identified as a descendant just by comparison with the
other states. However, there is a much more robust signal that these states are actually
descendants. The key point is that the reason these states have small values of |K|2 is
not numeric or truncation errors, but rather because |K|2 for these states actually is
small in the CFT! In the case of the spin-3 descendant of Cµνρσ, the reason is that Cµνρσ

has dimension ∆ = 5.02 and therefore is very nearly a higher-spin conserved current,
which would imply that its level-1 spin-3 descendant ∂µCµνρσ is null. Referring to
Fig. 3, one can check that with ∆0 = 5.0226 and ℓ0 = 4, the size of |Kz|2 should be
2ℓ0(∆0−ℓ0−1)

2ℓ0+1
= 0.02, and therefore |K2| should be 2ℓ0+1

ℓ0
|Kz|2 = 0.045, roughly the size

of |K2| from the figure. Similarly, for the level-2 spin-0 descendant ∂2σ, the size of
|K2| should be 3|Kz|2 = 2(∆0 − 1) = 0.072 for ∆0 = 0.518, again close to the value in

13For a general state |ψ⟩, we define its dimension to be ∆ ≡ ⟨ψ|D|ψ⟩.
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Figure 13. Conformal Casimir C2 and dimension ∆ of Z2-even states, up to ∆ ≲ 6, evaluated
using (5.6). Solid horizontal lines indicate the Casimir C2 of a primary, and dashed vertical lines
indicate the dimensions ∆+N of the primary and its descendants. (Left:) Black dots indicate
individual energy eigenstates. (Right:) Dots indicate states built up using PA, starting with
primaries identified by acting with PAKA, and then subsequently building up the descendants
by acting with PA. In this case, the color of the dot indicates the primary it was built from.

the figure. Therefore, since the action of KA on these states tells us which states they
would be descendants of if they were descendants, it is it straightforward to see that
|K2| is not small when compared to the CFT prediction.

Finally, we can now return to an issue we noted in section (5.1), namely that the
quality of the matrix elements of Λz in the plots on the left of Fig. 9 are worse than
is typical for states at the corresponding dimension. The resolution is that when we
look at small eigenvalues of |K2| to identify the primary states C and T ′, we find that
they are not dominantly made out of any single energy eigenstate, but rather are linear
combinations of multiple eigenstates. When we recompute the matrix elements using
primaries identified with |K2|, and descendants constructed by acting on them with PA,
we obtain the plots on the right, where the quality of the matrix elements is noticeably
improved.

5.4 Conformal Casimir

In principle, a simple way to immediately group all states into conformal representations
is to compute the quadratic casimir C2 for the conformal algebra,

C2 = D2 + L2 − 1

2
{KA, PA} = D2 + ℓ(ℓ+ 1)− 1

2
{KA, PA} (5.5)

= D(D − 3) + ℓ(ℓ+ 1)− PAKA. (5.6)
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In the first line, we set L2 → ℓ(ℓ + 1) because we work with eigenstates of L2. By
contrast, PA and KA change the state, and the expression we get in the second line
uses their commutator and so is equivalent to the first line only in the CFT limit.
Nevertheless, this last expression is more convenient to use, because for a given eigen-
state, computing PA on that state requires computing eigenstates with higher dimension
whereas computing KA only requires computing eigenstates with lower dimensions, and
obtaining more eigenstates with higher energies is computationally expensive.

In Fig. 13, we show the Casimir for all Z2 even eigenstates with dimensions up
to ∆ < 6, versus their dimension. For comparison with the expected results in the
conformal limit, for each Z2-even primary state (as identified in the previous subsec-
tion by looking for states annihilated by KA) we also show a solid horizontal line at
the corresponding value of the Casimir C2 as well as a series of vertical lines at the
corresponding dimensions of the primary and its descendants. Note that at low dimen-
sions, where the matrix elements of PA are still accurate and the primary states are
still well-aligned with energy eigenstates, we see a collapse of many states in the same
conformal multiplet onto the same value of the conformal Casimir.

As one goes higher up in the spectrum, energy eigenstates tend to be linear com-
binations from multiple different conformal representations which causes their Casimir
value to lie between the Casimirs of the primaries. For instance, in the exact conformal
theory, the T ′ operator has spin 2 and dimension 5.51, so C2 = 19.8, yet in Fig. 13
there are no states on the corresponding horizontal line. Instead, there are two nearby
eigenstates with ∆ = 5.54 and 5.58 which are strongly mixed between T ′ and ∂∂ϵ (spin
2). One can mitigate this effect by working with states selected by using PA and KA

rather than with energy eigenstates. Specifically, we can start with linear combinations
identified as primaries in the previous section as states that are (nearly) annihilated by
KA. Then, we can successively build up all the other states in the conformal represen-
tation by raising with PA. In Fig. 13, we also show the Casimir evaluated on states,
but now for states built up this way. Because every state is constructed by repeated
actions of PA on a specific primary, we also color-code the states to indicate which
primary they were built from. Mostly, the difference between the two plots is minor,
but in a few cases such as the T ′ state there is a significant improvement in the value
of the Casimir; indeed, it is remarkable that despite the large mixing effects on the T ′

operator as an energy eigenstate, there still exists to very high accuracy a well-defined
primary state as defined by the action of KA.
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A Conformal Generators on S2 from T µν

Here we briefly review how to derive the conformal generators on R × S2 as integrals
of the CFT energy-momentum tensor T µν . We begin with the theory on the Euclidean
plane R3, where all conformal transformation can be written in terms of a vector ϵi(x)
(i = 1, 2, 3) that is a quadratic polynomial in xi (where x ∈ R3), and then transform to
radial coordinates. In Euclidean signature, the time coordinate is set by the magnitude
of xi:

xi = etE x̂i,
3∑
i=1

(x̂i)2 = 1. (A.1)

Denote the R × S2 coordinates by {ξµ}µ=0,1,2, where ξ0 = tE is time and {ξa}a=1,2

parameterize the unit sphere S2. Denote the Jacobian for the transformation to R×S2

by
dxi

dξµ
, Vµ ≡

dxi

dξµ
V i. (A.2)

In general, the generator of a transformation parameterized by ϵi(x) is given by the
following integral of the energy-momentum tensor:

Qϵ =

∫
d2ξ
√
gϵi(x)T

0i =

∫
d2ξ
√
gϵi(ξ)

dxi

dξµ
T 0µ(ξ), (A.3)

where d2ξ = dξ1dξ2 and gab is the metric on S2.
For dilatations,

Dilatations: ϵi(x) = xi ⇒ ϵi(x)
dxi

dξµ
T 0µ =

1

2

de2tE

dξµ
T 0µ = e2tET 00 = T 0

0, (A.4)

and so the Dilatation operator is just the Hamiltonian on the sphere.
For an SO(3) rotation Ji around the vector ωi, ϵi(x) = ϵijkω

jxk:

Rotations: ϵi(x) = ϵijkω
jxk ⇒ ϵi(x)

dxi

dξµ
T 0µ = 2ϵijkω

jx̂k
∂x̂i

∂ξa
gabT 0

b, (A.5)
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where the sum on a is over a = 1, 2, and the dependence on T 00 drops out.
For a translation in the ai direction, ϵi(x) = ai:

Translations: ϵi(x) = ai ⇒ ϵi(x)
dxi

dξµ
T 0µ = e−tE(a · x̂T 0

0 + ai
∂x̂i

∂ξa
gabT 0

b). (A.6)

Finally, special conformal transformations (SCTs) can be parameterized by a vector
bi, with ϵi(x) = 2(x · b)xi − bix2:

SCTs: ϵi(x) = 2(x · b)xi − bix2 ⇒ ϵi(x)
dxi

dξµ
T 0µ = etE(b · x̂T 0

0 − bi
∂x̂i

∂ξa
gabT 0

b), (A.7)

where we have used ∂xi/∂ξ0 = xi and xi∂xi/∂ξa = 0.
The structure of these expressions are perhaps more transparent if we write them in

terms of embedding space coordinates {x̂A}A=1,2,3 for the sphere,
∑

A(x̂
A)2 = 1. Then,

the Jacobian ∂x̂A

∂ξa
is just the factor for the uplift of a vector from S2 to R3:

PA
a ≡

dx̂A

dξa
, T 0A ≡ PA

a g
abT 0

b. (A.8)

One can define a projector UAB that projects tensors onto the tangent space of S2:

UAB ≡ δAB − x̂Ax̂B. (A.9)

With this notation, the generators are integrals of the following forms:

Qϵ =

∫
d2ΩIϵ,

Dilatations: Iϵ = T 0
0,

Rotations ωA : Iϵ = 2ϵABCω
Bx̂CT 0A,

Translation aA : Iϵ = e−tEaA(x̂
AT 0

0 + T 0A)

SCTs bA : Iϵ = etEbA(x̂
AT 0

0 − T 0A).

(A.10)

Ultimately, we want to use formulas for the generators in Lorentzian signature rather
than Euclidean signature, so we have to Wick rotate tE = itL under which T 0

0 → T 0
0

and T 0
A → iT 0

A.
Finally, we will generally take our intrinsic coordinates on the sphere to be spherical

coordinates θ, ϕ, with d2Ω ≡ dϕdcos θ, and we will group the generators into combi-
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nations with definite values of J3. For rotations, these are the standard combinations
Jz = J3 and J± = J1 ± iJ2:

Jz =

∫
d2ΩT 0

ϕ, J± = ±i
∫
d2Ωe±iϕ(T 0

θ ± i cot θT 0
ϕ). (A.11)

For translations and SCTs, we can take Pz, P± = P1± iP2 and Kz, K± = K1± iK2.
Setting tL = 0 for simplicity,

Pz =

∫
d2Ω(cos θT 0

0 − i sin θT 0
θ), P± =

∫
d2Ωe±iϕ sin θ(T 0

0 + i(cot θT 0
θ ± i csc2 θT 0

ϕ)),

Kz =

∫
d2Ω(cos θT 0

0 + i sin θT 0
θ), K± =

∫
d2Ωe±iϕ sin θ(T 0

0 − i(cot θT 0
θ ± i csc2 θT 0

ϕ)).

(A.12)

B Rotation Noether Current Va

The microscopic fermionic theory has time-translation invariance and rotational invari-
ance, with the following corresponding Noether charge densities, respectively:

H =

(∑
n

gn(ψ
†ψ)∇2n(ψ†ψ)− gn,z(ψ†σzψ)∇2n(ψ†σzψ)

)
− hψ†σxψ,

Va ∝ ψ†iDaψ.

(B.1)

In this work, we do not use VA as part of the construction of the conformal generators,
and in this appendix we will make some comments about why. To an extent, the reason
is simply that it was not necessary to use it. However, there is also an interesting effect
that its contribution to PA and KA, through

∫
d2ΩVA, turns out to vanish. Conse-

quently it is not useful to construct the CFT stress tensor T 0
A components by starting

with VA and adding small corrections.
To see this, first expand out the definition of VA:

VA ≡ PA
a g

abVb ∝
∂x̂A

∂ξa
gab
[
ψ†(
↔
∂ b + 2isAb)ψ

]
. (B.2)

When the fermions are restricted to the LLL, VA simplifies due to the following iden-
tity:

∂x̂A

∂ξa
gabi

[
Φ∗m(

←
∂ b −

→
∂ b + 2isAb)Φm′

]
= iζ(A)a∂a(Φ

∗
mΦm′), (B.3)
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where ζ(A) are the Killing vectors for the rotations on the sphere:

ζ(1)a∂a = sinϕ∂θ + cot θ cosϕ∂ϕ

ζ(2)a∂a = − cosϕ∂θ + cot θ sinϕ∂ϕ

ζ(3)a∂a = −∂ϕ.

(B.4)

Consequently, restricted to the LLL states

V A ∝ ζ(A)a∂an
0, n0 ≡ ψ†ψ. (B.5)

When we consider the generators of rotations, we manifestly get quantities that simply
compute sum of the corresponding quantities for the individual fermions, as we would
expect since rotations are exactly preserved on the fuzzy sphere:

JA =
s+ 1

2
ϵABC

∫
d2Ωx̂Cζ(B)a∇an

0 = −s+ 1

2
ϵABC

∫
d2Ωn0ζ(B)a∇ax̂

C

= (s+ 1)

∫
d2Ωx̂An0,

(B.6)

where we have used ζ(B)a∇a = ϵBDEx̂D∂E and ϵABCϵBDC = −2δDA .
Now we come to the generators PA −KA. In this case one finds that if we try to

build the generator by taking T 0A ∼ V A, then the integrand is a total derivative and
therefore the result vanishes:

(PA −KA)
?
≈
∫
d2ΩVA ∝

∫
d2Ωζ(B)a∇an

0 = 0. (B.7)

One puzzling aspect of this relation is that it seems to violate the standard commu-
tation relations for the rotation Noether current. More precisely, the anticommutation
relations

{ψ†(t, x̂), ψ(t, ŷ)} = iδ(2)(x̂, ŷ), (B.8)

where δ(2)(x, y) is the δ function on the sphere, imply that Va has the following com-
mutator, [

Va(x), (ψ
†ψ)(y)

]
∝ −2(ψ†ψ)(x)∂aδ(x, y). (B.9)

Inserting a factor of x̂ and integrating, this should imply that PA −KA built from Va
cannot vanish.
In fact, this issue was noted as early as [21] in the context of the LLL on the plane,
and it was traced back to the modification of the fermion anticommutation relations
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due to the projection onto the LLL. After this projection, the fermion anticommutation
relations are nonlocal:

{ψ†(x̂), ψ(ŷ)} →
s∑

m=−s

Φ∗m(x̂)Φm(ŷ) ̸= iδS2(x− y), (B.10)

In [21], a prescription was given for constructing a modified Va, essentially by inte-
grating out the higher Landau levels using the equations of motion, in order to restore
the conservation equation for translations in flat space. In practice, this procedure
essentially constructs the Va components of the CFT stress tensor as an infinite sum
over local operators designed to reproduce the correct Ward identities for the IR CFT,
similarly to how we build T 0

0.

C Formulae for H and ΛA

In this section we briefly summarize how to write the Hamiltonian in second quantized
form as done in [6] and how to extend this formalism to the other conformal gener-
ators. Recall that fermions defined on the LLL can be expanded as the product of
creation/annihilation operators and monopole harmonics

ψ(θ, ϕ) =
s∑

m=−s

Φm(θ, ϕ)cm , ψ†(θ, ϕ) =
s∑

m=−s

Φ∗m(θ, ϕ)c
†
m , (C.1)

with c†m ≡ (c†m↑, c
†
m↓). To express this observable in terms of cs, it is helpful to recall

certain properties of monopole and spherical harmonics. Both functions are special
cases of the more general spin-weighted spherical harmonics Y (s)

ℓ,m (ℓ = s, s+1, · · · )

Y
(s)
ℓ,m = (−1)ℓ+m−s

√
(ℓ+m)!(ℓ−m)!(2ℓ+ 1)

4π(ℓ+ s)!(ℓ− s)!
eimϕ sin2ℓ

(
θ

2

)
×

×
ℓ−s∑
r=0

(−1)r
(
ℓ− s
r

)(
ℓ+ s

r + s−m

)
cot2r+s−m

(
θ

2

)
,

(C.2)

from which the usual spherical harmonic Yℓ,m and the monopole harmonics Φm are
recovered as

Yℓ,m = Y
(0)
ℓ,m , Y ∗ℓ,m = (−1)mY (0)

ℓ,−m ,

Φm = eiπ(s−2m)Y (−s)
s,m , Φ∗m = eiπmY

(s)
s,−m .

(C.3)
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Spin-weighted harmonics satisfy the following useful properties∫
S2

Y
(s)
ℓ,mY

(s)∗
ℓ′,m′ = δℓ,ℓ′δm,m′ , (C.4a)

∑
ℓ,m

Y
(s)
ℓ,m(Ω1)Y

(s)∗
ℓ,m (Ω2) = δ(2)(Ω1 − Ω2) , (C.4b)

∫
S2

Y
(s1)
ℓ1,m1

Y
(s2)
ℓ2,m2

Y
(s3)
ℓ3,m3

=

√∏3
i=1(2ℓi + 1)

4π

(
ℓ1 ℓ2 ℓ3
m1 m2 m3

)(
ℓ1 ℓ2 ℓ3
−s1 −s2 −s3

)
. (C.4c)

Starting from the Hamiltonian

H =

∫
S2

H , H =

[∫
S2

U(Ω)
(
(ψ†ψ)2 − (ψ†σzψ)

2
)]
− h(ψ†σxψ) , (C.5)

U(Ω) =
λ0
R2
δ(Ω1 − Ω2) +

λ1
R4
∇2δ(Ω1 − Ω2) , (C.6)

we plug in the decomposition (C.1), then the part proportional to h is straightforward
to compute using the orthonormality of monopole harmonics∫

ψ†σxψ =
∑
m1,m2

c†m1
σxcm2

∫
Φ∗m1

Φm2︸ ︷︷ ︸
δm1,m2

=
∑
m

c†mσxcm . (C.7)

For the remaining parts, let us define σα, α = 0, z, and let us rewrite∑
mi

(c†m1
σαcm4)(c

†
m2
σαcm3)

∫
dΩ1dΩ2U(Ω12)Φ

∗
m1

(Ω1)Φm4(Ω1)Φ
∗
m2

(Ω2)Φm3(Ω2) , (C.8)

U(Ω12) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

βi(ℓ)Yℓ,m(Ω1)Y
∗
ℓ,m(Ω2) , βi(ℓ) =

{
β0 =

λ0
R2 ,

β1 = −ℓ(ℓ+ 1) λ1
R4 ,

(C.9)

where we have rewritten δ(Ω1 − Ω2) as in (C.4b) and used the fact that ∇2Yℓ,m =

−ℓ(ℓ + 1)Yℓ,m. Focusing on the integral, we can use the definition in terms of spin-
weighted harmonics in (C.3) together with the expression in (C.4c)

I(i) ≡
∑
ℓ,m

βi(ℓ)

(∫
dΩ1Φ

∗
m1

Φm4Yℓ,m

)(∫
dΩ2Φ

∗
m2

Φm3Y
∗
ℓ,m

)
, (C.10)
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=
∑
ℓ,m

βi(ℓ)
eiπ(2s+m−2m4−2m3+m1+m2)

4π
(2ℓ+ 1)(2s+ 1)2

(
ℓ s s

0 s −s

)2

× (C.11)

×
(
ℓ s s

m m4 −m1

)(
ℓ s s

−m m3 −m2

)
, (C.12)

where
(
j1 j2 j3
m1 m2 m3

)
is the 3j-symbol.14 Because of the properties of the 3j-symbol the

expression vanishes unless

0 ≤ ℓ ≤ 2s , (C.13a)

m = m4 −m1 , m = m2 −m3 ⇒ m1 +m2 = m3 +m4 . (C.13b)

Including these conditions, the integral reduces to

I(i) =
2s∑
ℓ=0

βi(ℓ)

4π
(−1)2s−m4−m2(2ℓ+ 1)(2s+ 1)2

(
ℓ s s

0 s −s

)2

×

×
(

ℓ s s

m1 −m4 m4 −m1

)(
ℓ s s

m2 −m3 m3 −m2

)
δmi

,

(C.14)

with δmi
≡ δm1+m2,m3+m4 . This expression can be further simplified using the iden-

tity (
s1 k s4
−m1 m1 −m4 m4

)(
s2 k s3
−m2 m2 −m3 m3

)
δmi

=
2s∑
y=0

(2y + 1)(−1)m3−m1−2m4×

×
{
y s1 s2
k s3 s4

}(
s1 s2 y

m1 m2 −m1 −m2

)(
s3 s4 y

m3 m4 −m3 −m4

)
δmi

,

(C.15)
such that

I(i) = 1

2

2s∑
y=0

V2s−y(2y + 1)

(
s s y

m1 m2 −m1 −m2

)(
s s y

m4 m3 −m3 −m4

)
δmi

,

V2s−y ≡
2s∑
ℓ=0

(−1)2s+yβi(ℓ)
2π

(2ℓ+ 1)(2s+ 1)2
{
y s s

ℓ s s

}(
ℓ s s

0 s −s

)2

,

(C.16)

14Note that here and in the following, to simplify expressions, we will always assume 2s ∈ N.
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with {· · · } the Wigner 6j-symbol. Writing the expression in terms of V2s−y, known
as the Haldane pseudopotential [22], has the advantage that, for a fixed βi, only few
values of y gives a non vanishing contribution. In the cases of interest

β0(ℓ) ←→ V2s−y =

{
λ0
R2

(2s+1)2

2π(4s+1)
y = 2s ,

0 else ,
(C.17a)

β1(ℓ) ←→ V2s−y =


λ1
R4

s(2s+1)2

2π(4s+1)
y = 2s ,

λ1
R4

s(2s+1)2

2π(4s−1) y = 2s− 1 ,

0 else .

(C.17b)

From these expressions we can easily derive the relation between the Vi pseudopotentials
and the interaction parameters

λ0
R2

=
2π

(2s+ 1)2
((4s+ 1)V0 + (4s− 1)V1) ,

λ1
R4

=
2π

(2s+ 1)2
· (4s− 1)V1

s
.

(C.18)

Passing to the rotation generators defined in (B.6)

Jz = (s+ 1)
∑
m1,m2

c†m1
cm2

∫
dΩcos θΦ∗m1

Φm2 ,

J± = (s+ 1)
∑
m1,m2

c†m1
cm2

∫
dΩe±iϕ sin θΦ∗m1

Φm2 .

(C.19)

Using the fact that

cos θ = 2

√
π

3
Y1,0 , e±iϕ sin θ = ∓2

√
2
π

3
Y1,±1 , (C.20)

together with the properties in (C.4), it is straightforward to get

Jz =
s∑

m=−s

m c†mcm , (C.21a)

J+ =
s−1∑
m=−s

√
(s−m)(s+m+ 1) c†m+1cm , (C.21b)
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J− =
s∑

m=−s+1

√
(s+m)(s−m+ 1) c†m−1cm . (C.21c)

So defined, the generators satisfy the SO(3) algebra

[Jz, J±] = ±J± , [J+, J−] = 2Jz . (C.22)

As we have explained before, we don’t need to define the generators of transla-
tions and special conformal transformations separately. But rather, it is sufficient to
construct their sum

Λz ≡ Pz +Kz = 2 · 2
√
π

3

∫
S2

Y1,0T
0
0 ,

Λ± ≡ (P1 +K1)± i(P2 +K2) = ±2 · 2
√

2π

3

∫
S2

Y1,±1T
0
0 .

(C.23)

Using T 0
0 → H in (C.5)

Λj =
∑
mi

Ĩ(i)j
(
c†m1

cm4c
†
m2

cm3 − c†m1
σzcm4c

†
m2
σzcm3

)
− hΛ(h)

j =

{
Λz j = 0 ,

Λ± j = ±1 ,

Ĩ(i)j = 4

√
π

3
αj
∑
ℓ,m

β(i)(ℓ)

(∫
dΩ1Φ

∗
m1

Φm4Y1,jYℓ,m

)(∫
dΩ2Φ

∗
m2

Φm3Y
∗
ℓ,m

)
,

Λ
(h)
j = 4

√
π

3
αj
∑
m1,m2

∫
dΩY1,jΦ

∗
m1

Φm2c
†
m1
σxcm2

=

√
4s(2s+ 1)

(s+ 1)
αj
∑
m

(−1)j−m+s

(
1 s s

j m −j −m

)
c†m+jσxcm ,

(C.24)
where we have used the same conventions in (C.9) and we have introduced

αj =

{
∓
√
2 j = ±1 ,

1 j = 0 .
(C.25)

To solve for Ĩ(i)j we can use the properties in (C.4), together with the identity for the
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product of spherical harmonics

Yℓ1,m1Yℓ2,m2 =

√
(2ℓ1 + 1)(2ℓ2 + 2)

4π

ℓ1+ℓ2∑
kmin

√
2k + 1(−1)m1+m2Yk,m1+m2× (C.26)

×
(
ℓ1 ℓ2 k

0 0 0

)(
ℓ1 ℓ2 k

m1 m2 −m1 −m2

)
. (C.27)

with kmin = max(|ℓ1 − ℓ2|, |m1 +m2|). Then

Ĩ(i)j =
αj
2π
δm1+m2,m3+m4+j(−1)j+m12

2s∑
ℓ=0

ℓ+1∑
k=kmin

βi (2s+ 1)2(2k + 1)(2ℓ+ 1)

(
1 ℓ k

0 0 0

)
×

×
(
k s s

0 s −s

)(
ℓ s s

0 s −s

)(
k s s

m14 m4 −m1

)(
ℓ s s

m23 m3 −m2

)(
1 ℓ k

j m32 m23 − j

)
(C.28)

where mij ≡ mi−mj and kmin = max(|m14|, |ℓ− 1|). Similarly as we have done for the
pseudopotential, we can rewrite this expression in an easier form by using twice the
identity in (C.15)

Ĩ(i)j = αj(−1)−m1

∑
x,y

Vy,x(2y + 1)(2x+ 1)

(
y s x

m1 − j m2 j −m1 −m2

)
×

×
(
s s x

m3 m4 −m3 −m4

)(
s 1 y

−m1 j m1 − j

)
δm1+m2,m3+m4+j ,

Vy,x ≡
2s∑
ℓ=0

ℓ+1∑
k=ℓ−1

βi
2π

(−1)k−ℓ+y(2k + 1)(2ℓ+ 1)(2s+ 1)2×

×
{
x y s

ℓ s s

}{
y ℓ s

k s 1

}(
1 ℓ k

0 0 0

)(
k s s

0 s −s

)(
ℓ s s

0 s −s

)
.

(C.29)

For a fixed βi(ℓ) only few Vy,x are non vanishing

β0(ℓ) ←→ Vy,x=2s =
λ0

2πR2


(−1)s
(4s+1)

√
s(2s+1)3

s+1
y = s ,

− (−1)s
(4s+1)

√
s(2s+1)3

(s+1)(2s+3)
y = s+ 1 ,

0 else ,

(C.30a)
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β1(ℓ) ←→ Vy,x =
λ1

2πR4



− (−1)s
(4s+1)

√
s3(2s+1)3

s+1
y = s, x = 2s ,

(−1)s
(4s+1)

√
s(2s+1)5

(s+1)(2s+3)
y = s+ 1, x = 2s ,

− (−1)s
4s−1

√
s3(2s+1)3

s+1
y = s, x = 2s− 1 ,

(−1)s
4s−1

√
s(2s+1)5(2s−1)

(s+1)(3+2s)(4s+1)
y = s+ 1, x = 2s− 1 ,

0 else .
(C.30b)

The Λs satisfy the algebra

[Jz,Λz] = 0 , [Jz,Λ+] = Λ+ , [Jz,Λ−] = −Λ− , (C.31a)

[J+,Λz] = −Λ+ , [J+,Λ+] = 0 , [J+,Λ−] = 2Λz , (C.31b)

[J−,Λz] = Λ− , [J−,Λ+] = −2Λz [J−,Λ−] = 0 . (C.31c)

D Corrections to (P +K) Matrix Elements from Primaries

Our goal in this appendix is to obtain formulae from conformal perturbation theory
for the matrix elements of H(x) − T 0

0. As discussed in the body of the paper, this is
complicated by the fact that when H(x) − T 0

0 contains primary operators, there are
also deformations of the eigenstates, whose contributions to the matrix elements can
be written in terms of the integral in (4.5).

Consider the case where Õr is the identity operator. In this case, the correlator that
we need is the three-point function ⟨OOT ⟩ on Sd−1 × R, which is fixed by conformal
invariance and the Ward identity to be [23]

⟨T 00(t1, x̂1)O(t2, x̂2)O(t3, x̂3)⟩Sd−1×R

=
d∆

(d− 1)Sd

1

dd12d
2∆−d
23 dd31

(
(d13
d12

(x̂1 · x̂2 − et1−t2)− d12
d13

(x̂1 · x̂3 − et1−t3)2

d223
− 1

d

)
,

(D.1)

where Sd = vol(Sd−1) = 2πd/2

Γ(d/2)
, and

d2ij ≡ 2(cosh(ti − tj)− uij), uij ≡ x̂i · x̂j. (D.2)

We will just look at the cases where On is at most a level 2 descendant, which means
we can expand in powers of x3 up to x23 – equivalently, we expand in powers of et3 and
keep up to e(∆+2)t3 = r∆+2

3 (where r ≡ et). To warm up, begin with just the leading
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power e∆t3 = r∆3 , which corresponds to taking On = O. Taking d = 3,

⟨T 00(t1, x̂1)O(t2, x̂2)O(t3, x̂3)⟩S2×R ⊃
3∆

2S3

r∆3

(
r3−∆2 (r21 (3u

2
12 − 1)− 4r2r1u12 + 2r22)

3 (−2r2r1u12 + r21 + r22)
5/2

)
.

(D.3)
First, do the x̂2 integral, to find

⟨T 00(0, x̂1)

∫
d2Ω2O(t2, x̂2)|O⟩S2 =

3∆

2S3

(
1

r2

)∆{ 8π
3
r2 > 1

0 r2 < 1
(D.4)

Finally, integrate
∫∞
−∞ dtE

∼=
∫∞
0

dr2
r2

:

F̃
(state)
1TO (x) = −gO

∫ ∞
1

dr2
r2

3∆

2S3

(
1

r2

)∆
8π

3
= −gO. (D.5)

Putting it all together,

F̃1TO(x) = ⟨vac|T 00(x)|On⟩+ gO⟨vac|O(x)|O⟩ − F̃ (state)
1TO (x)

= 0 + gO − gO = 0,
(D.6)

as it should be since ⟨ṽac|H(x)|Õ⟩ is rotationally invariant (both external states are
scalars) and so it is equal to its average over the sphere, which is therefore just the
matrix element of the Hamiltonian H̃ between two different energy eigenstates.

Now, we can easily systematize this calculation. We can take x⃗ = ẑ without loss of
generality, since its dependence can be restored by considering the symmetries of the
external state. We will also restrict to states |On⟩ with jz = 0 without loss of generality.
Then, at levels 0,1 and 2, all descendant states can be labeled by their J value. Let
On,J denote the level n spin J state. We find

F̃
(state)
1T,O0,0

= −1

F̃
(state)
1T,O1,1

= −
√
2(3 + ∆ +∆2)

(2 + ∆)
√
3∆

F̃
(state)
1T,O2,0

= −
√

∆(2∆− 1)√
3

F̃
(state)
1T,O2,2

= −
√

1

15

2 (∆5 + 3∆4 + 10∆3 + 12∆2 + 4∆− 36)

(∆− 1)(∆ + 2)(∆ + 4)
√

∆(∆ + 1)

(D.7)
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We also find by similar manipulations starting with the two-point function ⟨OO⟩ that
the contributions from the shifts in the operators are, for a primary operator O,

F̃
(op)
1T,O,O0,0

(Ω̂) = 1

F̃
(op)
1T,O,O1,1

(Ω̂) = −
√

2∆

3
cos θ

F̃
(op)
1T,O,O2,0

(Ω̂) = −
√

∆(2∆− 1)√
3

F̃
(op)
1T,O,O2,2

(Ω̂) = −2
√

∆(∆ + 1)

15

3 cos2 θ − 1

2
,

(D.8)

where we have reintroduced the Ω dependence based on the spin of the ket state (this
just amounts to multiplying by Pℓ(cos θ)

Pℓ(1)
where ℓ is the spin of the ket; there is no ϕ

dependence since by definition the ket state has jz = 0 state). Therefore the combined
contribution for a primary operator O is

F̃1T,O,O0,0(Ω̂) = 0

F̃1T,O,O1,1(Ω̂) =

√
2

3∆

∆− 3

∆ + 2
cos θ

F̃1T,O,O2,0(Ω̂) = 0

F̃1T,O,O2,2(Ω̂) =
2
√

3
5
(∆− 3)(∆3 + 2∆2 − 4)√

∆(∆ + 1)(∆− 1)(∆ + 2)(∆ + 4)

3 cos2 θ − 1

2

(D.9)

We can also easily read off the contribution to F̃T,On,ℓ
from scalar descendant states

by taking derivatives. We mainly are interested in the descendant operator ∇2
S2O,

where
∇2
S2f(u) = −2uf ′(u) + (1− u2)f ′′(u), u = cos θ (D.10)

Since∇2
S2Pℓ(u) = −ℓ(ℓ+1)Pℓ(u), taking∇2

S2 just amounts to multiplication by−ℓ(ℓ+1)
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where ℓ is the spin of the ket state. So

F̃
(op)

1T,∇2
S2O,O0,0

(Ω̂) = 0

F̃
(op)

1T,∇2
S2O,O1,1

(Ω̂) = −2
√

2∆

3
cos θ

F̃
(op)

1T,∇2
S2O,O2,0

(Ω̂) = 0

F̃
(op)

1T,∇2
S2O,O2,2

(Ω̂) = 12

√
∆(∆ + 1)

15

3 cos2 θ − 1

2
,

(D.11)

The main quantity of interest is∫
d2Ωcos θF̃1T,O1,1(x̂) =

4π

3
F̃1T,O1,1(ẑ)

= gO

√
2

3∆

∆− 3

∆ + 2

4π

3
+
∞∑
n=1

(−2)ng∇2n
S2O

4π

3

√
2∆

3
,

(D.12)

where ∆ = ∆O. No operators outside of the O conformal representation contribute,
due to the fact that ⟨vac|O′|O⟩ = 0 when O and O′ are not in the same representation,
and ⟨vac|T{

∫
d2ΩO′(x)T 00(ẑ)}|O, ℓ = 1⟩ ∼ ⟨vac|T{

∫
d2ΩO′(x)(K+P )}|O, ℓ = 1⟩ = 0,

since T 00 turns into Λ by conservation of angular momentum, and then again the result
vanishes if O′ and O are not in the same conformal representation.

E Matrix Elements of PA in CFT Limit

Conceptually, computing the matrix elements of PA between states in the CFT limit is
a straightforward application of the conformal algebra, though in practice the amount
of effort involved in performing the necessary algebraic manipulations can be greatly
reduced by organizing it effectively. It is typically easier to work with the algebra using
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an index-free notation, where it can be written as follows:

[D, J(y, y′)] = 0, [K(z), P (y)] = 2z · yD + 2J(z, y),

[D,P (z)] = P (z), [D,K(z)] = −K(z),

[J(y, y′), P (z)] = z · yP (y′)− z · y′P (y), [J(y, y′), K(z)] = z · yK(y′)− z · y′K(y),

[J(y, y′), J(z, z′)] = (z′ · yJ(z, y′) + z · y′J(z′, y)− z′ · y′J(z, y)− z · yJ(z′, y′)).
(E.1)

The indices are all contracted with auxiliary vectors, so K(z) ≡ zAKA, P (z) ≡ zAPA,
and J(y, y′) ≡ yAy′BJAB. We use a convention where D is Hermitian, and acting on
primaries D|prim⟩ = ∆|prim⟩.

For scalar primaries, we can obtain a closed-form expression for the matrix elements
of PA by taking explicit simple integrals of CFT two-point functions. The basic idea is
to start with the CFT two-point function

⟨(ROR)(x)O(y)⟩ = (1− 2x · y + x2y2)−∆, (E.2)

where ROR is the conformal inversion of O. Since conformal inversions exchange P
and K, we can act with K on the bra state ⟨O| by taking derivatives with respect to
x of the equation above. All descendant states of O can be obtained by repeatedly
acting with PA, so any matrix element of P between any two descendant states can be
written in terms of

⟨O|Kn′
(z)P (x)P n(y)|O⟩ = 1

n+ 1
xA

∂

∂yA
⟨O|Kn′

(z)P n+1(y)|O⟩. (E.3)

But because P and K implement translations on O and ROR respectively,

⟨(ROR)(x)O(y)⟩ =
∞∑
n=0

1

(n!)2
⟨O|Kn(z)P n(y)|O⟩, (E.4)

so by the standard generating function expression for Gegenbauer polynomials C(∆)
n ,

we have
⟨O|Kn(z)P n(y)|O⟩ = (n!)2(y2z2)n/2C(∆)

n (
y · z√
y2z2

). (E.5)

To create states of a definite level n and spin ℓ, we can fix n in this expression and
integrate against spherical harmonics of y, z to pick out the spin of the in and out state,
respectively. In radial quantization, the spatial surfaces correspond to fixed radius in
flat space coordinates, so we can set y2 = z2 = 1. However, we also want to include a
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factor of P (x) as in (E.3), in which case we differentiate with respect to y before setting
y2 = 1:

⟨O|Kn(ẑ)P n(ŷ)|O⟩ = (n!)2C(∆)
n (ŷ · ẑ),

⟨O|Kn+1(ẑ)P (x)P n(ŷ)|O⟩ = (n+ 1)!n!xA
(
(2∆)(ẑA − ŷAŷ · ẑ)C(∆+1)

n (ŷ · ẑ)

+ (n+ 1)ŷAC
(∆)
n+1(ŷ · ẑ)

)
.

(E.6)

At level n, we can project onto the state with jz = 0 and spin ℓ by integrating
against the spherical harmonic Yℓ0(ŷ) ∝ Pℓ(cos θy) (where the coordinate system is
ŷ = (sin θy cosϕy, sin θy sinϕy, cos θy)). Integrating against ⟨O|Kn(ẑ)P n(ŷ)|O⟩ gives us
the norm of the state:

|n, ℓ⟩ = 1

Nn,ℓ

∫
d2ΩPℓ(cos θ)O(ŷ)|vac⟩,

N2
n,ℓ =

∫
d2Ωyd

2ΩzPℓ(cos θy)Pℓ(cos θz)⟨O|Kn(ẑ)P n(ŷ)|O⟩

=
22∆−1Γ(n+ 1)2Γ

(
1
2
(n− ℓ− 1) + ∆

)
Γ
(
ℓ+n
2

+∆
)

(2ℓ+ 1)Γ(2∆− 1)Γ
(
1
2
(n− ℓ+ 2)

)
Γ
(
1
2
(ℓ+ n+ 3)

) ,
(E.7)

and then integrating against ⟨O|Kn+1(ẑ)P (êz)P
n(ŷ)|O⟩ with êz = (0, 0, 1) gives us the

matrix element:

⟨n+ 1, ℓ′|Pz|n, ℓ⟩ =
∫
d2Ωyd

2ΩzPℓ′(cos θz)Pℓ(cos θy)⟨O|Kn+1(ẑ)P (êz)P
n(ŷ)|O⟩

Nn+1,ℓ′Nn,ℓ

=


√

ℓ2(n−ℓ+2)(2∆+n−ℓ−1)
(2ℓ+1)(2ℓ−1) (ℓ′ = ℓ− 1)√

(ℓ+1)2(n+ℓ+3)(2∆+n+ℓ)
(2ℓ+1)(2ℓ+3)

(ℓ′ = ℓ+ 1)

0 else

(E.8)

As a check, one can verify that( ∑
ℓ′=ℓ±1

|⟨n+ 1, ℓ′|Pz|n, ℓ⟩|2
)
−

( ∑
ℓ′=ℓ±1

|⟨n, ℓ|Pz|n− 1, ℓ′⟩|2
)

= 2(∆ + n), (E.9)

as required by the commutator [Kz, Pz] = 2D. For a more complicated check, one
can evaluate the Casimir, C = D2 + J2 − 1

2
{KA, PA}. We can relate matrix elements
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of KAPA and PAKA to those of KzPz and PzKz respectively using the Wigner-Eckart
theorem, so in terms of the matrix elements for Pz the Casimir acting on a state of
level n and spin ℓ evaluates to

⟨n, ℓ|C|n, ℓ⟩ = (∆ + n)2 + ℓ(ℓ+ 1)

− 1

2

(2ℓ+ 3

ℓ+ 1
|⟨n+ 1, ℓ+ 1|Pz|n, ℓ⟩|2 +

2ℓ− 1

ℓ
|⟨n+ 1, ℓ− 1|Pz|n, ℓ⟩|2

+
2ℓ+ 3

ℓ+ 1
|⟨n, ℓ|Pz|n− 1, ℓ+ 1⟩|2 + 2ℓ− 1

ℓ
|⟨n, ℓ|Pz|n− 1, ℓ− 1⟩|2

)
= ∆(∆− 3),

(E.10)
as expected. In fact, because for each state there are only two nonzero matrix elements
of Pz connecting the state to states at lower levels and two connecting it to states at
higher levels, one can reverse the logic and with only these two consistency relations
one has a recursion relation between matrix elements at neighboring levels that one
can solve to find all the values of ⟨n+ 1, ℓ′|Pz|n, ℓ⟩, providing an independent proof of
(E.8).

For the case of spinning primaries, it is easier to use such recursion relations to
determine the matrix elements of P . Consider a primary with dimension ∆ and spin
ℓ0, and introduce the shorthand

Z±n,ℓ ≡ |⟨n+ 1, ℓ± 1|Pz|n, ℓ⟩|2 (E.11)

for the sum over matrix-element-squareds of Pz between level n spin ℓ descendants
and level n + 1 spin ℓ ± 1 descendants, still in the jz = 0 sector. The commutator
[Kz, Pz] = 2D evaluated in the jz = 0 component at level n and spin ℓ implies

Z+
n,ℓ + Z−n,ℓ − Z

+
n−1,ℓ−1 − Z

−
n−1,ℓ+1 = 2(∆ + n)N(n, ℓ), (E.12)

where N(n, ℓ) is the number of descendants at level n and spin ℓ, which for generic ∆

(i.e. for ∆ ̸= ℓ0 + 1) can be written N(n, ℓ) =
∑⌊n

2
⌋

j=0 Θ(ℓ+ ℓ0 ≥ n− 2j ≥ |ℓ− ℓ0|). The
matrix elements of Pz vanish between descendants with the same spin ℓ in the jz = 0

sector, but they arise in other jz sectors. If we evaluate the same commutator in the
jz = 1 sector,

ℓ(ℓ+ 2)

(ℓ+ 1)2
(Z+

n,ℓ−Z
−
n−1,ℓ+1)+

(ℓ+ 1)(ℓ− 1)

ℓ2
(Z−n,ℓ−Z

+
n−1,ℓ−1)+Z

01
n,ℓ−Z01

n−1,ℓ = 2(∆+n)N(n, ℓ),

(E.13)
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where
Z01
n,ℓ ≡ |⟨n+ 1, ℓ; jz = 1|Pz|n, ℓ; jz = 1⟩|2, (E.14)

again implicitly summed over all descendants with the indicated quantum numbers. To
obtain another recursion formula, we can look at the commutator [K−, P+] = 2(D+Jz),
now in the highest-weight (jz = ℓ) component at level n and spin ℓ:

Z+
n,ℓ

2ℓ+ 1

ℓ+ 1
−ℓZ01

n−1,ℓ−Z+
n−1,ℓ−1

2ℓ− 1

ℓ
−Z−n−1,ℓ+1

1

(ℓ+ 1)2
= 2(∆+n+ℓ)N(n, ℓ), (E.15)

where we have used the Wigner-Eckart theorem to relate matrix elements of P+ in
the highest-weight components to the matrix elements of Pz in the jz = 0 component.
Solving these three equations, we obtain the following recursion relation:

Z+
n,ℓ =

2(ℓ+ 1)(∆ + ℓ+ n)

2ℓ+ 1
N(n, ℓ) +

1

(ℓ+ 1)(2ℓ+ 1)
Z−n−1,ℓ+1 +

(ℓ+ 1)(2ℓ− 1)

ℓ(2ℓ+ 1)
Z+
n−1,ℓ−1

+
ℓ(ℓ+ 1)

2ℓ+ 1
Z01
n−1,ℓ,

Z−n,ℓ =
2ℓ(∆ + n− ℓ− 1)

2ℓ+ 1
N(n, ℓ) +

ℓ(2ℓ+ 3)

(ℓ+ 1)(2ℓ+ 1)
Z−n−1,ℓ+1 +

1

ℓ(2ℓ+ 1)
.Z+

n−1,ℓ−1

− ℓ(ℓ+ 1)

2ℓ+ 1
Z01
n−1,ℓ,

Z01
nℓ = 2(∆ + n)N(n, ℓ)− (ℓ+ 1)(ℓ− 1)

ℓ2
(Z−n,ℓ − Z

+
n−1,ℓ−1) +

ℓ(ℓ+ 2)

(ℓ+ 1)2
(Z−n−1,ℓ+1 − Z

+
n,ℓ)

+ Z01
n−1,ℓ.

(E.16)
Combined with the boundary conditions that

Zn,ℓ = 0 if n < 0 or ℓ < 0 or |ℓ− ℓ0| > n (E.17)

this completely determines the values of the Zn,ℓs.
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F Useful OPE data

O ∆ ℓ fϵϵO fϵ′ϵ′O
ϵ 1.412625(10) 0 1.532435(19) 2.3956 [19, 24]
Tµν 3 2 0.8891471(40)
ϵ′ 3.82951(61) [25] 0 1.5362(12)[25] 7.6771

Cµνρσ 5.022665(28) 4 0.24792(20)
T ′µν 5.50915(44) 2 0.69023(49)
C ′µνρσ 6.42065(64) 4 −0.110247(54)
ϵ′′ 6.8956(43) 0 0.1279(17)

Table 1. Z2-even operators with conformal dimension ∆ < 7. Unless stated otherwise, the
data are taken from [26], which extended previous results in [27].

O ∆ ℓ
σ 0.5181489(10) 0
σµν 4.180305(18) 2
σµνρ 4.63804(88) 3
σ′ 5.262(89) [25] 0

σµνρσ 6.112674(19) 4
σµνρσδ 6.709778(27) 5
σ′µν 6.9873(53) 2

Table 2. Z2-odd operators with conformal dimension ∆ < 7. Unless stated otherwise, the
data are taken from [26], which extended previous results in [27].
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