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Abstract

Energy conditions are crucial for understanding why exotic phenomena such as traversable
wormholes and closed timelike curves remain elusive. In this paper, we prove the Double
Smeared Null Energy Condition (DSNEC) for the fermionic free theory in 4-dimensional
flat Minkowski space-time, extending previous work on the same energy condition for
the bosonic case [1] [2] by adapting Fewster and Mistry’s method [3] to the energy-
momentum tensor T++. A notable difference from previous works lies in the presence of
the γ0γ+ matrix in T++, causing a loss of symmetry. This challenge is addressed by mak-
ing use of its square-root matrix. We provide explicit analytic results for the massless
case as well as numerical insights for the mass-dependence of the bound in the case of
Gaussian smearing.
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1 Introduction15

In general relativity, Einstein’s equation itself doesn’t impose any restrictions on the form of the16

energy-momentum tensor Tµν. This freedom allows the existence of solutions Gµν that may17

lead to surprising phenomena, such as macroscopic traversable wormholes [4], closed timelike18

curves [5] or other causality violations. Energy conditions are essential for explaining why19

these phenomena have never been observed. The Null Energy Condition (NEC) is particularly20

important since it is essential in the proof of Penrose’s singularity theorem [6] and the second21

law of black hole thermodynamics (or the Area Theorem) [7] [8] [9].22

Previous work has been done for new types of energy conditions namely the Smeared Null23

Energy Condition (SNEC) [10] and the Double-Smeared Null Energy Condition (DSNEC) [1]24

which were used to deal with problems that arise when generalizing the NEC to a quantum25

setup [11–19]. Since this was only studied for the free bosonic theory, in this paper, we will26

focus on the SNEC and DSNEC for the fermionic theory. Our derivation will closely follow the27

reasoning of Fewster and Mistry [3] on the Quantum Weak Energy Inequalities for the Dirac28

field, who deduced a bound for the T00 component of the massive fermionic free theory in29

four-dimensional flat Minkowski space-time, and Wei-Wing et al [20], who generalized this30

result for Minkowski space-time of arbitrary dimensions.31

We introduce operators Oµi that enable us to express the smeared energy-momentum ten-32

sor as the difference between a positive semi-definite operator and a c-number. The primary33

challenge in defining these operators arises from the presence of the γ0γ+ matrix in T++,34

which reduces the symmetry of the problem. This obstacle is overcome by incorporating the35

square-root matrix of γ0γ+ in the definition of Oµi .36

In brief, the structure of the paper is as follows: In Section 2, we undertake the derivation37

outlined above and obtain an inequality for the once-smeared T++. However, this inequality38

is completely trivial, i.e. the lower bound obtained is −∞. We address this issue in Section39

3.1 by applying the smearing in two directions, providing a new energy condition:40

〈T f+ f−〉 ≥ −
2
π3

∫ ∞

0

du

∫ ∞

m2
u

dv

�

vu3

6
−

m2u2

2
+

m4u
2v
−

m6

6v2

�

| ĝ+(u)|2| ĝ−(v)|2, (1)

where f± are smearing functions in space-time coordinates and ĝ± denotes the Fourier trans-41

form of
p

f±. Additionally, we present explicit results for the massless case in Section 3.2,42

where we employ a Gaussian distribution as the smearing function and derive a bound that43

depends rationally on the standard deviations,44

〈T f+ f−〉 ≥ −
1

12π3σ3
+σ−

. (2)

Finally, in Section 3.3, we provide numerical results concerning the mass-dependence of the45

bound. In particular, we observe that for large masses, the bound asymptotically tends to zero.46

2 Derivation of the smearing null energy condition47

In this section, we will derive a bound for the T++ component of the energy-momentum tensor48

when smeared over the x+-direction1. The quantum field theory considered is the free fermion49

in Minkowski flat space-time. Note that, despite the bound derived being trivial, the idea can50

and will be used to deduce a non-trivial bound in Section 3.1.51

1The light-cone variables x+ and x− are defined in Appendix A, as well as the light-cone momentum coordinates
k+ and k−.

2



SciPost Physics Submission

First, let us write the symmetrized version of the energy-momentum tensor for the free52

fermion (the Belinfante tensor):53

Tµν =
i
4
(ψ̄γµ∂νψ− ∂νψ̄γµψ+ ψ̄γν∂µψ− ∂µψ̄γνψ). (3)

In particular, we are interested in the light-cone component,54

T++ =
i
2
(ψ†A∂+ψ− ∂+ψ†Aψ), (4)

where we define A= γ0γ+.55

The decomposition of the fermionic quantum field into Fourier modes yields the following:56

ψ(x) =
∑

k,α

bα(k)u
α(k)e−ik·x + d†

α(k)v
α(k)eik·x , (5)

where here we are considering discrete Dirac quantization in a box of side L. At the end of57

the derivation, we will take the continuous limit at L −→ +∞.58

Now, with these expansions, we can expand the first term of T++,59

i
2
(ψ†A∂+ψ) =

1
2

∑

k,k̃,α,α′

k̃+b†
α(k)bα′(k̃)u

†
α(k)Au†

α′
(k̃)ei(k−k̃)·x

−k̃+b†
α(k)dα′(k̃)u

†
α(k)Avα′(k̃)e

i(k+k̃)·x

+k̃+dα(k)bα′(k̃)v
†
α(k)Auα′(k̃)e

−i(k+k̃)·x

−k̃+dα(k)d
†
α′
(k̃)v†

α(k)Av†
α′
(k̃)e−i(k−k̃)·x ,

(6)

and similarly for the second term. Normal ordering will switch dα(k) with d†
α′
(k̃) providing an60

additional minus sign:61

: T++ :=
1
2

∑

k,k̃,α,α′

(k+ + k̃+)[b
†
α(k)bα(k̃)u

†
α(k)Auα′(k̃)e

i(k−k̃)·x

+d†
α′
(k̃)dα(k)v

†
α(k)Avα′(k̃)e

−i(k−k̃)·x]

+(k+ − k̃+)[dα(k)bα(k̃)v
†
α(k)Auα′(k̃)e

−i(k+k̃)·x

−b†
α(k)dα′(k̃)u

†
α(k)Avα′(k̃)e

i(k+k̃)·x].

(7)

We are interested in smear T++ in the x+-direction. So, let us put all the other inputs to zero:62

: T++ : (x+, 0) =
1
2

∑

k,k̃,α,α′

(k+ + k̃+)[b
†
α(k)bα(k̃)u

†
α(k)Auα′(k̃)e

i(k+−k̃+)·x+

+d†
α′
(k̃)dα(k)v

†
α(k)Avα′(k̃)e

−i(k+−k̃+)·x+]

+(k+ − k̃+)[dα(k)bα(k̃)v
†
α(k)Auα′(k̃)e

−i(k++k̃+)·x+

−b†
α(k)dα′(k̃)u

†
α(k)Avα′(k̃)e

i(k++k̃+)·x+].

(8)

For general configurations, the expression above is point-wise unbounded from below, so we63

have to introduce a smearing. Define, for a smearing function f for which we assume to have64

the positivity condition f = g2 for some other real function g, the smeared energy-momentum65

tensor component:66

T f =

∫ +∞

−∞
d x+ : T++ : (x+, 0) f (x+). (9)
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By the definition of the fourier transform, f̂ (k) =
∫ +∞
−∞ d x f (x)e−ikx , we get the following67

expression:68

T f =
1
2

∑

k,k̃,α,α′

(k+ + k̃+)[b
†
α(k)bα(k̃)u

†
α(k)Auα′(k̃) f̂ (k̃+ − k+)

+d†
α′
(k̃)dα(k)v

†
α(k)Avα′(k̃) f̂ (k+ − k̃+)]

+(k+ − k̃+)[dα(k)bα(k̃)v
†
α(k)Auα′(k̃) f̂ (k+ − k̃+)

−b†
α(k)dα′(k̃)u

†
α(k)Avα′(k̃) f̂ (−k+ − k̃+)].

(10)

Note that the matrix A has eigenvalues λ1 = λ2 = 0, λ3 = λ4 = 2, so it is positive semi-definite.69

Then it is possible to find the matrix B such that B†B = B†B = A, i.e. B is the square root matrix70

of A. It is easy to obtain B explicitly but we will only use its existence.71

Define the following family of operators for i ∈ {1,2, 3,4} and µ ∈ R:72

Oµi =
∑

k,α

ĝ(−k+ +µ)bα(k)(Buα(k))i + ĝ(k+ +µ)d
†
α(k)(Bvα(k))i , (11)

O†
µi =
∑

k,α

ĝ(−k+ +µ)b
†
α(k)(u

†
α(k)B

†)i + ĝ(k+ +µ)d
†
α(k)(v

†
α(k)B

†)i . (12)

So that Oµ for a fixed µ ∈ R is a four-dimensional vector of operators, and O†
µ a co-vector of73

the same type. Using the anti-commutation relations of the fields, one finds74

O†
µOµ = Sv

µ1+
∑

k,k̃,α,α′

ĝ(−k+ +µ) ĝ(−k̃+ +µ)b
†
α(k)bα′(k̃)u

†
α(k)Auα′(k̃)

− ĝ(k+ +µ) ĝ(k̃+ +µ)d
†
α′

dα(k)(k̃)v
†
α(k)Avα′(k̃)

+ ĝ(k+ +µ) ĝ(−k̃+ +µ)dα(k)bα′(k̃)v
†
α(k)Auα′(k̃)

+ ĝ(−k+ +µ) ĝ(k̃+ +µ)b
†
α(k)d

†
α′
(k̃)u†

α(k)Avα′(k̃),

where we have defined75

Sv
µ ≡
∑

k,α

ĝ(k+ +µ) ĝ(k̃+ +µ)δα,α′δk,k̃v†
α(k)Avα′(k̃) =
∑

k,α

ĝ(k+ +µ) ĝ(k+ +µ)v
†
α(k)Avα(k).

(13)
Proven in the literature [3], the following lemma alows us to recover T f .76

Lemma 1 Let f = g2 with g a real, smooth, compactly-supported2 function. Then the following
identity holds:

(k+ + k̃+) f̂ (k+ − k̃+) =
1
π

∫ ∞

−∞
dµµ ĝ(k+ −µ) ĝ(k̃+ −µ).

Using this lemma,77

T f =
1

2π

∫ ∞

−∞
dµµ(O†

µOµ − Sv
µ1). (14)

One can then compute the anti-commutator of the operator O,78

{O†
µi ,Oµi}=
∑

k,k̃,α,α′

( ĝ(−k+ +µ) ĝ(−k̃+ +µ)δα,α′δk,k̃u†
α(k)Auα′(k̃)

+ ĝ(k+ +µ) ĝ(k̃+ +µ)δα,α′δk,k̃v†
α(k)Avα′(k̃))1

=(Su
−µ + Sv

µ)1. (15)

2Note that the assumption of compact support is stronger than necessary. For example, the lemma still holds
for g a Gaussian distribution, since the rapid decay of the function secures convergence of the integral.
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Note that since g is real valued, | ĝ| is even.79

Using the anti-commutation relation obtained above, we can split the integral,80

T f =
1

2π

∫ ∞

−∞
dµµ(O†

µiOµi − Sv
µ1)

=
1

2π

∫ ∞

0

dµµ(O†
µiOµi − Sv

µ1) +
1

2π

∫ 0

−∞
dµµ(Su

−µ1−OµiO
†
µi). (16)

Notice that if µ≥ 0, then µ〈O†
µiOµi〉ψ ≥ 0, and similarly if µ≤ 0, then −µ〈OµiO

†
µi〉ψ ≥ 0, for81

any state |ψ〉. Hence,82

〈T f 〉ψ ≥ −
1

2π

∫ ∞

0

dµµSv
µ +

1
2π

∫ 0

−∞
dµµSu

−µ

= −
1

2π

∫ ∞

0

dµµ(Sv
µ + Su

µ). (17)

The computation preformed in appendix B shows that83

∑

α

u†
α(k)Auα(k) =

2
V

�

1−
k1

ωk

�

, (18)

∑

α

v†
α(k)Avα(k) =

2
V

�

1−
k1

ωk

�

. (19)

Finally, plugging it in the expression for Su and Sv and taking the continuous limit 1
V

∑

k⃗ −→
∫ d3 k⃗
(2π)3 ,84

we come to the conclusion that85

〈T f 〉ψ ≥ −
2
π

∫ ∞

0

dµµ

∫

d3k
(2π)3

| ĝ(k+ +µ)|2
�

1−
k1

ωk

�

. (20)

We will denote this bound as B1, where the subscript 1 represents the number of smearing86

directions, and the dependence on the smearing function is implicit.87

Unfortunately, the integral obtained in equation (20) diverges. By definition, k+ =
1
2(ωk+k1)88

= 1
2(ωk − k1) = 1

2(
q

k2
1 + k2

2 + k2
3 +m2 − k1), so we can change the integral variable accord-89

ingly. Using that the measure transforms as dk+ =
1
2(

k1

ωk
− 1)dk1, we have that the bound is90

proportional to91

B1∝−
∫ ∞

0

dµ

∫

dk+µ| ĝ(k+ +µ)|2
∫

dk2dk3. (21)

We can then note that the integrals in k2 and k3 are decoupled and they will contribute with92

the volume of the space in those directions. Since the integral in µ and k+ does not vanish93

for non-trivial smearing functions, the expression above diverges, which means the bound is94

completely trivial.95

This outcome is clearly unsatisfactory since our aim was to derive a non-trivial lower96

bound. Such a bound would allow us to explore the extent to which the Null Energy Con-97

dition (NEC) is violated within the framework of free fermionic quantum field theory.98

However, this divergence is not unexpected, drawing an analogy with the divergence of99

the bound of the free bosonic theory [10], when the UV cut-off approaches zero. The main100

issue is that, in order to obtain a convergent integral, it is necessary to fully smear it in the101

time direction. Note that t is linearly dependent on x+ and x− due to x++ x− = t. Hence, we102

expect that, if we smear T++ in both light-cone directions, we will obtain a convergent lower103

bound.104

5
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3 Double smeared null energy condition105

3.1 Derivation of the non-trivial bound106

In this section, we will prove a convergent lower bound, B2, by smearing T++ in both the107

x+ and x−-direction. In general, the smearing function can be of the form f (x+, x−). For108

practical purposes, we restrict our argument to the case where f is separable, i.e. the function109

factors multiplicatively f (x+, x−) = f+(x+) f−(x−). In other words, we are now interested in110

obtaining an upper bound for111

T f+ f− =

∫

d x+
∫

d x− : T++ : (x+, x−, 0) f+(x
+) f−(x

−). (22)

Keeping in mind that eik·x = eik+x+eik−x−e−ik⊥·x⊥ and using the definition of Fourier trans-112

form, we can carry out the same procedure as before to write113

T f+ f− =
1
2

∑

k,k̃,α,α′

(k+ + k̃+)[b
†
α(k)bα(k̃)u

†
α(k)Auα′(k̃) f̂+(k̃+ − k+) f̂−(k̃− − k−) + d†

α′
(k̃)dα(k)

v†
α(k)Avα′(k̃) f̂+(k+ − k̃+) f̂−(k− − k̃−)] + (k

− − k̃−)[dα(k)bα(k̃)v
†
α(k)Auα′(k̃)

f̂+(k+ − k̃+) f̂−(k− − k̃−)− b†
α(k)dα′(k̃)u

†
α(k)Avα′(k̃) f̂+(−k+ − k̃+) f̂−(−k− − k̃−)].

(23)

Denoting g± =
p

f±, we define the new operators:114

Oµi =
∑

k,α

Ĝ(−k+µ)bα(k)(Buα(k))i + Ĝ(k+µ)d†
α(k)(Bvα(k))i (24)

O†
µi =
∑

k,α

Ĝ(−k+µ)b†
α(k)(u

†
α(k)B

†)i + Ĝ(k+µ)d†
α(k)(v

†
α(k)B

†)i , (25)

where Ĝ(k + µ) = ĝ+(k+ + µ+) ĝ−(k− + µ−) and µ± are two dummy variables that shall be115

integrated out at the end. We will denote µ= (µ+,µ−).116

Since the Fourier transform of the product is the convolution, f = g2 implies that f̂ = ĝ ∗ ĝ117

=
∫

dµ ĝ(µ) ĝ(k−µ), so we have118

f̂−(k− − k̃−) =

∫

dµ ĝ−(µ) ĝ−(µ− (k− − k̃−)) (26)

=

∫

dµ− ĝ−(k− −µ−) ĝ−(k̃− −µ−), (27)

where we changed the variable µ = k− − µ− and used that since g− is real, ĝ−(x) = ĝ−(−x).119

Applying lemma 1 to f+ and g+, one obtains120

(k+ + k̃+) f̂+(k+ − k̃+) =
1
π

∫ ∞

−∞
dµ+µ+ ĝ+(k+ −µ+) ĝ+(k̃+ −µ+). (28)

Then for the double smearing case, applying lemma 1 again, we have121

(k++k̃+) f̂+(k+−k̃+) f̂−(k−−k̃−) =

∫

dµ+dµ−µ+ ĝ+(k+−µ+) ĝ+(k̃+ −µ+) ĝ−(k−−µ−) ĝ−(k̃− −µ−).

(29)

6
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In a analogous way as before, we can prove that122

T f+ f− =

∫ +∞

0

dµ+

∫ +∞

0

dµ−µ+(O†
µOµ − Sv

µ1), (30)

where now the definition of Sv
µ is different from the once-smeared case:123

Sv
µ =
∑

k,α

| ĝ+(k+ +µ+)|2| ĝ−(k− +µ−)|2v†
α(k)Avα(k) (31)

=
2
V

∑

k

| ĝ+(k+ +µ+)|2| ĝ−(k− +µ−)|2(1−
k1

ωk
) (32)

and the anti-commutator is what we expect, with the new definitions of Sv
µ and Su

µ:124

{O†
µi ,Oµi}= (Su

−µ + Sv
µ)1. (33)

In the end, we get the following bound,125

〈T f+ f−〉 ≥ −
2
π

∫ +∞

0

dµ+

∫ +∞

0

dµ−

∫

d3k⃗
(2π)3

µ+| ĝ+(k+ +µ+)|2| ĝ−(k− +µ−)|2(1−
k1

ωk
). (34)

We know that126

k+ =
1
2
(ωk + k1), (35)

k− =
1
2
(ωk − k1), (36)

ω2
k = k2

1 + k2
2 + k2

3 +m2. (37)

So setting k⊥ :=
q

k2
2 + k2

3 we obtain,127

4k+k− = k2
2 + k2

3 +m2 = k2
⊥ +m2, (38)

and it’s straightforward to find that128

d(k+k−) =
1
2

k⊥dk⊥. (39)

Since dk1 ∧ dk2 ∧ dk3 = dk1 ∧ dk⊥ ∧ k⊥dθ , we can rewrite part of our integral measure in129

terms of dk+, dk− and dθ , i.e. dk1 ∧ dk2 ∧ dk3 = 2(k+ + k−)dk− ∧ dk+ ∧ dθ .130

With all the considerations discussed above, one can change the variable of the integral in131

the double-smeared bound (34),132

〈T f+ f−〉 ≥ −
2
π

∫ +∞

0

dµ+

∫ +∞

0

dµ−

∫

D
2(k− + k+)dk−dk+2π

1
(2π)3

µ+| ĝ+(k+ +µ+)|2| ĝ−(k− +µ−)|2
�

2k+
k− + k+

�

= −
2
π3

∫ +∞

0

dµ+

∫ +∞

0

dµ−

∫

D
dk+dk−µ+k+| ĝ+(k+ +µ+)|2| ĝ−(k− +µ−)|2 (40)

where the integration domain is D = {k± ≥ 0|k+k− ≥ m2}.133

Equation (40) can be further simplified by changing variables. Setting u = k+ + µ+ and134

v = k− +µ−,135

〈T f+ f−〉 ≥ −
2
π3

∫ ∞

0

du

∫ ∞

m2
u

dv

∫ u

m2
v

dk+

∫ v

m2
k+

dk−(u− k+)k+| ĝ+(u)|2| ĝ−(v)|2. (41)

7
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Performing the k− and k+ integrals, we can present our main result.136

〈T f+ f−〉 ≥ −
2
π3

∫ ∞

0

du

∫ ∞

m2
u

dv

�

vu3

6
−

m2u2

2
+

m4u
2v
−

m6

6v2

�

| ĝ+(u)|2| ĝ−(v)|2 (42)

It’s worth mentioning that the form of our bound looks simpler than the result for the bosonic137

case in [1] and [2]. In the next subsections, we will explore this bound in more specific138

circumstances, where we can find simpler analytic expressions or numerical results.139

3.2 Massless, Gaussian-smeared bound140

Let us first investigate the massless case, where we can compute some analytic results for141

specific smearing functions. Take the Gaussian function | ĝ+(u)|2 = σ+e−(σ+u)2 (similarly142

| ĝ−(v)|2 = σ−e−(σ−v)2) 3 as a particular example of smearing function. By changing variables143

(ũ= σ+u and ṽ = σ−v), from equation (42) we obtain the expression for the bound,144

〈T f+ f−〉 ≥ −
1

3π3

∫ ∞

0

dũ

∫ ∞

0

d ṽ
1

σ3
+σ−

ũ3 ṽe−ũ2
e−ṽ2

(43)

= −
1

12π3σ3
+σ−

, (44)

which turns out to be a satisfactory finite negative number. So, we obtained a non-trivial145

lower bound for the doubled-smeared T++ for the simple case where the smearing is Gaus-146

sian. Moreover, σ+ has a larger effect on the bound comparatively to σ−. This asymmetry of147

the dependence on the deviations is expected since the energy-momentum tensor component148

considered has, by definition, a preferred space-time direction.149

Since large σ± correspond to a wide smearing in space-time, we expect the bound to150

approach zero. This is indeed in agreement with the well-studied null energy condition (NEC)151

[21]. On the other hand, in theσ±→ 0 case, i.e. there is no smearing in space-time, we obtain152

a trivial bound. This is expected since the expected value of the energy-momentum evaluated153

at a particular space-time point is generally unbounded.154

3.3 Mass dependence of the Gaussian-smeared bound155

One can also wonder about how this bound, which will now denote by B2, depends on the156

mass. Let us choose the two smearing functions to be Gaussians with standard deviationσ = 1,157

i.e. | ĝ+(x)|2 = | ĝ−(x)|2 = e−x2
. By dimensional analysis, we have [σ]=-1. Now the bound158

takes the following form:159

B2 = −
2
π3

∫ ∞

0

du

∫ ∞

m2
u

dv

�

vu3

6
−

m2u2

2
+

m4u
2v
−

m6

6v2

�

e−(u
2+v2). (45)

We can numerically integrate the expression above to obtain the following relation between160

B2 and the mass, which is shown in Figure 1. Since we work with natural units, u and v are161

in the same unit as m, so [B2]= 4.162

Note that in the highly massive region, the lower bound approaches zero. We can un-163

derstand this result in the following qualitative way. Roughly speaking, quantum effects are164

relevant when the de Broglie wavelength of the particle, ( h
mv ), is much greater than the char-165

acteristic size of the system, d. In our case, we simply take this d to be the smearing length.166

3We are defining our Gaussian function slightly different from the usual form 1p
2πσ

e−
1
2 (

u
σ )

2
here. This way, σ±

are the smearing lengths in space-time since the Fourier transform of a Gaussian function with .
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B2

Figure 1: The bound B2 as a function of the mass m.

For small m, quantum behavior becomes prominent, but as m increases, classical behavior167

dominates. Given that the classical case satisfies the Null Energy Condition (NEC), the bound168

is anticipated to approach zero as m becomes large, which is verified numerically in the figure169

above.170

4 Conclusion171

In this work, we investigated the Double Smeared Null Energy Condition for the fermionic172

free theory in 4-dimensional flat Minkowski space-time. We first obtained an inequality for the173

once-smeared T++. We addressed its triviality later by applying the smearing in two directions,174

providing a new energy condition. We offered explicit analytic results for the massless case175

and numerical insights for the mass-dependence of the later bound in the case of Gaussian176

smearing.177

Regarding the outlook of this research, as mentioned in [1], understanding the behavior178

of DSNEC in interacting field theories is generally still an open question. Since we are using179

different methods than those used in [1] to derive the DSNEC for fermions, our approach may180

be promising for interacting field theories. This is because our techniques are not as specifically181

tailored to treat free field theories.182

Moreover, our discussion is limited to Minkowski spacetime. Extending the DSNEC to183

curved spaces is a highly significant direction, given that it is crucial for its application in184

semiclassical gravity. It would then be interesting to explore a generalized version of our185

results in different curved spacetimes.186
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A Conventions191

In this paper, we work in 4 dimensional Minkowski spacetime with the “mostly minus” signa-192

ture in natural units (c = ħh= 1).193

The position light-cone coordinates are given by x± = t ± x1. The corresponding metric194

tensor for the coordinates (x+, x−, x2, x3) is,195

gµν =







0 1/2 0 0
1/2 0 0 0
0 0 −1 0
0 0 0 −1






. (A.1)

In momentum space we will denote k± =
1
2(ωk±k1) such that k · x = k+x++k−x−+ x i ·ki .196

In our convention, the 4-by-4 gamma matrices are defined as197

γ0 =







1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1






, (A.2)

198

γi =

�

0 σi
−σi 0

�

. (A.3)

Since we are working with the mostly-minus metric we obtain199

γ0 = γ
0, (A.4)

200

γi = −γi . (A.5)

In particular,201

γ+ = γ0 + γ1 = γ0 − γ1 =







1 0 0 −1
0 1 −1 0
0 1 −1 0
1 0 0 −1






, (A.6)

and we define202

A= γ0γ+ =







1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1






= 1−L, (A.7)

where 1 is the identity matrix, and L is the exchange matrix.203

B Explicit computations for
∑

α u†
α(k)Auα(k)204

In Appendix B, the explicit computations for
∑

α u†
α(k)Auα(k) will be made.205

Note that
∑

α u†
α(k)Auα(k) =

2
V −
∑

α u†
α(k)Luα(k), using the decomposition A= 1−L and206

the normalization of uα(k). Then, we can write207

u1(k) =

�

a
C b

�

, (B.1)
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where we define208

a =

√

√ωk +m
2ωkV

�

1
0

�

, (B.2)

b =
1

p

2ωk(ωk +m)V

�

1
0

�

, (B.3)

C = σ⃗ · k⃗. (B.4)

Using this notation we obtain that209

u†
1(k)Lu1(k) = a†σ1C b+ b†C†σ1a. (B.5)

The matrix σ1 appears in the non-zero blocks of L.210

Now,211

a†σ1C b =

√

√ωk +m
2ωkV

�

1 0
�

k1 1
p

2ωk(ωk +m)V
12×2

�

1
0

�

(B.6)

+

√

√ωk +m
2ωkV

�

1 0
�

k2 1
p

2ωk(ωk +m)V

�

i 0
0 −i

��

1
0

�

(B.7)

+

√

√ωk +m
2ωkV

�

1 0
�

k3 1
p

2ωk(ωk +m)V

�

0 −1
1 0

��

1
0

�

(B.8)

=
1
V

1
2ωk

(k1 + ik2). (B.9)

For the second term, we have something similar:212

a†σ1C b =

√

√ωk +m
2ωkV

�

1 0
�

k1 1
p

2ωk(ωk +m)V
12×2

�

1
0

�

(B.10)

+

√

√ωk +m
2ωkV

�

1 0
�

k2 1
p

2ωk(ωk +m)V

�

−i 0
0 i

��

1
0

�

(B.11)

+

√

√ωk +m
2ωkV

�

1 0
�

k3 1
p

2ωk(ωk +m)V

�

0 1
−1 0

��

1
0

�

(B.12)

=
1
V

1
2ωk

(k1 − ik2). (B.13)

With this we conclude that213

u†
1(k)Lu1(k) =

1
V

1
2ωk

k1. (B.14)

The analogous computation for u2(k) yields the same result. Summing both, we obtain:214

uα(k)
†(k)Luα(k) =

1
V

1
ωk

k1. (B.15)

In the same way, we obtain the exact same result for vα(k)†(k)Lvα(k).215
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