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Abstract

We introduce two diffusion models and an autoregressive transformer for LHC physics
simulations. Bayesian versions allow us to control the networks and capture training
uncertainties. After illustrating their different density estimation methods for simple
toy models, we discuss their advantages for Z plus jets event generation. While diffu-
sion networks excel through their precision, the transformer scales best with the phase
space dimensionality. Given the different training and evaluation speed, we expect LHC
physics to benefit from dedicated use cases for normalizing flows, diffusion models, and
autoregressive transformers.
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1 Introduction

The future of LHC physics lies in a systematic and comprehensive understanding of all as-
pects of the recorded data in terms of fundamental theory. This can be achieved through
simulation-based analyses, applying and adapting modern data science methods. As obvious
from the name, this method relies on a fast and precise simulation chain, starting with the
hard scattering evaluated for a given Lagrangian, to fast detector simulations. Because LHC
physics is driven by fundamental questions, these simulations have to be based on first prin-
ciples, mere modeling would not allow us to extract relevant or interesting information from
the data. Moreover, for theory predictions to not become a limiting factor to the entire LHC
program, this simulation chain has to be (i) precise, (ii) fast, and (iii) flexible.

Modern machine learning (ML) has shown great potential to transform LHC analyses and
simulations [1, 2]. The leading ML-tools for LHC simulations are, obviously, generative net-
works, which combine unsupervised density estimation over phase space with a fast sam-
pling into the learned density. The list of tasks where (generative) neural networks can im-
prove LHC simulations is long [1]. It starts with phase space integration [3, 4] and phase
space sampling [5–9] of ML-encoded fast transition amplitudes [10, 11]. More advanced
tasks include event subtraction [12], event unweighting [13,14], or super-resolution enhance-
ment [15, 16]. Prototypical applications which allow for a systematic evaluation of the net-
work performance are NN-event generators [17–22], NN-parton showers [23–28], or detector
simulations [29–45]. Even when trained on first-principle simulations, such fast generators
are easy to handle, efficient to ship, and powerful in amplifying statistical limitations of the
training samples [46,47].

Classical generative network architectures include variational autoencoders (VAEs) and
generative adversarial networks (GANs). Both of them can generate high-dimensional data,
assuming that the intrinsic dimensionality of the problem is much smaller than the apparent
dimensionality of its representation. However, both have not been shown to fulfill the precision
requirements of the LHC. Precise density estimation points to bijective generative networks,
for instance normalizing flows [48–52] and their invertible network (INN) variant [53–55],
which are limited to lower-dimensional sampling but sufficient at least for the hard process at
the LHC.

LHC studies are consistently showing promising results for normalizing flows*, including
transformative tasks, like probabilistic unfolding [56–60], inference from high-dimensional
data [61], or the matrix element method [62]. One reason why INNs have established a new
level of stability, control and uncertainty estimation, is the combination with Bayesian neu-
ral network (BNN) concepts [63–69], discriminator-training and reweighting [70, 71], and
conditional training on augmented data. In the spirit of explainable AI, Bayesian generative
networks allow us to understand how networks learn a given phase space distribution, in the
case of INNs very similar to a traditional fit [69]. They systematically improve the precision of
the underlying density estimation and track the effects from statistical and systematic limita-
tions of the training data [22]. In this study we will first compare the successful INNs with new
diffusion networks [72–76] on the task of unconditional phase space generation. This allows
us to benchmark their performance as surrogate simulators [22, 46, 47], as well as prepare
their future usage for conditional tasks such as probabilistic unfolding [56–60].

An aspect of neural networks which is often overlooked is that in precision LHC simulations
the intrinsic dimension of the physics problem and the apparent dimension of its phase space
are similar; for this dimensionality we need to encode all correlations [77, 78]. This implies
that the network size, its training effort, and its performance tend to scale poorly with the

*Note that in these applications autoregressive flows do not outperform advanced coupling layers.
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number of particles and suffer from the curse of dimensionality. This is the motivation to
also include an autoregressive [79, 80] transformer [81] in our study of modern generative
networks.

In this paper we will introduce two new different diffusion models for particle physics ap-
plications in Secs. 2.1 and 2.2. We then introduce a new autoregressive, eventually pre-trained,
transformer architecture (JetGPT) with an improved dimensionality scaling in Sec. 2.3. For
all three networks we develop new Bayesian versions, to control their learning patterns and
the uncertainty in the density estimation step. In Sec. 3 we illustrate all three models for two
toy models, a two-dimensional linear ramp and a Gaussian ring. Finally, in Sec. 4 we use all
three networks to generate Z+jets events for the LHC, the same reference process as used
for uncertainty-aware INNs in Ref. [22]. This standard application allows us to quantify the
advantages and disadvantages of the three new architectures and compare them to the INN
benchmark.

2 Novel generative networks

At the LHC, generative networks are used for many simulation and analysis tasks, typically to
describe virtual or real particles over their correlated phase space. The number of particles
ranges from few to around 50, described by their energy and three momentum directions,
sometimes simplified through on-shell conditions. Typical generative models for the LHC then
map simple latent distributions to a phase space distribution encoded in the training data,

r ∼ platent(r) ←−−−−−→ x ∼ pmodel(x |θ )≈ pdata(x) . (1)

The last step represents the network training, for instance in terms of a variational approxi-
mation of pdata(x). The latent distribution is typically a standard multi-dimensional Gaussian,

platent(r) =N (r; 0, 1) . (2)

We focus on the case where the dimensionalities of the latent space r and the phase space
x are identical, and there is no lower-dimensional latent representation. For these kinds of
dimensionalities, bijective network architectures are promising candidates to encode precision
correlations. For strictly symmetric bijective networks like INNs the forward and backward
directions are inverse to each other, and the network training and evaluation is symmetric.
However, this strict symmetry is not necessary to generate LHC events or configurations.

The success of normalizing flows or INNs for this task motivates a study of so-called dif-
fusion or score-based models as an alternative. We will introduce two different models in
Sec. 2.1 and 2.2, one with a discrete and one with a continuous time evolution. The main
question concerning such diffusion models in LHC physics is if their precision matches the
INNs, how we can benefit from their superb expressivity, and if those benefits outweigh the
slower evaluation.

A major challenge for all network applications in LHC physics is the required precision
in all correlations, and the corresponding power-law scaling with the number of phase space
dimensions. This scaling property leads us to introduce and test an autoregressive transformer
in Sec. 2.3. Again, the question is how precise and how expressive this alternative approach
is and if the benefits justify the extra effort in setup and training.

Because fundamental physics applications require full control and a conservative and reli-
able uncertainty estimation of neural networks, we will develop Bayesian versions of all three
generative models. This allows us to control the uncertainty in the density estimation and to
derive an intuition how the different networks learn the phase space distribution of the data.
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2.1 Denoising Diffusion Probabilistic Model

Architecture

Denoising Diffusion Probabilistic Models (DDPM) [73] transform a model density by gradu-
ally adding Gaussian noise. This setup guarantees that the network links a non-trivial physics
distribution to a Gaussian noise distribution, as illustrated in Eq.(1). The task of the reverse,
generative process is to to denoise this diffused data. The structure of diffusion models con-
siders the transformation in Eq.(3) a time-dependent process with t = 0 ... T ,

pmodel(x0|θ )
forward→
←−−−−−→
←backward

platent(xT ) . (3)

The DDPM discretizes the time series in Eq.(3) in the forward direction and encodes is it into a
neural network for the backward direction. We start with the forward process, which turns the
physical distribution into noise. The corresponding joint distribution is factorized into discrete
steps,

p(x1, ..., xT |x0) =
T∏

t=1

p(x t |x t−1)

with p(x t |x t−1) =N (x t ;
Æ

1− βt x t−1,βt) . (4)

Each conditional step p(x t |x t−1) adds noise with variance βt around the mean
p

1− βt x t−1.
The combination of x t as a variable and the mean proportional to x t−1 implies that the suc-
cessive steps can be combined as Gaussian convolutions and give the closed form

p(x t |x0) =

∫ t−1∏
i=1

d x i p(x t |x t−1)p(x i|x i−1)

=N (x t ;
q

1− β̄t x0, β̄t) with 1− β̄t =
t∏

i=1

(1− βi) . (5)

The scaling of the mean with
p

1− βt prevents the usual addition of the variances and instead
stabilizes the evolution of the Gaussian over the time series. The variance can be adapted
through a schedule, where β̄t → 1 for t → T should be guaranteed. As suggested in Ref. [73]
we choose a linear increase with β1 = 10−7T and βT = 2 · 10−5T .

As a first step towards reversing the forward diffusion, we apply Bayes’ theorem on each
slice defined in Eq.(4),

p(x t−1|x t) =
p(x t |x t−1)p(x t−1)

p(x t)
. (6)

However, a closed-form expression for p(x t) only exists if conditioned on x0, as given in Eq.(5).
Using p(x t |x t−1, x0) = p(x t |x t−1) we can instead compute the conditioned forward posterior
as a Gaussian

p(x t−1|x t , x0) =
p(x t |x t−1)p(x t−1|x0)

p(x t |x0)
=N (x t−1; µ̂t(x t , x0), β̂t)

with µ̂(x t , x0) =

Æ
1− β̄t−1βt

β̄t
x0 +

p
1− β t β̄t−1

β̄t
x t and β̂t =

β̄t−1

β̄t
βt . (7)

The actual reverse process starts with Gaussian noise and gradually transforms it into the
phase-space distribution through the same discrete steps as Eq.(4), without knowing x0 a
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priori. The corresponding generative network needs to approximate Eq.(6) for each step. We
start by defining our modeled phase-space distribution

pmodel(x0|θ ) =
∫

d x1...d xT p(x0, ..., xT |θ ) , (8)

and assume that the joint probability is again given by a chain of independent Gaussians,

p(x0, ..., xT |θ ) = platent(xT )
T∏

t=1

pθ (x t−1|x t)

with pθ (x t−1|x t) =N (x t−1;µθ (x t , t),σ2
θ (x t , t)) . (9)

Here, µθ and σθ are learnable parameters describing the individual conditional probability
slices x t → x t−1. It turns out that in practice we can fix σ2

θ
(x t , t)→ σ2

t [73]. We will see that
the advantage of the discrete diffusion model is that we can compare a Gaussian posterior,
Eq.(7), with a reverse, learned Gaussian in Eq.(9) for each step.

Loss function

Ideally, we want to train our model by maximizing the posterior pmodel(θ |x0), however, this
is not tractable. Using Bayes’ theorem and dropping regularization and normalization terms
this is equivalent to minimizing the corresponding negative log likelihood in Eqs.(8) and (9),

¬
− log pmodel(x0|θ )

¶
pdata

= −
∫

d x0 pdata(x0) log

�∫
d x1...d xT platent(xT )

T∏
t=1

pθ (x t−1|x t)

�

= −
∫

d x0 pdata(x0) log

�∫
d x1...d xT platent(xT )p(x1, ..., xT |x0)

T∏
t=1

pθ (x t−1|x t)
p(x t |x t−1)

�

= −
∫

d x0 pdata(x0) log


platent(xT )
T∏

t=1

pθ (x t−1|x t)
p(x t |x t−1)

·
p(x1,...,xT |x0)

(10)

In the first step, we insert a one into our loss function by dividing Eq.(4) with itself. Using
Jensen’s inequality f (〈x〉)≤ 〈 f (x)〉 for convex functions we find

¬
− log pmodel(x0|θ )

¶
pdata
≤ −

∫
d x0 pdata(x0)


log

�
platent(xT )

T∏
t=1

pθ (x t−1|x t)
p(x t |x t−1)

�·
p(x1,...,xT )|x0)

= −
�

log

�
platent(xT )

T∏
t=1

pθ (x t−1|x t)
p(x t |x t−1)

��

p(x0,...,xT )

=

− log platent(xT )−

T∑
t=2

log
pθ (x t−1|x t)
p(x t |x t−1)

− log
pθ (x0|x1)
p(x1|x0)

·
p(x0,...,xT )

≡ LDDPM . (11)

As suggested above, we would like to compare each intermediate learned latent distribution
pθ (x t−1|x t) to the real posterior distribution p(x t−1|x t , x0) of the forward process. To reverse
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the ordering of the forward slice we use Bayes’ theorem,

LDDPM =

− log platent(xT )−

T∑
t=2

log
pθ (x t−1|x t)p(x t−1|x0)
p(x t−1|x t , x0)p(x t |x0)

− log
pθ (x0|x1)
p(x1|x0)

·
p(x0,...,xT )

=

− log platent(xT )−

T∑
t=2

log
pθ (x t−1|x t)

p(x t−1|x t , x0)
− log

p(x1|x0)
p(xT |x0)

− log
pθ (x0|x1)
p(x1|x0)

·
p(x0,...,xT )

=

− log

platent(xT )
p(xT |x0)

−
T∑

t=2

log
pθ (x t−1|x t)

p(x t−1|x t , x0)
− log pθ (x0|x1)

·
p(x0,...,xT )

=
T∑

t=2

¬
KL[p(x t−1|x t , x0), pθ (x t−1|x t)]

¶
p(x0,x t )

+
¬
− log pθ (x0|x1)

¶
p(x0,...,xT )

+ const

≈
T∑

t=2

¬
KL[p(x t−1|x t , x0), pθ (x t−1|x t)]

¶
p(x0,x t )

(12)

Now, the KL-divergence compares the forward Gaussian step of Eq.(7) with the reverse, learned
Gaussian in Eq.(9). The second sampled term will always be negligible compared to the first
T − 1 terms. The KL-divergence between two Gaussian, with means µθ (x t , t) and µ̂(x t , x0)
and standard deviations σ2

t and β̂t , has the compact form

LDDPM =
T∑

t=2


1

2σ2
t
|µ̂−µθ |2

·
p(x0,x t )

+ const. (13)

This implies that µθ approximates µ̂. The sampling follows p(x0, x t) = p(x t |x0) pdata(x0). We
numerically evaluate this loss using the reparametrization trick on Eq.(5)

x t(x0,ε) =
q

1− β̄t x0 +
q
β̄tε with ε∼N (0,1)

⇔ x0(x t ,ε) =
1Æ

1− β̄t

�
x t −

q
β̄tε

�
. (14)

These expressions provide, for example, a closed form for µ̂(x t , x0), but in terms of x t and ε,

µ̂(x t ,ε) =
1p

1− βt

�
x t(x0,ε)− βtÆ

β̄t

ε

�
. (15)

For the reverse process we choose the same parametrization, but with a learned εθ (x t , t),

µθ (x t , t)≡ µ̂(x t ,εθ ) =
1p

1− βt

�
x t −

βtÆ
β̄t

εθ (x t , t)

�
. (16)

Inserting both expressions into Eq.(13) gives us

LDDPM =
T∑

t=2


1

2σ2
t

β2
t

(1− βt)β̄t

���ε− εθ
�q

1− β̄t x0 +
q
β̄tε, t

����
2·

x0∼pdata,ε∼N (0,1)
. (17)

The sum over t can be evaluated numerically as a sampling. We chose our model variance
σ2

t ≡ β̂t to follow our true variance. Often, the prefactor in this form for the loss is neglected in
the training, but as we need a likelihood loss for the Bayesian setup and no drop in performance
was observed, we keep it.

The DDPM model belongs to the broad class of score-based models, and Eq.(13) can also
be reformulated for the model to predict the score s(x t , t) =∇x t

log p(x t) of our latent space
at time t. It can be shown that sθ (x t , t) = −εθ (x t , t)/σt [82].
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ε∼N (0,1)

x0 ∼ pdata(x0)

t ∼ U(1, T )

x t =
Æ

1− β̄t x0 +
Æ
β̄tε

εθ

DDPM

L= 1
2σ2

t

β2
t

(1−βt)β̄t
|ε− εθ |2

Figure 1: DDPM training algorithm, following Ref. [73], with the loss derived in
Eq.(17).

Training and sampling

The training algorithm for the DDPM is illustrated in Fig. 1. For a given phase-space point
x0 ∼ pdata(x0) drawn from our true phase space distribution we draw a time step t ∼ U(1, T )
from a uniform distribution as well as Gaussian noise ε ∼ N (0,1) at each iteration. Given
Eq.(15) we can then calculate our diffused data after t time steps x t , which is fed to the
DDPM network together with our condition t. The network encodes εθ and we compare this
network prediction with the true Gaussian noise ε multiplied by a t-dependent constant as
given in the likelihood loss of Eq.(17). Note that we want to ensure that our network sees as
many different time steps t for many different phase-space points x0 as necessary to learn the
step-wise reversed diffusion process, which is why we use a relatively simple residual dense
network architecture, which is trained over many epochs.

The sampling algorithm for the DDPM is shown in Fig. 2. We start by feeding our network
our final timestep T and xT ∼ platent(xT ) drawn from our Gaussian latent space distribution.
With the predicted εθ and drawn Gaussian noise zT−1 ∼N (0, 1) we can then calculate xT−1,
which is a slightly less diffused version of xT . This procedure is repeated until reaching our
phase-space and computing x0, where no additional Gaussian noise is added. Note that during
sampling the model needs to predict εθ T times, making the sampling process slower than for
classic generative networks like VAEs, GANs, or INNs.

xT ∼N (0,1)

DDPMt = T εθ xT−1 =
1p

1−βT

�
xT − βTp

β̄T

εθ

�
+σT z

z ∼N (0, 1)

DDPMt = T − 1 εθ ... x1 =
1p

1−β2

�
x2 − β2p

β̄2

εθ

�
+σ2z

z ∼N (0, 1)

DDPMt = 1 εθ

x0 =
1p

1−β1

�
x1 − β1p

β̄1

εθ

�

Figure 2: DDPM sampling algorithm, following Ref. [73].
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Likelihood extraction

To calculate the model likelihood we can use Eq.(8) or its sampled estimate,

pmodel(x0|θ ) =
¬
pθ (x0|x1)

¶
p(x1,...,xT |θ )

, (18)

but this is very inefficient. The problem is that pθ (x0|x1) is a narrow distribution, essentially
zero for almost all sampled x1. We can improve the efficiency by importance sampling and
use instead

pmodel(x0|θ ) =


p(x1, . . . , xT |θ )
p(x1, . . . , xT |x0)

pθ (x0|x1)
·

p(x1,...,xT |x0)

=


p(x0, . . . , xT |θ )
p(x1, . . . , xT |x0)

·
p(x1,...,xT |x0)

. (19)

This samples a diffusion process starting from x0 and into the latent space, meaning that it
represents a likely forward and backward path. This means the integrand should not just be
zero most of the time.

Bayesian DDPM

The key step in the training of generative networks is the density estimation over phase space,
from which the network then samples. Like any neural network task this density estimation
comes with uncertainties, for instance from a limited amount of training data, a lack of model
flexibility, or even training data which we know cannot be trusted. This means that the density
estimation step of the generative network should assign an uncertainty to the extracted phase
space density, ideally in form of a second map over the target phase space. This problem has
been tackled for bijective normalizing flows through a Bayesian network extension [69], which
can be combined with other measures, like conditional training on augmented data [22].

The idea behind Bayesian networks is to train network weights as distributions and eval-
uate the network by sampling over these distributions. This will provide a central value and
an uncertainty for the numerically defined network output [63–65].† Because general MCMC-
methods are expensive for large networks, we use variational inference [83] to learn Gaussian
approximations for each weight distribution. Because of the non-linear nature of the network
this does not mean that the network output has to come with a Gaussian uncertainty [68].

We repeat the main steps in deriving the Bayesian loss for any neural network approximat-
ing, for instance, a density map ρ(x) ≈ ρθ (x) following Ref. [84]. The expectation value is
defined as

〈ρ 〉(x)≡ 〈ρ 〉=
∫

dρ ρ p(ρ) with p(ρ) =

∫
dθ p(ρ|θ ) p(θ |xtrain) , (20)

where we omit the x-dependence. We use the variational approximation to approximate

p(ρ) =

∫
dθ p(ρ|θ ) p(θ |xtrain)≈

∫
dθ p(ρ|θ ) q(θ ) , (21)

†We cannot emphasize often enough that Bayesian networks for uncertainty quantification have nothing to do
with Bayesian inference.
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where q(θ ) is also a function of x . The variational approximation step requires us to minimize

LBNN = KL[q(θ ), p(θ |xtrain)] =


log
q(θ )

p(θ |xtrain)

·
q

=

∫
dθ q(θ ) log

q(θ )
p(θ |xtrain)

= −
∫

dθ q(θ ) log p(xtrain|θ ) + KL[q(θ ), p(θ )] + const , (22)

where we use Bayes’ theorem to transform the untractable p(θ |xtrain), introducing the prior
p(θ ) for the network weights. This so-called ELBO loss combines a likelihood loss with a
regularization term, their relative size fixed by Bayes’ theorem.

It turns out that for sufficiently deep networks we can choose q(θ ) as uncorrelated Gaus-
sians per network weight [65], such that the training parameters are a set of means and stan-
dard deviations for each network weight. Compared to the deterministic network, its Bayesian
version is twice the size, but automatically regularized, keeping the additional numerical effort
minimal. While p(θ ), also chosen as a Gaussian, is formally defined as a prior, we emphasize
that in our case the step from the prior to the posterior has nothing to do with Bayesian infer-
ence. The Gaussian width of p(θ ) can be treated as a network hyperparameter and varied to
improve the numerical performance. We typically find that the result is stable under varying
the width by several orders of magnitude, and width one works well.

The derivation of Eq.(22) can be easily extended to the density estimation step of a gen-
erative networks, in the same way as for the Bayesian INN [69]. The Bayesian DDPM loss
follows from the deterministic likelihood loss in Eqs.(11) and (17) by adding a sampling over
θ ∼ q(θ ) and the regularization term,

LB-DDPM =
¬
LDDPM

¶
θ∼q
+ KL[q(θ ), p(θ )] . (23)

Switching a deterministic network into its Bayesian version includes two steps, (i) swap the
deterministic layers to the corresponding Bayesian layers, and (ii) add the regularization term
to the loss. For the latter, one complication arises. We estimate the complete loss from a
dataset including N events in M batches, which means the likelihood term is summed and then
normalized over M batches, while the regularization term comes with the complete prefactor
1/N .

hyperparameter toy models LHC events

Timesteps 1000 1000
Time Embedding Dimension - 64
# Blocks 1 2
Layers per Block 8 5
Intermediate Dimensions 40 64
# Model Parameters 20k 75k

LR Scheduling one-cycle one-cycle
Starter LR 10−4 10−4

Maximum LR 10−3 10−3

Epochs 1000 1000, 3000, 10000
Batch Size 8192 8192, 8192, 4096

# Training Events 600k 3.2M, 850k, 190k
# Generated Events 1M 1M, 1M, 1M

Table 1: Training setup and hyperparameters for the Bayesian DDPM generator.

9



SciPost Physics Submission

To evaluate the Bayesian network we need to again sample over the network weight dis-
tribution. This way we guarantee that the uncertainty of the network output can have any
functional form. The number of samplings for the network evaluations can be chosen accord-
ing to the problem. We choose 30 for all problems discussed in this work. To compare the
Bayesian network output with a deterministic network output we can either go into the limit
q(θ )→ δ(θ − θ0) or only evaluate the means of the network weight distributions.

Our network is implemented in PYTORCH and uses ADAM as optimizer. All hyperparameters
are given in Tab. 1. As already mentioned we use a simple residual network which consists
of multiple fully connected dense layers with SiLU activation functions. Within our setup a
significant increase in performance is achieved when initializing the weights of the last layer
in each block to zero.

2.2 Conditional Flow Matching

Architecture

As an alternative, we study Conditional Flow Matching (CFM) [74–76]. Like the DDPM, it
uses a time evolution to transform phase space samples into noise, so the reverse direction can
generate samples as outlined in Eq.(3). Instead of a discrete chain of conditional probabilities,
the time evolution of samples in the CFM framework follows a continuous ordinary differential
equation (ODE)

d x(t)
d t

= v(x(t), t) with x(t = 0) = x0 , (24)

where v(x(t), t) is called the velocity field of the process. This velocity field can be linked to
a probability density p(x , t) with the continuity equation

∂ p(x , t)
∂ t

+∇x [p(x , t)v(x , t)] = 0 . (25)

These two equations are equivalent in the sense that for a given probability density path p(x , t)
any velocity field v(x , t) describing the sample-wise evolution Eq.(24) will be a solution of
Eq.(25), and vice versa. Our generative model employs p(x , t) to transforms a phase space
distribution into a Gaussian latent distribution

p(x , t)→
¨

pdata(x) t → 0

platent(x) =N (x; 0, 1) t → 1 .
(26)

The associated velocity field will allow us to generate samples by integrating the ODE of
Eq.(24) from t = 1 to t = 0.

As for the DDPM, we start with a diffusion direction. We define the time evolution from a
phase space point x0 to the standard Gaussian as

x(t|x0) = (1− t)x0 + tε→
¨

x0 t → 0

ε∼N (0,1) t → 1 ,
(27)

following a simple linear trajectory [76], after not finding better results with other choices.
For given x0 we can generate x(t|x0) by sampling

p(x , t|x0) =N (x; (1− t)x0, t) . (28)

10
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This conditional time evolution is similar to the DDPM case in Eq.(5), and it gives us the
complete probability path

p(x , t) =

∫
d x0 p(x , t|x0) pdata(x0) . (29)

It fulfills the boundary conditions in Eq.(26),

p(x , 0) =

∫
d x0 p(x , 0|x0) pdata(x0) =

∫
d x0 δ(x − x0) pdata(x0) = pdata(x)

p(x , 1) =

∫
d x0 p(x , 1|x0) pdata(x0) =N (x; 0, 1)

∫
d x0 pdata(x0) =N (x; 0, 1) . (30)

From this probability density path we need to extract the velocity field. We start with the
conditional velocity, associated with p(x , t|x0), and combine Eq.(24) and (27) to

v(x(t|x0), t|x0) =
d
d t
[(1− t)x0 + tε] = −x0 + ε . (31)

The linear trajectory leads to a time-constant velocity, which solves the continuity equation for
p(x , t|x0) by construction. We exploit this fact to find the unconditional v(x , t)

∂ p(x , t)
∂ t

=

∫
d x0

∂ p(x , t|x0)
∂ t

pdata(x0)

= −
∫

d x0 ∇x [v(x , t|x0)p(x , t|x0)] pdata(x0)

= −∇x

�
p(x , t)

∫
d x0

v(x , t|x0)p(x , t|x0)pdata(x0)
p(x , t)

�

= −∇x [p(x , t)v(x , t)] , (32)

by defining

v(x , t) =

∫
d x0

v(x , t|x0)p(x , t|x0)pdata(x0)
p(x , t)

. (33)

While the conditional velocity in Eq.(31) describes a trajectory between a normal distributed
and a phase space sample x0 that is specified in advance, the aggregated velocity in Eq.(33)
can evolve samples from pdata to platent and vice versa.
Like the DDPM model, the CFM model can be linked to score-based diffusion models, [74]
derive a general relation between the velocity field and the score of a diffusion process that
for our linear trajectory reduces to s(x , t) = −1

t (x + (1− t)v(x , t)).

Loss function

Encoding the velocity field in Eq.(33) is a simple regression task, v(x , t) ≈ vθ (x , t). The
straightforward choice for the loss is the mean squared error,
¬
[vθ (x , t)− v(x , t)]2

¶
t,x∼p(x ,t)

==
¬
vθ (x , t)2

¶
t,x∼p(x ,t)

−
¬
2vθ (x , t)v(x , t)

¶
t,x∼p(x ,t)

+ const ,

(34)

where the time is sampled uniformly over t ∈ [0,1]. While we would want to sample x from
the probability path given in Eq.(29) and learn the velocity field given in Eq.(33), neither of

11
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t ∼ U([0, 1])

x0 ∼ pdata(x0),ε∼N (0,1) x(t|x0) = (1− t)x0 + tε CFM

L=
�
vθ − (ε− x0)

�2 vθ

Figure 3: CFM training algorithm, with the loss derived in Eq.(37).

those is tractable. However, it would be easy to sample from the conditional path in Eq.(28)
and calculate the conditional velocity in Eq.(31). We rewrite the above loss in terms of the
conditional quantities, so the first term becomes

¬
vθ (x , t)2

¶
t,x∼p(x ,t)

=
∫

d x vθ (x , t)2
∫

d x0 p(x , t|x0)pdata(x0)
·

t

=
¬
vθ (x , t)2

¶
t,x0∼pdata,x∼p(x ,t|x0)

=
¬
vθ (x(t|x0), t)2

¶
t,x0∼pdata,ε

(35)

Using Eq.(33) we can rewrite the second loss term as

−2
¬
vθ (x , t)v(x , t)

¶
t,x∼p(x ,t)

= −2
∫

d x p(x , t)vθ (x , t)

∫
d x0v(x , t|x0)p(x , t|x0)pdata(x0)

p(x , t)

·
t

= −2
∫

d xd x0 vθ (x , t) v(x , t|x0) p(x , t|x0) pdata(x0)
·

t

= −2
¬
vθ (x , t) v(x , t|x0)

¶
t,x0∼pdata,x∼p(x ,t|x0)

= −2
¬
vθ (x(t|x0), t) v(x(t|x0), t|x0)

¶
t,x0∼pdata,ε

. (36)

The (conditional) Flow Matching loss of Eq.(34) then becomes

LCFM =
¬
[vθ (x(t|x0), t)− v(x(t|x0), t|x0)]

2
¶

t,x0∼pdata,ε

=
�

vθ (x(t|x0), t)− d x(t|x0))
d t

�2·
t,x0∼pdata,ε

=
¬
[vθ ((1− t)x0 + tε, t)− (ε− x0)]

2
¶

t,x0∼pdata,ε
. (37)

Training and Sampling

The CFM training is illustrated in Fig. 3. At each iteration we sample a data point x0 ∼ pdata(x0)
and a normal distributed ε ∼ N (0,1) as starting and end points of a trajectory, as well as a
time t ∼ U([0, 1]). We then compute x(t|x0) following Eq.(27) and the associated condi-
tional velocity v(x(t|x0), t|x0) following Eq.(31). The point x(t|x0) and the time t are passed
to a neural network which encodes the conditional velocity field vθ (x , t) ≈ v(x , t|x0). One
property of the training algorithm is that the same network input, a time t and a position
x(t|x0), can be produced by many different trajectories, each with a different conditional ve-
locity. While the network training is based on a wide range of possible trajectories, the CFM
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loss in Eq.(37) ensures that sampling over many trajectories returns a well-defined velocity
field.

Once the CFM model is trained, the generation of new samples is straightforward. We start
by drawing a sample from the latent distribution x1 ∼ platent =N (0,1) and calculate its time
evolution by numerically solving the ODE backwards in time from t = 1 to t = 0

d
d t

x(t) = vθ (x(t), t) with x1 = x(t = 1)

⇒ x0 = x1 −
∫ 1

0

vθ (x , t)d t ≡ Gθ (x1) , (38)

We use the scipy.solve_ivp function with default settings for this. Under mild regularity
assumptions this solution defines a bijective transformation between the latent space sample
and the phase space sample Gθ (x1), similar to an INN.

Likelihood extraction

The CFM model also allows to calculate phase space likelihoods. Making use of the continuity
equation we can write

dp(x , t)
d t

=
∂ p(x , t)
∂ t

+∇x p(x , t) v(x , t)

=
∂ p(x , t)
∂ t

+∇x [p(x , t)v(x , t)]− p(x , t)∇x v(x , t)

= −p(x , t)∇x v(x , t) . (39)

Its solution is

p(x1, 1)
p(x0, 0)

≡ platent(G−1
θ
(x0))

pmodel(x0|θ )
= exp

�
−
∫ 1

0

d t∇x v(x(t), t)

�
, (40)

and we can write in the usual INN notation [84]

pmodel(x0|θ ) = platent(G
−1
θ (x0))

�����det
∂ G−1
θ
(x0)

∂ x0

�����

⇒
�����det
∂ G−1
θ
(x0)

∂ x0

�����= exp

�∫ 1

0

d t∇x vθ (x(t), t)

�
. (41)

Calculating the Jacobian requires integrating over the divergence of the learned velocity field.
This divergence can be calculated using automatic differentiation approximately as fast as n
network calls, where n is the data dimensionality.

Bayesian CFM

Finally, we also turn the CFM into a Bayesian generative model, to account for the uncertainties
in the underlying density estimation [69]. From the Bayesian DDPM we know that this can
be achieved by promoting the network weights from deterministic values to, for instance,
Gaussian distributions and using variational approximation for the training [63–65, 83]. For
the Bayesian INN or the Bayesian DDPM the loss is a sum of the likelihood loss and a KL-
divergence regularization, Eq.(23). Unfortunately, the CFM loss in Eq.(37) is not a likelihood
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hyperparameter toy models LHC events

Embedding Dimension - 32
# Blocks 1 2
Layers per Block 8 5
Intermediate Dimensions 40 128, 64, 64
# Model Parameters 20k 265k, 85k, 85k

LR Scheduling cosine annealing cosine annealing
Starter LR 10−2 10−3

Epochs 1000 1000, 5000, 10000
Batch Size 8192 16384

# Training Events 600k 3.2M, 850k, 190k
# Generated Events 1M 1M, 1M, 1M

Table 2: Training setup and hyperparameters for the Bayesian CFM generator.

loss. To construct a Bayesian CFM loss we therefore combine it with Bayesian network layers
and a free KL-regularization,

LB-CFM =
¬
LCFM

¶
θ∼q(θ )

+ c KL[q(θ ), p(θ )]. (42)

While for a likelihood loss the factor c is fixed by Bayes’ theorem, in the CFM case it is a free
hyperparameter. We find that the network predictions and their associated uncertainties are
very stable when varying it over several orders of magnitude.

Our network is implemented in PYTORCH and uses ADAM as optimizer. All hyperparameters
are given in Tab. 2. We employ a simple network consisting of fully connected dense layers
with SiLU activation functions. Given limited resources, simple and fast networks trained
for a large number of iterations produces the best results. For the LHC events we used two
blocks of dense layers connected by a residual connection. In our setup dropout layers lead to
significantly worse results, while normalization layers have no visible impact on the results.
We find that the training of CFM models can be very noisy, using a large batch size can help
to stabilize this.

In general, training diffusion models requires a relatively large number of epochs, as in-
dicated in Tabs. 1 and 2. A key result of our study is to use a cosine-annealing learning rate
scheduler for the CFMs and one-cycle scheduling for the DDPM, as well as significantly down-
sizing the models compared to INNs, to allow for more training epochs. For the entire hyper-
parameter setup, our B-DDPM implementation turns out to be slightly more sensitive than the
B-CFM.

2.3 Autoregressive Transformer

Architecture

A distinct shortcoming of traditional generative models like GANs, INNs, and diffusion models
is that they learn the correlations in all phase space directions simultaneously. This leads to
a power-law scaling for instance of the training effort for a constant precision in the learned
correlations [77]. The autoregressive transformer (AT) [85] instead interprets the phase space
vector x = (x1, ...xn) as a sequence of elements x i and factorizes the joint n-dimensional
probability into n probabilities with a subset of conditions,

pmodel(x |θ ) =
n∏

i=1

p(x i|x1, ..., x i−1)≈ pdata(x) , (43)
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x0 ω(0)

x1 ω(1)

x2 ω(2)

... ...

xn−1 ω(n−1)

A10

A20

An−1,0

A21

An−1,1 An−1,2

. . .
An−1,n−2

Figure 4: Autoregressive approach to density estimation. The attention matrix Ai j
defined in Eq.(50) encodes information between components x i . We introduce an
auxiliary condition x0 = 0 for the first phase space component x1.

as illustrated in Fig. 4. This autoregressive approach improves the scaling with the phase space
dimensionality in two ways. First, each distribution p(x i|x1, ...x i−1) is easier to learn than a
distribution conditional on the full phase space vector x . Second, we can use our physics
knowledge to group challenging phase space directions early in the sequence x1, ..., xn.

The network learns the conditional probabilities over phase space using a representation

p(x i|ω(i−1)) = p(x i|x1, ...x i−1) , (44)

where the parametersω(i−1) encode the conditional dependence on x1, ...x i−1. A naive choice
are binned probabilities w(i−1)

j per phase space direction,

p(x i|ω(i−1)) =
∑

bins j

w(i−1)
j 1

( j)(x i) , (45)

where 1( j)(x) is one for x inside the bin j and zero outside. A more flexible and better-scaling
approach is a Gaussian mixture,

p(x i|ω(i−1)) =
∑

Gaussian j

w(i−1)
j N (x i;µ

(i−1)
j ,σ(i−1)

j ) . (46)

It generalizes the fixed bins to a set of learnable means and widths.
Our architecture closely follows the Generative Pretrained Transformer (GPT) models [85],

illustrated in Fig. 5. The network takes a sequence of x i as input and evaluates them all in
parallel. We use a linear layer to map each value x i in a d-dimensional latent space, denoted as
x iα. The network consists of a series of TransformerDecoder blocks, combining a self-attention
layer with a standard feed-forward network. Finally, a linear layer maps the latent space onto
the representation ω(i−1) of the conditions.

= x iAT

Em
be

dd
in

g x i1
...

x iα
...

x id

×N

TransformerDecoder

Self-Attention Feed-Forward

x ′i1...
x ′iα...
x ′id

Li
ne

ar

ω(i)

Figure 5: Architecture of the autoregressive transformer. All phase space components
x i are evaluated in parallel, see Fig. 4.
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Equations (45) and (46) do not provide an actual structure correlating phase space regions
and phase space directions. This means the transformer needs to construct an appropriate basis
and correlation pattern by transforming the input x into an x ′, with the same dimension as
the input vector and leading to the ω representation. Its goal is to construct a matrix Ai j that
quantifies the relation or similarity of two embedded phase space components x iα and x jα.
We construct the single-headed self-attention [86] of an input x in three steps.

1. Using the conventions of the first layer, we want to measure the relation between x i
and a given x j , embedded in the d-dimensional latent space. Replacing the naive scalar
product x iαx jα, we introduce learnable latent-space transformations WQ,K to the ele-
ments

qiα =WQ
αβ

x iβ and k jα =W K
αβ x jβ , (47)

and use the directed scalar product

Ai j ∼ qiαk jα (48)

to encode the relation of x j with x i through k j and qi . While the scalar product is sym-
metric, the attention matrix does not have to be, Ai j ̸= A ji . These global transformations
allow the transformer to choose a useful basis for the scalar product in latent space.

2. The first problem with Ai j given in Eq.(48) is that it grows with the latent space dimen-
sionality, so it turns out to be useful to replace it by Ai j → Ai j/

p
d. More importantly,

we want all entries j referring to a given i to be normalized,

Ai j ∈ [0, 1] and
∑

j

Ai j = 1 . (49)

This leads us to the definition

Ai j = Softmax j
qiαk jαp

d
with Softmax j(x j) =

ex j∑
k exk

. (50)

Similar to the adjacency matrix of a graph, this attention matrix quantifies how closely
two phase space components are related. Our autoregressive setup sketched in Fig. 4
requires us to set

Ai j = 0 for j > i . (51)

3. Now that the network has constructed a basis to evaluate the relation between two input
elements x i and x j , we use it to update the actual representation of the input informa-
tion. We combine the attention matrix Ai j with the input data, but again transformed in
latent space through a learnable matrix W V ,

v jα =W V
αβ x jβ ⇒ x ′iα = Ai j v jα

= Softmax j

 
WQ
δγ

x iγW
K
δσ

x jσp
d

!
W V
αβ x jβ . (52)

In this form we see that the self-attention vector x ′ just follows from a general basis
transformation with the usual scalar product, but with an additional learned transfor-
mation for every input vector.

16



SciPost Physics Submission

x0
...

xn−1

xn

AT
ω(0)

...
ω(n−1)

p(x1|ω(0))
...

p(xn|ω(n−1))
L= −∑n

i=1 log p(x i|ω(i−1))

Figure 6: Training algorithm for the autoregressive transformer.

The self-attention can be stacked with other structures like a feed-forward network, to itera-
tively construct an optimal latent space representation. This can either be identified with the
final output ω(i) or linked to this output through a simple linear layer. To guarantee a stable
training of this complex structure, we evaluate the self-attention as an ensemble, defining a
multi-headed self-attention. In addition, we include residual connections, layer normalization,
and dropout just like the GPT model. Because the sum over j in Eq.(52) leads to permuta-
tion equivariance in the phase space components, we break it by providing explicit positional
information through a linear layer that takes the one-hot encoded phase space position i as
input. This positional embedding is then added to the latent representation x iα.

Training and sampling

The training of the autoregressive transformer is illustrated in Fig. 6. We start with an universal
x0 = 0 in p(x1|ω(0)) for all events. The transformer encodes all parameters ω needed for
p(x i|ω(i−1)) in parallel. The chain of conditional likelihoods for the realized values x i gives
the full likelihood pmodel(x |θ ), which in turn can be used for the loss function

LAT =
¬
− log pmodel(x |θ )

¶
x∼pdata

=
n∑

i=1

¬
− log p(x i|ω(i−1))

¶
x∼pdata

. (53)

The successive transformer sampling is illustrated in Fig. 7. For each component, ω(i−1) en-
codes the dependence on the previous components x1, ..., x i−1, and correspondingly we sample
from p(x i|ω(i−1)). The parameters ω(0), ...ω(i−2) from the sampling of previous components
are re-generated in each step, but not used further. This way the event generation is less
efficient than the likelihood evaluation during training, because it cannot be parallelized.

x0 = 0 AT ω(0) p(x1|ω(0))

x1 AT ω(0)

ω(1) p(x2|ω(1))

x2
...

xn−1

...

AT
ω(0)

...
ω(n−1) p(xn|ω(n−1))

...
...

xn

Figure 7: Sampling algorithm for the autoregressive transformer.
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hyperparameter toy models LHC events

# Gaussians m 21 43
# Bins m 64 -

# TransformerDecoder N 4 4
# Self-attention Heads 4 4
Latent Space Size d 64 128
# Model Parameters 220k 900k

LR Scheduling one-cycle one-cycle
Starter LR 3× 10−4 10−4

Maximum LR 3× 10−3 10−3

Epochs 200 2000
Batch Size 1024 1024
RADAM ε 10−8 10−4

# Training Events 600k 2.4M, 670k, 190k
# Generated Events 600k 1M, 1M, 1M

Table 3: Training setup and hyperparameters for the Bayesian autoregressive trans-
former.

Bayesian version

As any generative network, we bayesianize the transformer by drawing its weights from a set
of Gaussians q(θ ) as defined Eq.(21). In practice, we replace the deterministic layers of the
transformer by Bayesian layers and add the KL-regularization from Eq.(22) to the likelihood
loss of the transformer, Eq.(53)

LB-AT =
¬
LAT

¶
θ∼q(θ )

+ KL[q(θ ), p(θ )]. (54)

For large generative networks, we encounter the problem that too many Bayesian weights
destabilize the network training. While a deterministic network can switch of unused weights
by just setting them to zero, a Bayesian network can only set the mean to zero, in which case
the Gaussian width will approach the prior p(θ ). This way, excess weights can contribute noise
to the training of large networks. This problem can be solved by adjusting the hyperparameter
describing the network prior or by only bayesianizing a fraction of the network weights. In
both cases it is crucial to confirm that the uncertainty estimate from the network is on a stable
plateau. For the transformer we find that the best setup is to only bayesianizing the last layer.

To implement the autoregressive transformer we use PYTORCH with the RADAM optimizer.
All hyperparameters are given in Tab. 3. We propose to couple the number of parameters m
in the parametrization vector ω(i−1) to the latent space dimensionality d, because the latent
space dimensionality naturally sets the order of magnitude of parameters that the model can
predict confidently.

3 Toy models and Bayesian networks

Before we can turn to the LHC phase space as an application to our novel generative models,
we study their behavior for two simple toy models, directly comparable to Bayesian INNs [69].
These toy models serve two purposes: first, we learn about the strengths and the challenges of
the different network architectures, when the density estimation task is simple and the focus
lies on precision. Second, the interplay between the estimation of the density and its uncer-
tainty over phase space allows us to understand how the different network encode the density.
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Figure 8: Ramp distribution from the DDPM. We show the learned density and its
B-DDPM uncertainty (left) as well as the absolute and relative uncertainties with a
range given by 10 independent trainings (right). We use δ = |Model−Truth|/Truth.

We remind ourselves that an INN just works like a high-dimensional fit to the correlated 2-
dimensional densities [69].

Denoising Diffusion Probabilistic Model

Our first toy example is a normalized ramp, linear in one direction and flat in the second,

pramp(x1, x2) = 2x2 . (55)

The network input and output are unweighted events. The hyperparameters of each model
are given in Tabs. 1, 2, and 3. A training dataset of 600k events guarantees that for our setup
and binning the statistical uncertainty on the phase space density is around the per-cent level.
To show one-dimensional Bayesian network distributions we sample the x i-direction and the
θ -space in parallel [22,69]. This way the uncertainty in one dimension is independent of the
existence and size of other dimensions.

Starting with the DDPM we show the non-trivial one-dimensional distributions in Fig. 8. In
the left panel we see that the network learns the underlying phase space density well, but not
quite at the desired per-cent precision. The uncertainty from the B-DDPM captures remaining
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Figure 9: Gaussian ring distribution from the DDPM. We show the learned density
and its B-DDPM uncertainty (left) as well as the absolute and relative uncertainties
with a range given by 10 independent trainings (right).
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deviations, if anything, conservatively. In the right panel we see that the absolute uncertainty
has a minimum around x1 = 0.7, similar to the behavior of the Bayesian INN and confirmed
by independent trainings. We can understand this pattern by looking at a constrained fit of
the normalized density

p(x2) = ax2 + b = a
�

x2 −
1
2

�
+ 1 with x2 ∈ [0, 1] . (56)

A fit of a then leads to an uncertainty in the density of

σ ≡∆p ≈
����x2 −

1
2

���� ∆a , (57)

just using simple error propagation. The minimum in the center of the phase space plan can
be interpreted as the optimal use of correlations in all directions to determine the local density.

For the DDPM the minimum is not quite at x2 = 0.5, and the uncertainty as a function of
x2 is relatively flat over the entire range. Because of the statistically limited training sample,
the network output comes with a relatively large uncertainty towards x2 = 0. For larger x2-
values, the gain in precision and uncertainty is moderate. For x2 > 0.75 the absolute and
relative uncertainties increase, reflecting the challenge to learn the edge at x2 = 1. These
results are qualitatively similar, but quantitatively different from the INN case, which benefits
more from the increase in training data and correlations for x2 = 0.1 ... 0.5.

The second toy example is a Gaussian ring, or a Gaussian sphere in two dimensions,

pring(x1, x2) =N (
q

x2
1 + x2

2; 1, 0.1). (58)
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Figure 10: Ramp (upper) and Gaussian ring (lower) distributions from the CFM. We
show the learned density and its B-CFM uncertainty (left) as well as the absolute and
relative uncertainties with a range given by 10 independent trainings (right).
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The DDPM result are shown in Fig. 9. The precision on the density is significantly worse than
for the ramp, clearly missing the per-cent mark. The agreement between the training data
and the learned density is not quite symmetric, reflecting the fact that we train and evaluate
the network in Cartesian candidates but show the result in R. Especially for large radii, the
network significantly overestimates the tail, a failure mode which is covered by the predictive
uncertainty only for R≲ 1.3. In the right panels of Fig. 9 the main feature is a distinct minimum
in the uncertainty around the mean of the Gaussian. As for the ramp, this can be understood
from error propagation in a constrained fit. If we assume that the network first determines
a family of functions describing the radial dependence, in terms of a mean and a width, the
contribution from the mean vanishes at R= 1 [69]. Alternatively, we can understand the high
confidence of the network through the availability of many radial and angular correlations in
this phase space region.

Conditional Flow Matching

To confirm that the diffusion architecture is behind the DDPM features, we repeat our study
with the CFM model in Fig. 10. The main difference to the DDPM is that the agreement
between the learned and the training densities is now at the per-cent level, for the ramp and
for the Gaussian ring. This shows that diffusion models are indeed able to learn a phase space
density with the same precision and stability as normalizing flows or INNs. As before, the
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Figure 11: Ramp (upper) and Gaussian ring (lower) distribution from the autore-
gressive transformer with a binned likelihood. We show the learned density and its
Bayesian network uncertainty (left) as well as the absolute and relative uncertainties
with a range given by 10 independent trainings, compared to the statistical uncer-
tainty of the training data in blue (right).
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predictive uncertainty from the B-CFM model is conservative for the entire phase space of the
ramp, but it fails in the exponentially suppressed tail of the Gaussian ring for R ≳ 1.3. We
emphasize that as a function of R this problem is clearly visible when we increase R to the
point where σ(R) =O(p(R)).

Looking at the pattern of the predicted uncertainty σ in x2 and in R, we see a similar
behavior as for the INN and for the DDPM. As for the DDPM, the minimum in the middle of
the ramp is flatter than for the INN, and its position has moved to x2 ≈ 0.3. For the radial
distribution of the Gaussian ring there is the usual minimum on the peak.

Summarizing our findings for the two diffusion models, they behave similar but not iden-
tical to the INN. For all of them, the relation between the density and its uncertainty shows
patterns of a constrained fit, suggesting that during the the training the networks first deter-
mine a class of suitable models and then adjust the main features of these models, like the
slope of a ramp or the position and width of a Gaussian ring.

Autoregressive Transformer

Finally, we target the two-dimensional ramp, Eq.(55), and the Gaussian ring, Eq.(58) with the
transformer. In Fig. 11 we start with a simple representation of the phase space density using
64 bins. In this naive setup the densities of the ramp and the Gaussian ring are described
accurately, within our per-cent target range. The largest deviations appear in the tails of the
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Figure 12: Ramp (upper) and Gaussian ring (lower) distribution from the autoregres-
sive transformer with a Gaussian mixture likelihood. We show the learned density
and its Bayesian network uncertainty (left) as well as the absolute and relative uncer-
tainties with a range given by 10 independent trainings, compared to the statistical
uncertainty of the training data in blue (right).
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Gaussian ring, but remain almost within the statistical limitations of the training data.
Unlike for the INN and the diffusion models, the uncertainty in the right panels of Fig. 11

does not show any real features for the ramp or the Gaussian ring. This shows that the trans-
former does not use a fit-like density estimation and does not benefit from the increased corre-
lations in the center of phase space. Both of these aspects can be understood from the model
setup. First, the autoregressive structure never allows the transformer to see the full phase
space density and encode global (symmetry) patterns; second, the main motivation of the
transformer is to improve the power-law scaling with the dimensionality of all possible corre-
lations and only focus on the most relevant correlations at the expense of the full phase space
coverage.

In Fig. 12 we show the same results for a mixture of 21 Gaussians. For this small number
of dimensions the advantage over the binned distribution is not obvious. The main problem
appears at the upper end of the ramp, where there exists enough training data to determine a
well-suited model, but the poorly-suited GMM just fails to reproduce the flat growth towards
the sharp upper edge and introduces a significant artifact, just covered by the uncertainty. For
the Gaussian ring the GMM-based transformer is also less precise than the binned version,
consistent with the lower resolution in the 2-dimensional model.

The uncertainty predicted by the Bayesian transformer is typically smaller than for dif-
fusion models. We therefore add the statistical uncertainty of the training data to the right
panels of Figs. 11 and 12, providing a lower bound on the uncertainty. In both cases, the
uncertainty of the Bayesian transformer conservatively tracks the statistical uncertainty of the
training data.

Finally, in Fig. 13 we illustrate the unique way in which the GMM-based transformer re-
constructs the density for the Gaussian ring successively. In the left panel, we show pmodel(x1)
after the first autoregressive step, constructed out of 21 learned Gaussians. The peaks at ±1
arise from the marginalization along the longest line of sight. The marginalization also distorts
the form of the Gaussians, which are distributed along the ring. The density after the second
autoregressive step, pmodel(x2|x1), is conditioned on the first component. In the second panel
we show pmodel(x2|x1 = 0) with sharp peaks at ±1 because the event has to be at the edge of
the ring. The Gaussians building the left and right peak are distributed roughly equally. On the
other hand, pmodel(x2|x1 = 1) has a broad plateau in the center, again from the x1-condition.
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Figure 13: Conditional likelihoods for the Gaussian ring. We show the full Gaussian
mixture as well as the 21 individual Gaussians, compared to the truth distribution.
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4 LHC events

Most generative network tasks at the LHC are related to learning and sampling phase space
densities, for instance event generation at the parton or reconstruction level, the description
of detector effects at the reconstruction level, the computation of event-wise likelihoods in the
matrix element method, or the inversion and unfolding of reconstructed events. This is why
we benchmark our new networks on a sufficiently challenging set of LHC events. Following
Ref. [22] we choose the the production of leptonically decaying Z-bosons, associated with a
variable number of QCD jets,

pp→ Zµµ + {1,2, 3} jets . (59)

The network has to learn the sharp Z-peak as well as correlated phase space boundaries and
features in the jet-jet correlations. We generate the training dataset of 5.4M events (4.0M
+ 1.1M + 300k) using SHERPA2.2.10 [87] at 13 TeV, including ISR and parton shower with
CKKW merging [88], hadronization, but no pile-up. The jets are defined by FASTJET3.3.4 [89]
using the anti-kT algorithm [90] and applying the basic cuts

pT, j > 20 GeV and ∆R j j > 0.4 . (60)

The jets and muons are each ordered in transverse momentum. Our phase space dimension-
ality is three per muon and four per jet, i.e. 10, 14, and 18 dimensions. Momentum conser-
vation is not guaranteed, because some final-state particles might escape for instance the jet
algorithm. However, the physically relevant phase space dimensionality is reduced to 9, 13,
and 17 by removing the global azimuthal angle.

Our data representation includes a minimal preprocessing. Each particle is represented by

{ pT ,η,φ, m } . (61)

Given Eq.(60), we provide the form log(pT − pT,min), leading to an approximately Gaussian
shape. All azimuthal angles are given relative to the leading muon, and the transformation
into artanh(∆φ/π) again leads to an approximate Gaussian. The jet mass is encoded as log m.
Finally, we centralize and normalize each phase space variable as (qi − q̄i)/σ(qi) and apply a
whitening/PCA transformation separately for each jet multiplicity for the two diffusion models.

Denoising Diffusion Probabilistic Model

The additional challenge for Z+jets event generation is the variable number of jets, which we
tackle with a conditional evaluation [22], illustrated in Fig. 14. The training is independent
for the three jet multiplicities. We start by giving the information for the Z+1-jet sub-process,
12 phase space dimensions, to a first network. It is supplemented with the one-hot encoded
jet count. The second network then receives the 4-momentum of the second jet as an input,
and the Z + 1-jet information additionally to the jet count as a condition. Analogously, the
third network learns the third jet kinematics conditioned on the Z + 2-jet information. For
democratic jets this conditioning would be perfect, but since we order the jets in pT it has to
and does account for the fact that for higher jet multiplicities the interplay between partonic
energy and jet combinatorics leads to differences in the spectra of the leading jets at a given
multiplicity.

As discussed in Sec. 2.1 time is a crucial condition for the DDPM network, and we embed
it into the full conditioning of the LHC setup as a high-dimensional latent vector linked by a
linear layer. We also add a second block to our network architecture, where the conditions
are fed to each block individually. The amount of training data is different for the different jet
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Figure 14: Conditional Sampling Architecture.

multiplicities and corresponding networks. As shown in Tab. 1, the first network uses the full
3.2M events, the second 850k events with at least two jets, and the third network 190k events
with three jets. This hierarchy is motivated by the way the chain of conditional networks add
information and also by the increasing cost of producing the corresponding training samples.
We could balance the data during training, but for the B-DDPM model this leads to a slight
performance drop. We compensate the lack of training data by increasing the number of
epochs successively from 1000 to 10000.

Going from toy models to LHC events, we increase the number of blocks to two, which
improves the performance. The reason is that we attach the condition to the input at the
beginning of each block, so the second block reinforces the condition. Going to even more
blocks will slightly improve the performance, but at the expense of the training time.

In Fig. 15 we show a set of kinematic distributions for different jet multiplicities, including
the jet-inclusive scalar sum of the up to three pT, j . These distributions will be the same for
all three network in this paper and can be compared directly to the Bayesian INN results
in Fig. 11 of Ref. [22], serving as a precision baseline. Starting with the almost featureless
pT -distributions in the left panels, we see that for all three distributions the deviation from
the truth, given by high-statistics training data, is similar for the actual training data and
for the DDPM-generated events. The network really extracts all available information from
the training data combined with its fit-like implicit bias. For sufficient training statistics, the
precision on the phase space density as a function of pT is below the per-cent level, easily on
par with the INN baseline. For a given jet multiplicity this precision drops with increasing pT
and correspondingly decreasing training data, an effect that is correctly and conservatively
modeled by the uncertainty estimate of the B-DDPM. Combining all n-jet samples into one
observable is no problem for the network and does not lead to any artifacts.

In the right panels of Fig. 15 we show the most challenging phase space correlations. We
start with the Z-peak, which governs most of the events, but requires the network to learn a
very specific phase space direction very precisely. Here, the agreement between the true den-
sity and the DDPM result drops to around 10% without any additional phase space mapping,
similar to the best available INN. The deviation is not covered by the Bayesian network uncer-
tainty, because it arises from a systematic failure of the network in the phase space resolution,
induced by the network architecture. However, this effect is less dramatic than it initially
looks when we notice that the ratio of densities just describes the width of the mass peak be-
ing broadened by around 10%. If needed, it can be easily corrected by an event reweighting
of the Z-kinematics. Alternatively, we can change the phase space parametrization to include
intermediate particles, but most likely at the expense of other observables.
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Figure 15: Bayesian DDPM densities and uncertainties for Z+1 jet (upper), Z+2 jets
(center), and Z + 3 jets (lower) from combined Z+ jets generation. The uncertainty
on the training data is given by bin-wise Poisson statistics. The network architecture
is given in Tab. 1. For a comparison with the INN we refer to Fig. 11 of Ref. [22].
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Next, we study the leading challenge of ML-event generators, the jet-jet correlations and
specifically the collinear enhancement right at the hard jet-separation cut of∆R j j > 0.4. Three
aspects make this correlation hard to learn: (i) this phase space region is a sub-leading fea-
ture next to the bulk of the distribution around ∆R j j ∼ π; (ii) it includes a sharp phase space
boundary, which density estimators will naturally wash out; and (iii), the collinear enhance-
ment needs to be described correctly, even though it appears right at the phase space boundary.
Finally, for this correlation the conditional setup and the Bayesian extension are definitely not
helpful.

What helps for this correlation is the so-called magic transformation introduced in Ref. [22].
It scales the ∆R j j-direction in phase space such that the density in this phase space direction
becomes a monotonous function. While from a classic Monte Carlo perspective the benefits of
this transformation are counter-intuitive, from a a fit-like perspective the magic transforma-
tion can simplify the class of function which the network then adapts to the data, as shown
for the toy models in the previous section. This argument is confirmed by the fact that for our
diffusion networks this transformation is helpful, just like for the INN, but for the transformer
it is not needed. Both, for the 2-jet and the 3-jet sample we see that with the magic transfor-
mation the DDPM learns the ∆R j j features, but at the same 10% level as the INN and hence
missing our 1% target. The Bayesian uncertainty estimate increases in this phase space region
as well, but it is not as conservative as for instance in the pT -tails.

The challenge of current diffusion networks, also the DDPM, is the evaluation speed. For
each additional jet we need to call our network 1000 times, so sampling 3-jet events takes
three times as long as sampling 1-jet events. However, none of the networks presented in this
study are tuned for generation speed, the only requirement for a limited hyperparameter scan
is the precision baseline given by the INN.

Conditional Flow Matching

For the CFM diffusion network we follow the same conditional setup as for the DDPM and
the INN to account for the variable number of jets. The network is described in Tab. 2, unlike
for the DDPM the three networks do not have the same size, but the first network with its 9
phase space dimensions is larger. Also the number of epochs increases from 1000 to 10000
going to the 3-jet network. For the CFM we combine the embedding of the time and the
conditioning on the lower jet multiplicities. We find the best results when encoding time, the
kinematic condition, and the actual network input separately into same-sized latent vectors
with independent linear layers. Then all three are concatenated and given to the network.

The kinematic distributions generated by the CFM are shown in Fig. 16. Again, the trans-
verse momentum spectra are learned with high precision, with decreasing performance in the
tails, tracked correctly by the Bayesian network uncertainty. The correlation describing the
Z-peak is now modeled as well as the bulk of the single-particle distributions, a significant im-
provement over the INN baseline [22]. For the most challenging ∆R j j distributions the CFM
uses the same magic transformation as the DDPM and achieves comparable precision. This
means that while there might possibly be a slight benefit to our CFM implementation with
an ODE approach to the discrete time evolution in terms of precision, our level of network
optimization does not allow us to attribute this difference to luck vs network architecture.
Similarly, in the current implementation the CFM generation is about an order of magnitude
faster than the DDPM generation, but this can mostly be attributed to the linear trajectory and
the extremely efficient ODE solver.
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Figure 16: Bayesian CFM densities and uncertainties for Z +1 jet (upper), Z +2 jets
(center), and Z + 3 jets (lower) from combined Z+ jets generation. The uncertainty
on the training data is given by bin-wise Poisson statistics. The network architecture
is given in Tab. 2. For a comparison with the INN we refer to Fig. 11 of Ref. [22].
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Figure 17: Bayesian autoregressive transformer densities and uncertainties for
Z + 1 jet (upper), Z + 2 jets (center), and Z + 3 jets (lower) from combined Z+ jets
generation. The uncertainty on the training data is given by bin-wise Poisson statis-
tics. The network architecture is given in Tab. 3. For a comparison with the INN we
refer to Fig. 11 of Ref. [22].
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Autoregressive Transformer

For the third network, a generative transformer, we already know from Sec. 3 that it learns
and encodes the phase space density different from normalizing flows or diffusion networks. A
key structural difference for generating LHC events is that the transformer can generate events
with different jet multiplicities using the same network. The one-hot-encoded jet multiplicity
is provided as an additional condition for the training. The autoregressive structure can work
with sequences of different length, provided there is an appropriate way of mapping the se-
quences onto each other. For the LHC events we enhance the sensitivity to the angular jet-jet
correlations through the ordering

�
(φ,η) j1,2,3

, (pT ,η)µ1
, (pT ,φ,η)µ2

, (pT , m) j1,2,3

�
. (62)

While the Bayesian transformer does learn the angular correlations also when they appear at
the end of the sequence, this ordering provides a significant boost to the network’s precision.
For the transformer training, we want the features of the 3-jet to be well represented in the set
of vectors defined in Eq.(62). To train on equal numbers of events with one, two, and three
jets, we sample 1-jet and 2-jet events randomly at the beginning of each epoch. The loss is
first evaluated separately for each jet multiplicity, and then averaged for the training update.

In Fig. 17 we show the standard set of kinematic observables for the autoregressive trans-
former based on a Gaussian mixture model, with the architecture given in Tab. 3. Just like
the two diffusion models, and the INN, it learns the different pT -distributions with a preci-
sion close to the statistics of the training data. Sampling a variable number of jets with the
multiplicity as a condition leads to no additional complication.

Looking at the correlations in the right panels, the Z-mass now comes with an increased
width and a shift. This is, in part, an effect of the ordering of the input variables, where the
lepton information comes after the angular information on the jets. The benefit of this ordering
can be seen in the ∆R j j distributions, which are reproduced at the per-cent precision without
any additional effort. This is true for ∆R j1 j2 and ∆R j1 j3 , reflecting the democratic ordering
and training dataset. The sharp phase space boundary at ∆R j j = 0.4 can be trivially enforced
during event generation.

5 Outlook

Generative neural networks are revolutionizing many aspects of our lives, and LHC physics
is no exception. Driven by large datasets and precise first-principle simulations, LHC physics
offers a wealth of opportunities for modern machine learning, in particular generative net-
works [2]. Here, classic network architectures have largely been surpassed by normalizing
flows, especially its INN variant, but cutting-edge new approaches are extremely promising.
Diffusion networks should provide an even better balance between expressivity and precision
in the density estimation. Autoregressive transformers should improve the scaling of network
size and training effort with the phase space dimensionality.

In this paper we have provided the first comprehensive study of strengths and weaknesses
of these new architectures for an established LHC task. We have chosen two fundamentally dif-
ferent approaches to diffusion networks, where the DDPM learns the time evolution in terms
of discrete steps, while the CFM encodes the continuous time evolution into in a differen-
tial equation. The autoregressive JetGPT transformer follows the standard GPT architecture,
where for our relatively simple setup we get away without actual pretraining.

For each architecture we have first implemented a Bayesian network version, which allows
us to understand the different ways they approach the density estimation. While the diffusion
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networks first identify classes of functions and then adapt them to the correlations in phase
space, much like the INN [69], the transformer learns patterns patch-wise and dimension by
dimension.

Next, we have applied all three networks to the generation of Z+jets events, with a focus
on the conditional setup for variable jet multiplicities and the precision in the density esti-
mation [22]. The most challenging phase space correlations are the narrow Z-peak and the
angular jet–jet separation combined with a collinear enhancement.

Our two diffusion models are, conceptually, not very far from the INNs. We have found that
they face the same difficulties, especially in describing the collinear jet–jet correlation. Just
like for the INN, the so-called magic transformation [22] solved this problem. Both diffusion
networks provided an excellent balance between expressivity and precision, at least on part
with advanced INNs. This included the density estimation as well as the uncertainty map
over phase space. The main advantage of the CFM over the DDPM was a significantly faster
sampling for our current implementation, at the level of the INN or the transformer. In contrast,
the DDPM model is based on a proper likelihood loss, with all its conceptual and practical
advantages for instance when bayesianizing it. Both networks required long training, but
fewer network parameters than then INN. We emphasize that ML-research on diffusion models
it far from done, so all differences between the two models found in this paper should be
considered with a grain of salt.

Finally, we have adapted the fundamentally different GPT architecture to LHC events. Its
autoregressive setup provided a different balance between learning correlations and scaling
with the phase space dimension, and it has never been confronted with the precision require-
ments of the LHC. The variable numbers of particles in the final state was implemented natu-
rally and without an additional global conditioning. Our transformer is based on a Gaussian
mixture model for the phase space coverage, and we have used the freedom of ordering phase
space dimensions in the conditioning chain to emphasize the most challenging correlations.
This has allowed the transformer to learn the jet–jet correlations better than the INN or the
diffusion models, but at the expense of the description of the Z-peak. The generation time of
the transformer is comparable with the fast INN.

Altogether, we have found that new generative network architectures have the potential
to outperform even advanced normalizing flows and INNs. However, diffusion models and
autoregressive transformers come with their distinct set of advantages and challenges. Given
the result of our study we expect significant progress in generative network applications for
the LHC, whenever the LHC requirements in precision, expressivity, and speed can be matched
by one of the new architectures.
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Figure 18: Classifier weight distribution for each of the three networks evaluated on
Z+2j events.

A Quantitative evaluation of generators

Following Ref. [91] we evaluate the quality of the networks by training binary classifiers to
distinguish between generated and true samples. The output C(x) of a well-trained classifier
gives access to the likelihood ratio between the true and the model density via

w(x) =
ptrue(x)

pmodel(x)
=

C(x)
1− C(x)

. (63)

This is done individually for all three models, DDPM, CFM and AT, following the training
procedure as discussed in [91]. The corresponding weight distributions are shown in Fig. 18.
For all three models the weight distribution shows a similar structure. The overwhelming
majority of events is clustered around weights of one, indicating a good agreement between
the model and the true distribution. The weak tail to the right shows that no phase space
region is systematically underpopulated. Lastly, all three models show a peak in the overflow
bin to the left, indicating a clear failure mode. Low values of w(x) correspond to regions
where ptrue is approaching zero whereas pmodel is not. We checked that this excess is due to
the already discussed mismodeling around the hard cut-off ∆R j1 j2 = 0.4.
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