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1 Introduction

Quantum-integrable models are distinguished many-body systems in one dimension that possess
a tower of commuting conserved charges [1]. The Bethe Ansatz is a method to solve quantum-
integrable models that have particle conservation, providing explicit formulae for energies, eigen-
states, scalar products, correlation functions, etc. The coordinate Bethe Ansatz (CBA) solves
the spectral problem by using linear superpositions of plane waves, or “magnons”, as trial func-
tions [2,3]. The algebraic Bethe Ansatz (ABA) systematizes this approach by the R-matrix and
the monodromy matrix [4–6]. Both methods enable the construction of Bethe states, which are
eigenstates of the Hamiltonian when their spectral parameters satisfy the Bethe equations.

The preparation of Bethe states in spin-1{2 chains has great potential in quantum comput-
ing. For instance, Bethe states can be used to initialize quantum algorithms of adiabatic [7]
and real-time [8] evolution, as well as to benchmark quantum devices. Recent research focused
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on the preparation of Bethe states of the paradigm of quantum-integrable spin-1{2 chain: the
homogeneous XXZ model 1, whose Bethe states form a complete basis of the Hilbert space [13].

A first class of quantum algorithms [14–16] are based on the special simplicity of Bethe states
in the homogeneous XXZ model, rather than quantum integrability itself. They apply in presence
of closed [14, 16] and open boundary conditions [15, 16], and are either probabilistic [14, 15] or
deterministic [16]. Algorithms must be efficient to be implementable, which, in the circuit model
of quantum computing, means the number of one- and two-qubit gates must grow polynomially
with the parameters of the circuit. The number of gates of probabilistic algorithms is polynomial
in the number of qubits N and magnons M [14, 15]. However, the success probability decreases
exponentially with N for the ground state, and super-exponentially with M for excited states if
N is large [17]. The number of gates of the deterministic algorithm in [16], related to quantum
encoders [18], is linear in N , but exponential in M again.

A second class of deterministic algorithms relying explicitly on quantum integrability goes
by the name of “algebraic Bethe circuits (ABCs)” [19, 20]. Just as the ABA builds Bethe states
as “creation” operators atop a (pseudo-)vacuum, ABCs seek to frame Bethe states as unitaries
acting on a reference state. ABCs were proposed for the homogeneous XXZ model with periodic
boundaries [19,20]. The starting point of [19] was the representation of Bethe states of the ABA as
matrix-product states (MPSs) [21]. MPSs are the simplest tensor networks [22], which make the
entanglement structure of states in one dimension apparent through a circuit-like arrangement
of local tensors that act on both the Hilbert space of the spin chain and an auxiliary space. The
unitaries of ABCs were extracted numerically from these tensors for the ABA in [19]. Closed
formulae for the unitaries of ABCs were later obtained in [20] by a complementary approach.
The key step in [20] was deriving a new representation of the linear superpositions of plane
waves in the CBA as an MPS. The tensors of this MPS, unlike that of the ABA, directly lead
to analytical expressions for the unitaries of ABCs. Nonetheless, the proof of the construction
of [20] was not complete and partially relied on numerical checks that were performed for small
number of magnons M . The equivalence between the realizations of ABCs in [19, 20], and thus
between the formulations of the ABA and the CBA as MPSs, was also verified for small M

in [20]. The number of unitaries in ABCs is linear in the number of qubits N . However, the
ABC unitaries act on up to M ` 1 qubits, and the efficiency of their decomposition into one- and
two-qubit gates on M remains uncertain in general. The generalization of the ABC construction
to open boundaries appears in [23].

The results of [20] raise the question of systematizing ABCs. A clear method for formulating
Bethe states of the ABA as the circuits of [20] would enhance the search for quantum-integrable
models in which the unitaries of ABCs admit efficient decompositions. The missing link prevent-
ing the systematization of ABCs is the connection between the MPS of the ABA and the CBA.
The ABA, which can be straightforwardly identified with an MPS [21], is the standard method
for computing Bethe states, while the MPS of the CBA provides closed formulae for the unitaries
of ABCs. In this work, we propose that the change to the F-basis of [24] in the auxiliary space
is the key to transforming the MPS of the ABA into that of the CBA, thereby allowing us to
analytically rephrase Bethe states as quantum circuits. The crucial feature of the F-basis is that
it is invariant with respect to exchange of qubits. In addition, we address the loopholes of [20] by

1The ground state of the anti-ferromagnetic spin chain has been approximated by a double-bracket quantum
algorithm in [9]. Moreover, the homogeneous XXZ model has been considered in connection to the variational
quantum eigensolver in [10,11] and shows promise in sampling certain topological invariants [12].
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presenting a rigorous method to eliminate auxiliary qubits in the final circuit. We illustrate our
approach with new ABCs for the inhomogeneous XXZ model with periodic boundaries. Figure 1
contains an overview of the realizations of the Bethe Ansatz that we uncover.

Figure 1: Diagram of realizations of the Bethe Ansatz.

The F-basis is a special basis where the operators of the ABA are local operators with
a non-local dressing [24]. Originally proposed for the inhomogeneous XXZ model with periodic
boundaries [24], the F-basis, which admits a diagrammatic representation [25], was soon extended
to encompass higher-spin [26–28], higher-rank [29–31], totally anisotropic [32], open [33,34], and
supersymmetric [35, 36] chains, among others [37, 38]. (We refer to [25, 39] for a summary of
the F-basis.) The F-basis in the quantum space was instrumental in providing a first solution
to the quantum inverse scattering problem for the spin operators [39], laying the groundwork
for the exact computation of form factors and correlation functions. Other applications of the
F-basis included the computation of domain-wall partition functions [40,41], asymmetric simple
exclusion processes [42], and spin-chain propagators [43]. The importance of applying the F-basis
to the MPS of the Bethe Ansatz was envisaged in [44], which reviewed the equivalence of the
MPS of [45–47] with the ABA by a change of basis in the auxiliary space as presented in [48].
The same remark was made in [49], which also underscored the suitability of the F-basis for the
explicit computation of Bethe wave functions.

The paper has the following structure. In Section 2, we present the inhomogeneous XXZ
model with periodic boundaries, together with the monodromy matrix and the R-matrix. We
introduce the F-basis in the auxiliary space and show it guarantees the invariance with respect to
exchange of qubits in the auxiliary space. In Section 3, we prove the change to the F-basis in the
auxiliary space relates the formulation of the ABA and the CBA as an MPS. First, we detail the
connection for the homogeneous XXZ model, and elaborate on the interplay between the F-basis
and Bethe states. Next, we turn to the inhomogeneous XXZ model, where we present a simple
parameterization of the CBA for the inhomogeneous spin chain. In Section 3, we use the MPS
of the CBA to write the unitaries of ABCs for the inhomogeneous XXZ model. We eliminate the
auxiliary qubit rigorously by a suitably re-defined MPS for the smaller unitaries. In Section 4,
we conclude with general remarks and prospects on future research. Appendices A–D contain
demonstrations of claims in the main text and additional material.
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2 The F-basis of the XXZ Model

In this section, we review the inhomogeneous and periodic XXZ model. In Subsection 2.1, we
introduce the model, the R-matrix, and the monodromy matrix. We present the exchange algebra
of the monodromy matrix, whereby the ABA follows. In subsection 2.2, we review the F-basis
of [24]. We highlight that operators of the ABA in the F-basis are symmetric with respect to
exchange of qubits. The property proves to be instrumental in derivation of ABCs in Section 3
into this analysis. We refer to [25,39] for a summary of the F-basis of [24].

2.1 The R-matrix and Monodromy Matrix

We begin by briefly reviewing the ABA for the homogeneous XXZ model with periodic bound-
aries. The review serves to both provide context and facilitate the extension of the ABA to
the inhomogeneous spin chain. The XXZ model is a chain of N spin-1{2 sites, or, alternatively,
“qubits”. The Hilbert space is

HN “

N
â

j“1
hj , hj – C2 , (2.1)

and goes by the name of “quantum space”. We call the qubits of the quantum space “spins” to
differentiate them from auxiliary qubits below. The subscript j “ 1, . . . , N labels the individual
Hilbert space of the spins hj , which is isomorphic to C2. The computational basis of a qubit
corresponds to up and down spin-1{2 states like

|Òy :“ |0y “

«

1
0

ff

, |Óy :“ |1y “

«

0
1

ff

. (2.2)

The Hamiltonian is

H “

N
ÿ

j“1
pXjXj`1 ` YjYj`1 ` ∆ZjZj`1q , (2.3)

where ∆ is the anisotropy parameter. We introduced standard Pauli matrices on the j-th spin
subject to periodicity. To diagonalize the Hamiltonian, one considers the monodromy matrix,
the 2 ˆ 2-matrix whose entries are the operators of the ABA on the quantum space:

T puq “

«

Apuq Bpuq

Cpuq Dpuq

ff

P Endph0 b HN q , h0 – C2 . (2.4)

The variable u denotes the spectral parameter. The 2 ˆ 2-matrix acts on h0, called “auxiliary
space”, which corresponds to an auxiliary qubit called “ancilla”. The ABA dictates the construc-
tion of eigenstates by applying one of the non-diagonal operators from the monodromy matrix to
a reference state, whose spectral parameters must fulfil the Bethe equations. These Bethe states
not only diagonalize the Hamiltonian, but also the transfer matrix,

tpuq “ tr T puq “ Apuq ` Dpuq , (2.5)

for every u. The regular series of the transfer matrix around every point spans a tower of
commuting conserved charges diagonalized by the ABA, the standard hallmark of quantum in-
tegrability [1]. The cornerstone of the ABA is the R-matrix, which we introduce next.
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The R-matrix of the XXZ model is

Rpuq “

»

—

—

—

—

–

1 0 0 0
0 fpuq gpuq 0
0 gpuq fpuq 0
0 0 0 1

fi

ffi

ffi

ffi

ffi

fl

, fpuq “
sinh u

sinhpu ` iγq
, gpuq “

sinhpiγq

sinhpu ` iγq
. (2.6)

The anisotropy parameter ∆ that characterizes the spin chain depends on γ like 2

∆ “ cos γ . (2.7)

The R-matrix is an operator on the Hilbert space of two qubits, and we understand Rpuq as a two-
qubit tensor which depends on the difference of the spectral parameters of each qubit u :“ u1´u2.
The non-vanishing components of the R-matrix are

R00
00puq “ R11

11puq “ 1 , R01
01puq “ R10

10puq “ fpuq , R10
01puq “ R01

10puq “ gpuq . (2.8)

We depict the R-matrix as a tensor in Figure 2.

Figure 2: The R-matrix (2.6) as a two-qubit tensor. The R-matrix acts from left to right on the
first qubit, associated to u1, and from bottom to top on the second, associated to u2.

The R-matrix satisfies the Yang-Baxter equation (YBE) in difference form:

R12pu1 ´ u2qR13pu1 ´ u3qR23pu2 ´ u3q “ R23pu2 ´ u3qR13pu1 ´ u3qR12pu1 ´ u2q . (2.9)

Subscripts denote the Hilbert space of the pair of qubits the R-matrix acts on:

R12 “ R b 12 , R23 “ 12 b R , R13 “ pΠ b 1q R23 pΠ b 12q , (2.10)

where 12 denotes the identity 2 ˆ 2-matrix and the transposition 4 ˆ 4-matrix Π is

Π “

»

—

—

—

—

–

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

fi

ffi

ffi

ffi

ffi

fl

. (2.11)

Figure 3 depicts the YBE as an equality between tensor networks of R-matrices.
The monodromy matrix (2.4) spans an algebra with respect to the product in the auxiliary

space called “exchange algebra”. The algebra is associative and unital, but not commutative.
The R-matrix is the intertwiner that encodes non-commutativity through the RTT-relation:

R12pu ´ vqT1puqT2pvq “ T2pvqT1puqR12pu ´ vq , (2.12)
2References [19, 20] mainly addresed the critical homogeneous XXZ model, where ´1 ă ∆ ď 1 (0 ď γ ă π).

Since we also consider the inhomogeneous spin chain here, whose phase diagram is not known, we allow complex γ.
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Figure 3: The YBE (2.9) as an equality of tensor networks. Each R-matrix acts on two qubits
from bottom to top, and so it is read the diagram.

where
T1 “ T b 12 , T2 “ 12 b T . (2.13)

Note the R-matrix acts on the auxiliary space of two ancillae, and the monodromy matrix acts
on the Hilbert space of an ancilla and on the quantum space. The RTT-relation specifies the
standard commutation relations of the ABA of the XXZ model; see (1.11)–(1.24) of Chapter VII
of [4]. The RTT-relation also implies that transfer matrices with different spectral parameters
commute, hence they are simultaneously diagonalizable.

Figure 4: The RTT-relation (2.12) via tensor networks. The monodromy and R-matrices act on
ancillae from left to right, The monodromy matrices act on spins from bottom to top.

The monodromy matrix of the XXZ model is a tensor network of R-matrices, where the
YBE (2.9) implies the RTT-relation (2.12). Let R0j P Endph0 b hjq be the R-matrix of the
ancilla and the j-th spin. The monodromy matrix of the inhomogeneous XXZ model is

T puq “ R0N pu ´ vN q . . . R02pu ´ v2qR01pu ´ v1q , (2.14)

where vj is the inhomogeneity of the j-th spin. Figure 5 illustrates the monodromy matrix
as a tensor network of R-matrices. The YBE (2.9) implies the RTT-relation (2.12). Even
though (2.14) defines a one-parameter family of transfer matrices by (2.5), inhomogeneities forbid
the tower of conserved charges to be local, as often required to quantum-integrable models [1].
Lacking a local Hamiltonian, we define the inhomogeneous spin chain by the transfer matrix.
If vj “ v, the spin chain is homogeneous, and there is a tower of local conserved charges that
contains the Hamiltonian (2.3). The charges are proportional to logarithmic derivates of the
transfer matrix thanks to regularity Rp0q “ Π [4].

We close this subsection by noting that the exchange algebra must allow for products of more
than two monodromy matrices. Consider the product of three monodromy matrices. Inverting
the product by alternative sequences of pair-wise swappings leads us to

T1T2T3 “ R´1
23 R´1

13 R´1
12 T3T2T1R12R13R23 “ R´1

12 R´1
13 R´1

23 T3T2T1R23R13R12 , (2.15)

where
Rab :“ Rabpua ´ ubq , Ta :“ Tapuaq . (2.16)
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Figure 5: The monodromy matrix as a tensor network according to (2.14). The notation is
Rj :“ R0jpu ´ vjq. The action on ancillae goes from left to right and on spins from bottom to
top. The R-matrices on the diagram and the equation appear in reverse order: the leftmost R1
of the tensor network acts first, the next-to-leftmost R2 acts second, etc., whereas the rightmost
R1 in (2.14) acts first, the next-to-rightmost R2 acts second, and so on.

The RTT-relation is compatible with (2.15) thanks to the YBE (2.9), in the sense that alternative
sequences of transpositions giving the same product are equivalent. The YBE similarly ensures
the consistency of products of a higher number of monodromy matrices. Now, the product of
two monodromy matrices admits two reorderings, the trivial reordering and the transposition,
each corresponding to an element of S2. Conjugation by 12 realizes the identity, which leaves
the order unaffected. Conjugation by the R-matrix realizes the transposition, which inverts the
order, in agreement with the RTT-relation (2.12),

The product of M monodromy matrices admits M ! reorderings. Reorderings are in one-to-
one correspondence with permutations σ P SM . Each σ corresponds to a 2M ˆ2M -matrix Rσ

12...M

on the auxiliary space of M ancillae

HM “

M
â

a“1
ha , ha – C2 , (2.17)

which satisfies
Rσ

12...M T1T2 . . . TM “ Tσ1Tσ2 . . . TσM
Rσ

12...M , (2.18)

where
Rσ

12...M :“ Rσ
12...M pu1, u2, . . . , uM q , (2.19)

Each Rσ
12...M factorizes into products of standard R-matrices. For instance, if M “ 3, the

R-matrix that performs the inversion (we use cycle notation) σ “ p1, 3qp2q in (2.15) is

R
p1,3qp2q

123 “ R12R13R23 . (2.20)

Alternative factorizations of the same R-matrix are consistent owing to the YBE (2.9). We are
now in position to introduce F-matrices and the F-basis.

Figure 6: Permutation of the product of M monodromy matrices by Rσ :“ Rσ
12...M in (2.18).
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2.2 The F-basis

By definition, the F-matrix is the invertible 4 ˆ 4-matrix that satisfies

R12puq “ F ´1
21 p´uqF12puq , (2.21)

where
F21 “ Π F12 Π . (2.22)

The F-matrix of the R-matrix (2.6) is

F12puq “

»

—

—

—

—

–

1 0 0 0
0 1 0 0
0 gpuq fpuq 0
0 0 0 1

fi

ffi

ffi

ffi

ffi

fl

. (2.23)

The definition holds thanks to the following properties of the functions in (2.6):

fpuqfp´uq ` gpuqgp´uq “ 1 , fpuqgp´uq ` gpuqfp´uq “ 0 . (2.24)

The F-matrix exists because the R-matrix is pseudo-unitary [24] 3:

R12puqR21p´uq “ 14 . (2.25)

An F-matrix F12...M is the 2M ˆ 2M -matrix that encodes all the R-matrices for products of M

monodromy matrices. The definition of F-matrices in this case is

Rσ
12...M “ F ´1

σ1σ2...σM
F12...M , (2.26)

where

F12...M :“ F12...M pu1, u2, . . . , uM q , Fσ1σ2...σM :“ ΠσF12...M puσ1 , uσ2 , . . . , uσM qΠσ , (2.27)

and Πσ is the permutation 2M ˆ 2M -matrix of σ. Note that the definition of Fσ1σ2...σM involves
both the permutation of ancillae by Πσ and the permutation of the arguments of the F-matrix.
The closed formula of F12...M is [25, 31]

F12...M “

M´2
ź

a“1

«

|0ya x0|a ` |1ya x1|a
M
ź

b“a`1
Rab

ff

, (2.28)

where |iya xj|a are projectors of the Hilbert space ha in (2.17) and

Rab :“ Rabpua ´ ubq . (2.29)

The F-matrices F12...M realize the reordering of the product of monodromy by means of twists.
The definition (2.26) enables us to rephrase (2.18) as

F12...M T1T2 . . . TM F ´1
12...M “ Fσ1σ2...σM

Tσ1Tσ2 . . . TσM
F ´1

σ1σ2...σM
. (2.30)

3The pseudo-unitarity of the R-matrix differs from matrix unitarity in general. For instance, (2.6) is pseudo-
unitary according (2.25), but unitary only if u is real. We emphasize the name “unitarity” for the pseudo-unitarity
of the R-matrix (2.25), which borrows from factorized-scattering theory [50], is deeply ingrained in the literature.
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The consistency of the F-matrix F12 with the algebra of the monodromy matrix implies the
consistency among F12...M with different M [24]. The F-matrices realize the change to the “F-
basis” of the auxiliary space (2.17), whereby the operators of the ABA are particularly simple [24].

Before proceeding, we should make a remark. Reference [24] initially introduced F-matrices
on the quantum space (2.1). The corresponding F-basis is useful for computing scalar products
[24,39] and solving the quantum inverse scattering problem for local spin operators [39]. In this
work, however, we focus on F-matrices on the auxiliary space, as proposed in [43]. This approach
shall prove to be well-suited for framing Bethe states as quantum circuits.

Let us consider the product M monodromy matrices. Figure 7 depicts the product as a tensor
network of R-matrices. Monodromy matrices admit a dual picture where spins and ancillae
switch roles. (We keep the nomenclature “spins” and “ancillae” in the dual picture with the
same meaning to make the context clear.) The definition of the j-th dual monodromy matrix
over M ancillae is 4

Tjpvjq :“ Tj :“ R1jpu1 ´ vjqR2jpu2 ´ vjq . . . RMjpuM ´ vjq . (2.31)

The spectral parameter of the j-th matrix is vj , whereas ua is the inhomogeneity of the a-th
ancilla. The YBE (2.9) implies the RTT-relation of dual monodromy matrices is

T1pv1qT2pv2qR12pv1 ´ v2q “ R12pv1 ´ v2qT2pv2qT1pv1q . (2.32)

The operators of the ABA of dual monodromy matrices follow from the corresponding exchange
algebra. Figure 8 depicts the product of dual monodromy matrices as a tensor network.

Figure 7: The product of monodromy matrices equals a tensor network of R-matrices.

To introduce the F-basis, we must perform a change of basis in the auxiliary space by the
F-matrix F12...M . According to (2.30), the product of monodromy matrices is symmetric under
permutations once is twisted by the F-matrix. Here, we show that this property implies the
existence of new dual monodromy matrices

ĂTk “ F12...MTkF ´1
12...M , (2.33)

that are symmetric with respect to exchange of ancillae: 5

ĂTk “ ĂT σ
k , (2.34)

4Tj are often called “column-to-column” monodromy matrices, as opposed to the “row-to-row” matrices Ta.
5The symmetry of monodromy matrices with respect to the exchange of spins was previously highlighted in [51].

We are grateful to A. A. Ovchinnikov for bringing this work to our attention.
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Figure 8: The product of dual monodromy matrices equals a tensor network of R-matrices.
Grouping R-matrices by columns in Figure 7 leads to this picture.

where
ĂTk “ ĂTkpvk; u1, . . . , uM q , ĂT σ

k “ Πσ
ĂTkpvk; uσ1 , . . . , uσM qΠσ , (2.35)

and we wrote the dependence on ua explicitly. Figure 9 represents (2.33) and (2.34). The proof
of (2.34) follows from the independence of the F-matrix on the number of spins N . If N “ 1, just
ĂT1 is defined. Equation (2.30) with N “ 1 implies ĂT1 fulfills (2.34). Any other ĂTj is symmetric
with respect to exchange of ancillae due to the independence on vj of the proof. Moreover,
we emphasize ĂTj are also dual monodromy matrices: since F12...M just acts on the auxiliary
space and does not depend on ´vj , (2.32) holds for ĂTj as well. Both Tj and ĂTj span the same
exchange algebra. The definition of ĂTj in (2.33) can be understood as a change of basis of the
dual monodromy matrices Tj . The new basis is called “F-basis”.

Figure 9: New dual monodromy matrices defined in (2.33). The notation is F “ F12...M . These
monodromy matrices are symmetric with respect to exchange of ancillae as stated in (2.34).

The operators of the ABA simplify in the F-basis. If we rearrange the tensor product on which
the new dual monodromy matrices act to mimic (2.4); that is, if we write ĂTj P Endphj b HM q, it
follows that

ĂTj “

«

ĂAj
rBj

rCj
rDj

ff

, (2.36)
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where the first three operators read [24]

ĂAj “

M
â

a“1

«

1 0
0 faj

ff

,

rBj “

M
ÿ

a“1

a´1
â

b“1

«

1 0
0 fbj{fba

ff «

0 0
gaj 0

ff

M
â

c“a`1

«

1 0
0 fcj{fca

ff

,

rCj “

M
ÿ

a“1

a´1
â

b“1

«

1{fab 0
0 fbj

ff «

0 gaj

0 0

ff

M
â

c“a`1

«

1{fac 0
0 fcj

ff

,

(2.37)

with

faj :“ fpua ´ vjq , fab :“ fpua ´ ubq , gaj :“ gpua ´ vjq , (2.38)

while rDj follows from the proportionality of the quantum determinant to the identity matrix [4].

3 The F-basis and Algebraic Bethe Circuits

In this section, we present the ABCs of [19,20] in light of the F-basis of [24]. Inspired by [20], we
use the F-basis to formulate the linear superposition of plane waves in the CBA as an MPS. The
tensors of this one-dimensional network inherit the symmetry with respect to exchange of qubits
of the F-basis, which later plays a key role in computing analytic expressions of the unitaries of
ABCs. In Subsection 3.1, we relate the MPS formulation of the CBA for the homogeneous spin
chain in [20] with the F-basis. In Subsection 3.2, we use the connection to derive the CBA of the
inhomogeneous XXZ model. In Subsection 3.3, we construct the ABCs for the inhomogeneous
spin chain along the lines of [20].

3.1 The F-basis and Coordinate Bethe Ansatz: Homogeneous Spin Chain

The ABCs consist of unitaries over various qubits that act on a reference state to produce
normalized Bethe states. References [19, 20] obtained ABCs for the homogeneous XXZ model,
whose Bethe Ansatz is well-known. The starting point of [19] was the formulation of the ABA
as an MPS [21,48], whereas [20] began with a new MPS representation of the CBA. Both classes
of MPSs are connected by a change of basis in the auxiliary space, which we show to correspond,
essentially, to the change to the F-basis.

We begin with the unnormalized Bethe state of M magnons over N spins as per the ABA [4]:

Bpu1q . . . BpuM q |0y
bN

“ x0|1 T1 |1y1 . . . x0|M TM |1yM |0y
bN , (3.1)

where Bpuaq are the operators in (2.4), which commute among themselves, |iya belongs to ha in
(2.17), and |0y

bN is the reference state in the quantum space. The so-called “magnons” are to
be identified with plane waves, as the CBA makes clear. (See (3.10) below.) According to (2.33),
we can write

Bpu1q . . . BpuM q |0y
bN

“
ÿ

ij“0,1
x0|bM

ĂT iN
N . . . ĂT i2

2
ĂT i1

1 |1y
bM |i1 . . . iN y , (3.2)
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where |iybM belongs to the auxiliary space, and we introduced the following notation for the first
column of (2.36):

ĂT 0
j :“ ĂAj , ĂT 1

j “ rCj . (3.3)

To write (3.2), we also used
F12...M |iybM

“ |iybM . (3.4)

Figure 10 depicts the Bethe state according to the ABA. The Bethe state (3.2) is an MPS, whose
tensors are ĂT i

j and bond dimension 2M . MPSs represent a highly structured form to describe
many-body states in one-dimension [22].

MPSs reframe wave functions through a sequence of matrices defined over an auxiliary space,
which define local tensors, each associated with a spin, such that the global wave function emerges
as a product of these spin-specific matrices. The dimension of the matrices connecting adjacent
spins, known as the “bond dimension”, quantifies the entanglement between bipartitions of the
state across the interstice between spins. Nevertheless, the MPS representation of a given state
is inherently non-unique. Matrices at individual spins can be modified by introducing invertible
matrices in the auxiliary space between them, a transformation that leaves the overall wave
function unchanged. This ambiguity is due to the fact that these insertions cancel out in the
complete tensor contraction. For instance, let Vj be the invertible 2M ˆ 2M -matrices of a gauge
transformation acting on the auxiliary space of (3.2). The mapping

ĂT i
j ÞÑ V ´1

j
ĂT i

j Vj´1 , x0|bM
ÞÑ x0|bM VN , |1y

bM
ÞÑ V ´1

0 |1y
bM , (3.5)

yields another admissible MPS representation of the Bethe state (3.2). If all the matrices of
the gauge transformation are equal, the transformation is called “global”, otherwise it is called
“local”.

Figure 10: Bethe state according to the ABA. The standard formulation of the ABA (3.1) based
on Ta equals the dual formulation of the ABA in the F-basis (3.2) based on ĂTj .

The discussion up to this point applies to both the homogeneous and inhomogeneous XXZ
models. To align with [20], whose spin chain is homogeneous, we set vj “ 0, hence ĂT i

j “ ĂT i

until the end of the subsection. The MPS of the Bethe state thus becomes uniform, which means
that all the tensors of (3.2) are equal.

Let us derive the representation of the CBA as an MPS from (3.2). We perform a global
gauge transformation by the 2M ˆ 2M -matrix

V “

M
â

a“1

«

ga 0
0

śM
b“1, b‰a fab

ff

, (3.6)
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where
fa :“ fpuaq , ga :“ gpuaq . (3.7)

(We introduced fa already for convenience.) The global gauge transformation just rescales ĂT 1

because ĂT 0 is diagonal. The tensors of the MPS representation of (3.2) become

Λ0 “ V ´1
ĂT 0V “

M
â

a“1

«

1 0
0 fa

ff

,

Λ1 “ V ´1
ĂT 1V “

M
ÿ

a“1

a´1
â

b“1

«

1 0
0 fabfb

ff «

0 1
0 0

ff

M
â

c“a`1

«

1 0
0 facfc

ff

.

(3.8)

The transformation leaves a multiplicative factor due to the action of V ´1 and V on |0ybM and
|1ybM , respectively. If we re-define

|ΨrMs

N y “

»

—

–

M
ź

a“1

1
ga

M
ź

b“1
b‰a

fab

fi

ffi

fl

Bpu1q . . . BpuM q |0y
bN , (3.9)

we obtain

|ΨrMs

N y “
ÿ

ij“0,1
x0|bM ΛiN . . . Λi2Λi1 |1y

bM |i1i2 . . . iN y (3.10)

“
ÿ

1ďn1ă...ănM ďN

M
ÿ

a1,...,aM “1
ap‰aq

«

ź

1ďqăpďM

saqap

ff «

M
ź

p“1
xnp´1

ap

ff

|n1 . . . nM yN ,

where
|n1 . . . nM yN “ σ´

n1 . . . σ´
nM

|0y
bN . (3.11)

The diagonal elements of the R-matrix (2.6) define the quasi-momenta p1, . . . , pM of the magnons
[19,20]:

xa “ exppipaq :“ fa “
sinh ua

sinhpua ` iγq
. (3.12)

The scattering amplitudes are

sab :“ fab “
sinhpua ´ ubq

sinhpua ´ ub ` iγq
, (3.13)

in terms of which the two-body S-matrix reads

Sab “
sba

sab
“ ´

sinhpua ´ ub ` iγq

sinhpub ´ ua ` iγq
. (3.14)

Since the Bethe state (3.10) realizes the unnormalized linear superposition of M magnons with
quasi-momenta p1, p2 . . . , pM over N spins, we call it the “MPS of the CBA”.

Reference [20] used an equivalent MPS of the CBA. We prove the equivalence between both
representations in Appendix A. By changing its initialization in the auxiliary space, the MPS
of [20] produced Bethe states with 0 ď r ď M magnons that can have support on 1 ď k ď N

qubits. This fact underpinned the construction of the unitaries of ABCs in [20]. The MPS (3.10)
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also permits to define these Bethe states in the same fashion. A Bethe state of r magnons over
k spins with quasi-momenta pma chosen among pa is

|Ψrrs

k y “
ÿ

ij“0,1
x0|bM Λik . . . Λi2Λi1 |m1 . . . mryM |i1 . . . iky (3.15)

“
ÿ

1ďn1ă...ănrďk

r
ÿ

a1,...,ar“1
ap‰aq

«

ź

1ďqăpďM

smaq map

ff «

M
ź

p“1
xnp´1

map

ff

|n1 . . . nryk .

Equation (3.15) states that the initialization of the MPS of the CBA |m1m2 . . . mryM inside
the auxiliary space produces a Bethe state whose quasi-momenta are determined by the initial
state for every number of tensors k of the MPS. The correspondence between Bethe states and
elements of the computational basis of the auxiliary space is one-to-one for fixed k. We also note
that (3.15) does not hold for the MPS representation of the ABA written in terms of Tj . The
demonstration of (3.15) follows from a direct computation, but there is an alternative derivation
of this property. We end this subsection by proving that (3.15) is a consequence of the symmetry
under exchange of ancillae of dual monodromy matrices in the F-basis (2.34). The proof also
highlights the convenience of the change of normalization (3.8), as different Bethe states would
carry different normalizations if defined by the MPS of ĂT i.

Consider (2.34). The gauge-transformation matrix (3.6) is diagonal. The effect of the gauge
transformation on the matrix elements of ĂT i is just a rescaling, as we already mentioned. The
rescaling does not spoil the symmetry under exchange of ancillae, which still holds for (3.8):

xi1 . . . iM | Λipu1, . . . , uM q |j1 . . . jM y “ xiσ1 . . . iσM | Λipuσ1 , . . . , uσM q |jσ1 . . . jσM y , (3.16)

for every permutation σ P SM . It is clear from (3.8) that Λi only have non-trivial matrix elements
between states of the form |m1m2 . . . mryM and |n1n2 . . . nr´iyM . Furthermore, the contribution
to the matrix elements between ancilla at |0y is a multiplicative factor of one. This feature, which
differentiates Λi from ĂT i, enables the reduction of the number of ancilla in the auxiliary space.
We can write the action of the first Λi on the initial state of (3.15) like

Λ0pu1, . . . , uM q|m1 . . . mryM “ x1|br Λ0pum1 , . . . , umr q|1ybr|m1 . . . mryM , (3.17)

and

Λ1pu1, . . . , uM q|m1 . . . mryM “

r
ÿ

a“1
x1|brσ´

a Λ0pum1 , . . . , umr q|1ybrσ`
ma

|m1 . . . mryM , (3.18)

where we used (3.16) with a permutation σ that verifies

σa “ ma , a “ 1, 2, . . . , r , (3.19)

but is otherwise arbitrary. We depict (3.17) and (3.18) in Figure 11. The concatenation of (3.17)
and (3.18) in the Bethe wave function of (3.15) leads us to

x0|bM Λik pu1, . . . , uM q . . . Λi1pu1, . . . , uM q|m1 . . . mryM

“ x0|br Λik pum1 , . . . , umr q . . . Λi1pum1 , . . . , umr q |1y
br .

(3.20)
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Figure 11: Application of the symmetry with respect to exchange of ancillae to Λi. Black and
red lines represent qubits at |0y and |1y, respectively. Horizontal and vertical lines correspond to
spins and ancillae, respectively. Numbers besides horizontal lines denote the ua identifying the
ancillae.

Therefore, if we reorder the quasi-momenta in Λi and trace ancillae that remain at |0y out, we
can prove that Bethe states with a few magnons have the form (3.10). This fact is a consequence
of the definitorial property of the F-basis (2.34).

Given an MPS with the property (3.15), one can construct the unitaries of ABCs in the
scheme of [20]. Motivated by the connection between the CBA and the F-basis we uncovered,
we now turn to the inhomogeneous spin chain to construct their ABCs.

3.2 The F-basis and Coordinate Bethe Ansatz: Inhomogeneous Spin Chain

In this subsection, we compute the MPS formulation of the CBA for the inhomogeneous XXZ
model. This representation leads us to the exact unitaries producing normalized Bethe states in
Subsection 3.3.

Let us turn back to (2.36). The formula says Bethe states of the ABA are MPSs whose tensors
are ĂT i. In Subsection 3.1, we performed a global gauge transformation to obtain an alternative
tensor (3.8) for vj “ 0, when the MPS is uniform and the spin chain homogeneous. To obtain
analogous tensors for general vj , we promote (3.6) to a local gauge transformation by means of
the 2M ˆ 2M -matrices

Vj “

M
â

a“1

«

gaj 0
0

śM
b“1, b‰a fab

ff

. (3.21)

The transformation acts on the tensors like

Λ0
j “ V ´1

j
ĂT 0

j Vj´1 “

M
â

a“1

«

1 0
0 faj

ff

,

Λ1
j “ V ´1

j
ĂT 1

j Vj´1 “

M
ÿ

a“1

a´1
â

b“1

«

1 0
0 fabfbj

ff «

0 1
0 0

ff

M
â

c“a`1

«

1 0
0 facfcj

ff

.

(3.22)

It is convenient to assemble both operators into the non-unitary tensor

Λj “ Λjpvj ; u1, . . . , uM q : HM b hj – HM`1 Ñ HM`1 – hj b HM , Λi
j :“ xi|j Λj |0yj , (3.23)

where |iyj belongs to the Hilbert space of the j-th spin. We depict (3.22) in Figure 12. We have
defined Λj so that it moves the position of hj in the tensor product from the last to the first
place. The swapping is convenient for the construction of ABCs. We have not specified Λj |1yj

as it plays no role in the MPS.
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Figure 12: Tensor of the non-uniform MPS of the inhomogeneous CBA from the dual monodromy
matrices in the F-basis according to (3.22). The notation is Vj “

ÂM
a“1 Vj,a. Being factorized,

the gauge transformation is a rescaling, but local rather that global due to the inhomogeneities.

The action of V0 on |1ybM and V ´1
N´1 on |0ybM produces an overall normalization that we

cancel by redefining the Bethe state like

|ΨrMs

N y “

»

—

–

M
ź

a“1

1
gaN´1

M
ź

b“1
b‰a

fab

fi

ffi

fl

Bpu1q . . . BpuM q |0y
bN . (3.24)

Explicitly,

|ΨrMs

N y “
ÿ

ij“0,1
x0|bM ΛiN

N . . . Λi1
1 |1y

bM |i1 . . . iN y (3.25)

“
ÿ

1ďn1ă...ănM ďN

M
ÿ

a1,...,aM “1
ap‰aq

«

ź

1ďqăpďM

saqap

ff «

M
ź

p“1

np´1
ź

j“1
xap,j

ff

|n1 . . . nM yN .

The lack of uniformity of the MPS is reflected in the appearance of position-dependent quasi-
momenta:

xa,j “ exppipa,jq :“ faj “
sinhpua ´ vjq

sinhpua ´ vj ` iγq
. (3.26)

We assume ua, hence pa,j do not satisfy the Bethe equations in principle. We assume on top
that ua ‰ ub: quasi-momenta are different position-wise, and the Bethe wave function does to
vanish identically. The scattering amplitudes are unchanged with respect to the homogeneous
spin chain and equal (3.13). We depict (3.25) in Figure 13. Since (3.25) realizes a Bethe wave
functions with M magnons propagating over N spins the inhomogeneous spin chain, we identify
it the “MPS of the CBA”. Magnons are still plane waves whose scattering is governed by the
two-body S-matrix (3.14), but their quasi-momenta vary as the plane wave propagates through
spin chain. This parameterization straightforwardly generalizes the CBA for the homogeneous
spin chain. For instance, if M “ 2:

|Ψr2s

N y “
ÿ

1ďn1ăn2ďN

˜

s12

«

n1´1
ź

j“1
x1,j

ff «

n2´1
ź

k“1
x2,k

ff

` s21

«

n1´1
ź

j“1
x2,j

ff «

n2´1
ź

k“1
x1,k

ff¸

|n1n2y . (3.27)

The proof of the equivalence between both representations appears in Appendix A.
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Figure 13: Bethe state as the non-uniform MPS of the CBA in the inhomogeneous spin chain.
The Bethe state is a linear superposition of plane waves with spin-dependent quasi-momenta.

Like (3.10), the MPS of the CBA (3.25) enables the systematic construction of Bethe with
less than M magnons 6. This fact is the upshot of (2.34), the symmetry with respect to the
exchange of ancillae of ĂTj . Following the steps of Subsection 3.1, we indeed deduce

x0|bM Λik
k pvk; u1, . . . , uM q . . . Λi1

1 pv1; u1, . . . , uM q|m1 . . . mryM

“ x0|br Λik
k pvk; um1 , . . . , umr q . . . Λi1

1 pv1; um1 , . . . , umr q |1y
br .

(3.28)

We should mention [49] already stressed the suitability of the F-basis to compute Bethe wave
functions. We clarify the relation between (3.25) and the parameterizations of the Bethe wave
functions for the inhomogeneous spin chain of [49] in Appendix A.

3.3 Inhomogeneous Algebraic Bethe Circuits

Having obtained the MPS of the CBA (3.25), we are in position to construct ABCs for the
inhomogeneous spin chain. The first step is the decomposition the Hilbert space of k qubits into
eigenspaces of definite total spin along the z-axis:

Hk “

k
à

r“0
Hrrs

k , (3.29)

with

Hrrs

k “ span
#

|i1 . . . iky |

k
ÿ

j“1
ij “ r

+

“ span
#

|n1 . . . nryk | 1 ď n1 ă . . . ă nr ď k

+

. (3.30)

The dimension of the eigenspace is

dim Hrrs

k “

ˆ

k

r

˙

, (3.31)

where we define the binomial coefficient to vanish if r ă 0 or r ą k. We stress (3.30) encompasses
the quantum (2.1) and auxiliary (2.17) Hilbert spaces for k “ N and k “ M , respectively.
We introduced the decomposition because Bethe states arrange into the eigenspaces, thus the
unitaries of ABCs based on them break into blocks of definite total spin along the z-axis. Bethe
states with r magnons over k spins belong to Hrrs

k in particular. If k and r with r ď k are
fixed, Bethe states are in one-to-one correspondence with the computational basis of Hrrs

k . In
6The MPS in terms of ĂT i

j (3.2) also gives rise to Bethe states with a few magnons thanks to the symmetry (2.34).
However, normalizations are more intricate, which complicates the later derivation of unitaries.
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Appendix B, we define the index α to label the string 1 ď n1 ă . . . ă nr ď k inside the
eigenspace Hrrs

k . We shall use the index to label to the objects of ABCs. Later we do not allow r

to be greater than M , although M itself could belong to 0 ď M ď N .
The arrangement of Bethe states into eigenspaces is not accidental. In the MPS formulation

of the CBA (3.25), it follows from the commutativity between Λj and the total spin along z-axis
of M ` 1 qubits (M ancillae and the j-th spin of the quantum space). Therefore, we can write

Λi
j “

M
à

r“0
Λri,rs

j , Λri,rs : Hrrs

M Ñ Hrr´is
M . (3.32)

The number of rows and columns of the non-unitary matrices is

# rows ˆ # columns of Λri,rs

j “

ˆ

M

r ´ i

˙

ˆ

ˆ

M

r

˙

. (3.33)

The square block Λr0,rs is diagonal with entries

Λr0,rs

j,αβ “ δαβ

r
ź

p“1
xnp,j , (3.34)

where we resorted to the identification

|αy “ |m1 . . . mryk , |βy “ |n1 . . . nryk , (3.35)

with k “ M , according to Appendix B. We shall use the identification (3.35) consistently in the
following. The rectangular block Λr1,rs has the entries

Λr1,rs

j,αrβ “

r
ÿ

p“1
δαrβp

r
ź

q“1
q‰p

snpnq xnq ,j , (3.36)

where we identified

|αry “ |m1 . . . . . . mr´1yk´1 , |βpy “ |n1 . . . np´1np`1 . . . nryk , (3.37)

with k “ M . Given the block decomposition of Λj , we seek to write the MPS of the CBA (3.25)
as a quantum circuit. In other words, we want to compute unitaries out of the non-unitary
tensors p3.23q, which themselves decompose into unitary blocks of definite total spin along the
z-axis. We achieve this goal by a local gauge transformation that puts (3.25) into the canonical
form. The canonical form is a standard representation of an MPS where the tensor is subject to
orthonormalization constraints [22]. The tensor thus obtained is unique up to unitary rotations
in the auxiliary space. Here we use specifically the left canonical form of the MPS (3.25), defined
as that whose tensors Λi

j are isometries with more rows than columns.
The set of matrices Xj realize the local gauge transformation on the auxiliary space we want.

The M ` 1-qubit unitary is built as

Pj “ X´1
j`1ΛjXj . (3.38)

We depict (3.38) in Figure 14. Unitarity holds if

P :
j Pj “ 12M`1 . (3.39)
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We assume Xj preserve the total spin along the z-axis,

Xj “

M`1
à

r“0
X

rrs

j , (3.40)

hence Pj decomposes into unitary blocks according to r.

Figure 14: M ` 1-qubit unitaries (sharp-cornered) from the non-unitary tensor (rounded-
cornered) by a gauge transformation as per (3.38). Locating ancillae and spins in a single array
is necessary to obtain ABCs, whose unitaries follow from the elimination of post-selected qubits.

The local gauge transformation (3.38) leads us to a quantum circuit. However, the quantum
algorithm thus obtained is probabilistic. The last M out of the N ` M qubits must be post-
selected at |0y

bM . To avoid the computational cost of post-selection, we trace these qubits out.
The result is the circuit of ABCs, a class of deterministic quantum algorithms. We still denote
the unitaries by Pj , despite that the elimination of post-selected qubits reduces the size of the
last unitaries in the circuit. ABCs produce normalized Bethe states of M magnons over N spins:

|ΦrMs

N y “
1

xΨrMs

N |ΨrMs

N y
|ΨrMs

N y “ PN´1 . . . P2P1 |1y
bM |0y

bN´M . (3.41)

We depict the circuit in Figure 15.

Figure 15: ABCs are deterministic algorithms preparing normalized Bethe states of the inhomo-
geneous XXZ model. The unitaries are either long or short.

The number of qubits on which the unitaries act defines two classes: long (1 ď j ď N ´ M)
and short (N ´ M ă j ď N) unitaries. The unitaries of both classes are the orthogonal sum of
unitary blocks, which in turn split into non-unitary building blocks. Long unitaries are

Pj “

M`1
à

r“0
P

rrs

j , P
ri,rs

j “ xi|j P
rrs

j |0yj`M , 1 ď j ď N ´ M ; (3.42)
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whereas short unitaries are

Pj “

N´j`1
à

r“0
P

rrs

j , P
ri,rs

j “ xi|j P
rrs

j , N ´ M ă j ď N ´ 1 . (3.43)

We summarize the properties of long and short unitaries in Table 1.

P
ri,rs

j position domain image # rows ˆ # columns formulae
long 1 ď j ď N ´ M Hrrs

M Hrr´is
M

`

M
r´i

˘

ˆ
`

M
r

˘

(3.44)
short N ´ M ă j ď N ´ 1 Hrrs

N´j`1 Hrr´is
N´j

`

N´j
r´i

˘

ˆ
`

N´j`1
r

˘

(3.71)
-

Table 1: Features of the non-unitary building blocks P
ri,rs

j of the unitaries of ABCs.

Let us now write the exact form of the non-unitary building blocks of ABCs. The realization
of Bethe states as the MPS of the CBA (3.25), which provides the means to construct Bethe
states with 0 ď r ď M magnons, enables us to compute explicit expressions. We begin with long
unitaries in Sub-subsection 3.3.1, which are simpler. In Sub-subsection 3.3.2, we focus on short
unitaries, where we show how to eliminate the qubits post-selected at |0ybM by defining a new
short tensor in the MPS. Our approach to short unitaries detaches from that of [20]. We prove
the equivalence between both points of view in Appendix C.

3.3.1 Long Unitaries

Formula (3.38) implies the non-unitary building blocks of long unitaries are

P
ri,rs

j “ X
´1rr´is
j`1 Λri,rs

j X
rrs

j , (3.44)

because they are unaffected by the elimination of ancillae. The matrix elements of Λj are (3.34)
and (3.36) we already introduced. To write the formulae of Xj and X´1

j , we need Bethe states
with r magnons over k spins. We choose that the states have support in the last spins of the
spin chain in view of the architecture of ABCs. The choice means Bethe states belong to

Hk “

N
à

ℓ“jk

hℓ , (3.45)

where
jk :“ N ´ k ` 1 . (3.46)

According to (3.25), the Bethe state with quasi-momenta pma,ℓ out of p1,ℓ, . . . , pM,ℓ is

|Ψrrs

k,αy “
ÿ

iℓ“0,1
x0|bM ΛiN

N . . . Λijk
jk

|m1 . . . mryM |ijk
. . . iN yk (3.47)

“
ÿ

jkďn1ă...ănrďN

r
ÿ

a1,...,ar“1
ap‰aq

«

ź

1ďqăpďr

smaq map

ff «

r
ź

p“1

np´1
ź

ℓ“jk

xmap ,ℓ

ff

|n1 . . . nryk .

Since we focus on long unitaries, 1 ď jk ď N ´ M , hence M ` 1 ď k ď N . The number of
magnons r is always smaller than the number of spins k over which they propagate.

20



Bethe states are in one-to-one correspondence with the computational basis of Hrrs

k . This fact
permits us to understand the MPS of the CBA as the invertible mapping

MPSjk
: Hrrs

M ÞÑ Hrrs

k

|m1 . . . mryM ÞÑ |Ψrrs

k,αy
. (3.48)

Since Bethe states are linearly independent thanks to the assumption ua ‰ ub, they span a linear
basis of the Hilbert space of the last k ą M spins. On the other hand, the last k ´ 1 unitaries of
ABCs prepare

|Φrrs

k,αy “ PN´1 . . . Pjk
|m1 . . . mryM . (3.49)

The set |Φrrs

k,αy is an orthonormal basis of Hrrs

k because unitary transformations preserve both
the orthonormality and the completeness of |m1m2 . . . mryM . Therefore, we can think about the
quantum sub-circuit of last k ´ 1 unitaries as the unitary mapping

ABCsjk
: Hrrs

M ÞÑ Hrrs

k

|m1m2 . . . mryM ÞÑ |Φrrs

k,αy
. (3.50)

It follows that the matrix Xj performs a change of basis:

|Φrrs

k,αy “

`

k
r

˘

ÿ

β“1
X

rrs

jk,βα|Ψrrs

k,βy . (3.51)

We depict this formula in Figure 16.

Figure 16: The local gauge transformation Xjk
as the change-of-basis matrix that orthonormalizes

the set Bethe states with r magnons over k spins.

We choose the change-of-basis matrix in (3.51) to correspond to the standard Gram-Schmidt
process, although it is important to notice that Xj is only determined up to unitary rotations.
If we use the Gram matrix of Bethe states

C
rrs

k,αβ “ xΨrrs

k,α|Ψrrs

k,βy , (3.52)
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the closed formulae of the matrix elements of Xj are [20]

X
rrs

jk,αα “

g

f

f

e

detα´1 C
rrs

k

detα C
rrs

k

,

X
rrs

jk,αβ “ 0 if α ą β ,

X
rrs

jk,αβ “ ´
detβ´1 C

rrs

k,αÑβ
b

detβ´1 C
rrs

k detβ C
rrs

k

if α ă β ,

(3.53)

where detα denotes the corner principal α ˆ α minor and αÑβ denotes the replacement of the
α-th by the β-th column. The matrix Xj is upper-triangular. Therefore, X´1

j is upper-triangular
as well, and the matrix elements read [20]

X
´1rrs

jk,αβ “
detα C

rrs

k,αÑβ
b

detα´1 C
rrs

k detα C
rrs

k

. (3.54)

This matrix provides us with the Cholesky factorization of the Gram matrix (3.52) by construc-
tion:

C
rrs

k “ X
´1rrs:

jk
X

´1rrs

jk
. (3.55)

Table 2 summarizes the features of the matrices in (3.44). The reason for using (3.52) to compute
closed fomulae is that we know the entries exactly, thanks to the knowledge of the Bethe states
(3.47). However, this knowledge does not mean can evaluate scalar products efficiently in general;
rather, the limitation must be taken into account in the numerical computation of the unitaries.

1 ď j ď N ´ M domain image # rows ˆ # columns formulae
Λri,rs

j Hrrs

M Hrr´is
M

`

M
r´i

˘

ˆ
`

M
r

˘

(3.34)–(3.36)
X

rrs

j Hrrs

M Hrrs

M

`

M
r

˘

ˆ
`

M
r

˘

(3.53)
X

´1rr´is
j`1 Hrr´is

M Hrr´is
M

`

M
r´i

˘

ˆ
`

M
r

˘

(3.54)

Table 2: Features the constituents of long unitaries.

It remains to demonstrate unitarity of long unitaries (3.39). In the definition of Λj in (3.23),
we left Λj |1yj unspecified because it did not appear in the MPS. This freedom allows us to
determine Pj |1yj at will, which we choose at our best convenience to ensure unitarity. On the
other hand, we are left to prove that

x0|j P :
jk

Pjk
|0yj “ 12M , (3.56)

which is equivalent to

C
rrs

k “ Λr0,rs:

jk
C

rrs

k´1Λr0,rs

jk
` Λr1,rs:

jk
C

rr´1s

k´1 Λr1,rs

jk
, (3.57)

thanks to the Cholesky factorization (3.55). We offer the proof of (3.57) in Appendix D.
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3.3.2 Short Unitaries

Our starting point for the construction of short unitaries is the following observation. The
matrices Xjk

of long unitaries orthonormalize the set of linearly independent Bethe states with
1 ď r ď M magnons over the last M ă k ď N spins. The construction of Xjk

of long gates
relies on that the mappings defined by the MPS (3.48) and by the quantum sub-circuit (3.50)
are invertible and unitary, respectively. If short unitaries borrowed the mapping defined by the
MPS (3.48), it would be non-invertible 7. Bethe states with 1 ď r ď k magnons over the last
1 ď k ă M spins are not all linearly independent, since they carry every possible subset of
r quasi-momenta of p1,j , . . . , pM,j . Furthermore, Bethe states are ill-defined if the number of
magnons is greater than the number of spins, that is if k ă r ď M .

Our strategy to construct the short unitaries consists of two steps. First, we replace the first
M ` 1 tensors Λj of the MPS (3.25) by the smaller non-unitary tensors

Ωjk
“ Ωjk

pvjk
; u1, . . . , ukq P EndpHk`1q . (3.58)

The tensor Ωjk
just acts on k ` 1 qubits, unlike Λjk

. By definition, the MPS of (3.58) must
only construct the maximal number of linearly independent Bethe states over k spins out of the
computational basis. The number of magnons r of Bethe states is bounded from above by k.
Next, we define the short unitaries by the local gauge transformation

Pjk
“ X´1

jk`1Ωjk
Xjk

, N ´ M ă jk ď N ´ 1 , (3.59)

whose matrices follow from the orthonormalization of the set of Bethe states. We depict (3.59)
in Figure 17. The new set of matrices are unitary if

P :
jk

Pjk
“ 12k . (3.60)

We stress the strategy differs from that of [20], which is based on an Ansatz. Our approach is
advantageous in that it enables us to demonstrate the construction of short unitaries rigorously.

Figure 17: Definition of the last k ` 1-qubit unitaries out of new non-unitary tensor of the MPS
of the CBA by a local gauge transformation. The size of the unitaries is dictated by the number
of linearly independent Bethe states over k spins.

The tensor (3.58) breaks into blocks of definite total spin along the z-axis by assumption,
which in turn split into non-unitary matrices:

Ωjk
“

k
à

r“0
Ωrrs

jk
, Ωri,rs

jk
“ xi|k Ωrrs

jk
, (3.61)

7The MPS of the last N ´ M ` 1 tensors Λj does not suffer from the same problem as it prepares states over M
spins. However, we deem PN´M`1 to be a short unitary since it acts on M qubits after the elimination of ancillae.
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where we recall xi|k belongs to hk in (2.1). The number of rows and columns of the non-unitary
matrices is

# rows ˆ # columns of Ωri,rs

jk
“

ˆ

k ´ 1
r ´ i

˙

ˆ

ˆ

k

r

˙

. (3.62)

The defining property of the new tensor is that the mapping

MPSjk
: Hrrs

k ÞÑ Hrrs

k

|m1 . . . mryk ÞÑ |Ψrrs

k,αy “ ΩN . . . Ωjk
|m1 . . . mryk

(3.63)

is invertible. We stress the MPS based on Ωj also corresponds to the CBA. Bethe states thus
computed carry r quasi-momenta pm1,ℓ . . . , pmr,ℓ, chosen among p1,ℓ, . . . , pk,ℓ. We depict the
equivalence between the MPS of Ωj and Λj in Figure 18.

Figure 18: Equivalence between the MPS of the CBA of the M ` 1-tensor (3.23) and the k ` 1-
tensor (3.58). Despite the difference in the number of input qubits, the equivalence holds due to
the linear dependence of Bethe states over k ă M spins.

Let us determine the non-unitary tensor. We begin with jk “ N , that is k “ 1. Bethe states
on the last spin are just the elements of the computational basis:

|Ψr0s

1,1y “ |0y , |Ψr1s

1,1y “ |1y . (3.64)

Therefore,
Ωr0s

N |0y “ |0y , Ωr1s

N |1y “ |1y . (3.65)

We deduce the last tensor is the identity matrix:

ΩN “

«

Ωr0,0s

N 0
0 Ωr1,1s

N

ff

“

«

1 0
0 1

ff

. (3.66)

Since the last tensor is trivial, the N -th unitary is trivial as well, hence its absence in ABCs.
Let jk “ N ´ 1, which implies k “ 2. According to (3.63), we must have

Ωr0s

N´1|00y “ |00y ,

Ωr1s

N´1|10y “ |10y ` x1,N´1|01y ,

Ωr1s

N´1|01y “ |10y ` x2,N´1|01y ,

Ωr2s

N´1|11y “ ps12x2,N´1 ´ s21x1,N´1q|11y .

(3.67)
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Therefore,

ΩN´1 “

»

—

—

—

—

–

Ωr0,0s

N´1 0 0 0
0 Ωr0,1s

N´1,1 Ωr0,1s

N´1,2 0
0 Ωr1,1s

N´1,1 Ωr1,1s

N´1,2 0
0 0 0 Ωr1,1s

N´1

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

1 0 0 0
0 x2,N´1 x1,N´1 0
0 1 1 0
0 0 0 s12x2,N´1´s21x1,N´1

fi

ffi

ffi

ffi

ffi

fl

. (3.68)

The first non-trivial tensor allows us to compute the remainder.
The computation of the tensor for N ´ M ă j ă N ´ 1 is inductive. We detail the derivation

in Appendix C. The result is

Ωri,rs

jk,αβ “
det B

rr´is
k´1,αÑβ

det Bris
, (3.69)

where we used the indexation of Appendix B, and

B
rrs

k,λµ “ kxλ|Ψrrs

k,µy ;
`

B
rr´is
k,αÑβ

˘

λµ
“

$

’

’

’

&

’

’

’

%

kxλ|Ψrr´is
k,µ y if µ ‰ α

k`1xλ|Ψrrs

k`1,βy if i “ 0 , µ “ α

k`1xλ `
`

k
r

˘

|Ψrrs

k`1,βy if i “ 1 , µ “ α

. (3.70)

The matrix Bris performs change of basis from the computational basis to the set of Bethe states
in Hrr´is

k´1 . The matrix B
ris
βÑα is the result of the replacement of the β-th column by the relevant

entries of the Bethe state that the MPS (3.63) prepares.
The formula of the non-unitary building blocks of short unitaries is

P
ri,rs

j “ X
´1rr´is
j`1 Ωri,rs

j X
rrs

j . (3.71)

The quantum sub-circuit of the last k ´ 1 short unitaries maps the computational basis to an
orthonormal basis of Hrrs

k :

ABCsjk
: Hrrs

k ÞÑ Hrrs

k

|m1 . . . mryk ÞÑ |Φrrs

k,αy “ PN´1 . . . Pjk
|m1 . . . mryk

. (3.72)

The matrix Xjk
orthonormalizes Bethe states, as we already mentioned. We choose the matrix

to be defined by the Gram-Schmidt process again. The entries of the matrix are (3.53) with
a suitable adjustment in the ranges of indices. The inverse matrix X´1

jk
provides the Cholesky

factorization of the Gram matrix (3.52), and the entries of the inverse matrix are (3.54) with the
adaptation of the ranges of indices. Table 3 summarizes the features of the matrices in (3.71).

N ´ M ă jk ď N ´ 1 domain image # rows ˆ # columns formulae
Ωri,rs

jk
Hrrs

k Hrr´is
k´1

`

k
r´i

˘

ˆ
`

k
r

˘

(3.69)–(3.70)
X

rrs

jk
Hrrs

k Hrrs

k

`

k
r

˘

ˆ
`

k
r

˘

(3.53)
X

rr´is´1
jk`1 Hrr´is

k´1 Hrr´is
k´1

`

k´1
r´i

˘

ˆ
`

k´1
r´i

˘

(3.54)

Table 3: Features of the constituents of short unitaries.

The last step of the construction of short unitaries is the proof of (3.60). According to (3.71)
and the Cholesky factorization (3.55), unitarity is equivalent to

C
rrs

k “ Ωr0,rs:

jk
C

rrs

k´1Ωr0,rs

jk
` Ωr1,rs:

jk
C

rr´1s

k´1 Ωr1,rs

jk
. (3.73)

We provide the demonstration of (3.73) in Appendix D.
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4 Conclusions

In this work, we systematized the ABCs of [19, 20], a recent proposal of quantum circuits that
prepare arbitrary Bethe states of the standard spin-1{2 XXZ model with periodic boundaries.
We demonstrated that the exact unitaries from [20] can alternatively be obtained by performing
a basis transformation in the auxiliary space of the ABA. The resulting basis is equivalent to the
F-basis, known from the theory of quantum-integrable models.

The key property of the F-basis is that it is symmetric with respect to the exchange of qubits.
When applied in the auxiliary space of the ABA, the resulting MPS is invariant with respect to
the exchange of the ancillae. A key property of the F-basis is its symmetry with respect to qubit
exchange. When applied within the auxiliary space of the ABA, the resulting MPS becomes
invariant under the exchange of ancillae. The explicit wave functions of this MPS are scattering
plane waves, thus establishing a natural connection to the CBA. As a by-product, the same MPS
generates Bethe states with an arbitrary number of magnons simply by changing the initialization
in the auxiliary space. While it is relatively straightforward to prove this, we observed that it
had not yet been discussed in the F-basis literature. Furthermore, the symmetry of the F-basis
clarified how to rigorously eliminate the auxiliary space in the final circuits, so that the ABCs
have no ancillae. We showcased our approach with new circuits for preparing the exact Bethe
states of the inhomogeneous spin-1{2 XXZ model with periodic boundaries. We believe that the
symmetry in qubit exchange in the auxiliary space holds potential for constructing circuits for
other quantum-integrable models and could, hopefully, aid in identifying efficient decompositions.
Our results open up promising avenues for future research, some of which we briefly discuss below.

First, our ABCs could be applied to models closely related to the inhomogeneous spin-1{2
XXZ model. A straightforward idea is to consider the staggered spin chain [52]. This model can be
obtained by choosing alternating inhomogeneities v2j´1 “ ´ iv and v2j “ iv. The Hamiltonian is
composed of two- and three-body densities and, much like the homogeneous spin chain, exhibits
a rich phase diagram. Moreover, this model holds relevance from another perspective: the
alternating spin chain is employed in the “integrable Trotterization” of the XXZ model [53].
This implies that our circuits can construct the exact eigenstates of selected integrable quantum
circuits, which are utilized for simulating non-equilibrium dynamics in discrete time. A relatively
straightforward generalization of our circuits involves the preparation of Bethe states in the spin-s
XXZ models [4,6], which possess an F-basis in both the quantum and auxiliary spaces [26]. The
primary distinction in these models lies in the fact that spins are spin-s qudits, while the ancillae
remain qubits, which would affect the elimination of the auxiliary space in the final circuits.

Another spin system that is worth considering is the Richardson-Gaudin (RG) model [3,54],
which realizes doubly degenerate fermions with pair-wise interaction and is quantum integrable
[55]. The eigenstates of the RG model are Banerjee-Cooper-Schrieffer states computable by the
ABA [56,57]. The isotropic and anisotropic RG models are related to the “quasi-classical” limits
of the transfer matrices of the inhomogeneous XXX [56,58] and XXZ models [57,58], respectively;
therefore, we expect a similar limit to be applicable to the unitaries of ABCs. The RG model
requires to deform the periodic boundary conditions by a diagonal twist, which adds a new layer
of complexity to the method without precluding its applicability [59].

A more challenging task is the construction of quantum circuits for other spin chains which
can be solved by the Bethe Ansatz. One potential candidate is the solid-on-solid model equivalent
to the inhomogeneous spin-1{2 XYZ model [60], which provides the means to construct Bethe
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states of this completely anisotropic spin chain [61]. This ice-type model has an F-basis [32],
but it is linked to the dynamical YBE [62] rather than the standard YBE (2.9), thus posing a
new challenge to ABCs. Even more complex are higher-rank spin chains. While these models
do have an F-basis [29–31], it remains uncertain whether it would be beneficial for constructing
nested Bethe states. An F-basis in the auxiliary space would be necessary, but achieving such a
generalization is not clearly defined. Ultimately, the aim is to construct the nested Bethe states,
with the nesting occurring in the auxiliary space. Perhaps the more recent methods discussed
in [63,64] for the ABA in these models could prove advantageous.
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R.R. is grateful to Juan Miguel Nieto Garćıa for useful discussions. The work of E.L., R.R.,
G.S., and A.S. has been financially supported by the Spanish Agencia Estatal de Investigación
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stimulating environment while this work was being completed.

A The Matrix-Product State of the Coordinate Bethe Ansatz

In this appendix, we provide the proofs of claims about the MPS of the CBA we made in the
main text. In Subsection A.1, we show the equivalence between the MPS of the CBA of the
homogeneous spin chain (3.10) and the MPS of [20]. In Subsection A.2, we demonstrate the
equality between both realizations of Bethe states of the inhomogeneous spin chain (3.25): the
MPS and the superposition of plane waves. In Subsection A.3, we prove the equivalence between
(3.25) and the Bethe wave functions of [49].

A.1 Equivalent Matrix-Product States

The Bethe state of [20] equals an MPS of the CBA whose tensor appears in (54)–(57) therein.
The MPS of [20] follows from (3.10) under the replacement of the scattering amplitudes

sab ÞÑ
1

1 ` xaxb ´ 2∆xa
“

sinhpua ` iγq sinhpub ` iγq

sinhpiγq sinhpua ´ ub ` iγq
, (A.1)
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and the change of normalization

|ΨrMs

N y ÞÑ

«

ź

1ďbăaďM

1
sbasab

ff

|ΨrMs

N y . (A.2)

Bethe states in [20] are also explicitly proportional to (3.10). The change of the normalization is

|ΨrMs

N y ÞÑ

«

ź

1ďbăaďM

sinhpiγq sinhpua ´ ub ` iγq sinhpub ´ ua ` iγq

sinhpua ` iγq sinhpub ` iγq sinhpua ´ ubq

ff

|ΨrMs

N y . (A.3)

A.2 Inhomogeneous Coordinate Bethe Ansatz

Let us prove the equality between the first and second lines of (3.25). We follow the analogous
proof of Appendix B of [20]. We begin with N “ 1. Formula (3.22) lead us to

ÿ

i“0,1
Λi

1 |1ybM |iy “

«

M
ź

a“1
xa,1

ff

|1ybM |0y `

M
ÿ

a“1

«

M
ź

b“1
b‰a

sab xb,1

ff

σ´
a |1ybM |1y , (A.4)

where we borrowed the notation from (3.13) and (3.26). The rightmost state in (A.4) corresponds
to the first spin and belongs to the quantum space. The tensor Λ1 either preserves the ancillae
at |1y and the spin at |0y or flips the state of one single ancilla at a time in exchange for flipping
the state of the spin. The fact follows from the commutativity of Λ1 with the total spin along
the z-axis, which encompasses both the M ancillae and the spin.

If N “ 2, we obtain

ÿ

ij“0,1
Λi2

2 Λi1
1 |1ybM |i1i2y “

«

M
ź

a“1
xa,1 xa,2

ff

|1ybM |00y `

M
ÿ

a“1

«

M
ź

b“1
b‰a

sab xb,1 xb,2

ff

σ´
a |1ybM |10y

`

M
ÿ

a“1

«

xa,1

M
ź

b“1
b‰a

sab xb,1 xb,2

ff

σ´
a |1ybM |01y `

M
ÿ

a“1

M
ÿ

c“1
c‰a

«

M
ź

b“1
b‰a

sab xb,1

M
ź

c“1
d‰a,c

scd xd,2

ff

σ´
c σ´

a |1ybM |11y .

(A.5)

The pattern is now clear. If the tensor keeps the j-th spin at |0y, it yields the product of the
quasi-momentum variables xa,j of the ancillae that remain at |1y. If the tensor flips the state of
the j-th spin into |1y, the state of one ancilla becomes |0y. Let the ancilla be at a-th position.
The tensor yields the product of scattering amplitudes sab and quasi-momentum variables xb,j

with the ancillae at |1y. The eventual projection onto x0|bM in the auxiliary space forces M out
N spins to be at |1y. The projection and the pattern just explained lead to (3.25).

A.3 Equivalence with Ovchinnikov’s Bethe states

We now demonstrate the equivalence between (3.25) and the Bethe states of [49]. We must
perform the non-local gauge transformation of the tensor (3.23):

Λi
j ÞÑ W ´1

j Λi
jWj´1 , (A.6)

where

Wj “

M
â

a“1

»

–

”

śj´1
k“1 xa,k

ı

śM
b“1,b‰a sabsba 0

0
”

śN
k“j`2 xa,k

ı

gaj`1

fi

fl , (A.7)
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and we borrowed the notation from (3.13) and (3.26). Non-locality refers to the dependence
of the j-th matrix Wj on the quasi-momenta pa,j on every position of the spin. (The product
by definition equals one if the upper endpoint is smaller than the lower or vice versa.) If we
normalize

|ΨrMs

N y ÞÑ

»

—

–

M
ź

a“1

fa1
ga1faN

M
ź

b“1
b‰a

sabsba

fi

ffi

fl

|ΨrMs

N y , (A.8)

to cancel the multiplicative factor induced the non-local gauge transformation and follow the
steps of Subsection A.2, we obtain

|ΨrMs

N y “
ÿ

1ďn1ă...ănM ďN

M
ÿ

a1,...,aM “1
ap‰aq

«

ź

1ďqăpďM

1
sapaq

ff

»

–

M
ź

p“1
gap,np

N
ź

j“np`1
xap,j

fi

fl|n1 . . . nM yN . (A.9)

Formula (A.9) matches the Bethe states in (13) and (14) of [49].

B Indices of Algebraic Bethe Circuits

In this appendix, we define the collective indices for the ordered strings of integers that labels
the computational basis of Hrrs

k . The labelling of Subsection 3.1 of [20] is the opposite to ours.
Let 1 ď m1 ă . . . ă mr ď k be the string that labels the state of the computational basis

|i1 . . . iky “ |m1 . . . mryk of Hrrs

k . We define the collective index following three steps. First, we
rephrase the string in the binary basis as a number in the decimal basis:

χ :“
k

ÿ

j“1
2k´jij “

k
ÿ

j“1
2k´j

r
ÿ

p“1
δj

mp
. (B.1)

Note the most significant bit in the string is the first, then the second, and so on. Next, we
arrange the numbers in the totally ordered set

S “

˜#

χ “

k
ÿ

j“1
2k´j

r
ÿ

p“1
δj

mp
: 1 ď m1 ă . . . ă mr ď k

+

, ă

¸

, (B.2)

where the order relation ă is the standard inequality among integer. Finally, we assign α to the
α-th element of S:

|αyk “ |Sαyk , α “ 1, . . . ,

ˆ

k

r

˙

. (B.3)

We illustrate the assignation of collective indices in Table 4.

i1 i2 i3 i4 m1 m2 χ α

0 0 1 1 3 4 3 1
0 1 0 1 2 4 5 2
0 1 1 0 2 3 6 3
1 0 0 1 1 4 9 4
1 0 1 0 1 3 10 5
1 1 0 0 1 2 12 6

Table 4: Example of assignation of collective indices for the computational basis.

29



C The Short Tensor

This appendix is devoted to demonstrations around the non-unitary tensor of short unitaries Ωj

in (3.58). In Subsection C.1, we derive the formula (3.69) for the entries. In Subsection C.2, we
prove the equivalence with the Ansatz of [20].

C.1 Closed Formulae

We derive (3.69) by induction. The base of the induction is (3.68), for which j “ N ´ 1. Formula
(3.69) straightforwardly holds for (3.68). We must prove the inductive step for N´M ă j ă N´1.
It follows from (3.63) that

|Ψrrs

k,αy “ ΩN´1 . . . Ωjk´1Ωjk
|m1 . . . mryk (C.1)

“
ÿ

i“0,1

ÿ

1ďn1ă...ănr´iďk´1
|iy

»

–ΩN´1 . . . Ωjk´1 |n1 . . . nr´iy k´1

fi

fl

k´1 xn1 . . . nr´i| Ωri,rs

jk
|m1 . . . mry k

“ |0y

`

k´1
r

˘

ÿ

β“1
|Ψrrs

k´1,βy Ωr0,rs

jk,βα ` |1y

`

k´1
r´1

˘

ÿ

β“1
|Ψrr´1s

k´1,βy Ωr1,rs

jk,βα .

Since Bethe states with different number of magnons are linearly independent, two decoupled
linear systems for the entries of the tensor (3.58) arise:

`

k´1
r

˘

ÿ

β“1
k´1xλ|Ψrrs

k´1,βy Ωr0,rs

jk,βα “ kxλ|Ψrrs

k,αy , λ “ 1, . . . ,

ˆ

k ´ 1
r

˙

,

`

k´1
r´1

˘

ÿ

β“1
k´1xλ|Ψrr´1s

k´1,βy Ωr1,rs

jk,βα “ kxλ `
`

k´1
r

˘

|Ψrrs

k,αy , λ “ 1, . . . ,

ˆ

k ´ 1
r ´ 1

˙

,

(C.2)

where we took into account the indexation of the computational basis of Appendix B. The
Cramer’s rule provides the solution for both linear systems (C.2) in terms of the change-of-basis
matrices between the computational basis and Bethe states (3.70). The result is (3.69).

C.2 Equality with Other Short Tensors

Reference [20] used another tensor to build short unitaries. Let us demonstrate both tensors are
equal. The spin chain of [20] is homogeneous, hence we set vj “ 0. According to (54)–(57) and
(86) of [20], we must prove

Ωri,rs

jk,αβ “

`

k
r´i

˘

ÿ

λ“1
L

rr´is
jk´1,αλ Λri,rs

jk,λβ , α “ 1, . . . ,

ˆ

k ´ 1
r ´ i

˙

, β “ 1, . . . ,

ˆ

k

r

˙

, (C.3)

where we used the indexation of Appendix B. The entries in left-hand side are (3.69). The
right-hand side involves

L
rr´is
jk´1,αβ “

det C
rr´is
k´1,αÑβ

det C
rr´is
k´1

. (C.4)
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The definition of the tensor Λi
jk

is (3.34) and (3.36) under the adaptation of the ranges of the
indices. The MPS of Λi

jk
thus defined prepares Bethe states over k spins and r magnons with

quasi-momenta in the set p1, . . . , pk. Note (C.4) is rectangular:

# rows ˆ # columns of L
rr´is
jk´1

“

ˆ

k ´ 1
r ´ i

˙

ˆ

ˆ

k

r ´ i

˙

. (C.5)

The matrix is built from the Gram matrix of Bethe states (3.52). The definition of C
rrs

k,αÑβ

encompasses scalar of products the maximal set of the linearly independent Bethe states in Hrrs

k ,
with r quasi-momenta in p1, . . . , pk, and the linearly dependent Bethe states, with one quasi-
momentum pk`1 and r ´ 1 quasi-momenta in p1, . . . , pk.

The first step of the demonstration of (C.3) is

C
rrs

k,αβ “ xΨrrs

k,α|Ψrrs

k,βy “

`

k
r

˘

ÿ

λ“1
xΨrrs

k,α |λykkxλ| Ψrrs

k,βy . (C.6)

The change-of-basis matrix between the computational basis and Bethe states (3.70) Cholesky-
factorizes the Gram matrix (3.52):

C
rrs

k “ B
rrs:

k B
rrs

k . (C.7)

Therefore,

L
rr´is
jk´1,αβ “

det rB
rr´is
k´1,αÑβ

det B
rr´is
k´1

, (C.8)

where
`

rB
rrs

k,αÑβ

˘

λµ
“

$

&

%

kxλ|Ψrrs

k,µy “ B
rrs

k,λµ if µ ‰ α

kxλ|Ψrrs

k,βy if µ “ α
. (C.9)

The remainder of the proof follows from the recurrence relation among Bethe states.
Let i “ 0. We use the notation (3.35) in addition to

|λyk “ |ℓ1 . . . ℓryk , jk ď ℓ1 ă . . . ă ℓr ď N , (C.10)

following Appendix B. The labelling also holds with k replaced by k ´ 1. We apply (3.34) and
(3.69) to (C.3) and obtain

det B
rrs

k´1,αÑβ “ det rB
rrs

k´1,αÑβ

«

r
ź

p“1
xnp

ff

. (C.11)

Formula (3.47) with vj “ 0 implies

kxλ|Ψrrs

k,βy “

r
ÿ

a1,...,aM “1
ap‰aq

«

ź

1ďqăpďM

snaq nap

ff «

M
ź

p“1
xℓp´N`k

nap

ff

“

«

r
ź

p“1
xnp

ff

k´1xλ|Ψrrs

k´1,βy . (C.12)

We took into account that

N ´ k ` 1 ă ℓ1 ă . . . ă ℓr ď N if λ “ 1, . . . ,

ˆ

k ´ 1
r

˙

. (C.13)
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Formula (C.11) then follows from then multi-linearity of determinants.
Let i “ 1. We use the notation (3.37) and

|λ1yk´1 “ |ℓ2 . . . ℓryk´1 , jk´1 ď ℓ2 ă . . . ă ℓr ď N . (C.14)

We apply (3.34) and (3.69) to (C.3) and obtain

det B
rrs

k´1,αÑβ “

r
ÿ

p“1

«

r
ź

q“1
q‰p

snpnq xnq

ff

det rB
rrs

k´1,αÑβp
. (C.15)

We deduce from (3.47) with vj “ 0 that

kxλ|Ψrrs

k,βy “

r
ÿ

p“1

«

r
ź

q“1
q‰p

snpnq xnq

ff

k´1xλ|Ψrrs

k´1,βp
y , (C.16)

where we used

N ´ k ` 1 “ ℓ1 ă ℓ2 ă . . . ă ℓr ď N if λ “

ˆ

k ´ 1
r

˙

` 1, . . . ,

ˆ

k

r

˙

. (C.17)

Multi-linearity of determinants implies (C.11). The proof of (C.3) is complete.

D Unitarity of Algebraic Bethe Circuits

This appendix is devoted to the demonstration of unitarity of ABCs. In Subsection D.1, we
demonstrate (3.57), which implies the unitarity of long unitaries. In Subsection D.2, we demon-
strate (3.73), which implies the unitarity of short unitaries.

D.1 Proof of Unitarity of Long Unitaries

The proof of (3.57) amounts to a direct computation. The entries of (3.57) are

C
rrs

k,αβ “

«

r
ź

q“1
x̄mp,jk

xnq ,jk

ff

C
rrs

k´1,αβ `

r
ÿ

p,q“1

«

r
ź

x“1
x‰p

s̄mxmp x̄mx,jk

ff«

r
ź

y“1
y‰q

snynq xny ,jk

ff

C
rr´1s

k´1,αpβq
, (D.1)

where we labelled Gram matrices by (3.35) and (3.37). Formula (D.1) is the consequence of

C
rrs

k,αβ “
ÿ

jkďℓ1ă...ăℓrďN

r
ÿ

a1,...,ar“1
ap‰aq

r
ÿ

b1,...,br“1
bp‰bq

«

ź

1ďqăpďr

s̄mpmq snpnq

ff «

r
ź

p“1

ℓp´1
ź

h“jk

x̄mp,hxnp,h

ff

“
ÿ

jk´1ďℓ1ă...ăℓrďN

r
ÿ

a1,...,ar“1
ap‰aq

r
ÿ

b1,...,br“1
bp‰bq

«

ź

1ďqăpďr

s̄mpmq snpnq

ff

»

–

r
ź

p“1

ℓp´1
ź

h“jk´1

x̄mp,hxnp,h

fi

fl

ˆ

«

r
ź

q“1
x̄mp,jk

xnq ,jk

ff

(D.2)
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`

r
ÿ

a1,b1“1

ÿ

jk´1ďℓ2ă...ăℓrďN

r
ÿ

a1,...,ar“1
ap‰aq

ap‰a1

r
ÿ

b1,...,br“1
bp‰bq

bp‰b1

«

ź

2ďqăpďr

s̄mpmq snpnq

ff «

r
ź

p“1

ℓp´1
ź

h“jk

x̄mp,hxnp,h

ff

ˆ

«

r
ź

p“2
s̄map ma1

x̄map ,jk

ff«

r
ź

q“2
snaq na1

xnaq ,jk

ff

.

D.2 Proof of Unitarity of Short Unitaries

To proof (3.73), we write the matrix elements

C
rrs

k,αβ “
ÿ

i“0,1

Di
ÿ

λ,µ,ν“1

det B
rr´is:
k´1,αÑλ

det B
rr´is:
k´1

B̄
rr´is
k´1,µλB

rr´is
k´1,µν

det B
rr´1s

k´1,νÑβ

det B
rr´is
k´1

(D.3)

where we introduced to alleviate notation

D0 “

ˆ

k ´ 1
r

˙

, D1 “

ˆ

k ´ 1
r ´ 1

˙

, (D.4)

and we Cholesky-factorized the Gram matrix (3.52) according to (C.7). Since

D0
ÿ

ν“1
B

rrs

k´1,µν

det B
rrs

k´1,νÑβ

det B
rrs

k´1

“
1

det B
rrs

k´1

∣∣∣∣∣∣∣∣∣∣∣

k´1x1|Ψrrs

k´1,1y . . . k´1x1|Ψrrs

k´1,D0
y kx1|Ψrrs

k,βy

. . . . . . . . . . . .

k´1xD0|Ψrrs

k´1,1y . . . k´1xD0|Ψrrs

k´1,D0
y kxD0|Ψrrs

k,βy

k´1xµ|Ψrrs

k´1,1y . . . k´1xµ|Ψrrs

k´1,D0
y kxµ|Ψrrs

k,βy

∣∣∣∣∣∣∣∣∣∣∣
“kxµ|Ψrrs

k,βy ,

(D.5)

and
D1
ÿ

ν“1
B

rr´1s

k´1,µν

det B
rr´1s

k´1,νÑβ

det B
rr´1s

k´1

“ kxµ ` D0|Ψrrs

k,βy , (D.6)

thanks to the fact the determinant of a matrix with repeated columns vanishes, we have

C
rrs

k,αβ “

«

D0
ÿ

λ“1
`

D0`D1
ÿ

λ“D0`1

ff

xΨrrs

k,α |λykkxλ| Ψrrs

k,βy “ xΨrrs

k,α|Ψrrs

k,βy . (D.7)

The proof of (3.73) is thus complete.
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[24] J.M. Maillet, J. Sanchez de Santos, “Drinfel’d Twists and Algebraic Bethe Ansatz”, Am.
Math. Soc. Trans. Ser. 2 201 (2000) 137 [q-alg/9612012].

[25] S.G. McAteer, M. Wheeler, “Factorizing F -matrices and the XXZ spin-1
2 chain: A

diagrammatic perspective”, Nucl. Phys. B 851 (2011) 346 [1103.4488].

[26] V. Terras, “Drinfel’d Twists and Functional Bethe Ansatz”, Lett. Math. Phys. 48 (1999)
263 [math-ph/9902009].

[27] H. Pfeiffer, “Factorizing twists and the universal R-matrix of the Yangian Y psl2q”, J. Phys.
A 33 (2000) 8929 [math-ph/0006032].

[28] H. Pfeiffer, “Factorizing twists and R-matrices for representations of the quantum affine
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