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Abstract

The paradigmatic Hatano-Nelson (HN) Hamiltonian induces a delocalization-localization
(DL) transition in a one-dimensional (1D) lattice with random disorder, in striking con-
trast to its Hermitian counterpart. The DL transition also persists in the presence of
a quasiperiodic potential separating completely delocalized and localized eigenstates.
In this study, we reveal that coupling two 1D quasiperiodic Hatano-Nelson (QHN) lat-
tices significantly alters the nature of the DL transition and identify two critical points,
Vc1 < Vc2 , when the nearest neighbors of the two 1D QHN lattices are cross-coupled
with strong hopping amplitudes under periodic boundary conditions (PBC). Complete
delocalization occurs below Vc1 and the states are completely localized above Vc2 , while
two mobility edges symmetrically emerge about Re[E] = 0 between Vc1 and Vc2 . Notably,
under specific asymmetric cross-hopping amplitudes, Vc1 approaches zero, resulting in
localized states even for an infinitesimally weak potential. Remarkably, we also find
that the mobility edges precisely divide the delocalized and localized states in equal
proportions. We demonstrate a possible implementation of these findings in a coupled
waveguided array which can be exploited to control and manipulate the light localization
depending upon the hopping amplitude in the two QHN chains.
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1 Introduction15

The concept of localization of the matter waves was laid down by P.W. Anderson in 1958,16

wherein the investigation revealed that in the presence of a sufficiently strong random disorder17

in the 3D lattice, the electronic conductivity ceases, hence becoming an insulator (frequently18

termed as the Anderson localization) [1]. The interesting features of Anderson localization19

has been implemented in many domains of physics, such as superconductors [2–4], photon-20

ics [5–8] and acoustics [9, 10]. However, it was later demonstrated using a scaling law that21

in the lattices of lower dimensions (1D/2D), even an infinitesimally small strength of the ran-22

dom disorder localizes all the electronic wave functions [11]. A few years later, in 1980, S.23

Aubry and G. André demonstrated that in quasiperiodic lattices, a delocalization-localization24

(DL) transition takes place even in lower dimensions [12,13]. In the cosine-modulated Aubry-25

André-Harper (AAH) models, the DL transition occurs at a finite value of the quasiperiodic po-26

tential, governed by the self-duality of the Hamiltonian in the real and momentum spaces [14].27

For closed quantum systems which are described by Hermitian Hamiltonians, there have been28

many works based on the AAH model in the last few years [15–24]. Recently, such quasiperi-29

odic lattices have been realized in the ultracold atomic systems [25–27].30

However, in reality, most of the condensed matter systems are coupled to the environment31

that exchanges either energy, or particles, or both with the surroundings. Such open systems32

are frequently mapped using a non-Hermitian Hamiltonian. Hatano and Nelson in 1996 intro-33

duced one such model which is an extension of the Anderson model with asymmetric hopping34

amplitudes. In his work, originally on the superconductors, it was shown that in the pres-35

ence of such random disorder, the DL transition is manifested in 1D systems. There have been36

many ongoing studies on the localization, spectral properties, self-duality and mobility edges37

in various non-Hermitian systems [17, 28–31]. Besides, such systems with asymmetric hop-38

ping amplitudes have been gaining attention over the years due to the phenomenon of skin39

effect wherein a macroscopic number of bulk states become localized at one of the edges under40

open boundaries [32–35].41

On the other hand, some recent works have been carried out on coupled AAH chains in42

which two disparate chains of atoms are coupled to each other by some interchain hopping43

amplitudes [36, 37]. It was demonstrated that such a coupled Hermitian AAH chain shows44

interesting properties like the existence of mobility edges. However, to the best of our knowl-45

edge, the interplay of the quasiperiodicity and the coupling between the non-Hermitian chains46

of Hatano-Nelson(HN) type have not been investigated so far. Therefore, the aim of this work47

is to investigate a coupled HN bipartite chain in the presence of AAH type potential to closely48

scrutinize the localization behavior in such coupled systems and engineer unique localization49

features owing to the combined effect of the strength of the intra/inter chain coupling and the50

quasiperiodic potential. Intriguingly, we find that the presence of a strong interchain coupling51

between two dissimilar atoms in the two sublattices possessing symmetric and asymmetric in-52

terchain hopping between two atoms of adjacent unit cells render equal proportion of localized53

and delocalized states in the presence of quasiperiodic potential. Moreover, we find that in the54

latter case, half of the states are localized even for a very weak strength of the quasiperiodic55

potential, akin to the study by Anderson on 1D systems. We reveal that the coupling renders56
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Figure 1: Schematic diagram of the coupled QHN model. Atoms A are depicted in
blue and atoms B are depicted in green.The nth unit cell containing the two atoms is
demonstrated by the dashed rectangle. The different interchain hopping amplitudes
are mentioned below and are represented by coloured arrow lines.

distinct properties in the skin effect as compared to the conventional HN systems, wherein57

some of the localized states (in the bulk) under PBC become skin-states under the OBC. Fi-58

nally, we suggest a possible experimental set-up in coupled optical waveguides to exploit the59

uniqueness of the localization of eigenstates at arbitarily small strength in the quasiperiodic60

potential.61

This work is organized as follows: In Sec.2.1, we discuss the coupled QHN Hamiltonian and62

elaborate the method to numerically identify the delocalized and localized phases in Sec. 2.2.63

We analytically determine the strength of the quasiperiodic potential (Vc1 and Vc2) where the64

localization transitions occur in Sec. 3. In Sec. 4, we demonstrate our unique findings in the65

presence of various ratios of the strong interchain coupling between the two QHN chains. We66

propose a feasible experimental set-up in coupled optical waveguides in Sec. 5. Finally, Sec. 667

consists of a summary of the work, highlighting the important results and unique findings.68

2 Model and methods69

2.1 The coupled QHN Hamiltonian70

We consider two uni-directional HN chains with quasiperiodic potential (consisting of two71

sublattices A and B in a single unit cell) coupled to each other via. an interchain hopping,72

which we call a coupled quasiperiodic HN (QHN) Hamiltonian from here on.73

The Hamiltonian in such a coupled system is given by,74

H =HA+HB +HC , (1)

where, HA(HB) is the Hamiltonian for chain 1(2) of atom A(B) and HC introduces the inter-75

chain coupling between chains 1 and 2. The individual terms of the Hamiltonian are described76

as,77

HA(B) =
N−1
∑

n=1

�

tRc†
n+1,A(B)cn,A(B) + tLc†

n,A(B)cn+1,A(B)

�

+
N
∑

n=1

V cos(2πnα)c†
n,A(B)cn,A(B). (2)

Here, c†
n,x(cn,x) are the fermionic creation (annihilation) operators at the site n of sub-78

lattice x = A(B). The first two terms of the Hamiltonian HA(B) define the usual asymmetric79

intrachain hopping of the fermions between the nearest neighbour sites in sublattices A(B) and80
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the second term is the onsite quasiperiodic potential. α is an irrational number approximated81

as Fn−1/Fn, where Fn and Fn−1 are the nth and (n-1)th terms of the Fibonacci series respec-82

tively. Throughout this work, we have considered α to be (
p

5−1)/2 which approximates the83

inverse golden mean ratio. The final part of the Hamiltonian which couples the two distinct84

HN chains via. interchain coupling amplitudes is given as,85

HC =
N
∑

n=1

�

uRc†
n+1,Acn,B + uLc†

n,Bcn+1,A

+wRc†
n+1,Bcn,A+wLc†

n,Acn+1,B

�

. (3)

The interchain coupling uR(uL) is the hopping strength from Bn → An+1(An+1 → Bn),86

whereas wR(wL) is the hopping strength of An → Bn+1(Bn+1 → An). All these terms of the87

inter and intra chain coupling are depicted in a schematic in Fig. 1.88

2.2 Delocalization-localization (DL) transition: the IPR89

The localized and delocalized behaviour of the eigenstates of the system is characterised by90

estimating the value of the Inverse Participation Ratio (IPR). The IPR for a given eigenstate91

(m) is given by [38],92

I PRm =

∑N
n=1

∑

x=A,B |ψ
m

n,x |4

(
∑N

n=1

∑

x=A,B |ψm
n,x |2)2

(4)

where, ψm
n,x is the normalized wave function of eigenstate labelled by m at site n for the93

chain x = A, B. Here, N is the size of the system and the number of total eigenstates is given94

by L = 2N . It is well known that for the delocalized states, the I PR varies as I PR∼ L−1. In the95

thermodynamic limit (N →∞), and therefore I PR ∼ 0. In contrast, for the localized states,96

the I PR is independent of the system size and approaches 1 in the thermodynamic limit. All97

our numerical estimates are for a lattice with 610 sites, unless specifically mentioned.98

3 Analytical understanding of the localization transition99

In the following discussion, we analytically estimate the critical value of quasiperiodic potential100

for the DL transition in the coupled QHN Hamiltonian as defined in Sec. 2.1. The Hamiltonian101

consists of creation and annihilation operators of two sublattices, which can be effectively102

combined into a single equation in terms of a spinor representation [39] given as,103

b =

�

cA
cB

�

(5)

Using Eq. (5), one can immediately obtain,104

H =
N
∑

n=1

�

b†
nT1 bn+1 + b†

n+1T2 bn

�

+
N
∑

n=1

b†
nε(n)bn, (6)

where,105

ε(n) =

�

Vn 0
0 Vn

�

(7)

4



SciPost Physics Submission

Figure 2: The localization behavior in a strongly coupled QHN Hamiltonian with
tL = 0.5, tR = 1.0 in a lattice with N = 610 sites under PBC with interchain
hopping between the two adjacent unit cells. Projection of IPR as a function of
the real part of the eigen-energy and quasiperiodic potential (V ) for (a-d) sym-
metric interchain hopping and (e-h) asymmetric interchain hopping. In both the
panels, the DL transition is shown as a dark blue to green transition. In particu-
lar, the parameters of interchain coupling are: (a) uL = uR = wL = wR = 0.25,
(b) uL = uR = wL = wR = 0.5, (c) uL = uR = wL = wR = 0.75, (d)
uL = uR = wL = wR = 1.0, (e)uL = wL = 0.0 and uR = wR = 1.0,
(f)uL = wL = 0.25 and uR = wR = 1.0, (g)uL = wL = 0.5 and uR = wR = 1.0
(h)uL = wL = 0.75 and uR = wR = 1.0.

and106

T1 =

�

tL wL
uL tL

�

; T2 =

�

tR uR
wR tR

�

. (8)

We introduce the wave function as,107

ψm
n =

�

ψm
n,A

ψm
n,B

�

, (9)

where, ψm
n,x is the normalized wave function of eigenstate labelled by m at site n for the chain108

x = A, B. Substituting Eq. (9) in Eq. (6), we obtain,109

�

Em1− ε(n)
�

ψm
n = T1ψ

m
n+1 + T2ψ

m
n−1 (10)

Eq. (10) can be disintegrated into the following coupled equations:110

�

Em − Vn

�

ψm
n,A = tLψ

m
n+1,A+

tRψ
m
n−1,A+wLψ

m
n+1,B + uRψ

m
n−1,B, (11)

and111

�

Em − Vn

�

ψm
n,B = tLψ

m
n+1,B +

tRψ
m
n−1,B +wRψ

m
n−1,A+ uLψ

m
n+1,A. (12)
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Figure 3: The fraction of localized states (φl) in blue and delocalized states (φd)
in yellow corresponding to the parameters of Fig 2. States with I PR ≳ 0.1 was
considered localized, otherwise the states are considered to be delocalized in nature.

Applying the following canonical transformation112

ψm±
n =

ψm
n,A±ψ

m
n,Bp

2
(13)

and with the following restrictions, i.e., uR = wR = u1 and uL = wL = u2, the system can be113

exactly mapped to two uncoupled QHN chains. This can be explicitly written as,114

�

Em − Vn

�

ψm+
n =
�

tL + u2

�

ψm+
n+1 +
�

tR + u1

�

ψm+
n−1 (14)

and115

�

Em − Vn

�

ψm−
n =
�

tL − u2

�

ψm−
n+1 +
�

tR − u1

�

ψm−
n−1 (15)

The full spectrum is therefore composed of the spectra of the two uncoupled QHN chains,116

i.e., E−m = Em − Vn and E+m = Em − Vn, which are identical. From Eqs. 14 and 15, one expects117

two localization transitions at two critical strengths of the quasiperiodic potential at [40],118

Vc1 = 2
�

max(|tL − u2|, |tR − u1|)
�

, (16)

and119

Vc2 = 2
�

max(|tL + u2|, |tR + u1|)
�

. (17)

Vc1 provides the maximum value of quasiperiodic potential below which all the eigenstates120

are delocalized. Vc2 is that strength of the potential above which all the states become com-121

pletely localized. It is interesting to note that one can engineer a system where Vc1 is zero,122

when the conditions |tL − u2|= 0 and |tR − u1|= 0 are simultaneously satisfied.123

4 Numerical Results and Discussions124

In this section, we analyse the phase diagram of the DL transition in the presence of a strong125

interchain coupling between the two QHN chains A and B. The ratio of intrachain hopping126

strengths of the chains A(B) is tL/tR = 0.5. In the upper panel of Fig. 2, we consider the case127
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of symmetric interchain coupling. It is clear from Figs. 2(a)-(d) that the DL transition does128

not occur at Vc = 2max[JR, JL] (which is the critical value of DL transition in QHN chain). It129

is clearly visible that all the eigenstates are perfectly delocalized for V ≲ Vc1 and localized for130

V ≳ Vc2. The value of Vc1 and Vc2 as determined in Eqs. (16) and (17) agrees excellently with131

all the numerical estimates. Furthermore, as is evident, the eigenstates between these two132

critical points are a mixture of both the delocalized and localized states, separated at a critical133

energy, termed as the mobility edge.134

Next, we consider the case when the interchain coupling is asymmetric in nature in the135

lower panel of Fig. 2. It is clear that the localization behavior drastically changes upon consid-136

ering a particular strength of asymmetricity, i.e, say, uL = 0.5, uR = 1.0 and wL = 0.5, wR = 1.0.137

Such a tendency of Vc1 approaching 0 is expected when |tL−u2| and |tR−u1| are both zero, as138

already explained. This particular case is of interest since the localized states appear even for a139

low value of the quasiperiodic potential, similar to the 1D original Anderson model, although140

in this case not all the states are localized.141

To have a closer look into the nature of states in between Vc1 and Vc2, we check the frac-142

tion of localized (φl) and delocalized states (φd). We consider the states with I PR ≳ 0.1 as143

being absolutely localized, and below the limit the states are considered to be delocalized. We144

examine these different regions separately by plotting the fraction of localized and delocalized145

states as a function of the quasiperiodic potential corresponding to the parameters of Figs. 2.146

From Figs. 3(a-h), we can easily infer that there is a co-existence of localized and delocalized147

states for a wide regime in the quasiperiodic potential. Moreover, interestingly 50% of these148

states are delocalized while the remaining states are localized. This proportionate behaviour is149

consistent throughout the entire intermediate region. Furthermore, it is also important to see150

that in the case where Vc1 = 0, exactly 50% localized states appear at even a tiny quasiperiodic151

potential, as previously discussed.152

As already elucidated, Fig. 2(g) gives rise to an interesting outcome of localization at a very153

minute value of the quasiperiodic potential V . Therefore, in order to understand whether the154

same behavior is retained under the OBC, we plot the phase diagram in Fig. 4(a). However,155

from Fig 4(b), we can infer that proportion of delocalized and localized states does not remain156

same (i.e., at 50%) when the boundaries are open. It is clear, that the localized wavefunctions157

under PBC become delocalized(skin modes under the OBC) since φd increases. From Fig. 4(a-158

i) (state picked up from the dark blue regime of the phase diagram), it is clear that the state159

becomes a skin state under OBC as expected. However, we have found out that the light blue160

regime infact consists of both skin states (localized at right edge as demonstrated in Fig. 4(a-161

ii)) and localized states (where the localization is not necessarily towards the right edge as162

shown in Fig. 4(a-iii). This is in stark contrast to the 1D HN systems in the absence of the163

coupling. One can therefore infer that additional skin modes are formed from the localized164

states under OBC due to the coupling between such QHN chains, and hence the one-to-one165

correspondence between the delocalized(skin) states under PBC(OBC) breaks down in the166

presence of the coupling.167

5 Possible Experimental Implementation in Coupled Waveguides168

The equation of a coupled waveguide array at position n is written in the form,169

−i
dψn

dz
= JLψn+1 + JRψn−1 + Vnψn (18)

where JL and JR tune the spacing in between the waveguides, and is non-Hermitian in the170

usual sense. Eq. 18 is an optical analogue of the Schrodinger equation where the time t is171
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Figure 4: The localization behavior in a strongly coupled QHN Hamiltonian with
tL = 0.5, tR = 1.0 for a lattice with N = 610 sites under OBC with interchain hopping
between the two adjacent unit cells. (a) Projection of I PR as a function of the real
part of the eigen-energy and quasiperiodic potential (V ), where the DL transition is
shown as a dark blue to green color transition. The other parameters of interchain
coupling are: (a)uL = 0.5, uR = 1.0, wL = 0.5 and wR = 1.0. (b) The fraction of
localized states (φl) in blue and delocalized states (φd) in yellow, corresponding to
the parameters of Fig 2. Figs. a(i-iii) in the lower panel demonstrates the behavior
of the wavefunction probabilities at different latice sites corresponding to the figure
in the upper panel at V = 1.5. (a-i) skin modes (dark blue regime of I PR), (a-ii) skin
modes in the light blue regime of I PR, and (a-iii) localized regime (in green regime
of I PR).
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Figure 5: Schematic diagram of the coupled waveguide with asymmetric hopping.
Atoms A and B which depict the waveguide channels in the optical set-up are depicted
in blue and green respectively.
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replaced by the spatial distance between the parallel waveguides z, due to the mathematical172

equivalence between the two [41, 42]. Since we have two atoms (A and B) in a unit cell, we173

can consider two layers of waveguided arrays (called coupled waveguided arrays) as depicted174

in the schematic given in Fig. 5. Such coupled waveguides have already been fabricated on a175

semiconducting AlGaAs substrate when JL = JR [42]. The array is composed of a core layer176

sandwiched between two cladding layers, where the upper cladding layer is etched quasiperi-177

odically, where one can modulate the width of the waveguides quasiperiodically to realize the178

quasiperiodic onsite potential. The etching makes the core beneath it have a lower effective179

refraction index, resulting in a array of coupled 1D waveguides. One can tune JL and JR using180

a beam-splitter. We consider another coupled waveguide placed exactly below it, which could181

mimic the coupled QHN system as discussed in our main text. Since our work demonstrates182

the avenue to tune the strengths of Vc1 and Vc2 to engineer the localization transitions, such a183

coupled waveguided array can prove to be a boon to experimentalists working in such optical184

set-ups.185

6 Conclusions186

To summarize, this work scrutinizes the different localization attributes in non-Hermitian cou-187

pled quasiperiodic chains. The nature of DL transition at a threshold of the quasiperiodic188

potential (Vc = 2) for NH-AAH chains with parameters tL = 0.5 and tR = 1.0 is well-known.189

However, unlike the generic DL transition in NH-AAH chains, a strong coupling between the190

atoms of adjacent unit cells of the two HN chains possessing the same directionalities under191

PBC renders an intermediate region, wherein the eigenstates are a mixture of equal proportion192

of delocalized and localized states. Interestingly, for the counterpart with asymmetricity with193

specific hopping amplitudes, this intermediate region appears even in the presence of very194

tiny quasiperiodic potential, where the localized and delocalized states coexist. In this case as195

well, the proportion of localized and delocalized states remains identical. Moreover, under an196

OBC, we find a mixture of skin states and localized states in a regime of the localized portion197

in the PBC phase diagram. This is in contrary to the conventional HN systems where the lo-198

calized states under OBC can either be skin modes or be completely localized and the usual199

PBC-OBC correspondence that leads the delocalized states to become skin states, keeping the200

localized states intact completely breaks down in the presence of the coupling. We believe that201

these rich phases due to the coupling in non-Hermitian systems can be utilised in experiments202

related to coupled waveguides.203
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