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Abstract

I discuss the status of the computation of the two-loop QCD corrections to top-quark pair
production associated with a jet at hadron colliders. This amplitude is a missing ingredi-
ent for next-to-next-to-leading order (NNLO) QCD predictions. I briefly present compu-
tational techniques to tackle the algebraic and analytic complexities of two-loop multi-
scale amplitudes, in particular where massive propagators give rise to elliptic Feynman
integrals. I then describe how a special function basis for the helicity amplitudes is ob-
tained and present first numerical evaluations for the finite remainders of the g g → t t̄ g
channel, after the infrared and ultraviolet poles have been identified analytically.
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1 Introduction

The production of a top-quark pair in association with a jet (pp → t t̄ j) has the largest cross
section among all associated production processes. As a result, this process plays a crucial role
in estimating standard model backgrounds and searching for beyond standard model physics.
Both the ATLAS and CMS collaborations have extensively studied this process [1–4], and more
precise theoretical predictions are in high demand. In particular, the pp → t t̄ j normalized
differential distribution with respect to the invariant mass of the final state is highly sensitive
to the top quark mass [5] and can be used to infer its value.

Next-to-leading-order (NLO) QCD corrections for this process have been available for many
years [6, 7]. More precise predictions include full off-shell top decay effects as well as inter-
face with parton showers [8–12], and mixed NLO QCD and electroweak corrections [13]. In
contrast, NNLO QCD corrections to pp→ t t̄ j remain unavailable due to the high complexity
of the two-loop amplitude computation.

Significant progress has been made in calculating 2→ 3 two-loop scattering amplitudes.
This covers processes with massless external particles, for which recent examples include
Refs. [14–18], as well as processes with a single external massive particle, such as in Ref. [19–
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21]. However, the computation of the pp → t t̄ j two-loop amplitudes is considerably more
complex due to the presence of internal massive propagators in the Feynman diagrams con-
tributing to the process (see also [22]).

Initial steps toward addressing this challenge have been taken in Refs. [23–25]. In the
following, I present progress towards the computation of the two-loop helicity amplitudes for
pp → t t̄ j production in the leading colour limit. I will begin by describing the amplitude
workflow in Section 2, followed by presenting the first results in Section 3, and concluding
with a summary in Section 4.

2 Framework for the scattering amplitude computation

To compute the two-loop amplitude for the process g g → t t̄ g, we begin by generating all
Feynman diagrams using QGRAF [26]. We then proceed with the colour decomposition. Given
the complexity of the amplitude, we consider the leading contribution in the number of colours.
This approximation is expected to give a good estimation of the double virtual contribution,
when its size is smaller compared to that of the real radiation contribution.

We compute the amplitude at leading colour using the spinor-helicity formalism [27]. For
massive particles, helicity states are well-defined only when a reference direction is specified.
This formalism is especially useful for top-quark production, as it enables the straightforward
inclusion of top-quark decays within the narrow-width approximation.

The helicity amplitude expressions are written as linear combinations of scalar Feynman
integrals. All these Feynman integrals, calculated in dimensional regularization with d = 4−2ε
spacetime dimensions, can be expressed in terms of a smaller set of linearly independent inte-
grals, known as master integrals. The master integrals appearing at leading colour belong to
six integral families, shown in Fig. 1. However, the master integrals of the hexagon-triangle
topologies (Figs. 1d–1f) can be mapped to the three pentagon-box topologies (Figs. 1a–1c),
which were recently computed in Refs. [24,25]. The reduction to master integrals is achieved
by solving the integration-by-parts identities [28,29] generated with NeatIBP [30]. Expanding
around ε= 0, the amplitude A(~x ,ε) takes the form

A(~x ,ε) =
∑

i

0
∑

k=−4

εkrki(~x)Fi(~x) +O(ε), (1)

where ~x can be a set of momentum twistor variables or Mandelstam invariants, Fi denotes
a set of special functions and rki represent their coefficients, which are rational functions of
the variables ~x . Eq. (1) highlights the sources of complexity inherent in these computations:
algebraic and analytic.

The algebraic complexity arises from the fact that intermediate steps leading to the form
shown in Eq. (1) can produce extremely large expressions. The enormous size of these ex-
pressions can be streamlined by replacing symbolic operations with numerical evaluations of
the rational functions. In particular, T. Peraro pioneered a method [31] that replaces symbolic
operations with numerical evaluations over finite fields, i.e. fields of integers modulo a prime
number. Using this approach and exploiting the FiniteFlow framework [32], we perform
intermediate computations numerically, and then reconstruct the rational coefficients of the
special functions from sufficiently many numerical samples.

To obtain the amplitude expressions and perform their numerical evaluation, it is also
necessary to account for special functions arising from loop integrals, introducing analytic
complexity to the problem. In the case of top-quark pair production in association with a jet,
the class of functions appearing in the amplitude includes not only multiple polylogarithms,
which offer stable and efficient numerical evaluation, but also elliptic functions [33]. We
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(a) Topology PBA (b) Topology PBB (c) Topology PBC

(d) Topology HTA (e) Topology HTB (f) Topology HTC

Figure 1: The integral families contributing to the two-loop pp → t t̄ j amplitude at
leading colour. Black lines represent massless particles, while thick red lines denote
massive particles. All master integrals of the hexagon-triangle topologies, displayed
at the bottom of the figure, can be mapped to master integrals of the three pentagon-
box topologies, shown at the top.

extend the strategy outlined in Refs. [34–37] to identify a set of special functions such that
most of the functions are of the polylogarithmic type and algebraically independent, while the
few elliptic functions contribute to the amplitudes starting from order ε0. This enables the
analytical identification of ultraviolet (UV) and infrared (IR) poles, and leads to a dramatic
simplification of the expressions.

3 First results for the gg→ t̄tg two-loop amplitude at leading colour

We developed a framework to compute numerically the finite remainder of two-loop helicity
amplitudes for top-quark pair production in association with a jet. In particular, we focus on
the gluon channel, as it is the most difficult production channel to calculate.

We evaluated the two-loop helicity amplitudes for the process

g(p4)g(p5)→ t̄(p1)t(p2)g(p3), (2)

where pi is the external momentum. All particles are considered on-shell, with mt representing
the top-quark mass. The notation for kinematics used here is as follows:

p2
1 = p2

2 = m2
t , p2

3 = p2
4 = p2

5 = 0, di j = pi · p j . (3)

At leading colour, the amplitude for the gluonic channel takes the form

A(L)(1 t̄ , 2t , 3g , 4g , 5g) = g3+2L
s N L

ε

¦

∑

σ

(taσ(3) taσ(4) taσ(5))ī1i2 A(L)LC(1 t̄ , 2t ,σ(3)g ,σ(4)g ,σ(5)g)
©

, (4)
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where L is the loop order, gs is strong coupling and Nε =
eεγEΓ 2(1− ε)Γ (1+ ε)
(4π)2−εΓ (1− 2ε)

the overall

normalisation. Moreover, σ denote the cyclic gluon permutations, and (ta) j̄i are fundamental
generators of the SU(Nc) colour group, with a = 1, . . . , 8 indexing the adjoint representation
and i, j̄ = 1,2, 3 indexing the fundamental and anti-fundamental representations, respectively.

To handle the helicity states of massive fermions and retain the decay information within
the narrow-width approximation, we construct the amplitude using the following spin struc-
ture basis,

A(L)LC(1
+
t̄ , 2+t , 3h3 , 4h4 , 5h5; nt , n t̄) = mtΦ(3

h3 , 4h4 , 5h5)
4
∑

i=1

Θi(1, 2; nt , n t̄)A
(L),[i]
LC (1+t̄ , 2+t , 3h3 , 4h4 , 5h5). (5)

In Eq. (5), hi represents the helicity configuration of each massless final-state particle, and
nt (n t̄) is an arbitrary reference vector defining the massive spinors. Because nt and n t̄ are
arbitrarily chosen, positive and negative helicity states are related. Thus, we only consider
the ++ helicity configuration for the top-quark pair. The phase factor Φ encodes the helicity
information of the massless particles, while the Θ factors capture the spin structure of the top-
quark pair relative to the reference vectors nt and n t̄ . Further details on this formalism and
explicit definitions of Φ and Θ can be found in Refs. [23,38,39].

We computed the mass counterterm enabling us to perform the Ward identity check and
confirm that our results are gauge invariant. We further performed an analytical check of the
poles in the amplitude, comparing against UV renormalization and IR subtraction [40,41]. The
analytic pole check is a non-trivial task made possible by introducing a basis of special functions
in which elliptic functions appear only starting from order ε0. This approach allowed us to
directly extract the finite remainder in the ’t Hooft–Veltman scheme.

In Table 1, we present results for the finite remainder of the helicity configuration hi = +,
with i = 3, 4,5, at a few benchmark phase-space points. The decay directions of the top quarks
are fixed along a non-physical direction, with nt = n t̄ = p3. These values were obtained by
computing the special functions appearing in the amplitude via differential equations, using
the generalized series expansion method [42], employing the DiffExp software [43].

4 Conclusions and outlook

We reported progress in computing two-loop helicity amplitudes for top-quark pair production
in association with a jet, specifically focusing on the g g → t t̄ g process, which is the most
challenging production channel to compute. This computation represents a crucial step toward
achieving NNLO QCD corrections for this high-priority process at hadron colliders.

We developed a framework for evaluating the finite remainder of two-loop helicity ampli-
tudes for the process under consideration, addressing the extreme algebraic and analytic com-
plexities inherent in multi-scale processes that involve elliptic functions. We checked gauge
invariance validating the Ward identity, and analytically identified the UV and IR poles using
a basis of special functions, where the elliptic sector contributes only at order ε0. These poles
were then checked against UV renormalization and IR subtraction, enabling us to extract the
finite remainder of the helicity amplitudes. As an outlook, we aim to deliver phenomenologi-
cally viable results and explore the feasibility of a full analytical reconstruction.
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Phase-space points A(2)LC(+++++; nt n t̄) [GeV−2]

d12→ 0.1074, d23→ 0.2719, d34→−0.1563,

d45→ 0.5001, d15→−0.03196, m2
t → 0.02502

19.03− 3.108 i

d12→ 0.3915, d23→ 0.06997, d34→−0.06034,

d45→ 0.5002, d15→−0.1293, m2
t → 0.02499

0.07061− 0.006497 i

d12→ 0.2167, d23→ 0.02186, d34→−0.01149,

d45→ 0.5007, d15→−0.04709, m2
t → 0.02502

−29.22− 27.54 i

d12→ 0.2986, d23→ 0.1599, d34→−0.05978,

d45→ 0.4998, d15→−0.2899, m2
t → 0.02500

−0.9728+ 0.8636 i

d12→ 0.2882, d23→ 0.04770, d34→−0.1080,

d45→ 0.5000, d15→−0.1583, m2
t → 0.02502

−0.4041− 0.5316 i

Table 1: Numerical evaluations of the leading colour two-loop helicity amplitude
A(2)LC(+ ++++; nt n t̄) for different phase-space points in the physical region. In this
table, di j denotes the kinematic invariants and mt the top-quark mass. The kinematic
invariants are normalised to 2 d45 and the sign of the imaginary part of tr5 is chosen to
be positive; their rationalised values are available on request. The reference vectors
nt and n t̄ are chosen in the unphysical direction p3 and are used to define the spinors
for the top quark and the anti-top quark.
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