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Giant spatial anisotropy of magnon lifetime in altermagnets
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Abstract

Altermagnets are a new class of magnetic materials with zero net magnetization (like
antiferromagnets) but spin-split electronic bands (like ferromagnets) over a fraction of
reciprocal space. As in antiferromagnets, magnons in altermagnets come in two flavours,
that either add one or remove one unit of spin to the S = 0 ground state. However, in
altermagnets these two magnon modes are non-degenerate along some directions in
reciprocal space. Here we show that the lifetime of altermagnetic magnons has a very
strong dependence on both flavour and direction. Strikingly, coupling to Stoner modes
leads to a complete suppression of magnon propagation along selected spatial directions.
This giant anisotropy will impact electronic, spin, and energy transport properties and
may be exploited in spintronic applications.
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1 Introduction18

The recent recognition of altermagnets as a new class of magnetic materials [1–3], originally19

predicted by Pekar and Rashba in 1964 [4], has been a very exciting development for both20

condensed matter and materials physics. In a static configuration, altermagnets camouflage21

very well as antiferromagnets; however, when you look under the hood the disguise is given22

away by the spin-polarized electronic bands. It is their dynamics, however, that reveal their23

true colors [5,6]. To understand the dynamical properties of a magnetic system it is essential24

to look at its elementary spin excitations, or magnons [7].25

A magnon in a ferromagnetic solid is usually associated to processes by which the total mag-26

netization of the sample is lowered by the equivalent of a quantum of angular momentum, ħh,27

and associated with the spin-lowering operator S−. We thus say that a ferromagnetic magnon28

carries spin Sz = −1. In terms of elementary electronic processes, generating a magnon con-29

sists in promoting an electron from the majority spin band (↑) to the minority spin band (↓),30

and is associated with the operator a†
↓a↑. By virtue of electron-electron interactions, the elec-31

tron and the hole involved in this process form a bound state, whose energy depends on the32

net crystal momentum of the pair.33

In antiferromagnets, magnons can have either Sz = −1 or Sz = 1, associated with lowering34

the spin of the ↑ sublattice or raising the spin of the ↓ sublattice. Due to the complete equiva-35

lence between the two spin directions, the two kinds of antiferromagnetic magnons (Sz = ±1)36

have identical energies [8]. On the other hand, it has been noted [2,9] that magnons in alter-37

magnets have unique features when compared to their antiferromagnetic counterparts. The38

most noticeable difference is that Sz = −1 and Sz = 1 magnons have distinct energies along39

certain directions in the reciprocal space, the same direction associated with the spin-split40

electronic bands.41

In metallic magnets, magnons have finite lifetimes, due to the fact that they can decay42

into uncorrelated electron-hole pairs, also known as a Stoner excitations [10, 11]. The decay43

probability (hence the inverse of the magnon lifetime) is proportional to the spectral density44

associated with the Stoner excitations, which usually increases monotonically with energy for45

a fixed wavevector. Thus, magnon lifetimes typically decrease monotonically as the magnon46

energy increases [12].47

It has been assumed hitherto [9] that, due to the distinct energies of Sz = ±1 magnons48

in altermagnets, their lifetimes would also be different, in an almost trivial manner. Other49

works have looked into the effects of magnon-magnon interactions on magnon lifetimes, a50

mechanism that is supposed to be relevant for insulating magnets. [13] Apart from that, very51

little attention has been paid to the lifetime of magnons in altermagnets, and most theoretical52

approaches employ spin-only models in their description [9,14–16].53

Here we show that Stoner damping in metallic and slightly doped altermagnets has highly54

non-trivial consequences. Specifically, the combination between the peculiar symmetry of the55

altermagnet and the damping by Stoner excitations makes magnons in itinerant altermagnets56
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completely distinct from their antiferro- and ferromagnetic counterparts. The magnons acquire57

a strong frequency- and spin-dependent directionality, which can potentially be exploited as a58

resource in spintronics devices [17].59

2 Model and mean-field ground state60

We model the electronic structure of altermagnets using a Hamiltonian proposed in ref. [18],61

which is essentially a Hubbard model with an especially chosen hopping structure that realises62

an altermagnetic symmetry,63

H =
∑

l l ′

∑

µµ′

∑

σ

τ
µµ′

l l ′ c†
lµσcl ′µ′σ + U
∑

l,µ

nlµ↑nlµ↓, (1)

where nlµσ ≡ c†
lµσclµσ, l and l ′ label unit cells, µ and µ′ label sublattices (A or B) and σ labels64

the spin projection along the z axis. The hopping matrix τµµ
′

l l ′ is described in the caption of65

Fig. 1. The intra-atomic interaction parameter U can be chosen to place the system in either66

the metallic or insulating altermagnetic phase; for the value of diagonal hopping we adopted67

in this work, 2τ ≲ U ≲ 3τ yields a metallic altermagnetic phase, whereas U ≳ 3τ produces68

the insulating altermagnetic phase. The complete mean-field phase diagram of this model69

has been explored in Ref. [18]. Here we will choose two representative points, one in the70

insulating and one in the metallic region, and study the elementary spin excitations above71

their respective mean-field ground states. The mean-field approximation we employ amounts72

to the following replacement,73

U
∑

l,µ

nlµ↑nlµ↓ −→

U
2

∑

l,µ

�

(n̄µl + m̄µl)nlµ↓ + (n̄µl − m̄µl)nlµ↑
�

, (2)

with n̄µl ≡ 〈nlµ↑〉+ 〈nlµ↓〉 and m̄µl ≡ 〈nlµ↑〉−〈nlµ↓〉, plus a constant term that can be safely ig-74

nored. The average occupancies n̄µl and magnetic moments m̄µl are determined self-consistently.75

We obtain the magnon spectrum of altermagnets by studying the transverse spin suscepti-76

bilities,77

χ+−µν (r⃗l ′ − r⃗l , t)≡ −iθ (t)
¬�

S+lµ(t), S−l ′ν(0)
�¶

(3)

and78

χ−+µν (r⃗l ′ − r⃗l , t)≡ −iθ (t)
¬�

S−lµ(t), S+l ′ν(0)
�¶

, (4)

where t is the time, S−lµ ≡ c†
lµ↓clµ↑, (S+lµ = (S

−
lµ)

†) is the operator that creates a spin excitation79

with Sz = −1 (Sz = 1) at cell l in the sublattice µ, r⃗l is the position of unit cell l, and θ (t)80

is the Heaviside unit step function. These two-time correlation functions cannot be computed81

exactly for an interacting model such as the one defined in Eq. 1; the simplest approach that82

can describe magnons is the so-called random phase approximation (RPA), in which the inter-83

action is taken into account, to all orders in perturbation theory, between the electron and the84

hole that form the spin-flip excitation [10]. The RPA relates the transverse interacting suscep-85

tibilities χ⊥ (⊥≡ +− or −+) to the mean-field susceptibilities χ̄⊥, which are the same Green86

functions defined in Eqs. 3 and 4, with the thermal average 〈·〉 evaluated for the mean-field87

configuration. For the model considered here, after Fourier transforming both in time and88

position, the RPA equations are89

χ+−µν (Q) = χ̄
+−
µν (Q)− U
∑

ξ

χ̄+−µξ (Q)χ
+−
ξν (Q), (5)
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Figure 1: Schematic representation of the model altermagnet on a square lattice de-
fined by primitive vectors a⃗1 and a⃗2, with |a⃗1| = |a⃗1| = a. The solid line connecting
blue and red sites represents the nearest neighbor hopping τ. Dashed and dotted
lines represent the alternating second neighbor hoppings τ′(1± δ). The lightly col-
ored rectangle indicates the unit cells.
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where Q ≡ (q⃗,ħhΩ). We obtain an analogous expression for χ−+. The spectral density associ-90

ated with magnons, projected on sublattice µ, is given by91

ρ⊥µ (Q) = −
1
π

Imχ⊥µµ(Q) (6)

where⊥ can be either+− or−+, denoting the transversal character of these response functions92

with respect to the equilibrium staggered magnetization (Néel vector). Magnon energiesħhΩ(q⃗)93

are associated with the positions of the peaks of ρ+− (for the Sz = −1 magnons) or ρ−+ (for94

the Sz = 1 magnons), at fixed wave-vector q⃗. Analogously, magnon lifetimes are defined as95

the inverse of the full width at half-maximum of the magnon peaks.96

2.1 Mean-field results97

An insulating altermagnetic state can be obtained by choosing U ≳ 3τ; however, for 3τ≲ U ≲ 10τ98

the mean-field configuration belongs to an intermediate coupling regime, for which the spin99

dynamics can not yet be properly described by a spin-only (Heisenberg-like) model. Thus, to100

benchmark our fermionic model against a spin model, we chose U = 10τ, together with the101

hopping values τ′ = 0.17τ and δ = 0.83. The self-consistent mean-field solution gives the102

bands shown in Fig. 6 of appendix A, with a staggered magnetic moment mA−mB = 1.86µB103

per unit cell. For the reciprocal space path we plotted in Fig. 6, the spin splitting is zero only104

along the line qy = qx . Along the line qy =
π
a −qx there is the characteristic crossing between105

the ↑ and ↓ spin bands, associated with the altermagnetic symmetry.106

The metallic altermagnetic state can be obtained either by tweaking the hopping param-107

eters, as shown in ref. [18], or by reducing the Hubbard parameter U . We chose the latter108

option to minimize the differences between the shapes of the electronic bands in the metallic109

and insulating states. By setting τ′ = 0.17τ, δ = 0.83 and U = 2.5τ we obtain the metal-110

lic altermagnetic bands shown in Fig. 6 of appendix A, with a staggered magnetic moment111

mA−mB = 0.74µB per unit cell.112

3 Magnons113

To benchmark our methodology, we first analyze the spin excitations of the insulating alter-114

magnet in the strong coupling limit (U = 10τ), for which the spin model results should be115

valid [15,19]. By scanning the spectral densities ρ+− and ρ−+ in the (ħhΩ, q⃗) space we obtain116

the dispersion relations for Sz = −1 magnons (+−) and for Sz = 1 magnons (−+), shown in117

Fig. 2. The energy splitting between the two polarizations, one of the hallmarks of altermag-118

netism, is clearly seen along high-symmetry directions in the Brillouin zone. We also show119

the dispersion relation for (linearized) Holstein-Primakoff magnons, extracted from a Heisen-120

berg model for the altermagnet, including up to third-neighbor exchange. As expected, the121

agreement with the RPA treatment of the fermionic model is very good in this case 1.122

Along specific lines within the Brillouin zone we observe a behavior analogous to the “band123

inversion” associated with topologically non-trivial electronic bands. For instance, along the124

reciprocal space path going from (πa , 0) to (0, πa ) there is a crossing between the Sz = −1 and125

the Sz = 1 magnon branches. In the presence of spin-orbit coupling a gap may appear at126

the crossing point ( π2a , π2a ), possibly accompanied by a finite Berry curvature. This crossing is127

also associated with the peculiar directional behavior of altermagnetic magnons. If we focus128

on magnons with one Sz value we see that the energy at the (πa , 0) point in reciprocal space129

(thus, propagating along the x direction in real space with wavelengthλ= 2a) is 40% different130

1This is contrast with the insulating intermediate coupling case, for which the spin model fails. See appendix D.
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Figure 2: Dispersion relation for magnons in an insulating altermagnet in the strong
coupling regime (U = 10τ). The Heisenberg model used to fit the RPA energies
includes up to third-neighbor exchange.

from that of a magnon with the same wavelength propagating along the y direction. This is131

illustrated in fig. 11 of the appendix E, where we plot the magnons spectral densities as a132

function of propagation direction, for a fixed wavelength. Combined with the fact that, for133

sufficiently small wavelengths (typically smaller than ∼ 5a) magnons with a well-defined Sz
134

are strongly sublattice-polarized, this feature may be exploited to guide magnons in spintronics135

devices.136

3.1 Itinerant altermagnet137

We now turn our attention to the behaviour of magnons in itinerant altermagnets. In con-138

trast to the insulating case, it can be expected that their lifetime is limited by Stoner damp-139

ing [10, 11, 20]. Magnons with energies exceeding single-particle spin-flip excitations (also140

known as Stoner excitations), can decay into the Stoner continuum [10]. The magnon life-141

time is inversely proportional to the density of Stoner modes, which is given by the imaginary142

part of the mean-field transverse susceptibility χ̄⊥. The effect of damping for a conducting143

altermagnet (U = 2.5τ) is seen in the evolution of the spectral weight of spin excitations,144

shown along two different directions, (q, q) and (q, 0) with |q| < π
a , in Figure 3a,b. For low145

energy, the spectral density has well defined peaks, whose position gives the magnon energy146

and the inverse of its linewidth gives the magnon lifetime. As the energies are increased, the147

peaks get broader and, above some energy threshold, they vanish into a continuum. Along the148

(q, q) direction, both Sz = ±1 excitations have the same spectral weight (fig. 3a). In contrast,149

along the (q, 0) direction (fig. 3b), the Sz = −1 spin excitations have lorentzian spectral den-150

sities with relatively small linewidth in the whole wave number range, whereas the spectral151

density associated with the Sz = 1 spin excitations has a behavior similar to the (q, q) case.152

We thus find that, for itinerant altermagnets, magnons with a given Sz are only well defined153

along certain directions.154

To make the connection between magnon lifetimes and density of Stoner modes, it is useful155

to plot both magnons’ and Stoner excitations’ spectral densities as color-coded functions of156

energy and wave number, shown in fig. 4. By following the bright spots in the top left panel, it157

is possible to trace dispersion relations for the Sz = −1 magnons, in analogy to the insulating158

case. For the Sz = 1 magnon, the bright spots disappear around q ∼ 2π
5a . This can be correlated159
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Figure 3: Top: spin excitation spectral densities in the metallic phase (U = 2.5τ),
along q⃗ = 1p

(2)
(q, q) (a) and q⃗ = (q, 0) (b), as a function of energy, for selected wave

numbers. To improve visualization, the spectral density has been multiplied by 100
for the three largest wavenumbers (q = 0.3, 0.4 and 0.5), by 50 for q = 0.25 and
by 5 for q = 0.2. In (b), solid lines correspond to ρ−+, associated with the Sz = 1
spin excitations, and dashed lines correspond to ρ+−, associated with the Sz = −1
spin excitations. Bottom: Lifetimes of the metallic magnons (U = 2.5τ) propagating
along the q⃗ = 1p

(2)
(q, q) (c) and q⃗ = (q, 0) (d), as a function of wave number, for

Sz = −1 (squares) and Sz = 1 (stars) spin excitations.

with the boundaries of the Stoner continuum for Sz = 1 spin excitations, plotted in the bottom160

right panel. In contrast, the density of Sz = −1 Stoner modes is uniformly small over the161

whole wave number and energy ranges where Sz = −1 magnons exist. A detailed discussion162

of the origin of the density of Stoner modes in terms of the geometry of the spin-polarized163

Fermi surface pockets of the metallic altermagnet is presented in appendix C.164

The giant magnon-lifetime anisotropy is better seen in a color-coded polar plot of the165

magnon spectral density, for a fixed wavelength. The angular variable indicates the propa-166

gation direction, and the radial variable is the magnon energy. In fig. 5 we show such a plot167

for λ = 10a
3 (wave number q = 3π

5a ). The top-left panel shows the spectral density ρ+−A for168

Sz = −1 magnons, projected on sublattice A, and the top-right panel displays the equivalent169

quantity for sublattice B (ρ+−B ). It is clear that Sz = −1 magnons are strongly suppressed170

for angles ≳ 30◦, and the Sz = 1 magnons for angles ≲ 60◦. Such strong directionality is171

rarely seen for quasiparticles and elementary excitations, and is potentially very useful for ap-172

plications, especially when one considers the fact that magnons of wavelengths λ ≲ 4a live173
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Figure 4: Top: Spectral densities for Sz = −1 (ρ+−, left) and Sz = 1 (ρ−+, right)
metallic magnons (U = 2.5τ) propagating along the x direction, as a function of
wave number and energy. Bottom: Spectral densities for Sz = −1 (ρ̄+−, left) and
Sz = 1 (ρ̄−+, right) Stoner excitations (single-particle spin flips) propagating along
the x direction, as a function of wave number and energy.

preferentially in one of the sublattices. Thus, it is in principle possible to excite magnons along174

specific directions by choosing their excitation frequency and the sublattice to excite. Selec-175

tively addressing the sublattice may be challenging in systems where spin sublattices have176

atomic size, but not so much in synthetic magnets, where spin sublattices are associated with177

molecules containing tens of atoms [19,21].178

We have also considered the case of a doped insulating altermagnet, by choosing U = 3.5τ179

and imposing an electronic occupation of 1.05 electrons per atomic site. In this case the180

anisotropic suppression of magnons is observed for propagation angles 30◦ ≲ θ ≲ 75◦, as181

shown in the bottom panels of fig. 5. Thus, whenever it is possible to dope an insulating al-182

termagnet electrostatically, it is in principle also possible to control electrostatically the prop-183

agation direction of magnons.184

The effects of a giant spatial anisotropy in magnon lifetimes are likely to be noticed on185

several transport coefficients of metallic altermagnets [22]. Electronic transport is expected to186

be impacted by electron-magnon scattering, especially at low temperatures. Moreover, with187

current high-resolution spin-polarized electron energy loss spectroscopy [23,24] it should be188

possible to probe experimentally the lifetime anisotropy predicted by our theoretical analysis.189

We would like to emphasize that the lifetimes of magnons in itinerant magnets is related190

to the frequency and wave-vector dependent spectral density of Stoner modes, as detailed in191

the appendix B. The authors of a previous work [9] have estimated the relative intensity of192

magnon damping, as a function of magnon wave vector only, by integrating the spectral density193

of Stoner excitations over the whole magnon band width. This quantity can not be associated194

with the lifetime of individual magnons, although it can give an idea of the overall importance195

of Stoner excitations for the magnon spectrum. The relevant quantity for determining the196

lifetime of a magnon with well-defined energy and momentum is the mean-field transverse197
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Figure 5: Magnon spectral densities as functions of propagation angle, for a fixed
wavelength (10a

3 ). The radial variable represents energy (in units of the nearest-
neighbor hopping τ). ρ+−A corresponds to Sz = −1 magnons, ρ−+B corresponds to
Sz = 1 magnons. Top panels: metallic phase (U = 2.5τ); bottom panels: doped
insulating phase (U = 3.5τ, excess 0.1 electrons per unit cell).
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spin susceptibility calculated at the energy of the magnon (the pole of the RPA transverse spin198

susceptibility), as discussed in appendix B.199

4 Conclusion200

We have studied the intrinsic damping of magnons in altermagnets. These collective modes201

come with two values of Sz = ±1. Contrary to their counterparts in ferro- and antiferromag-202

nets, we find a giant spatial anisotropy of magnon lifetimes in itinerant altermagnets. We find203

that, for a given direction, only magnons with a given sign of Sz survive without melting due204

to Stoner damping. The ultimate reason for this unique behaviour relies on the existence of205

spin-polarized Fermi surface pockets that characterizes altermagnets. Therefore, we expect206

our predictions are generic of all itinerant altermagnets, rather than model specific and will207

have to be considered in future magnonic applications.208

Acknowledgments209

A.T.C. acknowledges fruitful discussions with D. L. R. Santos. The authors acknowledge finan-210

cial support from FCT (Grant No. PTDC/FIS-MAC/2045/2021), SNF Sinergia (Grant Pimag,211

CRSII5_205987) the European Union (Grant FUNLAYERS - 101079184). J.F.-R. acknowledges212

financial funding from Generalitat Valenciana (Prometeo2021/017 and MFA/2022/045), Span-213

ish Government through PID2022-141712NB-C22, and the Advanced Materials programme214

supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17.I1)215

and by Generalitat Valenciana (MFA/2022/045).216

A Mean-field electronic structure217

We present the electronic bands corresponding to the mean-field configurations considered in218

the letter: strong-coupling insulating (U = 10τ, fig. 6, left panel), metallic (U = 2.5τ, fig 6,219

right panel), and slightly doped insulating (U = 3.5τ, fig. 7, right panel). Both metallic and220

insulating phases have half-filled bands (one electron per lattice site), whereas the doped phase221

has 1.05 electrons per lattice site. Table 1 shows the values of the Hamiltonian parameters222

associated with the different phases, as well as the mean-field staggered magnetic moment223

per unit cell. We also show the intermediate-coupling insulating case (U = 3.5τ, fig. 7, left224

panel).225

τ′ δ U |m↑ −m↓|(µB)
Insulating (strong coupling) 0.16 0.83 10 1.86

Insulating (intermediate coupling) 0.16 0.83 3.5 1.28
Metallic 0.16 0.83 2.5 0.74

Table 1: Values for the Hamiltonian parameters (in units of the nearest-neighbor
hopping τ) used in this work, and respective staggered magnetic moment per unit
cell, in units of Bohr magnetons µB.

10



SciPost Physics Submission

(0, a ) (a , a ) (a , 0) (a , a )

6

4

2

0

2

4

6

En
er

gy
 (

)

(0, a ) (a , a ) (a , 0) (a , a )

4

2

0

2

En
er

gy
 (

)
Figure 6: Electron energy bands for the strong-coupling insulating (left panel,
U = 10τ) and metallic (right panel, U = 2.5τ) mean-field ground state configu-
ration of the altermagnet Hamiltonian (eq. 1 of the main text), with τ′ = 0.16τ and
δ = 0.83. Red and blue lines represent ↑ and ↓ spin sub-bands. The black dashed
line marks the Fermi energy.

(0, a ) (a , a ) (a , 0) (a , a )

4

2

0

2

En
er

gy
 (

)

(0, a ) (a , a ) (a , 0) (a , a )

4

2

0

2

En
er

gy
 (

)

Figure 7: Electron energy bands for the mean-field ground state configuration of
the altermagnet Hamiltonian (eq. 1 of the main text) in the insulating intermediate
coupling regime (U = 3.5τ) at half-filling (left panel) and away from half-filling
(1.05 electrons per lattice site, right panel). The values for the hopping parameters
are τ′ = 0.16τ, δ = 0.83. Red and blue lines represent ↑ and ↓ spin sub-bands. The
black dashed line marks the Fermi energy.
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B Relationship between the density of Stoner modes and the magnon226

lifetime227

The standard random phase approximation (RPA) applied to the transverse spin susceptibility228

of a Hubbard Hamiltonian results in a relationship between the magnon Green function χ+−229

and the mean-field Green function χ̄+−,230

χ+−(q⃗,ħhΩ) =
χ̄+−(q⃗,ħhΩ)

1+ Uχ̄+−(q⃗,ħhΩ)
. (B.1)

We would like to cast this expression in a form that resembles a Green function with a self-231

energy correction,232

G =
1

Ḡ−1 +Σ
, (B.2)

where Ḡ is the bare Green function and Σ is the self-energy. For this it is useful to split all233

quantities into their real and imaginary parts, denoted below by R and I subscripts. The real234

and imaginary parts of the magnon Green function then become (we will omit the energy and235

wave vector arguments for now to avoid cluttering the expressions)236

Re
�

χ+−
�

=
χ̄+−R (1+ Uχ̄+−R ) + U(χ̄+−I )

2

(1+ Uχ̄+−R )2 + (Uχ̄
+−
I )2

,

Im
�

χ+−
�

=
χ̄+−I

(1+ Uχ̄+−R )2 + (Uχ̄
+−
I )2

. (B.3)

Similarly,237

Re [G] =
Ḡ−1 +ΣR

(Ḡ−1 +ΣR)2 +Σ2
I

,

Im [G] = −
ΣI

(Ḡ−1 +ΣR)2 +Σ2
I

. (B.4)

By comparing the imaginary parts of the generic Green function G to Im
�

χ+−
�

we notice238

immediately a clear analogy between Uχ̄+−I and ΣI . Notice also that, as in the electronic case,239

magnon damping is inextricably tied to shifts in magnon energy, through the real part of the240

self-energy ΣR. It is clear, then, that the lifetime of a magnon with wave vector q⃗ and energy241

ħhΩ(q⃗) is determinmed by the spectral density of Stoner modes with wave vector q⃗ and energy242

ħhΩ(q⃗).243

C Origin of the anisotropic magnon lifetime244

To further shed light on the mechanism behind the lifetime anisotropy of metallic magnons,245

it is useful to look at constant energy contours of the electronic bands in the mean-field al-246

termagnetic configuration. The goal is to identify qualitatively the direction dependence of247

single-particle spin-flip transitions that give rise to the anisotropic density of Stoner modes.248

In figure 8 we show three constant energy contours for each spin direction, blue contours for249

↑ spin electrons, red contours for ↓. In the left panel we show contours for occupied ↑ states250

(including the Fermi contour at zero energy) and unoccupied ↓ states (also including the Fermi251

contour at zero energy), relevant for Sz = −1 spin flips (↓−→↑). Thus, in the left panel we252

can identify possible single-particle spin-flip transitions by connecting blue and red contours.253
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Figure 8: Contours of the electronic bands around the Fermi level; blue curves are
for ↑ spin bands, red curves for ↓. Left panel (↑−→↓): occupied ↑ states (shades of
blue, at energies EF − 0.5τ, EF − 0.25τ and EF ) and unoccupied ↓ states (shades of
red, EF , EF + 0.25τ and EF + 0.5τ). Right panel (↓−→↑): occupied ↓ states (shades
of red, at energies EF −0.5τ, EF −0.25τ and EF ) and unoccupied ↑ states (shades of
blue, EF , EF + 0.25τ and EF + 0.5τ).

In the left panel we see that, apart from the very small pockets at (πa , πa ), there is no horizon-254

tal line connecting blue and red contours. The consequence is that the density of Sz = −1255

Stoner modes with wave vectors along the x direction is very small, and Sz = −1 magnons256

propagating along the x direction are long-lived. On the other hand, there are plenty of con-257

nections between blue and red contours at angles ≳ 30◦, meaning that magnons propagating258

along those directions will be substantially damped. In the right panel we show the analogous259

information for Sz = 1 spin flips (↓−→↑): occupied ↓ states (including the Fermi contour at260

zero energy) and unoccupied ↑ states (also including the Fermi contour at zero energy). Now261

it is clear that there are many possible single- particle spin-flip transitions with wave vectors262

along x , whereas very few with wave vectors along y , thus meaning that Sz = 1 magnons are263

strongly damped when propagating along x but long-lived when propagating along x .264

D Insulating altermagnet in the intermediate coupling regime (U = 3.5τ).265

As mentioned in the main main text, the insulating altermagnetic phase of the model is ob-266

tained for U ≳ 3τ. In this regime, although the electronic bands are clearly those of an267

altermagnetic insulator (see the left panel of figure 7), the magnons bear marks of itinerant268

magnetism, especially at short wavelengths. A clear signature of itinerant behavior is the fact269

that the magnon lineshape acquires a finite linewidth and, at large enough energies, deviates270

significantly from a a lorentzian shape. This is seen in fig. 10 for a short wavelength magnon271

(λ= 2a) propagating along the x direction. The lineshape of the Sz = 1 magnon (right panel)272

is very close to a lorentzian (dashed orange line). In contrast, the lineshape of the higher273

energy Sz = −1 magnon (left panel) is clearly not a lorentzian.274

Another consequence of the coupling between magnons and Stoner excitations is a renor-275

malization of magnon energies relative to those predicted by a localized spin model. In fig. 9276

we compare the dispersion relation of magnons for the insulating altermagnet in the inter-277

mediate coupling regime, extracted from the fermionica model, to the energies of linearized278
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Figure 9: Dispersion relation for magnons in an insulating altermagnet in the inter-
mediate coupling regime (U = 3.5τ). The Heisenberg model used to fit the RPA
energies includes up to third-neighbor exchange.

Holstein-Primakoff magnons of a localized spins model, with exchanges up to third neighbors.279

The exchange parameters of the localized spin model have been obtained from a fit to the280

fermionic model energies. Although the main qualitative features of the dispersion are cap-281

tured by the localized spins model, it does a poor job of matching quantitatively the magnon282

energies over the whole Brillouin zone, since the spin only model cannot capture the renor-283

malization of the magnon energies by Stoner excitations.284

To illustrate the effect of the coupling to the Stoner continuum we plot, in fig. 10, the285

spectral densities for magnons with Sz = −1 (ρ+−) and Sz = 1 (ρ−+). Notice that the lineshape286

of the Sz = −1 magnon (left panel) is clearly not a lorentzian, whereas the Sz = 1 magnon is287

well fitted by a lorentzian with a finite linewidth, denoting a finite lifetime.288

E Directionality of the magnon spectrum in the insulating regime289

(intermediate coupling).290

Here we illustrate the directional dependence of the magnon energies for the intermediate291

coupling (U = 3.5τ) insulating case (figure 11). The main difference between this case and292

the metallic and slightly doped cases is that the magnons appear as well-defined collective293

excitation for all directions of propagations (compare with fig. 5 of the main text).294

A very good agreement between the predictions of the fermionic model and those of the295

spin-only model is expected for insulating magnets in general; here the less-than-perfect agree-296

ment can be partially attributed to the influence of Stoner excitations for wave vectors close297

to the edges of the Brillouin zone. Fig. XXX in the SM shows that the spectral density for high-298

energy, short wavelength magnons are significantly broadened, a consequence of damping by299

Stoner excitations. [11,20] Another possible reason for the disagreem300

This is due to the continuum of Stoner modes with vanishingly small energies and wave301

numbers, coming from states around the two Fermi surface pockets with opposite spins cen-302

tered at (πa , πa ) (see Fig. 8 of appendix C). As the magnon energy increases (and wavelength303

decreases), the lifetime of one of the polarizations has a slight monotonic decrease over the304

whole energy range, while for the opposite polarization it has similar behaviour up to λ≲ 4a,305
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Figure 10: Spectral density of insulating magnons in the intermediate regime
(U = 3.5τ), for wave vector q⃗ = (πa , 0). The left and right panels correspond to
Sz = −1 and Sz = 1 magnons, respectively.

where the lineshape starts to change drastically, leading to the disappearance of the magnon306

signal altogether. This is shown in fig. 4 for propagation along the x direction. In fact, the307

shape of ρ−+ deviates so much from the Lorentzian shape (associated with long-lived quasi-308

particles) that the Sz = 1 magnon essentially vanishes. This time the culprit is the Stoner309

continuum associated with single-particle excitations from the ↓ states around (πa , 0) to the310

↑ states around (πa , πa ), whose spectral density is shown in the right bottom panel of fig. 4).311

The large spectral density for these single-particle spin flip excitations occur for wave vectors312

predominantly pointing along the x direction, thus producing highly anisotropic, polarization313

dependent damping rates. In contrast, the spectral density for single-particle excitations with314

Sz = −1 propagating along x , shown in the left-bottom panel of fig. 4, is very small over the315

whole (qx ,ħhΩ) plane. This ensures the Sz = −1 magnons propagating along x are well-defined316

collective excitations over their whole bandwith. For magnons propagating along y hte picture317

is reversed, with Sz = −1 magnons strongly suppressed for wavelengths λ≲ 5a.318

For wave vectors along the line qx = qy , where magnons of both polarizations are de-319

generate, the spectral densities for both Sz = ±1 magnons become featureless for λ ≲ 4a,320

indicating that magnons along that direction are completely suppressed by damping. This is321

shown in fig. 3a, where we plot the spectral density as a function of energy for selected wave322

numbers. Once again, this suppression can be understood as a result of critical damping by323

the Stoner continua connecting states around the Fermi surface pockets centered at (0, πa ) and324

(πa , 0) to the states around the Fermi pocket centered at (πa ),
π
a ). In this case, though, both325

single-particle spin flips are allowed, ↑−→↓ and ↓−→↑.326
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Figure 11: Directionality of magnons in an insulator. We plot the magnon spec-
tral densities, as a function propagation angle, for a fixed wavelength (10a

3 ) for an
insulating altermagnet. The top panel shows ρ+−A (for the Sz = −1 polarization)
and the bottom panel shows ρ−+B (for the Sz = −1 polarization). The radial variable
represents energy (in units of the nearest-neighbor hopping τ).
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