
SciPost Physics Submission

Giant spatial anisotropy of magnon Landau damping in
altermagnets

António T. Costa1,2⋆, João C. G. Henriques1,3 and Joaquín Fernández-Rossier1,4

1 International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330
Braga, Portugal

2 Physics Center of Minho and Porto Universities (CF-UM-UP), Universidade do Minho,
Campus de Gualtar, 4710-057 Braga, Portugal

3 Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
4 On permanent leave from Departamento de Física Aplicada, Universidad de Alicante,

03690 San Vicente del Raspeig, Spain

⋆ antonio.costa@inl.int ,

Abstract

Altermagnets are a new class of magnetic materials with zero net magnetization (like
antiferromagnets) but spin-split electronic bands (like ferromagnets) over a fraction of
reciprocal space. As in antiferromagnets, magnons in altermagnets come in two flavours,
that either add one or remove one unit of spin to the S = 0 ground state. However, in
altermagnets these two magnon modes are non-degenerate along some directions in
reciprocal space. Here we show that the lifetime of altermagnetic magnons, due to Lan-
dau damping caused by coupling to Stoner modes, has a very strong dependence on both
flavour and direction. Strikingly, coupling to Stoner modes leads to a complete suppres-
sion of magnon propagation along selected spatial directions. This giant anisotropy will
impact electronic, spin, and energy transport properties and may be exploited in spin-
tronic applications.
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1 Introduction18

The recent recognition of altermagnets as a new class of magnetic materials [1–3], originally19

predicted by Pekar and Rashba in 1964 [4], has been a very exciting development for both20

condensed matter and materials physics. In a static configuration, altermagnets camouflage21

very well as antiferromagnets; however, when you look under the hood the disguise is given22

away by the spin-polarized electronic bands. It is their dynamics, however, that reveal their23

true colors [5,6]. To understand the dynamical properties of a magnetic system it is essential24

to look at its elementary spin excitations, or magnons [7].25

A magnon in a ferromagnetic solid is usually associated to processes by which the total mag-26

netization of the sample is lowered by the equivalent of a quantum of angular momentum, ħh,27

and associated with the spin-lowering operator S−. We thus say that a ferromagnetic magnon28

carries spin Sz = −1. In terms of elementary electronic processes, generating a magnon con-29

sists in promoting an electron from the majority spin band (↑) to the minority spin band (↓),30

and is associated with the operator a†
↓a↑. By virtue of electron-electron interactions, the elec-31

tron and the hole involved in this process form a bound state, whose energy depends on the32

net crystal momentum of the pair.33

In antiferromagnets, magnons can have either Sz = −1 or Sz = 1, associated with lowering34

the spin of the ↑ sublattice or raising the spin of the ↓ sublattice. Due to the complete equiva-35

lence between the two spin directions, the two kinds of antiferromagnetic magnons (Sz = ±1)36

have identical energies [8]. On the other hand, it has been noted [2,9] that magnons in alter-37

magnets have unique features when compared to their antiferromagnetic counterparts. The38

most noticeable difference is that Sz = −1 and Sz = 1 magnons have distinct energies along39

certain directions in the reciprocal space, the same direction associated with the spin-split40

electronic bands.41

In metallic magnets, magnons have finite lifetimes, due to the fact that they can decay42

into uncorrelated electron-hole pairs, also known as a Stoner excitations [10, 11]. The decay43

probability (hence the inverse of the magnon lifetime) is proportional to the spectral density44

associated with the Stoner excitations, which usually increases monotonically with energy for45

a fixed wavevector. Thus, magnon lifetimes typically decrease monotonically as the magnon46

energy increases [12].47

It has been assumed hitherto [9] that, due to the distinct energies of Sz = ±1 magnons48

in altermagnets, their lifetimes would also be different, in an almost trivial manner. Other49

works have looked into the effects of magnon-magnon interactions on magnon lifetimes, a50

mechanism that is supposed to be relevant for insulating magnets. [13] Apart from that, very51

little attention has been paid to the lifetime of magnons in altermagnets, and most theoretical52

approaches employ spin-only models in their description [9,14–16].53

Here we show that Landau damping by Stoner modes in metallic and slightly doped al-54
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termagnets has highly non-trivial consequences. Specifically, the combination between the55

peculiar symmetry of the altermagnet and the damping by Stoner excitations makes magnons56

in itinerant altermagnets completely distinct from their antiferro- and ferromagnetic counter-57

parts. The magnons acquire a strong frequency- and spin-dependent directionality, which can58

potentially be exploited as a resource in spintronics devices [17].59

2 Model and mean-field ground state60

We model the electronic structure of altermagnets using a Hamiltonian proposed in ref. [18],61

which is essentially a Hubbard model with an especially chosen hopping structure that realises62

an altermagnetic symmetry,63

H =
∑

l l ′

∑

µµ′

∑

σ

τ
µµ′

l l ′ c†
lµσcl ′µ′σ + U
∑

l,µ

nlµ↑nlµ↓, (1)

where nlµσ ≡ c†
lµσclµσ, l and l ′ label unit cells, µ and µ′ label sublattices (A or B) and σ labels64

the spin projection along the z axis. The hopping matrix τµµ
′

l l ′ elements have the following65

structure: nearest-naighnor hopping τ, between different sublattices, is adopted as the energy66

unit (solid lines in Fig. 1). Second-neighbor hopping (between identical sublattices) is given by67

τ′(1±δ) with different signs for different sublattices. These are indicated in Fig. 1 as dashed68

and dotted lines. The intra-atomic interaction parameter U can be chosen to place the system69

in either the metallic or insulating altermagnetic phase; for the value of diagonal hopping we70

adopted in this work, 2τ ≲ U ≲ 3τ yields a metallic altermagnetic phase, whereas U ≳ 3τ71

produces the insulating altermagnetic phase. The complete mean-field phase diagram of this72

model has been explored in Ref. [18]. Here we will choose two representative points, one in73

the insulating and one in the metallic region, and study the elementary spin excitations above74

their respective mean-field ground states. The mean-field approximation we employ amounts75

to the following replacement,76

U
∑

l,µ

nlµ↑nlµ↓ −→

U
2

∑

l,µ

�

(n̄µl + m̄µl)nlµ↓ + (n̄µl − m̄µl)nlµ↑
�

, (2)

with n̄µl ≡ 〈nlµ↑〉+ 〈nlµ↓〉 and m̄µl ≡ 〈nlµ↑〉−〈nlµ↓〉, plus a constant term that can be safely ig-77

nored. The average occupancies n̄µl and magnetic moments m̄µl are determined self-consistently.78

We obtain the magnon spectrum of altermagnets by studying the transverse spin suscepti-79

bilities,80

χ+−µν (r⃗l ′ − r⃗l , t)≡ −iθ (t)
¬�

S+lµ(t), S−l ′ν(0)
�¶

(3)

and81

χ−+µν (r⃗l ′ − r⃗l , t)≡ −iθ (t)
¬�

S−lµ(t), S+l ′ν(0)
�¶

, (4)

where t is the time, S−lµ ≡ c†
lµ↓clµ↑, (S+lµ = (S

−
lµ)

†) is the operator that creates a spin excitation82

with Sz = −1 (Sz = 1) at cell l in the sublattice µ, r⃗l is the position of unit cell l, and θ (t)83

is the Heaviside unit step function. These two-time correlation functions cannot be computed84

exactly for an interacting model such as the one defined in Eq. 1; the simplest approach that85

can describe magnons is the so-called random phase approximation (RPA), in which the inter-86

action is taken into account, to all orders in perturbation theory, between the electron and the87

hole that form the spin-flip excitation [10]. The RPA relates the transverse interacting suscep-88

tibilities χ⊥ (⊥≡ +− or −+) to the mean-field susceptibilities χ̄⊥, which are the same Green89
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Figure 1: Schematic representation of the model altermagnet on a square lattice
defined by primitive vectors a⃗1 and a⃗2, with |a⃗1| = |a⃗1| = a. Blue and red circles
indicate atomic sites belonging to different sublattices. The solid line connecting
different sublattices represents the nearest-neighbor hopping τ. Dashed and dotted
lines represent the alternating second neighbor hoppings τ′(1± δ). The lightly col-
ored rectangle indicates the unit cells.
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functions defined in Eqs. 3 and 4, with the thermal average 〈·〉 evaluated for the mean-field90

configuration. For the model considered here, after Fourier transforming both in time and91

position, the RPA equations are92

χ+−µν (Q) = χ̄
+−
µν (Q)− U
∑

ξ

χ̄+−µξ (Q)χ
+−
ξν (Q), (5)

where Q ≡ (q⃗,ħhΩ). We obtain an analogous expression for χ−+. The spectral density associ-93

ated with magnons, projected on sublattice µ, is given by94

ρ⊥µ (Q) = −
1
π

Imχ⊥µµ(Q) (6)

where⊥ can be either+− or−+, denoting the transversal character of these response functions95

with respect to the equilibrium staggered magnetization (Néel vector). Magnon energiesħhΩ(q⃗)96

are associated with the positions of the peaks of ρ+− (for the Sz = −1 magnons) or ρ−+ (for97

the Sz = 1 magnons), at fixed wave-vector q⃗. Analogously, magnon lifetimes are defined as98

the inverse of the full width at half-maximum of the magnon peaks.99

2.1 Mean-field results100

An insulating altermagnetic state can be obtained by choosing U ≳ 3τ; however, for 3τ≲ U ≲ 10τ101

the mean-field configuration belongs to an intermediate coupling regime, for which the spin102

dynamics can not yet be properly described by a spin-only (Heisenberg-like) model1. Thus, to103

benchmark our fermionic model against a spin model, we chose U = 10τ, together with the104

hopping values τ′ = 0.17τ and δ = 0.83. The self-consistent mean-field solution gives the105

bands shown in Fig. 6 of appendix A, with a staggered magnetic moment mA−mB = 1.86µB106

per unit cell. For the reciprocal space path we plotted in Fig. 6, the spin splitting is zero only107

along the line qy = qx . Along the line qy =
π
a −qx there is the characteristic crossing between108

the ↑ and ↓ spin bands, associated with the altermagnetic symmetry.109

The metallic altermagnetic state can be obtained either by tweaking the hopping param-110

eters, as shown in ref. [18], or by reducing the Hubbard parameter U . We chose the latter111

option to minimize the differences between the shapes of the electronic bands in the metallic112

and insulating states. By setting τ′ = 0.17τ, δ = 0.83 and U = 2.5τ we obtain the metal-113

lic altermagnetic bands shown in Fig. 6 of appendix A, with a staggered magnetic moment114

mA−mB = 0.74µB per unit cell.115

3 Magnons116

To benchmark our methodology, we first analyze the spin excitations of the insulating alter-117

magnet in the strong coupling limit (U = 10τ), for which the spin model results should be118

valid [15,20]. By scanning the spectral densities ρ+− and ρ−+ in the (ħhΩ, q⃗) space we obtain119

the dispersion relations for Sz = −1 magnons (+−) and for Sz = 1 magnons (−+), shown in120

Fig. 2. The energy splitting between the two polarizations, one of the hallmarks of altermag-121

netism, is clearly seen along high-symmetry directions in the Brillouin zone. We also show122

the dispersion relation for (linearized) Holstein-Primakoff magnons, extracted from a Heisen-123

berg model for the altermagnet, including up to third-neighbor exchange. As expected, the124

agreement with the RPA treatment of the fermionic model is very good in this case.125

1For a discussion of the partial failure of spin-only models for this case, we refere the reader to Appendix D. A
similar discussion appears in Ref. [19].
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Figure 2: Dispersion relation for magnons in an insulating altermagnet in the strong
coupling regime (U = 10τ). The Heisenberg model used to fit the RPA energies
includes up to third-neighbor exchange.

Along specific lines within the Brillouin zone we observe a behavior analogous to the “band126

inversion” associated with topologically non-trivial electronic bands. For instance, along the127

reciprocal space path going from (πa , 0) to (0, πa ) there is a crossing between the Sz = −1 and128

the Sz = 1 magnon branches. In the presence of spin-orbit coupling a gap may appear at129

the crossing point ( π2a , π2a ), possibly accompanied by a finite Berry curvature. This crossing is130

also associated with the peculiar directional behavior of altermagnetic magnons. If we focus131

on magnons with one Sz value we see that the energy at the (πa , 0) point in reciprocal space132

(thus, propagating along the x direction in real space with wavelength λ = 2a) is ∼ 10%133

different from that of a magnon with the same wavelength propagating along the y direction,134

as seen in Fig. 2. This difference can be as large as 40% for different values of the model135

parameters, as illustrated in fig. 11 of the appendix E, where we plot the magnons spectral136

densities as a function of propagation direction, for a fixed wavelength. Similar differences137

are seen between the energies of the two magnon flavors in metallic altermagnets (Fig. 4).138

Combined with the fact that, for sufficiently small wavelengths (typically smaller than ∼ 5a)139

magnons with a well-defined Sz are strongly sublattice-polarized, this feature may be exploited140

to guide magnons in spintronics devices.141

3.1 Itinerant altermagnet142

We now turn our attention to the behaviour of magnons in itinerant altermagnets. In con-143

trast to the insulating case, it can be expected that their lifetime is limited by Landau damping144

by Stoner modes [10, 11, 21]. Magnons with energies exceeding single-particle spin-flip ex-145

citations (also known as Stoner excitations), can decay into the Stoner continuum [10]. The146

magnon lifetime is inversely proportional to the density of Stoner modes, which is given by147

the imaginary part of the mean-field transverse susceptibility χ̄⊥. The effect of damping for148

a conducting altermagnet (U = 2.5τ) is seen in the evolution of the spectral weight of spin149

excitations, shown along two different directions, (q, q) and (q, 0) with |q| < π
a , in Figure150

3a,b. For low energy, the spectral density has well defined peaks, whose position gives the151

magnon energy and the inverse of its linewidth gives the magnon lifetime. As the energies152

are increased, the peaks get broader and, above some energy threshold, they vanish into a153

continuum. Along the (q, q) direction, both Sz = ±1 excitations have the same spectral weight154
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(fig. 3a). In contrast, along the (q, 0) direction (fig. 3b), the Sz = −1 spin excitations have155

lorentzian spectral densities with relatively small linewidth in the whole wave number range,156

whereas the spectral density associated with the Sz = 1 spin excitations has a behavior similar157

to the (q, q) case. We thus find that, for itinerant altermagnets, magnons with a given Sz are158

only well defined along certain directions.159

To make the connection between magnon lifetimes and density of Stoner modes, it is useful160

to plot both magnons’ and Stoner excitations’ spectral densities as color-coded functions of161

energy and wave number, shown in fig. 4. By following the bright spots in the top left panel, it162

is possible to trace dispersion relations for the Sz = −1 magnons, in analogy to the insulating163

case. For the Sz = 1 magnon, the bright spots disappear around q ∼ 2π
5a . This can be correlated164

with the boundaries of the Stoner continuum for Sz = 1 spin excitations, plotted in the bottom165

right panel. In contrast, the density of Sz = −1 Stoner modes is uniformly small over the166

whole wave number and energy ranges where Sz = −1 magnons exist. A detailed discussion167

of the origin of the density of Stoner modes in terms of the geometry of the spin-polarized168

Fermi surface pockets of the metallic altermagnet is presented in Appendix C.169

The giant magnon-lifetime anisotropy is better seen in a color-coded polar plot of the170

magnon spectral density, for a fixed wavelength. The angular variable indicates the propa-171

gation direction, and the radial variable is the magnon energy. In fig. 5 we show such a plot172

for λ = 10a
3 (wave number q = 3π

5a ). The top-left panel shows the spectral density ρ+−A for173

Sz = −1 magnons, projected on sublattice A, and the top-right panel displays the equivalent174

quantity for sublattice B (ρ+−B ). It is clear that Sz = −1 magnons are strongly suppressed175

for angles ≳ 30◦, and the Sz = 1 magnons for angles ≲ 60◦. Such strong directionality is176

rarely seen for quasiparticles and elementary excitations, and is potentially very useful for ap-177

plications, especially when one considers the fact that magnons of wavelengths λ ≲ 4a live178

preferentially in one of the sublattices. Thus, it is in principle possible to excite magnons along179

specific directions by choosing their excitation frequency and the sublattice to excite. Selec-180

tively addressing the sublattice may be challenging in systems where spin sublattices have181

atomic size, but not so much in synthetic magnets, where spin sublattices are associated with182

molecules containing tens of atoms [20,22].183

We have also considered the case of a doped insulating altermagnet, by choosing U = 3.5τ184

and imposing an electronic occupation of 1.05 electrons per atomic site. In this case the185

anisotropic suppression of magnons is observed for propagation angles 30◦ ≲ θ ≲ 75◦, as186

shown in the bottom panels of fig. 5. Thus, whenever it is possible to dope an insulating al-187

termagnet electrostatically, it is in principle also possible to control electrostatically the prop-188

agation direction of magnons.189

The effects of a giant spatial anisotropy in magnon lifetimes are likely to be noticed on190

several transport coefficients of metallic altermagnets [23]. Electronic transport is expected to191

be impacted by electron-magnon scattering, especially at low temperatures. Moreover, with192

current high-resolution spin-polarized electron energy loss spectroscopy [24,25] it should be193

possible to probe experimentally the lifetime anisotropy predicted by our theoretical analysis.194

We would like to emphasize that the lifetimes of magnons in itinerant magnets is related195

to the frequency and wave-vector dependent spectral density of Stoner modes, as detailed in196

the appendix B. The authors of a previous work [9] have estimated the relative intensity of197

magnon damping, as a function of magnon wave vector only, by integrating the spectral density198

of Stoner excitations over the whole magnon band width. This quantity can not be associated199

with the lifetime of individual magnons, although it can give an idea of the overall importance200

of Stoner excitations for the magnon spectrum. The relevant quantity for determining the201

lifetime of a magnon with well-defined energy and momentum is the mean-field transverse202

spin susceptibility calculated at the energy of the magnon (the pole of the RPA transverse spin203

susceptibility), as discussed in appendix B.204
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Figure 3: Top: spin excitation spectral densities in the metallic phase (U = 2.5τ),
along q⃗ = 1p

(2)
(q, q) (a) and q⃗ = (q, 0) (b), as a function of energy, for selected wave

numbers. To improve visualization, the spectral density has been multiplied by 100
for the three largest wavenumbers (q = 0.3, 0.4 and 0.5), by 50 for q = 0.25 and
by 5 for q = 0.2. In (b), solid lines correspond to ρ−+, associated with the Sz = 1
spin excitations, and dashed lines correspond to ρ+−, associated with the Sz = −1
spin excitations. Bottom: Lifetimes of the metallic magnons (U = 2.5τ) propagating
along the q⃗ = 1p

(2)
(q, q) (c) and q⃗ = (q, 0) (d), as a function of wave number, for

Sz = −1 (squares) and Sz = 1 (stars) spin excitations.
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Figure 4: Top: Spectral densities for Sz = −1 (ρ+−, left) and Sz = 1 (ρ−+, right)
metallic magnons (U = 2.5τ) propagating along the x direction, as a function of
wave number and energy. Bottom: Spectral densities for Sz = −1 (ρ̄+−, left) and
Sz = 1 (ρ̄−+, right) Stoner excitations (single-particle spin flips) propagating along
the x direction, as a function of wave number and energy.

4 Conclusion205

We have studied the intrinsic damping of magnons in altermagnets. These collective modes206

come with two values of Sz = ±1. Contrary to their counterparts in ferro- and antiferromag-207

nets, we find a giant spatial anisotropy of magnon lifetimes in itinerant altermagnets. We find208

that, for a given direction, only magnons with a given sign of Sz survive without melting due to209

Landau damping by Stoner modes. The ultimate reason for this unique behaviour relies on the210

existence of spin-polarized Fermi surface pockets that characterizes altermagnets. Therefore,211

we expect our predictions are generic of all itinerant altermagnets, rather than model specific212

and will have to be considered in future magnonic applications.213
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Figure 6: Electron energy bands for the strong-coupling insulating (left panel,
U = 10τ) and metallic (right panel, U = 2.5τ) mean-field ground state configu-
ration of the altermagnet Hamiltonian (eq. 1 of the main text), with τ′ = 0.16τ and
δ = 0.83. Red and blue lines represent ↑ and ↓ spin sub-bands. The black dashed
line marks the Fermi energy.

A Mean-field electronic structure222

We present the electronic bands corresponding to the mean-field configurations considered in223

the letter: strong-coupling insulating (U = 10τ, fig. 6, left panel), metallic (U = 2.5τ, fig 6,224

right panel), and slightly doped insulating (U = 3.5τ, fig. 7, right panel). Both metallic and225

insulating phases have half-filled bands (one electron per lattice site), whereas the doped phase226

has 1.05 electrons per lattice site. Table 1 shows the values of the Hamiltonian parameters227

associated with the different phases, as well as the mean-field staggered magnetic moment228

per unit cell. We also show the intermediate-coupling insulating case (U = 3.5τ, fig. 7, left229

panel).230

τ′ δ U |m↑ −m↓|(µB)
Insulating (strong coupling) 0.16 0.83 10 1.86

Insulating (intermediate coupling) 0.16 0.83 3.5 1.28
Metallic 0.16 0.83 2.5 0.74

Table 1: Values for the Hamiltonian parameters (in units of the nearest-neighbor
hopping τ) used in this work, and respective staggered magnetic moment per unit
cell, in units of Bohr magnetons µB.

B Relationship between the density of Stoner modes and the magnon231

lifetime232

The standard random phase approximation (RPA) applied to the transverse spin susceptibility233

of a Hubbard Hamiltonian results in a relationship between the magnon Green function χ+−234

and the mean-field Green function χ̄+−,235

χ+−(q⃗,ħhΩ) =
χ̄+−(q⃗,ħhΩ)

1+ Uχ̄+−(q⃗,ħhΩ)
. (B.1)
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Figure 7: Electron energy bands for the mean-field ground state configuration of
the altermagnet Hamiltonian (eq. 1 of the main text) in the insulating intermediate
coupling regime (U = 3.5τ) at half-filling (left panel) and away from half-filling
(1.05 electrons per lattice site, right panel). The values for the hopping parameters
are τ′ = 0.16τ, δ = 0.83. Red and blue lines represent ↑ and ↓ spin sub-bands. The
black dashed line marks the Fermi energy.

We would like to cast this expression in a form that resembles a Green function with a self-236

energy correction,237

G =
1

Ḡ−1 +Σ
, (B.2)

where Ḡ is the bare Green function and Σ is the self-energy. For this it is useful to split all238

quantities into their real and imaginary parts, denoted below by R and I subscripts. The real239

and imaginary parts of the magnon Green function then become (we will omit the energy and240

wave vector arguments for now to avoid cluttering the expressions)241

Re
�

χ+−
�

=
χ̄+−R (1+ Uχ̄+−R ) + U(χ̄+−I )

2

(1+ Uχ̄+−R )2 + (Uχ̄
+−
I )2

,

Im
�

χ+−
�

=
χ̄+−I

(1+ Uχ̄+−R )2 + (Uχ̄
+−
I )2

. (B.3)

Similarly,242

Re [G] =
Ḡ−1 +ΣR

(Ḡ−1 +ΣR)2 +Σ2
I

,

Im [G] = −
ΣI

(Ḡ−1 +ΣR)2 +Σ2
I

. (B.4)

By comparing the imaginary parts of the generic Green function G to Im
�

χ+−
�

we notice243

immediately a clear analogy between Uχ̄+−I and ΣI . Notice also that, as in the electronic case,244

magnon damping is inextricably tied to shifts in magnon energy, through the real part of the245

self-energy ΣR. It is clear, then, that the lifetime of a magnon with wave vector q⃗ and energy246

ħhΩ(q⃗) is determinmed by the spectral density of Stoner modes with wave vector q⃗ and energy247

ħhΩ(q⃗).248

C Origin of the anisotropic magnon lifetime249

To further shed light on the mechanism behind the lifetime anisotropy of metallic magnons,250

it is useful to look at constant energy contours of the electronic bands in the mean-field al-251
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Figure 8: Contours of the electronic bands around the Fermi level; blue curves are
for ↑ spin bands, red curves for ↓. Left panel (↑−→↓): occupied ↑ states (shades of
blue, at energies EF − 0.5τ, EF − 0.25τ and EF ) and unoccupied ↓ states (shades of
red, EF , EF + 0.25τ and EF + 0.5τ). Right panel (↓−→↑): occupied ↓ states (shades
of red, at energies EF −0.5τ, EF −0.25τ and EF ) and unoccupied ↑ states (shades of
blue, EF , EF + 0.25τ and EF + 0.5τ).

termagnetic configuration. The goal is to identify qualitatively the direction dependence of252

single-particle spin-flip transitions that give rise to the anisotropic density of Stoner modes.253

In figure 8 we show three constant energy contours for each spin direction, blue contours for254

↑ spin electrons, red contours for ↓. In the left panel we show contours for occupied ↑ states255

(including the Fermi contour at zero energy) and unoccupied ↓ states (also including the Fermi256

contour at zero energy), relevant for Sz = −1 spin flips (↓−→↑). Thus, in the left panel we257

can identify possible single-particle spin-flip transitions by connecting blue and red contours.258

In the left panel we see that, apart from the very small pockets at (πa , πa ), there is no horizon-259

tal line connecting blue and red contours. The consequence is that the density of Sz = −1260

Stoner modes with wave vectors along the x direction is very small, and Sz = −1 magnons261

propagating along the x direction are long-lived. On the other hand, there are plenty of con-262

nections between blue and red contours at angles ≳ 30◦, meaning that magnons propagating263

along those directions will be substantially damped. In the right panel we show the analogous264

information for Sz = 1 spin flips (↓−→↑): occupied ↓ states (including the Fermi contour at265

zero energy) and unoccupied ↑ states (also including the Fermi contour at zero energy). Now266

it is clear that there are many possible single- particle spin-flip transitions with wave vectors267

along x , whereas very few with wave vectors along y , thus meaning that Sz = 1 magnons are268

strongly damped when propagating along x but long-lived when propagating along x .269

D Insulating altermagnet in the intermediate coupling regime (U = 3.5τ).270

As mentioned in the main main text, the insulating altermagnetic phase of the model is ob-271

tained for U ≳ 3τ. In this regime, although the electronic bands are clearly those of an272

altermagnetic insulator (see the left panel of figure 7), the magnons bear marks of itinerant273

magnetism, especially at short wavelengths. A clear signature of itinerant behavior is the fact274

that the magnon lineshape acquires a finite linewidth and, at large enough energies, deviates275

significantly from a a lorentzian shape. This is seen in fig. 10 for a short wavelength magnon276
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Figure 9: Dispersion relation for magnons in an insulating altermagnet in the inter-
mediate coupling regime (U = 3.5τ). The Heisenberg model used to fit the RPA
energies includes up to third-neighbor exchange.

(λ= 2a) propagating along the x direction. The lineshape of the Sz = 1 magnon (right panel)277

is very close to a lorentzian (dashed orange line). In contrast, the lineshape of the higher278

energy Sz = −1 magnon (left panel) is clearly not a lorentzian.279

Another consequence of the coupling between magnons and Stoner excitations is a renor-280

malization of magnon energies relative to those predicted by a localized spin model. In fig. 9281

we compare the dispersion relation of magnons for the insulating altermagnet in the inter-282

mediate coupling regime, extracted from the fermionica model, to the energies of linearized283

Holstein-Primakoff magnons of a localized spins model, with exchanges up to third neighbors.284

The exchange parameters of the localized spin model have been obtained from a fit to the285

fermionic model energies. Although the main qualitative features of the dispersion are cap-286

tured by the localized spins model, it does a poor job of matching quantitatively the magnon287

energies over the whole Brillouin zone, since the spin only model cannot capture the renor-288

malization of the magnon energies by Stoner excitations.289

To illustrate the effect of the coupling to the Stoner continuum we plot, in fig. 10, the290

spectral densities for magnons with Sz = −1 (ρ+−) and Sz = 1 (ρ−+). Notice that the lineshape291

of the Sz = −1 magnon (left panel) is clearly not a lorentzian, whereas the Sz = 1 magnon is292

well fitted by a lorentzian with a finite linewidth, denoting a finite lifetime.293

E Directionality of the magnon spectrum in the insulating regime294

(intermediate coupling).295

Here we illustrate the directional dependence of the magnon energies for the intermediate296

coupling (U = 3.5τ) insulating case (figure 11). The main difference between this case and297

the metallic and slightly doped cases is that the magnons appear as well-defined collective298

excitation for all directions of propagations. In Fig. 5 of the main text, illustrating the metallic299

case, it is clear that, for certain directions of propagation, the magnon feature in the spec-300

tral density is suppressed. For the insulating intermediae coupling case magnons propagating301

along all directions are well-defined, but their energies are strongly anisotropic, as illustrated302

in Fig. 11. The smallest magnon energy for that wavelength (λ = 10a
3 ) is ∼ 0.65τ, whereas303
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Figure 10: Spectral density of insulating magnons in the intermediate regime
(U = 3.5τ), for wave vector q⃗ = (πa , 0). The left and right panels correspond to
Sz = −1 and Sz = 1 magnons, respectively.

the largest magnon energy is ∼ 0.9τ.304
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Figure 11: Directionality of magnons in an insulator. We plot the magnon spec-
tral densities, as a function propagation angle, for a fixed wavelength (10a

3 ) for an
insulating altermagnet. The top panel shows ρ+−A (for the Sz = −1 polarization)
and the bottom panel shows ρ−+B (for the Sz = −1 polarization). The radial variable
represents energy (in units of the nearest-neighbor hopping τ).
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