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Abstract

We propose an efficient method to perform on-shell matching calculations in effective
field theories. The standard off-shell approach to matching requires the use of a Green’s
basis that includes redundant and evanescent operators. The reduction of such a basis
to a physical one is often highly non-trivial, difficult to automate and error prone. Our
proposal is based on a numerical solution of the corresponding on-shell matching equa-
tions, which automatically implements in a trivial way the delicate cancellation between
the non-local terms in the full theory and those in the effective one. The use of rational
on-shell kinematics ensures an exact analytic solution despite the numerical procedure.
In this way we only need a physical basis to perform the matching. Our procedure can
be used to reduce any Green’s basis to an arbitrary physical one, or to translate be-
tween physical bases; to renormalize arbitrary effective Lagrangians, directly in terms
of a physical basis; and to perform finite matching, including evanescent contributions,
as we discuss with explicit examples.
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1 Introduction

Effective field theories (EFTs) have become the standard language in the search of physics
beyond the Standard Model (SM). In the presence of a mass gap between the scale of new
physics and the one that experiments are currently probing, EFTs provide a model-independent
parametrization of experimental data in the form of global fits [1–10]. Indeed, all experimen-
tal observables can be described in terms of a finite number of Wilson coefficients (WCs), the
couplings of local operators in the effective Lagrangian. A minimal set of operators needed to
parameterize experimental observables at a given order in the EFT power counting is called
a physical basis. Some phenomenologically relevant examples include the Warsaw basis [11]
for the Standard Model EFT or SMEFT (see [12,13] for recent reviews) at mass dimension 6,
the counterpart with right-handed neutrinos or NSMEFT [14–18], the low-energy versions of
these, in which the top quark, the W , Z and Higgs bosons are integrated out, named respec-
tively LEFT [19] and NLEFT [20–23], as well as the EFT for the SM extended with axion-like
particles [24–27]. Bases for operators of these theories at even higher dimension are also
known [28–33].

The model-independent global fits can then be used to extract information on specific
new physics models by matching them onto the EFT. This matching consists in computing
the WCs of the EFT in terms of the parameters (couplings and masses) of the new physics
model, that we will refer to as full model hereafter, and it can be performed either functionally
or diagrammatically. In the functional approach, heavy physics is integrated out directly in
the path integral, leaving a non-local effective action that can be power expanded in local
operators. The resulting operators are in general not in a physical basis, and they have to
be reduced to the physical basis by means of field redefinitions [34, 35] (equivalent to the
application of the equations of motion at the linear level). This process, while straightforward
in principle, can become quite tedious and error prone at higher orders. It can be automated,
as done in Matchete [36], although it currently only allows for Warsaw-like bases and it is
non-trivial to develop a robust algorithm that allows for a free choice of physical basis by the
user.

The alternative, diagrammatic approach to matching has been recently fully automated in
MatchMakerEFT [37]. Two different paths can be taken here. The first is performing an off-
shell matching, in which one-light-particle-irreducible (1lPI) Green’s functions are computed
in the full model and in the EFT for arbitrary off-shell kinematics. Their difference, when ex-
panded in the heavy scales, is local and can therefore be matched by local operators in the
EFT. This approach, which is the one currently implemented in MatchMakerEFT, has many
advantages, including the fact that only a relatively small (1lPI) number of diagrams has to be
computed; that the hard region contribution of the full model is directly local and corresponds
to the matching contribution; and that the off-shell kinematics provide a significant amount
of redundancy that can act as a very efficient cross-check of the calculation. The main disad-
vantage is that the basis of EFT interactions, denoted as Green’s basis, must involve redundant
operators to parameterize the off-shell Green’s functions. These operators are equivalent to
those in a physical basis for any observable and can therefore be reduced via field redefini-
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tions as in the functional approach, this being equally inconvenient. 1 Furthermore, if only
gauge invariant operators are to be included in the Green’s basis, then the background field
method [38] must be used, entailing some extra complications.

The second and alternative possibility within the diagrammatic approach is to perform the
matching on-shell [39]. On-shell matching requires the calculation of all connected, ampu-
tated Green’s functions, including light bridges (tree level propagators of light particles con-
necting two different parts of the corresponding diagram) in the full model and in the EFT.
External particles must be put on-shell and be dressed with the corresponding factors of the
wave-function renormalization constant. The great advantage of this approach is that there
is no need to ever use a Green’s basis, as all the physical observables can be parameterized
directly in terms of the physical operators. Furthermore, any physical basis can be used, not
being tied to the one enforced by the corresponding reduction algorithm. There are some
disadvantages that have prevented the development of an automated on-shell matching algo-
rithm so far, though. One is that the number of diagrams to consider is, a priori, much larger
than in the off-shell case. The second, more dramatic one, is that the presence of light bridges
makes both amplitudes, in the full model and in the EFT, non-local and, while their differ-
ence is guaranteed to be, it is very difficult to keep track of the delicate analytic cancellation
between the non-localities in the two theories.

In this work we propose a numerical approach to on-shell matching that very efficiently
side-steps this second disadvantage. 2 Our method can be used for any type of matching
calculation, including tree-level or loop order finite matching or EFT renormalization and cal-
culation of anomalous dimensions. It also prevents the need of using, and even defining, an
evanescent basis of operators, as we will discuss below. In complicated models, with many
particles and couplings, the large number of diagrams to be computed makes on-shell match-
ing less efficient than the standard off-shell one. Even in this case our approach can be used to
reduce, in a fully automated way, any Green’s basis to an arbitrary physical one or to translate
between arbitrary physical bases. Existing computer tools can be then used to perform the
off-shell matching to any Green’s basis, and then our algorithm be used to perform the reduc-
tion (which, we remind the reader, needs to be done only once for each choice of Green’s and
physical bases).

Nonetheless, the very fact that on-shell matching relies on the computation of connected
diagrams means that a certain amplitude with a large number of external particles will receive
contributions from many different effective operators and can, therefore, be used to match
many WCs at once. This is opposed to off-shell matching, in which the WCs of operators with
different field content requires the calculation of different amplitudes. Thus, the larger number
of diagrams is often compensated by the fact that a smaller number of amplitudes is needed to
match all the WCs in the physical basis. The extra redundancy naturally appearing in off-shell
matching, due to the freedom of using arbitrary off-shell external kinematics, is also present in
our on-shell procedure. Indeed, since we use numerical kinematics, we can consider a larger
number of on-shell kinematic configurations than strictly needed. The over constrained system
of equations will have solution only if the calculation is correct. A final advantage of on-shell
matching is that, since only physical observables are computed, gauge invariance is manifest
even without the need of using the background field method, thus simplifying the construction
of models.

1Technically, the procedure is slightly different. In the diagrammatic approach the Green’s basis is fixed implying
that a complete Green’s basis must be worked out from the beginning, but the reduction has to be done only once.
In the functional approach the basis is not an input, but the resulting EFT Lagrangian must be reduced to a physical
basis on a case-by-case analysis.

2See [40] for a similar approach to ours but with an analytic cancellation of non-local contributions that makes
the procedure rather cumbersome and [41] for a recent proposal that uses amplitude methods to perform on-shell
matching.
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The rest of this article is organized as follows. We describe the algorithm for doing on-shell
matching in Section 2, making special emphasis on how to handle evanescent interactions. In
Section 3, we provide examples of results obtained using our algorithm, including the re-
duction of Green’s bases onto physical ones, the computation of beta functions as well the
computation of finite matching contributions, including evanescent shifts. Some of these re-
sults extend previous knowledge in the literature. We conclude in Section 4, and leave some
technical details for the appendices.

2 Numerical on-shell matching

The on-shell matching of a full model onto an EFT is performed by taking the difference of
physical (connected, amputated, with external on-shell kinematics and the relevant factors
of wave function renormalization constants) amplitudes in both theories. While the physical
amplitudes, even after expanding in the heavy scales, are in general non-local, the difference
is local, and can be absorbed in the WCs of local operators. Since we are matching physical
amplitudes, we only need the WCs of the operators in a physical basis to match all the different
contributions.

However, contrary to what happens in off-shell matching, in which the expansion in heavy
scales together with the calculation of only the hard region contribution to loop integrals pro-
vides directly the local difference and no further calculation in the EFT is needed, here we
need to compute the tree level EFT amplitude and cancel the non-local terms in the difference.
Given the long intermediate expressions appearing in the calculation of the amplitudes, the
analytic cancellation of the non-local terms becomes a formidable task. These non-localities
arise from the presence of light bridges in the amplitudes and appear as poles in combinations
of external momenta. Our proposal to avoid the explicit calculation of the cancellations is to
compute the amplitudes for numerical values of the on-shell kinematics. This way the ampli-
tudes are trivial to compute and the non-localities will cancel automatically. A failure of such
cancellation, because of a mistake in the calculation or the lack of physical operators in the
EFT will result in an inconsistent system of equations with no solution.

We perform the matching by subtracting renormalized physical amplitudes. We compute
the physical amplitudes using dimensional regularization (dimReg) in d = 4− 2ε space-time
dimensions and renormalize them using the MS prescription. The matching is then performed,
after taking the ε→ 0 limit on the renormalized physical amplitudes, because numerical kine-
matics forces us to work in d = 4. In the off-shell matching, loop diagrams in the EFT cor-
respond to the soft region contribution of loop diagrams in the full theory and therefore do
not need to be computed. In our case, due to the fact that we are matching using physical,
renormalized amplitudes in d = 4 , the two might differ due to evanescent structures and we
have to perform a partial calculation of both, as we discuss in the next section.

2.1 Evanescent operators

Evanescent operators are operators that vanish in d = 4 dimensions but are non-zero in general
in d = 4− 2ε dimensions. They are formally of rank ε and, when inserted in divergent loop
diagrams, can multiply an ultraviolet (UV) 1/ε pole and give a finite contribution (being a
local effect it is not affected by infrared (IR) poles) that needs to be taken into account. Let
us briefly describe a very simple example to fix ideas (a more detailed account is given below
in Section 3.4 and the full discussion can be found in [42]). Consider the two operators

(Oℓe)prst =(ℓ
p
γµℓr)(esγµet), (1)

(Rℓe)prst =(ℓ
p
er)(esℓt), (2)
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where p, r, s, t are flavour indices and Oℓe is in the Warsaw (physical) basis of the SMEFT
whereas Rℓe is not. The latter is however related to the former in 4 dimensions, thanks to
Fierz identities

(Rℓe)prst d=4
= −

1
2
(Oℓe)ptsr . (3)

Thus, we can define the evanescent operator

(Eℓe)prst ≡ (Rℓe)prst +
1
2
(Oℓe)ptsr . (4)

In the simple example described in [42], a heavy copy of the SM Higgs doublet generates
at tree level Rℓe. This can be reduced to Oℓe but then the effect of Eℓe must be included to
account for the fact that the operator that was originally generated was Rℓe rather than Oℓe. In
summary, the correct result of the matching is, either the WC of Rℓe and no evanescent shifts
(which is not a result in the Warsaw basis), or the corresponding WC for the reduced operator
Oℓe accompanied by the relevant evanescent shifts, as reported in [42] and implemented in
MatchMakerEFT [37].

This very procedure, the calculation of the finite contribution induced by the insertion
of evanescent operators in one-loop diagrams hitting a UV 1/ε pole can be also done in the
on-shell version of matching (see the related discussion in [40]). However, our numerical pro-
cedure is done in 4 dimensions, after renormalisation, and we therefore obtain the matching
in terms of Oℓe, with no history of whether Rℓe or Oℓe was originally generated in d dimen-
sions. Luckily there is a way to incorporate the evanescent effect in our procedure as follows.
The authors of [43] emphasized that matching calculations could be simplified by using the
method of regions [44]. Focusing on one-loop amplitudes we have, in the EFT,

M(1)
EFT =M(1),soft

EFT +M(1),hard
EFT =M(1),soft

EFT , (5)

where we have used that, at one loop, there are only two relevant regions (soft, in which the
loop momentum k is of the same order as the light scales in the EFT; and hard, in which the
loop momentum is much larger than all the other scales in the EFT) and the fact that the hard
region contribution is scaleless in the EFT and therefore vanishes. Likewise, in the full theory
we have

M(1)
full =M(1),soft

full +M(1),hard
full . (6)

When the matching is performed in d dimensions, the soft region contribution to the full theory
is identical, by construction, to the one in the EFT; they cancel in the matching and only the
hard region contribution to the full theory has to be computed. In the particular example we
are discussing, both the EFT and the soft contribution to the full theory contain insertions of
Rℓe in d dimensions and they are indeed identical.

In our approach to on-shell matching, however, we do the matching in 4 dimensions (after
renormalization), and the EFT contains Oℓe rather than Rℓe. The soft contribution of the
full theory, being computed in d dimensions, has instead insertions of Rℓe and therefore, the
two amplitudes are no longer equal. The finite part of the two amplitudes, arising from an
O(ε) term being multiplied by a UV 1/ε pole gives precisely the evanescent shift that we are
seeking. It should be emphasized that, following this procedure, we do not need to know
which evanescent operators are generated, as the difference of the soft region expansions
automatically produces the evanescent shift without the explicit construction of the evanescent
operators. Of course that does not mean that we are not using a particular evanescent scheme.
This is determined by our procedure and our treatment of d-dimensional structures. By using
the naive dimensional regularization prescription for γ5 (including a reading point prescription
whenever needed) and the relevant basis of fermion bilinears, we automatically follow the
scheme advocated in [42].
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Note that we do not need to compute the full soft region contribution to the EFT and
full theories but rather just the finite terms originated from UV poles. At one-loop order,
these can be obtained upon expanding integrals in the region where the loop momentum k is
much greater that any external momentum or any light mass. Although this leads to scaleless
integrals 3 that identically vanish in dimReg, as long as we separate IR and UV divergences we
can correctly retrieve the UV poles. Indeed, this can be achieved by simply setting the integrals
that scale like 1/k4 for large values of the loop momentum to 1/εUV (with the correct loop
integral factors) and making every other integral to vanish. Schematically, the relevant part
of the calculation reads, in either the EFT or the full theory,

M(1),soft
EFT/full =

1
εUV
[aEFT/full + bEFT/full ε] + . . .

renorm.
−→ bEFT/full + . . .=M(1),soft

EFT/full

�

�

�

UV
+ . . . , (7)

where the dots represent other finite terms that do not arise from UV poles and the arrow
indicates renormalization. A few comments are in order. This expression is valid both for the
EFT and the full theories. The divergent pieces, aEFT/full/εUV, can differ only due to terms
proportional to the renormalization of evanescent operators.4 The finite terms can also be
different, the difference giving precisely the evanescent contribution we are looking for. We
solely extract the pole from the loop integral, whether it is a scalar or a tensor one. This means
that, when encountering a tensor integral, one should take special care in not keeping finite
terms coming from the product of the d = 4 − 2ε factors explicitly appearing in the tensor
reduction formula and the 1/ε pole of the reduced scalar integral, since this is considered as a
finite piece of the original loop integral. An extended discussion, with explicit examples, will
be given in Section 3.4.

To summarize, the hard region contribution at one loop to the full theory plus the difference
between the soft region contribution at one loop to the full and EFT theories is local, except
for the non-localities induced by the light bridges, that are canceled by the equivalent ones in
the EFT, and includes all the relevant evanescent shifts. It can therefore be matched by the
contribution of local operators in the EFT.

2.2 Algorithmic on-shell matching

We are now in a position to provide an algorithmic procedure to efficiently perform on-shell
matching. Explicit examples illustrating this algorithm will be discussed in Section 3.

1. Consider all the 1-particle-irreducible (1PI) contributions, up to the relevant order in
operator dimension and loop order, to the 2-point functions. The location of the physical
poles and the corresponding residues fix the on-shell conditions. The case of particle
mixing can be treated perturbatively in the standard way.

2. Compute all the relevant connected, amputated amplitudes in both the full model and
in the EFT, up to the correct order in the operator dimension. These amplitudes are
to be computed in d = 4− 2ε dimensions and renormalized with the MS prescription.
After renormalization, we can set ε→ 0 and work with four-dimensional renormalized
amplitudes. The amplitudes that need to be computed in order to perform the matching
up to the one-loop order are:

• Tree-level amplitude in the EFT: M(0)
EFT.

3This is obvious in the EFT where no heavy scales remain. For the full theory, one must remember that we have
previously expanded in the soft region, so that all heavy propagators have disappeared in favor of local terms and
inverse powers of the heavy masses.

4We thank J. Fuentes-Martín for discussions on this issue.
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• One-loop finite part from UV poles in the EFT: M(1),soft
EFT

�

�

�

UV
.

• Tree-level amplitude in the full theory: M(0)
full.

• One-loop hard region contribution in the full theory: M(1),hard
full .

• One-loop finite part from UV poles of the soft region contribution in the full theory:

M(1),soft
full

�

�

�

UV
.

3. Once all the relevant renormalized amplitudes have been computed in d = 4, we con-
sider first the amplitudes with the lowest number of external particles, to ensure that
the system of equations to solve is always linear. For a fixed amplitude, we randomly
generate as many on-shell kinematic configurations as WCs we need to solve for, replace
them in the amplitudes and solve for the relevant WCs. As emphasized, we are working
with renormalised physical amplitudes in 4 dimensions at this point and, therefore, we
can replace numerically all the quantities appearing in the amplitude, including gamma
matrices, fermion spinors or vector polarisations. We then proceed to other amplitudes
with a larger number of external particles. In these amplitudes we replace the WCs that
we have already solved for before attempting to solve the corresponding equations. The
matching condition reads, at tree level,

M(0)
EFT =M(0)

full. (8)

At one loop it includes the effect of possible evanescent structures, and reads

M(0)
EFT =M(1),hard

full +M(1),soft
full

�

�

�

UV
−M(1),soft

EFT

�

�

�

UV
. (9)

Note that M(0)
EFT is the tree-level amplitude in the EFT but now with one-loop sized WCs

(to be determined from the matching condition). Also we have to replace the tree-level

values of the WCs, that we determined from Eq. (8), in M(1),soft
EFT

�

�

�

UV
, so that the right-

hand side of the matching condition is completely known.

The algorithm we have just described leads to an efficient procedure for on-shell match-
ing. It should be noted, however, that one can side-step the need of solving the am-
plitudes in growing number of external legs. Indeed, the fact that we need to consider
connected amplitudes means that high-multiplicity amplitudes typically receive contri-
bution from many WCs. We can use this property to solve for all these WCs with a single
amplitude. The trick to avoid non-linear systems of equations in this case is to solve
order by order in the loop expansion and mass dimension. This way we only encounter
again linear systems of equations.

3 Specific examples

In this section we will provide a number of specific examples of our procedure and how it can
be applied to the reduction of a Green’s basis; the calculation of anomalous dimensions; or to
finite matching, including evanescent shifts.

3.1 Reduction of the Green’s basis of a Z2-symmetric scalar up to mass dimen-
sion 8

Let us consider a Green’s basis for a Z2-symmetric scalar theory up to dimension 8. A suitable
choice is given by

L= L4 +
1
Λ2

L6 +
1
Λ4

L8, (10)
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Figure 1: Tree-level topologies contributing to 4-scalar amplitudes (left) and 6-scalar am-
plitudes (center and right).

where

L4 = −
1
2
φ(∂ 2 +m2)φ −λφ4, (11)

L6 = α61φ
6 + β61∂

2φ∂ 2φ + β62φ
3∂ 2φ, (12)

L8 = α81φ
8 +α82φ

2∂µ∂νφ∂
µ∂ νφ + β81φ∂

6φ + β82φ
3∂ 4φ + β83φ

2∂ 2φ∂ 2φ + β84φ
5∂ 2φ.

(13)

We have explicitly written the corresponding power of the cut-off Λ to make the mass di-
mension apparent and have denoted with αdi and βdi the WCs of physical and redundant
operators of dimension d, respectively. In this example we will use on-shell matching at tree
level to reduce the Green’s basis onto the physical one. In order to do that we use the com-
plete Green’s basis as full model (LFull = L) while the physical basis plays the role of the EFT
(LEFT = L[βdi = 0]).

Step 1 of our algorithm tells us to compute the 1PI contribution to the 2-point function. In
the full theory it reads, at tree level and up to dimension 8,

Π(p2) = −2p4β61

Λ2
+ 2p6β81

Λ4
. (14)

The standard procedure then fixes the physical mass,

p2 −m2 −Π(p2)
�

�

�

p2=m2
phys

= 0⇒ m2
phys = m2

�

1− 2β61
m2

Λ2
+ 2

�

β81 + 4β2
61

� m4

Λ4

�

, (15)

and the residue at the physical pole (a prime denotes derivative with respect to p2)

Z = [1−Π′(p2 = m2
phys)]

−1 = 1− 4β61
m2

Λ2
+ 6(β81 + 4β2

61)
m4

Λ4
. (16)

The relation (15) can be inverted to express m (the mass actually appearing in the calculations)
in terms of the physical mass. In the EFT instead there are no 1PI corrections to the 2-point
function so m2

phys = m2 and Z = 1. Note that the extra contributions to the 2-point function
also modify the propagator appearing in light bridges which, in the full theory now reads

=
i

p2 −m2 −Π(p2)

=
i

p2 −m2

�

1−
2
Λ2

p4β61

p2 −m2
+

2
Λ4

p6(p2 −m2)β81 + 2p8β2
61

(p2 −m2)2
+ . . .

�

. (17)

Once the physical mass, Z factors and full propagators have been fixed, we compute the
corresponding connected, amputated amplitudes, multiplying each external leg by a factor ofp

Z . After renormalizing the corresponding amplitudes we then set the on-shell condition for
the external momenta p2 = m2

phys. Proceeding as mentioned in the algorithm from amplitudes
with a smaller number of external particles to amplitudes with a larger number of particles we
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Figure 2: Tree-level topologies contributing to 8-scalar amplitudes.

start with the 4-point amplitude, which receives contribution from a single topology, depicted
in the left panel of Fig. 1. On the EFT side this amplitude receives contributions proportional to
λ and α82 whereas in the full theory it receives contributions, apart from these two couplings,
from β62, β82 and β83. Having two WCs in the EFT side we need to generate two independent
on-shell kinematic configurations which allows us to solve for λ and α82.

We next proceed to the 6-point amplitude, depicted in the center and right panels of Fig. 1.
This amplitude receives a local 6-point contribution (center topology) proportional to α61 in
the EFT and also to β84 in the full theory, plus non-local terms proportional to two 4-point
interactions (right topology). The latter involves WCs that have already been solved for on
the EFT side and non-localities due to the light bridge that cancel between the EFT and the
full theory. In this case a single on-shell kinematic configuration is enough to fix the value of
α61.

Finally we move on to the 8-point amplitude, that receives contributions from topologies
depicted in Fig. 2. The contributions split into a local one, proportional to α81, and non-local
ones proportional to 4-point and 6-point vertices, which have already been solved for in the
EFT side and whose non-local contributions cancel between the EFT and the full theory. Again
a single on-shell kinematic configuration is enough to solve for α81.

Putting everything together, and writing back m2
phys in terms of m2 on the full theory side,

we obtain the correct reduction of the Green’s basis onto the physical one, which reads

m2→ m2

�

1− 2β61
m2

Λ2
+ 2(β81 + 4β2

61)
m4

Λ4

�

, (18)

λ→ λ+ (β62 − 8λβ61)
m2

Λ2
+
�

64λβ2
61 − 10β61β62 + 12λβ81 − β82 − β83

� m4

Λ4
, (19)

α61→ α61 + 16λ2β61 − 4λβ62 −
�

1728
5
λ2β2

61 +
22
5
β2

62 −
512
5
λβ61β62 + 12α61β61 (20)

+
304

5
λ2β81 −

56
5
λβ82 − 8λβ83 + β84

�

m2

Λ2
,

α81→ α81 −
3072

5
λ3β2

61 −
108

5
λβ2

62 +
1248

5
λ2β61β62 − 48λα61β61 + 6α61β62

−
576
5
λ3β81 +

144
5
λ2β82 + 16λ2β83 − 4λβ84, (21)

α82→ α82. (22)

Note that, as discussed above, we could perform the full matching using only the 8-point
amplitude. As shown in Fig. 2, this amplitude receives contributions from operators with 4, 6
and 8 external legs and, provided we solve order by order in the mass dimension of the different
contributions, we are left with linear systems of equations that provide the complete solution
with this single amplitude. We describe a minimal but complete code in Mathematica to get
the reduction to the physical basis in this way in the Appendix C. The full code is provided as
an ancillary file in the arXiv submission of this manuscript.
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These results can be also obtained via the reduction of the Green’s basis using field re-
definitions. Indeed, the following field redefinition removes the two dimension 6 redundant
operators (up to dimension 8)

φ→ φ
�

1−
m2β61

Λ2
+

2m4β2
61

Λ4

�

+ ∂ 2φ

�

β61

Λ2
−

3m2β2
61

2Λ4

�

(23)

+φ3

�

1
Λ2
(β62 − 4λβ61) +

2m2β61

Λ4
(9λβ61 − 2β62)

�

.

The remaining dimension-8 operators can be eliminated via the equations of motion from
Eq. (11), as non-linear terms are irrelevant at this order. Implementing carefully (and painfully)
these replacements we have reproduced the results in Eqs. (18)-(22). We have also cross-
checked these results with the help of Matchete.

3.2 Green’s basis reduction in the SMEFT at dimension 8

The first phenomenologically useful application of our procedure is the reduction of redundant
interactions of the SMEFT. A Green’s basis for the SMEFT to dimension 6 was first worked out
in [45]. This was later extended to dimension 8 in [46]. The relation between the redundant
and physical operators to dimension 6 and below was also worked out in [45], while the
bosonic dimension-8 redundant operators were related to physical terms in [47]. Here, as
an example that goes beyond the state of the art, we provide the reduction of dimension-6
redundant operators up to dimension-8, which cannot be captured by equations of motion at
linear order. (They can be accounted for by means of modified equations of motion [48].)

For clarity of the exposition, we limit ourselves to bosonic interactions with at most 6 fields,
and work in the limit in which the only non-vanishing gauge coupling is g1. We follow the
conventions and notation in [45] and [28], using c for the WCs of physical operators and r
for redundant ones. For ease of use, we collect the definition of all relevant operators in Ap-
pendix B. The corresponding reduction reads

H2

m2
H → m2

H −m4
H rDH + 2m6

H r2
DH . (24)

H4

λ→ λ−m2
H(4λrDH + 2r ′HD) +m4

H(16λr2
DH + 10rDH r ′HD) . (25)

H4D2

cH□→ cH□ −
1
8

g2
1 r2B +

1
2

r ′HD +
1
2

g1rBDH −m2
H(4cH□rDH + g1rBDH rDH + 2rDH r ′HD) , (26)

cHD→ cHD −
1
2

g2
1 r2B + 2g1rBDH −m2

H(4cHDrDH + 4g1rBDH rDH) . (27)

H6

cH → cH +λ
2rDH +λr ′HD +m2

H

�

1
4

g2
1 cHDr2B −

1
16

g4
1 r2

2B −
1
2

g1cHDrBDH +
1
2

g3
1 r2B rBDH

−
3
4

g2
1 r2

BDH − 6cH rDH −λcHDrDH + 8λcH□rDH + g1λrBDH rDH − 11λ2r2
DH

10
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−
1
2

cHDr ′HD + 4cH□r ′HD +
1
2

g1rBDH r ′HD − 9λrDH r ′HD −
1
4

r ′2HD − r ′′2HD

�

. (28)

X 2H2

cHB → cHB − 2m2
H cHB rDH , (29)

cHeB → cHeB − 2m2
H cHeB rDH . (30)

H4D4

c(1)H4 → c(1)H4 +
1
2

g2
1 r2

2B − 2g1r2B rBDH + 2r2
BDH + g2

1 rB2D4 , (31)

c(2)H4 → c(2)H4 −
1
2

g2
1 r2

2B + 2g1r2B rBDH − 2r2
BDH − g2

1 rB2D4 . (32)

X 2H4

c(1)B2H4 →− cHB g2
1 r2B +

1
16

g4
1 r2

2B + 2cHB g1rBDH −
1
4

g3
1 r2B rBDH +

1
4

g2
1 r2

BDH

− 2cHBλrDH − cHB r ′HD , (33)

c(2)B2H4 →− g2
1 cHeB r2B + 2g1cHeB rBDH − 2λcHeB rBDH − cHeB r ′HD . (34)

X H4D2

c(1)BH4D2 → c(1)BH4D2 − 4g1cHB r2B +
1
2

g3
1 r2

2B + 8cHB rBDH − 2g2
1 r2B rBDH + 2g1r2

BDH , (35)

c(2)BH4D2 → c(2)BH4D2 − 4g1cHeB r2B + 8cHeB rBDH . (36)

H6D2

c(1)H6 →−
3
4

g2
1 cHDr2B +

3
16

g4
1 r2

2B +
3
2

g1cHDrBDH −
3
2

g3
1 r2B rBDH +

9
4

g2
1 r2

BDH −λcHDrDH

− 8λcH□rDH − 3g1λrBDH rDH +λ
2r2

DH −
1
2

cHDr ′HD − 4cH□r ′HD −
3
2

g1rBDH r ′HD

− 3λrDH r ′HD −
7
4

r ′2HD + r ′′2HD , (37)

c(2)H6 →−
1
2

g2
1 cHDr2B +

1
8

g4
1 r2

2B + g1cHDrBDH − g3
1 r2B rBDH +

3
2

g2
1 r2

BDH − 2λcHDrDH

− 2g1λrBDH rDH − cHDr ′HD − g1rBDH r ′HD . (38)

No other coefficient shifts under our assumptions. These results, extended to include both
bosonic and fermionc terms, redundant and physical, as well as the full dependence on all
SM couplings, have been utilized already in the renormalization of the two-fermion SMEFT
interactions to dimension 8 [49], and can be found in the Mathematica notebook in https:
//github.com/SMEFT-Dimension8-RGEs.
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Figure 3: Representative diagrams contributing to the renormalization of W H4D2 (left),
W 2H2D2 (center) and W H2D4 (right) by H4D4 operators (denoted by a cross). Insertions of
renormalizable operators are denoted with a dot.

3.3 Calculation of anomalous dimensions

One of the disadvantages of off-shell renormalization of EFTs is that divergences arising in
1PI off-shell Feynman diagrams cannot be captured by physical interactions only, but these
must be extended with redundant operators. This problem is further strengthened in non-
abelian gauge theories, since the Green’s basis must include gauge-breaking interactions. One
way to avoid this issue is using the background-field method [50], where gauge fields are
split into classical backgrounds and gauge fluctuations. The gauge is fixed only for quantum
fluctuations, which are in turn the only ones that enter in loops. Hence, the theory remains
explicitly gauge invariant with respect to the background fields. However, this process also
requires computing a much larger number of Feynman rules (since all particles can interact
with both classical and quantum fields), which, at least within the most widely used tools for
this purpose, in particular FeynRules [51], can become complicated for EFTs at high enough
dimension.

Now, the aforementioned redundant and gauge-breaking terms obviously vanish on-shell,
since physical quantities are gauge independent. Therefore, the computation of anomalous
dimensions using our algorithm needs neither redundant operators nor the background field
method. We can explicitly verify this using the example of the renormalization of the SMEFT
dimension-8 operators in the class W H4D2 by loops involving H4D4 terms in the limit g1→ 0.
We first note that, off-shell, W H4D2 operators receive contributions from redundant operators
in other classes too, including W 2H2D2 and W H2D4. In particular [47]:

c(1)W H4D2 → c(1)W H4D2 + 2r(7)W H4D2 + g2r(11)
W 2H2D2 − 4g2r(19)

W 2H2D2 −
1
2

g2
2 r(3)W H2D4 + · · · , (39)

c(2)W H4D2 → c(2)W H4D2 − 4g2r(7)W 2H2D2 + g2r(10)
W 2H2D2 + · · · , (40)

c(3)W H4D2 → c(3)W H4D2 + g2r(12)
W 2H2D2 + g2r(18)

W 2H2D2 + · · · ; (41)

while c(4)W H4D2 does not shift. The ellipses stand for terms that are not renormalized by H4D4.
Accordingly, three different kind of 1PI diagrams, represented in Fig. 3, must be computed,
and their divergences projected onto the physical basis. It was shown in [52] that they lead to
(we denote with a tilde the WC that matches the corresponding divergence):

c̃(1)W H4D2 =
g2

96π2

�

(14λ+ 19g2
2)c
(1)
H4D4 − 8(λ+ 2g2

2)c
(2)
H4D4 − 18g2

2 c(3)H4D4

�

, (42)

r̃(7)W H4D2 =
g2

16π2

�

(λ+ 2g2
2)c
(2)
H4D4 − (λ+ 2g2

2)c
(1)
H4D4

�

, (43)

r̃(3)W H2D4 =
g2

192π2
(c(3)H4D4 − c(2)H4D4) ; (44)

while all other divergences vanish.
Within the on-shell approach, however, we only need to compute the amplitude defined

by W 3(p1)H+(p2)H−(p3)H+(p4)H−(p5) (which of course involves diagrams with light bridges

12
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Figure 4: Representative diagams contributing to the on-shell renormalization of W H4D2

interactions. The cross denotes the insertion of an operator in the H4D2 class while the dots
denote renormalizable couplings.

like those represented in Fig. 4), extract the divergence, substitute the rational kinematics and
project the result onto the physical basis. Effects from evanescent terms, that we discuss in
detail in next section, can be neglected here, since one-loop anomalous dimensions can be
entirely computed in d = 4 space-time dimensions, with the caveat that

∫

d4k/k4 = iπ2/ε.
We also avoid using the background-field method. Altogether, we obtain:

c̃(1)W H4D2 =
1

384π2

�

4(2g2λ− 5g3
2)c
(1)
H4D2 + (16g2λ+ 33g3

2)c
(2)
H4D2 − 73g3

2 c(3)H4D2

�

, (45)

while other divergences in W H4D2 vanish. It can be trivially checked that Eqs. (39)–(41),
together with Eqs. (42)–(44), agree with this result.

3.4 Finite matching and evanescent contributions

Let us now discuss finite one-loop matching, including evanescent shifts, in the context of on-
shell matching. We will take as an example a model with a heavy copy of the SM Higgs boson
and, for simplicity, we will assume that it only couples to the SM leptons,

L= LSM + DµΦ
†DµΦ−M2Φ†Φ−

�

Y pr ℓ̄pΦer + h.c.
�

, (46)

with LSM the SM Lagrangian and we neglect other interactions allowed by the symmetries.
This particular example was discussed, in the context of evanescent shifts, in [42].

The only operator in the Warsaw basis that is generated at tree level and mass dimension
6, with the couplings in Eq. (46), is Oℓe, defined in Eq. (1), with coefficient

C prst
ℓe = −

1
2M2

Y pt(Y rs)∗ . (47)

Indeed, computing at tree level the amplitude ēp
L(p1)et

R(p2)ēs
R(p3)er

L(p4) with on-shell kine-
matics (we consider all incoming particles)

4
∑

i=1

pi = 0, p2
i = 0, (48)

we obtain, in the UV and EFT theories, respectively,

MUV =
Y pt(Y rs)∗

M2
v̄1PRu2 v̄3PLu4, (49)

MEFT = C prst
ℓe v̄1γ

µPLu4 v̄3γµPRu2, (50)

where we have denoted the momentum with a subindex in the spinors and we have used the
chirality projectors

PL,R ≡
1∓ γ5

2
. (51)

13
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Figure 5: Tree-level topologies contributing to the physical amplitude of ν̄LeRH0H̄0H− (all
incoming) in the EFT involving one insertion of a one-loop sized WC (denoted by a square
vertex).

Recall that, following our numerical procedure, we now have to replace (no renormaliza-
tion needed at tree level) the spinors and the Dirac matrices by their numerical values with
specific 4-d on-shell kinematic configurations. In d = 4 − 2ε dimensions the two fermionic
structures are not related but in d = 4 the identity

v̄1PRu2 v̄3PLu4 = −
1
2

v̄1γ
µPLu4 v̄3γµPRu2, (d = 4), (52)

holds, from which, by equating the two amplitudes, we obtain the result in Eq. (47). In
this particular case there are no relevant contributions with light bridges and, therefore, on-
shell matching is essentially identical to off-shell one. However, as we have emphasized, our
numerical procedure forces us to work in d = 4 dimensions. This means that, unless we look
explicitly at the amplitudes before the numerical replacement, we would never know that,
in d ̸= 4 dimensions Rℓe rather than Oℓe is generated. Luckily enough, our procedure for
evanescent contributions will, as we show below, take care of this fact automatically.

Let us now move on to the one-loop matching, for which the differences between on-shell
and off-shell matching are more acute. Since we just want to exemplify these differences and
the general procedure for finite (including evanescent shifts) matching, we will restrict our-
selves to the operators that can be matched via the physical amplitude involving (all incoming
particles) ν̄p

L , er
R, H0, H̄0, H−. Such an amplitude receives contribution, at tree level and up to

mass dimension 6, in the EFT from the following operators in the Warsaw basis

Oλ = −(H†H)2, OHe = (ēγµe)(H†i
←→
D µH),

Oye = −ℓ̄eH, O(1)Hℓ = (ℓ̄γ
µℓ)(H†i

←→
D µH),

OeB = (ℓ̄σµνe)HBµν, O(3)Hℓ = (ℓ̄γ
µσIℓ)(H†i

←→
D I
µH),

OeW = (ℓ̄σµνe)σI HW I
µν, OeH = (H†H)ℓ̄eH,

(53)

where the first two operators on the left column correspond to renormalizable ones (we have
not written the kinetic terms that provide the corresponding gauge couplings) and the rest are
dimension-6 operators. The different topologies contributing to this amplitude at tree level,
in the EFT, with the insertion of a one-loop sized WC, are shown in Fig. 5. The fact that the
amplitude receives contributions from all these operators means that we can match them all
with the calculation of a single amplitude. This is a striking difference with respect to off-shell
matching, for which only local contributions have to be considered in the EFT and therefore,
this amplitude would only serve to match the operator OeH (in the Green’s basis), and can
be used to reduce the number of amplitudes needed in the on-shell matching or as an extra
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Figure 6: One loop topologies contributing to the physical amplitude of ν̄LeRH0H̄0H− (all
incoming) in the full theory involving, at least, one heavy propagator.

cross-check of the calculation. Note that even the different gauge structures corresponding to
O(1,3)

Hℓ can be disentangled with this amplitude, despite the fact that it has a “charge current
structure”, involving ν̄LeR. This is thanks to the top diagram in the second column of Fig. 5,
in which the Higgs boson corresponding to the renormalizable coupling can be either neutral
or charged, thus probing both gauge structures in the dimension-6 operator insertion.

The topologies corresponding to the contribution of the full theory to the amplitude are
shown in Fig. 6. Note the presence of diagrams with light bridges, that would not be present
in an off-shell matching, and also diagrams with only light particles circulating in the loop.
The latter would also not be present in ordinary off-shell matching as they lead to scaleless
integrals, that vanish in dimReg. For the same reason they do not contribute to the finite
matching, given by the hard region contribution, in the on-shell approach. They are needed,
however, in our case to provide the corresponding evanescent shifts that will arise from the
soft region expansion. Also note that diagrams in which heavy particles circulate in the loop
will, in general, contribute to both the finite matching (hard region) and evanescent shifts
(soft region).

Finally, recall that, for the evanescent shifts, we need to compute some one-loop amplitudes
in the EFT. These correspond to the same diagrams we show in Fig. 6, in which the heavy
propagator is pinched into a local interaction, representing an insertion of the operator Oℓe.
We do not display these diagrams explicitly, as they can be obtained directly from the ones in
the figure.

Let us now describe in detail how to compute the different contributions to the match-
ing conditions in Eq. (9). We start with the hard region contribution to the amplitude in
the full theory, M(1),hard

full . This is computed as usual with the Taylor expansion in the region
k ∼ M ≫ p ∼ m, with k the loop momentum, p any combination of external momenta and
M , m the heavy and light masses, respectively,

1
(k+ p)2 −M2

=
1

k2 −M2

∞
∑

n=0

�

−
p2 + 2p · k
k2 −M2

�n

, (54)

1
(k+ p)2 −m2

=
1
k2

∞
∑

n=0

�

−
p2 + 2p · k−m2

k2

�n

. (55)

Note that the first expression is equally valid for heavy bridges, just by setting k = 0. The
order at which one should truncate the expansions is determined by the dimension of the EFT;
up to dimension 6, terms proportional to 1/M3 or greater powers (after integration) should
be discarded. In practice, this means that we should keep in the expansion only terms up to
order O(1/k6) as k→∞.
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In the amplitude computation we consider only amputated diagrams,5 but they have to be
dressed with the corresponding power of the wave function renormalization constants,

p
Z ,

(defined from the residue of the physical pole in the two point function). The only Z factors
we need read 6

[Zℓ]
pr ≡ δpr + [δZℓ]

pr = δpr +
1

64π2

�

YY†
�pr

, (56)

[Ze]
pr ≡ δpr + [δZe]

pr = δpr +
1

32π2

�

Y†Y
�pr

, (57)

ZH = 0 . (58)

With this, the total hard region amplitude in the full theory reads, at one loop order,
�

M(1),hard
full

�pr
=
�

M(1),hard
full

�pr
amp
diags

+
1
2
[δZℓ]

ps
�

M(0)
full

�sr
+

1
2

�

M(0)
full

�ps
[δZe]

sr , (59)

where p, r are the flavor indices of ν̄L and eR, respectively. Matching this amplitude to the tree
level in the EFT will automatically give us the finite matching directly in the Warsaw basis.

We also have to compute the correction to the physical masses, since the on-shell condition
reads p2

i = m2
i,phys, where mi,phys is the one-loop renormalized physical mass of particle i. In

this case there is no shift to the physical mass due to the heavy particle and, therefore, p2 = 0
for fermions and p2 = m2

H for the Higgs.
Let us now move on to the calculation of the evanescent shifts. As described in detail in

Section 2.1, we need to compute the finite contribution arising from UV poles times ε terms in
the soft region contribution of the full and effective theories. In the full theory, the soft region
contribution can be obtained by replacing the heavy propagators with their soft expansion,

1
(k+ p)2 −M2

= −
1

M2

∞
∑

n=0

�

(k+ p)2

M2

�n

, (60)

where the same expression can be used for heavy bridges upon setting k = 0. For the matching
up to mass dimension 6 the series can be truncated at the first term, proportional to 1/M2.

Once the propagators have been expanded around the soft region, we need to isolate the
UV poles of the remaining loop integrals. A straightforward way to achieve this, at one loop
order, is by using again the expansion in Eq. (55) to extract the UV behavior of the ampli-
tude. After this expansion all integrals are scaleless and vanish in dimReg. However, out
of these scaleless integrals, the ones scaling as 1/k4, namely, integrals of the generic form
kµ1 . . . kµn/kn+4, contain the UV pole that has to be isolated. Once the UV pole of the loop
integral has been found, all the relevant algebraic manipulations of the rest of the amplitude
(including Dirac algebra) have to be performed in d dimensions. The finite piece resulting
from the product of the UV pole times the O(ε) terms for these last manipulations is the one
we are interested in. This procedure, computing the loop integral first, keeping only the UV
pole, and then performing the remaining algebraic manipulations (in d dimensions) has to be
performed in this order. Otherwise the finite terms we obtain might not be the ones we are
after. Let us explain this with the following simple example. Consider the amplitude

M=

∫

dd k
(2π)d

/k/k
k6
= γµγν Iµν, (61)

5For practical reasons we do not amputate legs that generate mixing between the field Φ and any other SM
field. In this model we can find such diagrams mixing Φ and H (see, for instance, the last row of diagrams in Fig.
6). Including these diagrams is equivalent to perturbatively diagonalizing the corresponding one-loop mixing in
the two point functions.

6Note that the first flavor index corresponds to the outgoing fermion. Also, since there is no tree-level contri-
bution to this amplitude involving the heavy particle, we do not need the SM contribution to the wave function
renormalization constant.
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with the tensor integral

Iµν =

∫

dd k
(2π)d

kµkν
k6
=

1
d

∫

dd k
(2π)d

gµν
k4
=

igµν
64π2

1
εUV
+ . . . , (62)

where the dots denote finite contributions that are not needed in the calculation. Thus, we
have

M= γµγνgµν
i

64π2

1
εUV

=
id

64π2

1
εUV

=
i

16π2

1
εUV
−

i
32π2

+ . . . . (63)

A naive use of the property /k/k = k2 would have resulted in

M
�

�

�

naive
=

i
16π2

1
εUV

, (64)

with no finite piece. Note the crucial fact that the d in the denominator of Eq. (62) gets
replaced with a 4, since we are only interested in the UV pole of the loop integral. Had we
retained it as d, upon being inserted back in Eq. (61), it would have resulted in M|naive after
working out the Dirac algebra. The reason behind is that keeping d = 4− 2ε in Eq. (62) is
equivalent to preserving order ε0 terms (after Taylor expanding) in the tensor loop integral
Iµν.

The same procedure is used for the one-loop contributions in the EFT. In this case we do
not need to explicitly perform the soft region expansion, as this corresponds to the full EFT
amplitude. We just need to compute the UV pole from the tensor integral, as described in the
preceding paragraph, and the finite contribution from the remaining terms in the amplitude.

In this way, we can match the evanescent shift M(1),soft
full

�

�

�

UV
− M(1),soft

EFT

�

�

�

UV
to the tree-level

amplitude M(0)
EFT.

Recall that we will eventually replace numerical kinematics in the amplitudes we have
computed. This means that we can only match renormalized amplitudes. Inserting all our
renormalized amplitudes in the matching condition, Eq. (9), and replacing with as many on-
shell kinematic configurations as WCs we need to determine, we obtain a system of equations
with the WCs as the only unknowns. This system can in general be non-linear but, solving it
perturbatively in loop order and mass dimensions we always get a linear system.

After solving the system of equations from the matching condition we find the one-loop
matching result in Eqs. (65)-(74), where the evanescent shifts are explicitly shown in red.
These results have been cross-checked using Matchete [36] and MatchMakerEFT [37] and
the evanescent shifts reported in [42].

λ→ λ+
g4

2 m2
H

960π2M2
, (65)

y pr
e → y pr

e −
1

128π2

�

YY† ye + 2yeY†Y
�pr
+

m2
H

32π2M2
Y pr

�

Y†
�st

y ts
e , (66)

cHD→−
g4

1

1920π2M2
, (67)

cH□→−
1

7680π2M2
(g4

1 + 3g4
2) , (68)

cpr
He→

g4
1

1920π2M2
δpr +

7g2
1

576π2M2

�

Y†Y
�pr
+

1
192π2M2

�

6Y† ye y†
eY + y†YY† ye

�pr
, (69)

c(1)Hl

pr
→

g4
1

3840π2M2
δpr +

17g2
1

1152π2M2

�

YY†
�pr −

1
192π2M2

�

6Y y†
e yeY† + yeY†Y y†

e

�pr
,

(70)
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c(3)Hl

pr
→−

g4
2

3840π2M2
δpr +

g2
2

1152π2M2

�

YY†
�pr −

1
192π2M2

�

yeY†Y y†
e

�pr
, (71)

cpr
eB →−

g1

768π2M2

�

5YY† ye + 2yeY†Y
�pr
+

3g1

128π2M2
Y pr

�

Y†
�st

y ts
e , (72)

cpr
eW →−

5g2

768π2M2

�

YY† ye

�pr −
g2

128π2M2
Y pr

�

Y†
�st

y ts
e , (73)

cpr
eH →−

g4
2

3840π2M2
y pr

e +
1

192π2M2

�

ye y†
eYY† ye + 2yeY†Y y† y − 3Y y†

e yeY† ye

−3yeY† ye y†
eY
�pr
+

1
16π2M2

Y pr y st
e

�

y†
e

�tu
yuv

e

�

Y†
�vs −

λ

32π2M2
Y pr

�

Y†
�st

y ts
e .

(74)

4 Conclusions and outlook

Effective field theories have become an essential part of every theorist’s toolbox. Off-shell
matching is now fully automated, both in the diagrammatic and functional approaches, but it
requires the reduction of a Green’s basis into the physical one. This reduction, while straight-
forward in principle, is tedious, error prone and not easy to fully automate, in particular when
going to higher orders in the power counting expansion. Furthermore, it is highly non-trivial to
devise a generic reduction algorithm that allows to reduce the result to a user-chosen physical
basis.

On-shell matching, much less developed and barely adopted by the community, is an al-
ternative approach to matching that only requires the use of a physical basis. No redundant
or evanescent operators have to be included in the calculation and no reduction is needed.
The main drawback, besides the technical one of having to consider a larger number of dia-
grams, is the fact that the amplitudes in the full and effective theories are both non local and
these non localities only cancel in the difference. This cancellation is very difficult to perform
analytically, given the large number of terms involved, what becomes the main obstacle to
successfully perform the matching on-shell.

In this work we have proposed an efficient algorithm to perform on-shell matching that
side-steps this obstacle by numerically evaluating the physical amplitudes. This is done by gen-
erating random numerical on-shell kinematics, in the field of rational numbers, and evaluating
the corresponding physical amplitudes, after renormalization, for these kinematic configura-
tions. In this way we obtain a set of linear system of equations with the WCs we want to
compute as the only unknowns. The use of rational numbers of the kinematic configurations
ensures an analytic solution with no round-off errors. Our numerical procedure is very effi-
cient in providing the required cancellation of non-local terms in the difference between the
full theory and the EFT amplitudes but it forces us to work with renormalized amplitudes in
d = 4 dimensions. This requires a careful treatment of the soft contribution to the amplitude
in the full and effective theories, as they might be different due to evanescent effects. We have
taken advantage of this property to automatically include the calculation of evanescent shifts in
our algorithm. Thus, following this algorithm, we obtain, in an efficient and straight-forward
way, the contribution to the finite matching, including evanescent shifts whenever relevant,
directly in the physical basis. Incidentally, given that we use physical observables to perform
the matching, we do not need to use the background field gauge to match all the contributions
with gauge invariant operators.

As practical examples we have shown how to use our algorithm in several different sit-
uations, including: the reduction of a Green’s basis to a physical one; the calculation of the
β functions of an EFT, directly in the physical basis; or the calculation of a finite one-loop
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matching, including evanescent shifts, in a model with heavy particles.
Our efficient on-shell procedure has been implemented in a Mathematica package, that

will be documented elsewhere [53] and, in future releases, we expect it to become a standard
feature of MatchMakerEFT [37].
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A Rational on-shell kinematics

The use of numerical methods to solve systems of equations can face the problem of numerical
accuracy. In order to avoid this problem, we generate on-shell numerical kinematics in the field
of rational numbers. For this purpose, we use the algorithm developed in [54] alongside a
custom algorithm based on [55]. The advantage of this method, besides the fact that rational
kinematics guarantees exactness of the solution, is that we can even enforce independent
symbolic masses for each particle in the on-shell condition. This is crucial to obtain the (light)
mass dependence on the matching procedure.

The spinor-helicity formalism maps the four-momentum space into the realm of complex
2×2 matrices, allowing any vector to be expressed as the product of two Weyl spinors. Given a
left-handed spinor, λα, and a right-handed spinor, eλα̇, the four-momentum vector pν associated
to a massless particle is given by

pν =
1
2
λαeλα̇σναα̇ ,

whereλα ≡ εαβλβ , with εαβ the totally antisymmetric tensor with ε12 = 1, andσν = (12×2,σI),
with σI the Pauli matrices.

For processes involving particles of spin-1, we will require polarization vectors. In terms
of spinors, we can write

ϵν+ =
1
p

2

λαeµα̇σναα̇
λβµβ

and ϵν− =
1
p

2

µαeλα̇σναα̇
eλβ̇ eµ

β̇
,

whereµ and eµ are auxiliary spinors, commonly referred to as reference spinors and λ̃α̇ ≡ εα̇β̇ λ̃
β̇ ,

with ε1̇2̇ = −1. These definitions satisfy pνϵ
ν
± = 0 and ϵ+νϵ

ν
− = −1, which are the properties

required for physical polarizations.
For spin-1

2 particles, spinors satisfying the Dirac equation are required. Here, we consider
incoming massless fermions, meaning that the associated Dirac spinors u and v̄ must satisfy

/pu= 0 and v̄/p = 0 .
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The connection between left- and right-handed Dirac spinors and the Weyl spinor basis is
established by the relations

PLu(p) =





eλα̇

0



 , PRu(p) =





0

λα



 , v̄(p)PR =





eλα̇

0



 and v̄(p)PL =





0

λα



 ,

where λ and eλ represent the spinors associated with the four-momentum p.
For the massive case, we can write the four-momentum in terms of two pairs of spinors

(λ, λ̃), (µ, µ̃) as

pν =
1
2

 

λαeλα̇ +
m2

µβ eµβ̇λβeλβ̇
µαeµα̇

!

σναα̇ ,

with p2 = m2.

B SMEFT conventions and operators

The conventions for the leptonic EW sector of the SM Lagrangian used throughout this work
are the following:

LSM =−
1
4

W I
µνW

I µν −
1
4

B I
µνB

I µν +
�

DµH
�†
(DµH)−m2

H

�

H†H
�

−
λ

2

�

H†H
�2

+ ℓ̄ i /Dℓ+ ē i /De−
�

y pr
e ℓ̄

pHer + h.c.
�

, (75)

with the corresponding gauge-fixing and ghost Lagrangians. The covariant derivative is

Dµ = ∂µ −
i
2

g2σ
IW I
µ − ig1Y Bµ , (76)

where σI are the Pauli matrices, Y the hypercharge and g1, g2 the U(1) and SU(2) gauge
couplings, respectively.

In tables 1 and 2 we describe the notation for the dimension-6 and dimension-8 bosonic
operators in the SMEFT.

C Sample code for the tree-level reduction of Green’s basis

In this Appendix we will show and explain the Mathematica code to find the reduction of the
scalar example in Sec. 3.1 up to dimension 8. We will make use of the package combination
FeynCalc+FeynArts [57,58] which can be loaded into the Mathematica interface via the
commands:

In[1]:= $LoadAddOns = {"FeynArts"};
<< FeynCalc‘

Note that this initialization procedure only works correctly if FeynCalc is in the path.
Two models will be loaded, namely, the Lagrangian with the full basis up to dimension 8 and
the Lagrangian in the physical basis, that is, with every coefficient βdi set to zero. (see Eqs.
(10)-(13)). For practical purposes, in the present code we represent αdi (physical) and βdi
(redundant) coefficients as adi and rdi, respectively. The .fr files from which the FeynArts
models can be created via FeynRules [51] can be found as ancillary files.

Before entering into the details of the code, we also define a function to expand any ex-
pression exp to order n in the perturbative parameter 1/Λ2 (in the code invL2), which will
be very useful throughout the discussion.
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Dimension 6 Bosonic Sector

H6 OH (H†H)3

OH□ (H†H)□(H†H) OHD (H†DµH)†(H†DµH)
H4D2

O′HD (H†H)(DµH)†(DµH) O′′HD i(H†H)Dµ(H†DµH − DµH†H)

H2D4 ODH (DµDµH)†(DνDνH)

X2H2 OHB BµνB
µν(H†H) OHeB

eBµνB
µν(H†H)

H2XD2 OBDH ∂νB
µν(H†i

←→
D µH)

X2D2 O2B −1
2(∂µB

µν∂ ρBρν)

Table 1: Operators of the dimension 6 Green’s basis in the bosonic sector of the SMEFT
containing only the gauge boson B [45]. The redundant operators are the gray ones.

Dimension 8 Bosonic Sector

H6D2 O(1)H6 (H†H)2(DµH†DµH) O(2)H6 (H†H)(H†σI H)(DµH†σI DµH)

O(1)H4 (DµH†DνH)(DνH†DµH) O(2)H4 (DµH†DνH)(DµH†DνH)
H4D4

O(3)H4 (DµH†DµH)(DνH†DνH)

X2H4 O(1)B2H4 (H†H)2BµνB
µν O(2)B2H4 (H†H)2eBµνBµν

O(1)BH4D2 i(H†H)(DµH†DνH)Bµν O(2)BH4D2 i(H†H)(DµH†DνH)eBµν

XH4D2 O(1)W H4D2 i(H†H)(DµH†σI DνH)W I
µν O(2)W H4D2 i(H†H)(DµH†σI DνH)fW I

µν

O(3)W H4D2 iεI JK(H†σI H)(DµH†σJ DνH)W K
µν O(4)W H4D2 iεI JK(H†σI H)(DµH†σJ DνH)fW K

µν

O(7)W 2H2D2 iεI JK(H†σI DνH − DνH†σI H)DµW Jµρ
fW K
νρ O(10)

W 2H2D2 (H†DνH + DνH
†H)DµW Iµρ

fW Iν
ρ

O(11)
W 2H2D2 (H†DνH + DνH

†H)DµW IµρW Iν
ρ O(12)

W 2H2D2 i(H†DνH − DνH
†H)DµW IµρW Iν

ρX2H2D2

O(18)
W 2H2D2 εI JK(H†σI DνH + DνH†σI H)DµW JµρW K

νρ O(19)
W 2H2D2 iεI JK(H†σI DνH − DνH†σI H)DµW JµρW K

νρ

XH2D4 O(3)W H2D4 i(DρDνH
†σI DρH − DρH†σI DρDνH)DµW Iµν

Table 2: Operators of the dimension 8 Green’s basis in the bosonic sector of the SMEFT
appearing in the text [47], [56]. The redundant operators are the gray ones.

In[2]:= EFTSeries[exp_, n_] := Normal@Series[exp, {invL2, 0, n}]

This way, we will be keeping only terms up to dimension 8 (this is, 1/Λ4) by setting n= 2.
The code can be divided in three main sections. The first one is dedicated to obtain, from

the 2-point function, the physical mass and the residue in the pole Z . The 2-point function
needs to be extracted with other tools (e.g., from a notebook with FeynRules loaded, upon
setting FR$Loop = True and computing the Feynman rules for the Lagrangian). From there,
we can extract the Π(p2) function, which in the full model reads
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In[3]:= pi[p2_] := -2 invL2 r61 p2^2 + 2 invL2^2 r81 p2^3

To extract the physical pole (i.e., the physical mass), we expand it in its different EFT
orders and perturbatively compute m2

phys − m2
0 − Π(m

2
phys) = 0, with m0 the mass term in

the Lagrangian of the full model. This is saved into the mphysCondition variable as a list,
containing the different expressions obtained order by order in invL2.

In[4]:= mphys2 = mphys2dim4 + invL2 mphys2dim6 + invL2^2 mphys2dim8;

In[5]:= mphysCondition =
CoefficientList[EFTSeries[mphys2 - m0^2 - pi[mphys2], 2], invL2];

The only thing left to do is to compute the values for mphys2dim4, mphys2dim6 and
mphys2dim8 by setting every element of mphysCondition to zero and, then, compute the
residue Z .

In[6]:= mphys2 = mphys2 /. Flatten@
Solve[mphysCondition == 0, {mphys2dim4, mphys2dim6, mphys2dim8}]

Z = EFTSeries[(1 - pi’[mphys2])^(-1), 2]

Out[6]= m02 - 2 invL2 m04 r61 + 2 invL22 (4 m06 r612 + m06 r81)

Out[7]= 1 - 4 invL2 m02 r61 + invL22 (24 m04 r612 + 6 m04 r81)

This has been performed for the full model and the same should be repeated for the physical
one. However, since we do not add any extra 2-point operator to this model apart from the
kinetic and mass terms, the physical mass is directly the mass in the Lagrangian (which is, in
turn, identical to the physical mass that has just been computed) and the residue is Z = 1.
We finally set two replacement rules to change propagators (which FeynCalc expresses as
FeynAmpDenominator structures) to their expression depending on whether the amplitude
is computed with the full or the physical model.

In[8]:= PropFull[p_] := EFTSeries[1/(SP[p, p] - m0^2 - Pi[SP[p, p]]), 2]
PropPhys[p_] := EFTSeries[1/(SP[p, p] - mphys2), 2]
expandPropFull = {FeynAmpDenominator[PD[Momentum[p_], m_]] :> PropFull[p]};
expandPropPhys = {FeynAmpDenominator[PD[Momentum[p_], m_]] :> PropPhys[p]};

To facilitate the expansion of various expressions in the perturbative parameter, we in-
troduce a replacement rule that associates each coefficient with the corresponding power of
invL2. Additionally, since we will solve order by order in the mass dimension of the differ-
ent contributions, it is necessary to explicitly expand the coefficients as a series in powers of
invL2.

In[9]:= EFTOrder = Flatten@
{(# -> invL2 #) &/@ {a61, r61, r62, a61phys},
(# -> invL2^2 #) &/@ {a81, a82, r81, r82, r83, r84, a81phys, a82phys}};

perturbativeOrder = {
lmbdphys -> lmbd + invL2 lmbdphysdim6 + invL2^2 lmbdphysdim8,
a61phys -> a61physdim6 + invL2 a61physdim8,
a81phys -> a81physdim8,
a82phys -> a82physdim8

};

In this example, we perform the full matching using only the 8-point amplitude. Specifi-
cally we consider a process with eight incoming scalars S[1] ≡ φ. For convenience, we also
define a list representing the momenta of the external legs. We then compute the amplitudes
with both Lagrangians, multiplying by the Z factor the amplitude calculated within the full
basis (ampFull) and substituting the corresponding propagators in each case. For the ampli-
tude in terms of the physical basis (ampPhys), we use the perturbatuveOrder replacement
rule too so that we can solve for the coefficients perturbatively in the EFT order.
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In[10]:= nScalars = 8;
process = Table[S[1], {i, nScalars}] -> {};
momenta = Table[Symbol["P" <> ToString[i]], {i, nScalars}];

In[11]:= topo = CreateTopologies[0, nScalars -> 0, Adjacencies -> {4, 6, 8}];

In[12]:= diagsFull = InsertFields[topo, process, InsertionLevel -> {Particles},
Model -> modelFull, GenericModel -> modelFull];

ampFull = FCFAConvert[CreateFeynAmp[diagsFull],
IncomingMomenta -> momenta, List -> False] /. EFTOrder;

In[13]:= ampFull =
EFTSeries[Z^(nScalars/2), 2] EFTSeries[ampFull, 2] /. expandPropFull;

ampFull = EFTSeries[ampFull, 2] // ExpandScalarProduct;

In[14]:= diagsPhys = InsertFields[topo, process, InsertionLevel -> {Particles},
Model -> modelPhys, GenericModel -> modelPhys];

ampPhys = FCFAConvert[CreateFeynAmp[diagsPhys],
IncomingMomenta -> momenta, List -> False] /. EFTOrder;

ampPhys = EFTSeries[ampPhys /. expandPropPhys, 2] // ExpandScalarProduct;
ampPhys = EFTSeries[ampPhys /. perturbativeOrder, 2];

At this point, we just need to replace the analytical expressions ampFull and ampPhys
with rational randomly-generated kinematics. To this end, we use the Mathematica pack-
age SpinorHelicity4D [55]. Note that there are some incompabilities between FeynArts,
FeynCalc and SpinorHelicity4D, so that loading everything from the very beginning can
be troublesome. Indeed, when loading SpinorHelicity4D there may be some warnings
for some variables present in more than one context, although this should not compromise
the proper working of the notebook since we only need the functionalities declared from
SpinorHelicity4D. In any case, it could be a good idea to save both amplitudes in an aux-
iliary file (better excluding the contexts of FeynArts and FeynCalc) and later load the ex-
pressions into another notebook. We then initialize SpinorHelicity4D and declare some
necessary mathematical objects, such as the totally antisymmetric tensor, the Pauli matrices
and the product in the Minkowski space.

In[15]:= << SpinorHelicity4D‘
eps = {{0, 1}, {-1, 0}};
sigmas = {IdentityMatrix[2], {{0, 1}, {1, 0}}, {{0, -I}, {I, 0}},

{{1, 0}, {0, -1}}};
MDot[a_List, b_List] := a[[1]]b[[1]] - a[[2;;-1]].b[[2;;-1]];

To generate spinors, we use the GenSpinor function from the SpinorHelicity4D pack-
age. This function takes as input the four-momenta, assuming all have the same mass, and
outputs a list of two pairs of spinors for each massive momentum: λα, eλα̇, µα, eµα̇. The function
returns a list where each element corresponds to spinors associated to momenta with the same
mass. To extract the spinors in our case, we assign the first element of this list to spScalars.
Finally, we compute the numerical value of the mass squared (m2) for the generated momenta,
which is then used to normalize all momenta to a symbolic mass, mS.

In[16]:= scalars = Table["s" <> ToString[i], {i, 1, nScalars}];
spinors = GenSpinors[scalars, SameMasses -> scalars,

DisplaySpinors -> True, ParameterRange -> 50];
spScalars = spinors[[1]];
m2 = S["s1"] // ToNum;

In[17]:= momScalars = ( KroneckerProduct[eps.#[[1]], #[[2]]] +
m2/(#[[1]].eps.#[[3]] #[[2]].eps.#[[4]])
KroneckerProduct[eps.#[[3]], #[[4]]] ) &/@ spScalars;

psScalars = Table[mS/(2 Sqrt[m2]) Tr[#.sigmas[[j]]], {j,4}] &/@ momScalars;
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After computing the numerical kinematics using the formulas provided in Appendix A, we
define a replacement rule to incorporate the randomly generated kinematic variables into the
amplitudes. At this stage, we also substitute the parameter mphys2 and split the resulting
expressions into contributions with different EFT orders. Then, this procedure yields three
equations: the first one being trivial since it corresponds to EFT order 4 and other two corre-
sponding to the dimension-6 and dimension-8 contributions, respectively.

In[18]:= listReplacements =
Table[Momentum[momenta[[i]]] -> psScalars[[i]], {i, nScalars}];

In[19]:= ampRedBasis = ampFull //. listReplacements //. {Pair -> MDot} // Expand;
ampRedBasis = CoefficientList[

EFTSeries[ampRedBasis /. {Power[mS, n_] :> mphys2^(n/2)}, 2], invL2];

In[20]:= {ampReddim6, ampReddim8} = {ampRedBasis[[2]], ampRedBasis[[3]]};

In[21]:= ampPhysBasis = ampPhys //. listReplacements //. {Pair -> MDot} // Expand;
ampPhysBasis = CoefficientList[

EFTSeries[ampRedBasis /. {Power[mS, n_] :> mphys2^(n/2)}, 2], invL2];
{ampPhysdim6, ampPhysdim8} = {ampPhysBasis[[2]], ampPhysBasis[[3]]}

In[22]:= AppendTo[equationsdim6, ampReddim6 == ampPhysdim6];
AppendTo[equationsdim8, ampReddim8 == ampPhysdim8];

The steps from In[16] to In[22] must be repeated using the Do loop function to gen-
erate enough equations to determine all the desired coefficients. Here, of course, variables
equationsdim6 and equationsdim8 need to have been previously initialized to an empty
list {} before the Do statement.

Finally, we solve both algebraic systems of linear equations to determine the coefficients
that are to be shifted in the Lagrangian in the physical basis. We begin by solving the dimension-
6 equations and then substitute their solution into the dimension-8 equations to obtain the
remaining contributions. Combining soldim6 and soldim8 we obtain the results in Eqs.
(18)-(22).

In[23]:= coefphysdim6 = {lmbdphysdim6, a61physdim6};
soldim6 = Flatten@Solve[equationsdim6, coefphysdim6] // Expand;
coefphysdim8 = {lmbdphysdim8, a61physdim8, a81physdim8, a82physdim8};
soldim8 = Flatten@Solve[equationsdim8 /. soldim6, coefphysdim8] // Expand;

In[24]:= mphys2
lmbdphys /. perturbativeOrder /. soldim6 /. soldim8
a61phys /. perturbativeOrder /. soldim6 /. soldim8
a81phys /. perturbativeOrder /. soldim6 /. soldim8
a82phys /. perturbativeOrder /. soldim6 /. soldim8

Out[24]= m02 - 2 invL2 m04 r61 + 2 invL22 (4 m06 r61^2 + m06 r81)

Out[25]= lmbd + invL2 m02 ( r62 - 8 r61 lmbd)
+invL2 m04 (-10 r61 r62 - r82 - r83 + 64 r612 lmbd + 12 r81 lmbd)

Out[26]= a61 - 4 r62 lmbd + 16 r61 lmbd2 + invL2 m02 (-12 a61 r61 -
22
5

r622 - r84

+
512
5

r61 r62 lmbd +
56
5

r82 lmbd + 8 r83 lmbd -
1728
5

r612 lmbd2

-
304
5

r81 lmbd2)

Out[27]= a81 + 6 a61 r62 - 48 a61 r61 lmbd -
108
5

r622 lmbd - 4 r84 lmbd

+
1248
5

r61 r62 lmbd2 +
144
5

r82 lmbd2 + 16 r83 lmbd2 -
3072
5

r612 lmbd3

-
576
5

r81 lmbd3
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Out[28]= a82

This code shows how we can perform on-shell matching in a rather easy manner. Indeed,
despite the drawback of the number of diagrams to be considered in on-shell matching, we
can actually side-step this issue by matching just a few number of amplitudes (or even one)
with many external legs. This way, as discussed in Sec. 3.1, we have been able to perform the
full reduction of the real scalar singlet up to dimension 8 using only the 8-point amplitude.
The full code is provided as an ancillary file in the arXiv submission of this manuscript.
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