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Abstract

CRPropa 3.2, released recently, is the latest update in a continued effort to maintain
and extend this open-source code well known in the cosmic-ray community. Originally
aimed at simulating the ballistic propagation and interactions of Ultra-High Energy Cos-
mic Rays (UHECRs), today it can handle diffusive propagation of cosmic rays in a variety
of magnetic fields, model stochastic cosmic ray acceleration, simulate electromagnetic
cascades for gamma ray emission and transport, and provides other capabilities. Of spe-
cial interest is the recent introduction of a hadronic module to facilitate the treatment
of cosmic ray interactions in the galaxy and within the sources. This work details the
recent updates on this module in the context of bursting sources of UHECRs.
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1 Introduction

Hadronic interactions of ultra-high-energy cosmic rays (UHECRSs) are not only important for
air showers, but they can also be relevant in the sources. During acceleration and transport
in the sources, UHECRs interact primarily with photons from surrounding structures like the
kilonova in gamma ray bursts, or thermal emission from accretion disks like in active galactive
nuclei. Nevertheless, hadronic interactions are expected to play some role in some sources as
has been shown in other works (e.g. [1,2]).

Previous treatments of hadronic interactions in astrophysical scenarios (e.g. [3]) are based
on precomputed tables with limited types of secondaries produced. On one hand, it can be
more efficient to perform Monte Carlo sampling from tables, and on the other, expected spec-
tra can be numerically computed directly with such tables. Nevertheless, this method can
have limitations as the range of applicability is determined by the range of energies, primary
and secondary species, final state cutoff, generator version, etc. employed to construct the
tables. This is evidenced in the Appendix A where the distribution of neutral pions obtained in
reference [4] is compared to the distribution obtained with the more recent version QGSJet-
[1.04 [5]. Furthermore, the diversity of UHECR source scenarios and the need to access up-
dated hadronic interaction generators (HIGs) for their evaluation in astrophysical contexts are
best served with a direct access approach such as the HIM [6] developed for CRPropa [7].

Previously, the HIM for CRPropa was introduced in reference [6], detailing its structure,
estimating its efficiency and showcasing proton-proton interactions in an example consistent
with a bursting source of UHECRs. This contribution discusses the inclusion of proton-nucleus
interactions, the treatment of secondary nuclear fragments and the impact on the simulation
of a typical bursting source of UHECRSs.

2 The Hadronic Interactions Module (HIM)

The HIM is a python module based on the available CRPropa class provided for the implemen-
tation of external modules, and it makes use of the frontend chromo [8] to generate hadronic
interactions with the available generators (some of which are Epos-LHC [9], QGSJet-11.04 [10],
Sibyll2.3c¢ [11], and others). The module implements the tasks of deciding the success of a
hadronic interaction, generating the secondary products and feeding the cinematic quantities
of the products back to CRPropa for their propagation. Additional details on the HIM are given
in [6] and the current release discussed here is [12].

2.1 Treatment of A-p interactions
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Figure 1: Wounded nucleon distributions with QGSJet-11.04 for different projectile
nuclei on target protons: nitrogen (left) and iron (right).
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Figure 2: Wounded nucleon distributions for nitrogen projectile nuclei on target pro-
tons: QGSJet-11.04 (left) and EPOS-LHC (right).

The inelastic cross section in the HIM is available directly from the HIGs, however, more
efficient evaluations are provided to deal with simulations where a large number of interactions
are expected, or as alternative where the computation of the cross section by the HIGs takes
longer than desired. The default inelastic cross section o, (Ej,,) is estimated as a constant
fraction of the total cross section o,

Oinel(Elab) =0.81- Otot(Elab) 1D

evaluated from the parametrization in reference [13]. Alternatively, the cross sections are
obtained from precomputed values with the respective HIG.

The nuclear fragments produced in an event are part of the output of most HIGs. How-
ever, at the moment of this work, chromo does not provide a utility function to access this
information consistently between hadronic models (see issue #183 on the github repository
of chromo [8]). As a fallback method, and for consistency between HIGs, the HIM computes
the nuclear remnant fragments based on the number of wounded nucleons, estimating the
mass of the remnant A, as the number of spectator nucleons A, = A—w,, with A the mass
of the target nucleus and N,, the number of wounded nucleons. The distribution of N,, as a
function the projectile lab. energy (see Figure 1) has a very weak dependence on the energy,
with a modest broadening towards the largest energies. The effect of the projectile mass is
more pronounced as the distributions are noticeably broader for iron in contrast to nitrogen.
The comparison between HIGs is illustrated in Figure 2, where distributions obtained with
QGSJet-11.04 tend to be narrower compared to EPOS-LHC, which are limited to at most six
nucleons. For both cases, the broadening with projectile energy is appreciable. The specific
nuclear species of the remnant is determined by randomly choosing the proton number to
match one of the nuclear species regarded as stable in CRPropa. The distribution of remnants
resulting from this prescription are shown in Figure 3, given for two different projectile nuclei
on proton targets: nitrogen projectiles (left) and iron projectiles (right).

3 Example: UHECR bursting source scenario

The fragment cascades described are illustrated in a benchmark example of bursting source
of UHECRs with the same physical parameters as in reference [6], for ease of comparison.
The benchmark source is represented by a blob of radius R = 1pc inside which the pro-
ton density is homogeneous and whose value is computed to yield a desired optical depth
as T = Ojine(Ejap)PR. The magnetic field follows a Kolmogorov distribution with a root-mean-
square intensity of 1G and a coherence length of 0.17R. The injected cosmic rays follow
flat energy spectrum in logarithmic scale (‘é—lg(E) o< E71) in the energy range 1-100 EeV. No
other interactions were included besides hadronic interactions of the injected nuclei and the
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Figure 3: Fragment distributions for different projectile nuclei: nitrogen (left) and
iron (right).

fragments produced, thus the decays of unstable fragments were not applied. As final state
secondaries only photons, electrons, pions, neutrons and protons and their anti-particles were
considered, however the HIM provides functionality to decide the list final state particles.

Figures 4 and 5 show the spectra of secondaries including the nuclear fragments resulting
from the injection of helium and nitrogen primaries respectively. The most frequent nuclear
remnants are shown grouped by nuclear mass as well as nucleons and antinucleons. In the
case of 10% optical depth the injected nuclei experience very few interactions and the injected
spectrum is barely changed unlike in the case of 100% optical depth. The spectra of light
secondaries is mainly dominated by neutral pions while the other pions can be trapped by the
magnetic field which is consistent with the previous results (see [6]). The spectra of pions
and nucleons at lower energies contain contributions from nuclei of all energies, but at higher
energies only the most energetic nuclei contribute as implied by the softer spectra in the 10%
optical depth cases.

The current release for the HIM [12] is available for open usage by the community, in the
framework of CRPropa. The detailed physical impact of these interactions are the subject of
study in following publication currently in preparation.
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Figure 4: Spectra of escaping secondaries for two different proton densities with
helium injection.
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Figure 5: Spectra of escaping secondaries for two different proton densities with
nitrogen injection.

A Limitations of precomputed tables

As illustration of one of the limitations of precomputed tables and fits to such tables, Figure 6
shows differences between a more recent version of QGSJet and a fit performed in [4] with an
earlier version of the code. While the pion distributions for 100 GeV projectile protons seem
in good agreement, the fitted distribution is biased toward larger pion energies and under
predicts the low energies by about 30-40% for 1 PeV projectile protons.

The importance of these differences depend on the spectra of projectile protons under con-
sideration. A recomputation of the tables and fits is always possible, however this added step is
a disadvantage compared to the approach of direct sampling from generators employed in the
HIM, which makes recent updated available upon release and avoids delays associated with
the needed updates in the existing tables. Furthermore, direct sampling from the generators
has a wider range of application because, unlike in precomputed tables, no assumptions are
made on the energy range and specific secondaries of interest, whereas tables will are limited
by these assumptions and can become prohibitively large if the range of desired applicability
is too broad.
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Figure 6: Comparison of the distributions of neutral pions as reported in reference [4]
versus sampling in the HIM of the more recent QGSJet-11.04 [5].
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