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Abstract

The past decades have seen substantial interest in the so-called orbital angular momen-
tum (OAM) of light, driven largely by its diverse range of applications. However, there
are fundamental theoretical issues with decomposing the angular momentum of mass-
less particles, such as photons, into spin (SAM) and orbital angular momentum parts.
While such an SAM-OAM splitting is unambiguous for massive particles, there are numer-
ous proposed splittings for photons and no consensus about which is correct. Moreover,
it has been shown that most of the proposed SAM and OAM operators do not satisfy the
defining commutation relations of angular momentum operators and are thus not legit-
imate splittings. Here, we prove that it is generally impossible to split the total angular
momentum operator of massless bosons, such as photons and gravitons, into spin and
orbital parts. We prove two further generalizations of this result, showing that there are
no SAM-OAM splittings even if (1) the SAM operator generates non-internal symmetries
or (2) if one allows the SAM and OAM operators to generate non-SO(3) symmetries.
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1 Introduction

Since it was first introduced, the concept of the orbital angular momentum (OAM) of light has
been a popular area of research [1]. It has found diverse scientific and industrial applications
including, but not limited to, imaging [2,3], optical communication [4], and the manipulation
of microstructures [5]. Following the detection of gravitational waves by LIGO [6, 7], re-
searchers have also been interested in the OAM of gravitational waves [8–10]. However, there
are fundamental theoretical issues with splitting the angular momentum of massless bosons,
such as photons and gravitons, into spin angular momentum (SAM) and OAM [11–14]. An-
gular momentum operators, such as SAM and OAM operators, must be generators of three-
dimensional rotational symmetries of the particle, and must therefore satisfy so(3) commu-
tation relations [11–16]. Furthermore, spin is associated with the internal degrees of free-
dom (DOFs) [17], so SAM operators must generate an SO(3) symmetry of the internal space
of a particle. For massive particles, the angular momentum naturally and uniquely splits
into SAM and OAM. In contrast, there is no agreed upon method to define these operators
for massless bosons, leading to a vast array of different proposed SAM and OAM opera-
tors [11, 15, 16, 18–25]. However, most of these operators have been shown to either not
be well-defined or else not actually satisfy so(3) commutation relations, and are therefore not
genuine angular momentum operators [11–16]. We recently showed [13] that in some of the
proposed SAM-OAM splittings for photons [11, 22], the SAM operators actually generate an
R3 symmetry rather than an SO(3) symmetry, while the OAM operators do not generate any
symmetry at all. In the case of gravitons, we proved the stronger result that there is no possible
SAM-OAM splitting of the angular momentum [14]. In this article, we generalize and extend
these arguments, showing that the same is true for any massless particle. We do so by prov-
ing four no-go theorems. The first theorem uses geometric methods to show that the angular
momentum operator of massless particles cannot split into nontrivial SAM and OAM opera-
tors. The third and fourth theorems show that various generalizations of the definition of SAM
and OAM operators do not remove the obstruction. More specifically, the third no-go theorem
shows that it is not possible to split the angular momentum operators of massless particles into
generators of non-SO(3) symmetries, which, for example, was attempted in Refs. [11,22]. The
fourth no-go theorem shows the stronger result that it is not possible to split the angular mo-
mentum operator of massless particles into two generators of any nontrivial energy-preserving
symmetries, even if neither of those symmetries are internal.

While the proofs of the first, third, and fourth theorems are essentially geometric, we show
in the second no-go theorem that the obstruction preventing the splitting of angular momen-
tum can also be viewed as a consequence of the nontrivial topology of massless particles. This
nontrivial topology reflects the intertwining of the internal and external DOFs which prevents
an SAM-OAM decomposition. We also show how gauge redundant descriptions of massless
particles can give the false impression that the angular momentum splits into SAM and OAM
parts.

This article is organized as follows. In Sec. 2, we review the vector bundle formalism for
elementary particles and discuss its equivalence with the usual Hilbert space representations.
In Secs. 3, 4, 5, and 6 we prove No-Go Theorems 1, 2, 3, and 4, respectively. In Sec. 7,
we show how gauge redundant descriptions can lead to non-physical SAM-OAM splittings for
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massless particles. In Sec. 8 we discuss the validity of using single-particle states rather than
multiparticle Fock states to prove the no-go theorems.

2 Formalism

Conventionally, elementary particles are defined as unitary irreducible representations (UIRs)
of the proper orthochronous Poincaré group ISO+(3,1) on a Hilbert space [26, 27]. Equiva-
lently, they can be considered as UIRs on a Hermitian vector bundle π : E → M where E is
the total space, M is the momentum space of the particle, and π is the projection (k, v) 7→ k
[13, 14, 28, 29]. It is typical to also refer to the total space E as the vector bundle. We also
refer to the vector (k, v) by just v when the base point k is irrelevant. Let B be Minkowski
space with signature (−,+,+,+). For massive particles with m > 0, the momentum space M
is the mass hyperboloid

Mm = {kµ = (ω, k) ∈ B : kµkµ = −m2} ∼= R3 (1)

while for massless particles M is the forward lightcone

L+ = {kµ = (ω, k) ∈ B : kµkµ = 0,ω> 0} (2)
∼= R3 \ {0}. (3)

Note that massless particles have no rest frame and thus ω = |k| = 0 is excluded from the
lightcone. Parametrizing Mm and L+ by just their spatial parts k gives the diffeomorphisms
with R3 and R3 \ {0}, respectively. The fiber at k ∈ M is the vector space E(k)

.
= π−1(k). The

momentum space M describes the external DOFs of the particle while the fiber DOFs describe
the internal state (i.e., v ∈ E(k) describes the polarization). The vector bundle E is Hermitian,
meaning that for each k, there is a Hermitian inner product 〈·, ·〉 on the fiber E(k). That E
is a representation of ISO+(3,1) means that there are ISO+(3, 1)-actions Σ and σ on E and
M , respectively, such that for Λ ∈ ISO+(3,1), ΣΛ is a vector space isomorphism of E(k) onto
E(σΛk). Furthermore, Σ and σ respect the group structure of ISO+(3,1), that is,

ΣΛ1Λ2
= ΣΛ1

ΣΛ2
(4)

ΣΛ−1 = (ΣΛ)
−1, (5)

and similarly for σ. We will mostly consider bundles for which σ is the standard action of
ISO+(3, 1) on momentum space, that is, when Λ ∈ SO+(3,1) is a Lorentz transformation we
simply have σΛk = Λk, while the inhomogeneous spacetime translations in ISO+(3,1) do not
effect k. That the action Σ is unitary means that

〈ΣΛv1,ΣΛv2〉= 〈v1, v2〉 (6)

for all Λ ∈ ISO+(3, 1) and all v1, v2 ∈ E(k). The irreducibility of the action means that there are
no proper subbundles E′ (with nonzero rank) of E which are preserved by Σ. These definitions
generalize the notion of vector space representations to vector bundle representations. One
can recover the conventional Hilbert space representations Σ̃ of the particles by considering
the induced UIR on the Hilbert space L2(E) of square-integrable sections of E [13, 28]. In
particular, for a wavefunction ψ(k) ∈ L2(E), the action is

[Σ̃Λψ](k)
.
= ΣΛ[ψ(σΛ−1 k)]. (7)

The inner product of E induces an inner product on L2(E) given by

〈ψ1,ψ2〉=
∫

M
〈ψ1(k),ψ2(k)〉dξ (8)
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where dξ is the Lorentz invariant measure on M ; if M = L+, then dξ= |k|−1d3k. Under this
product, Σ̃ is a UIR of ISO+(3,1) on the Hilbert space L2(E). The Lie group representations
Σ and Σ̃ of ISO+(3,1) induce corresponding Lie algebra representations η and η̃ of iso(3, 1)
describing the infinitesimal group actions. For g ∈ iso(3,1), ηg is the tangent vector field on E
given by

ηg(k, v)
.
=

d
d t

�

�

�

t=0
Σexp(i tg)(k, v) ∈ T(k,v)E (9)

and η̃g is an operator on L2(E) given by

η̃gψ=
d
d t

�

�

�

t=0
Σ̃exp(i tg)ψ. (10)

Note that ηg is an operator in the sense that vector fields on E are differential operators on
the space of smooth C-valued functions on E. The (total) angular momentum operators of
these representations, J = (J1, J2, J3) and J̃ = (J̃1, J̃2, J̃3), are the generators of rotation, cor-
responding to η and η̃ when the Lie algebra iso(3,1) is restricted to so(3). They satisfy the
so(3) commutation relations

[Jm, Jn] = iεmnpJp (11)

[J̃m, J̃n] = iεmnp J̃p (12)

where the bracket in the first equation is the Jacobi-Lie bracket and that in the second equation
is the usual operator commutator 1. We restrict our discussion to non-projective representa-
tions of ISO+(3, 1), which corresponds to treating only particles with integer spin or helicity,
i.e., bosons. Nearly all known massless particles are bosons, so this assumption has little effect
on the generality of our results. Massless fermions, known as Weyl fermions, are exceptionally
rare, and have only been observed within the last decade in exotic materials [31–33].

The bundle action given by Σ and η describes the action on single-particle states while Σ̃
and η̃ describe the action on wave functions; they contain equivalent information. While the
action on wave functions is more commonly used, we work with the bundle action as it leads
to simpler proofs of the no-go theorems. The reason is that these proofs make frequent use
of sharp momentum states, that is, states which have a single momentum p ∈ M . These are
simply the vectors in E in the bundle representation, while in the wave function representation
these are δ-function-like states. However, Flato et al. [34] showed that for massless particles
these sharp states are not standard delta functions, but rather twisted delta (“twelta”) func-
tions, which require more care to work with. We avoid these complications by working in the
bundle representation.

A three-component operator V which satisfies

[Vm, Jn] = iεmnpVp (13)

transforms under rotations like a spatial vector, and is thus called a vector operator [30,35].

3 Masslesss particles do not have SAM or OAM: A geometric proof

The aim of this article is to study possible decompositions of the total angular momentum J
into nonzero vector operators S and L:

J = S+ L. (14)
1Note that we use the physics convention for the Lie algebra, in which so(3) corresponds to unitary transfor-

mations. Mathematicians use a different convention in which so(3) corresponds to anti-unitary transformations.
In that convention, the factors of i would not appear in equations (9)-(12). For a short discussion, see Section 3.4
Ref. [30].
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The defining property of angular momentum operators is that they generate SO(3) symmetries
[35]. Thus, if S and L are to be considered angular momentum operators, they must (up to
Lie algebra isomorphism) satisfy [11,13,14,16,35]

[Sm, Sn] = iεmnpSp (15)

[Lm, Ln] = iεmnp Lp. (16)

These generate corresponding bundle actions (ΣS ,σS) and (ΣL ,σL) of SO(3) on π : E → M .
Since SAM describes an SO(3) symmetry of the internal (fiber) DOFs, ΣS must not change the
momentum, i.e., σS

R(k) = k for every R ∈ SO(3). Such actions which do not change the fiber
are called stabilizing. Under such a ΣS , each fixed fiber E(k) is a finite-dimensional vector
space representation of SO(3).

We now illustrate that there is a natural splitting of the form (14) for massive particles,
but that this construction breaks down for massless particles. For an action Σ of ISO+(3,1) on
π : E → M with σΛ = Λ, the little group at k ∈ M is the subgroup Hk of SO+(3,1) consisting
of elements which leave k invariant [26,27]:

Hk
.
= {Λ ∈ SO+(3, 1)|Λk = k}. (17)

Up to group isomorphism, Hk is independent of k, so we can just refer to the little group H [27].
There is a canonically induced unitary action of H on E which is stabilizing [13]. For a particle
πm : Em→Mm with mass m> 0, the little group is SO(3), which is apparent from examining
the little group at k = 0. Thus, there is a canonically induced stabilizing action of SO(3)
on Em; its generator Sm is the standard SAM operator. Under this action, each fiber Em(k)
is a UIR of SO(3). Vector space UIRs of SO(3) are uniquely determined by their dimension
2s + 1 where s is the non-negative integer spin, so the rank of the bundle E determines the
spin representation 2. On each fiber one can express Sm using the spin s matrices. Since J
and Sm satisfy so(3) commutation relations, so does Lm .

= J − Sm, completing the SAM-OAM
decomposition for massive particles. In this case, the SAM operator is induced by the SO(3)
little group action.

This procedure breaks down for bundle representations π0 : E0→ L+ of massless particles.
In this case there is no rest frame with k = 0, and the little group is now ISO(2) = R2⋊SO(2)
[13,26], the group of inhomogeneous isometries of R2 where ⋊ denotes the semidirect prod-
uct. It is well-known that if inhomogeneous elements R2 ⊆ ISO(2) act nontrivially, then one
obtains particles with an infinite number of internal DOFs [26, 27]. There are no known
particles with such an internal space and these solutions are generally believed to be unphys-
ical. We thus make the standard assumption that the inhomogeneous elements act trivially.
We therefore obtain a canonical stabilizing little group representation of SO(2) on E0. Each
fiber is a finite-dimensional representation of SO(2) and such representations are all one-
dimensional and are uniquely labeled by a (possibly negative) integer helicity h rather than a
spin [13,26,27]. Since this is not an SO(3) representation, the generator of this action is not
an SAM operator. A clear illustration of this fact is that SO(2) is a one-dimensional Lie group,
so its generator (the helicity operator) is a scalar operator rather than a vector operator, so it
obviously cannot represent SAM.

Although this argument is suggestive, it does not rule out the possibility that SAM and
OAM operators could be defined by some other procedure. Indeed, the many other proposed
SAM and OAM operators are such attempts [11, 15, 16, 18–25]. However, we prove in the
following theorem that in general there is no SAM-OAM decomposition for massless particles.
The argument uses the fundamental difference of the dimensionalities of the spin and helic-
ity representations. Indeed, the vector space spin representations of SO(3) have dimension

2s could also be a half integer if we were considering fermions and projective representations
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2s + 1 while all of the helicity representations of SO(2) are one-dimensional. Thus the fibers
of massless particles are all one-dimensional, that is, massless particles are represented by line
bundles [13,36]. For example, we previously showed that the right (R) and left (L) circularly
polarized photons each form a UIR of ISO+(3, 1) on line bundles [13], and likewise for the R
and L gravitons [14].

No-Go Theorem 1. Suppose π0 : E0→ L+ is a massless particle, that is, it is a UIR of ISO+(3,1).
It is not possible to split the total angular momentum J into nonzero SAM and OAM operators S
and L, where S and L generate SO(3) symmetries and S corresponds to an internal symmetry.

Proof. Suppose such a decomposition exists. S generates an SO(3) action ΣS on E0. Since
this symmetry is internal, ΣS does not change the fiber coordinate k ∈ L+, and thus ΣS is a
vector space representation of SO(3) on each fiber E0(k). By the little group construction, we
saw that since E0 is a UIR of ISO+(3,1) it must be a line bundle, so E0(k) is a one-dimensional
vector space. The only representation of SO(3) on a one-dimensional vector space is the spin 0
representation, which is trivial in the sense that SO(3) always acts by the identity. Thus ΣS = I
and S = 0, and therefore J = L. There is thus no nontrivial SAM-OAM decomposition.

Theorem 1 explains the issues that plague the various proposed SAM and OAM operators
for photons. Van Enk and Neinhaus [11] first showed that one attempt to define SAM and OAM
for light fail to satisfy so(3) relations and are therefore not actually SAM and OAM operators;
we showed [13] that the same is true of the decomposition proposed by Bialynicki-Birula and
Bialynicka-Birula [22]. Recently, Yang et al. [16] showed through direct calculation that the
SAM-OAM decompositions of Jaffe-Manohar [19], Chen et al. [20], and Wakamatsu [21] do
not satisfy so(3) relations, leading again to the conclusion that none of these are legitimate
SAM and OAM operators. Yang et al. propose two new sets of SAM and OAM operators
(SM , LM ) and (Sobs

M , Lobs
M ); see Table II in Ref. [16]. In accord with No-Go Theorem 1, neither

of these sets of operators are actually well-defined SAM and OAM operators for photons. The
first set satisfy so(3) relations but, as Yang et al. point out, they are not gauge invariant and
are thus not measurable. As such, SM and LM are not well-defined vector operators on the
space of physical states; this is discussed in more detail in Sec. 7. The other set of operators,
(Sobs

M , Lobs
M ), are gauge invariant, but the Sobs

M ,i commute with each other rather than satisfy
cyclic so(3) relations, and are therefore not angular momentum operators.

4 Nontrivial topology as an obstruction to an SAM-OAM decom-
position

The failure of the angular momentum of massless particles to split into SAM and OAM can
be understood both in terms of the geometry and topology of such particles. The obstruction
originates in the singular limit that occurs as the particle mass is taken to zero. We showed
in the previous section that there is a singularity in the Poincaré geometry that occurs in this
limit as the little group jumps abruptly from SO(3) to ISO(2). This leads to massive particles
possessing spin while massless particles possess helicity, and the latter is not associated with
an angular momentum operator.

However, the m→ 0 limit is also accompanied by a topological singularity as the momen-
tum space M jumps from being a topologically trivial (contractible) mass hyperboloid Mm to
the non-contractible lightcone L+. Since Mm is contractible to a point, there are only topo-
logically trivial vector bundles over Mm ( [37], Corollary 6.9), and thus all massive particles
πm : Em →Mm are described by trivial bundles. However, L+ is not contractible due to the
hole at k = 0, and thus there are topologically nontrivial vector bundles over L+. Indeed, a
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massless particle with nonzero helicity is described by a vector bundle πh : γh → L+ whose
topology is fully characterized by its (first) Chern number C(γh) = −2h [36]. When h ̸= 0, γh is
topologically nontrivial. This nontrivial topology indicates that the internal DOFs parametriz-
ing the fibers (polarizations) and the external DOFs parametrizing L+ are nontrivially twisted
together [38]. However, SAM and OAM are related to SO(3) symmetries of the internal and
external DOFs of a particle, respectively. Thus, the nontrivial topology of massless particles
with nonzero helicity can be heuristically understood as obstructing the existence of such a
splitting. As for massive particles with zero spin, the h = 0 case is uninteresting from the
perspective of SAM and OAM as the unique SAM and OAM operators are simply S = 0 and
L= J .

We now formalize this heuristic observation. In Theorem 1, we illustrated the geometric
obstruction to an SAM-OAM splitting by imposing the condition that the SAM operator is in-
ternal. To illustrate the topological obstruction we will instead assume that the OAM operator
is external, that is, it generates an action only changing the base manifold DOFs. In precise
terms, suppose ΣL is a G-action on a bundle π : E → M with base manifold action σL . We
say that ΣL is external if the condition σL

g1
k = σL

g2
k for g1, g2 ∈ G and k ∈ M implies that

ΣL
g1
(k, v) = ΣL

g2
(k, v) for every (k, v) ∈ E(k). This is equivalent to saying that if σL

g k = k, then

ΣL
g(k, v) = (k, v), i.e., the little group with respect to ΣL acts trivially on E. We refer to a Lie

algebra representation as external if it generates an external Lie group representation.

No-Go Theorem 2. Suppose π : E → L+ is a rank r bundle with an external SO(3) action
ΣL . Assume the corresponding action σL on L+ ∼= R3 \ {0} is the standard base manifold action
σL

R = R for R ∈ SO(3). Then E is a trivial bundle. Consequently, a massless particle admits an
external OAM operator L if and only if the particle has zero helicity.

Proof. Consider the restriction of E to the unit sphere S2 ⊆ R3 \ {0} ∼= L+, denoted by E|S2 .
L+ deformation retracts onto S2, so E is trivial if and only if E|S2 is trivial ( [39], Cor 1.8). By
the assumption on σL , ΣL restricts to an action on E|S2 . Fix some k0 ∈ S2 and for each k ∈ S2,
define

Gk = {R ∈ SO(3)|Rk0 = k}. (18)

Let v1, ..., vr be a basis of E|2S at k0, and define sections f1, ..., fr of E|S2 by

f j(k)
.
= ΣL

Gk
(k0, v j). (19)

The assumption that ΣL is external ensures that all elements of Gk have the same action on
(k0, v j), so the f j are well-defined. Since ΣL is smooth and Gk varies smoothly with k, the
f j are smooth sections of E|S2 . Furthermore, they are linearly independent at each k. To see
this, choose some gk ∈ Gk and note that ΣL

gk
is a linear isomorphism between the fibers at k0

and at k. Since E possess r linearly independent sections, it is a trivial vector bundle. Since
a massless particle with nonzero helicity is topologically nontrivial [36], such a particle does
not admit an external OAM operator.

No-Go Theorem 2 shows that a massless helicity h ̸= 0 particle πh : γh → L+ does not
admit an OAM operator since γh is a nontrivial bundle.

In practice, it is common to consider helicity h particles not in isolation, but in combination
with the helicity −h particles, that is, one considers the direct sum bundle γh,T

.
= γh ⊕ γ−h.

For example, R and L photons are respectively described by bundles γ1 and γ−1 [13], but it is
necessary to consider the total photon bundle γT

.
= γ1 ⊕ γ−1 if one wishes to describe linear

polarizations. Since the first Chern numbers are additive with respect to the direct sum by the
Whitney product formula [40] and since C(γh) = −2h [36], it follows that C(γh,T ) = 0. This
implies that, unlike γ±h, the bundle γh,T is topologically trivial [13, 36]. No-Go Theorem 2
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does not then immediately imply that γh,T does not possess an OAM operator, although this is
indeed the case.

Before proving this, we will give an informal argument showing why one would not expect
an OAM operator to exist for γh,T . If we let Σ± denote the ISO+(3, 1) symmetries of γ±h, then
Σ= Σ+⊕Σ− is an ISO+(3,1) symmetry of γh,T = γh⊕γ−h. Suppose there were such an OAM
operator LT which generates an SO(3) symmetry ΣL,T on γh,T . By No-Go Theorem 2, ΣL,T is
not a symmetry of either γh or γ−h, but only of their direct sum. However, γ±h are preserved
under the actions Σ±, so LT cannot be written purely in terms of the generators of Σ±, that
is, in terms of the Hamiltonian, momentum, angular momentum, or boost operators on γ±h.
There are no other natural operators available, so this gives a strong indication that there is no
way to construct an OAM operator LT . Indeed, γh and γ−h are related by a parity symmetry P
which is part of the full Poincaré group, but not of the proper orthochronous Poincaré group
ISO+(3, 1) [13]. Since LT would have to generate a symmetry mixing γh and γ−h, this suggests
LT would involve the generator of the parity symmetry P. However, parity is a discrete rather
than a continuous symmetry, and thus has no infinitesimal generator. This is essentially the
reason why elementary particles are typically defined [27] as UIRs of ISO+(3,1) rather than the
full Poincaré group, since the Lie algebra does not detect discrete time and parity symmetries.

We can give a more rigorous argument showing that no such LT exists as follows. Note that
while No-Go Theorems 1 and 2 are proved via different methods, their conclusions are related.
In particular, if the OAM operator LT is external, then ST = J T − LT is internal. We note then
that No-Go Theorem 1 applies equally well to the bundle γh,T = γh ⊕ γ−h. The only change
in the proof of No-Go Theorem 1 is that the fibers now have dimension two rather than one.
However, there are no two-dimensional UIRs of SO(3) and thus the representation generated
by an internal ST must break down into two one-dimensional UIRs of SO(3) 3. But the only
such UIR is the trivial representation, so we must have ST = 0 and LT = J T = J (+h) + J (−h),
where J (±h) are the total angular momentum operators of γ±h. However, J (±h), and therefore
J T , do not generate external symmetries when h ̸= 0 since the little group acts nontrivially,
and thus, γh,T does not admit an external OAM operator. We have thus proved the following
corollary of the previous no-go theorems:

Corollary 1. Let γ±h be line bundles describing massless particles with nonzero helicities ±h and
with total angular momentum operators J±. Consider the total bundle γT,h = γh ⊕ γ−h with the
induced angular momentum operator J T = J (+h) + J (−h). If

J T = LT + ST , (20)

where LT and ST generate SO(3) symmetries, then:

1. If ST is internal, then ST = 0.

2. LT cannot generate an external symmetry.

Therefore, there is no nontrivial SAM-OAM decomposition for the system of particles γT .

5 The angular momentum cannot be split into non-SO(3) symme-
tries

No-Go Theorems 1 and 2 establish the fundamental result that it is not possible to split the
angular momentum of a massless particle into genuine SAM and OAM operators. This reflects

3There is a two-dimensional projective UIR corresponding to spin 1/2 fermions, but this is irrelevant to the case
of bosons, whose representations are non-projective.
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the fact that the internal and external DOFs cannot independently carry any nontrivial SO(3)
symmetries. One might still ask if J can be split into vector operators describing some non-
SO(3) symmetries.

As an illustration of why this is not possible, consider the proposed splitting [11,22]

S = (J · k̂)k̂ (21)

L= J − S. (22)

J ·k̂ is the helicity operator generating the internal SO(2)-action which naturally arises from the
little group construction for massless particles [13]. The helicity is a scalar operator rather than
a vector operator, and thus by itself cannot be a SAM operator. Equation (21) can be viewed
as an ad hoc attempt to “vectorize” the helicity operator into an SAM operator. However, by
Theorem 1 this S cannot actually be an angular momentum operator. Indeed, while S and
L are well-defined vector operators satisfying condition (13), they satisfy the nonstandard
commutation relations [11,13]

[Sm, Sn] = 0, (23)

[Lm, Sn] = iεmnpSp, (24)

[Lm, Ln] = iεmnp(Lp − Sp). (25)

Aside from not generating SO(3) symmetries, we previously noted that these suffer from an
additional issue [13]. In particular, while the Sm operators commute with each other and
thus generate an R3 symmetry, the Sp on the rhs of Equation (25) shows that the Lm do not
form a Lie subalgebra. Thus, L does not generate any symmetry at all. The next theorem
shows that this issue is generic—it arises in any attempt to split J into generators of non-
SO(3) symmetries, regardless of whether S and L generate internal and external symmetries,
respectively.

No-Go Theorem 3. Suppose that
J = L+ S (26)

where J is the the total angular momentum operator and L and S are nonzero vector operators,
that is, they satisfy

[Lm, Jn] = iεmnp Lp (27a)

[Sm, Jn] = iεmnpSp. (27b)

Furthermore, suppose that L and S are generators of symmetry groups GL and GS with associated
Lie algebras gL and gS . Then

gL = gS = so(3). (28)

In particular, it is not possible for either L or S to generate non-SO(3) symmetries.

Proof. L and S satisfy the commutation relations of their associated Lie algebras gL and gS .
Therefore,

[Lm, Ln] = iνmnp Lp (29)

[Sm, Sn] = iτmnpSp (30)

where νmnp and τmnp are the structure constants of gL and gS . It then follows that

[Lm, Ln] = [Jm − Sm, Jn − Sn] (31)

= iεmnp Lp + i(τmnp − εmnp)Sp (32)

= iνmnp Lp. (33)

9
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Thus, either τmnp = εmnp or else Sp is a multiple of Lp. If τmnp = εmnp, then also νmnp = εmnp,
and therefore L and S both satisfy so(3) commutation relations, proving the claim. Sup-
pose then that Sm = cm Lm for some constants cm. Note that cm ̸= −1 since Jm ̸= 0. Then
Lm = (1+ cm)−1Jm. From Equation (27), it follows that

[Lm, Jn] =
1+ cp

1+ cm
iεmnp Lp (34)

= iεmnp Lp, (35)

so cm = cp
.
= c for all m, p. Then

[Lm, Ln] =
i

1+ c
εmnp Lp. (36)

By rescaling the basis to L′m = (1+ c)Lm we obtain

[L′m, L′n] = iεmnp L′p, (37)

showing that gL = so(3). An analogous argument shows that gS = so(3).

No-Go Theorem 3 shows that if S or L generates a non-SO(3) symmetry, then the other
operator will not generate any symmetry at all. Thus, such splittings of the angular momentum
appear ill-suited to generalize SAM and OAM operators.

6 Generalization to non-internal SAM operators

In this section we prove a stronger version of No-Go Theorem 1 by relaxing the constraint that
the SAM operator is stabilizing. Assume again that π0 : E0 → L+ and Σ are a representation
of a massless particle, and that

J = L+ S (38)

where L and S are vector operators generating symmetries. By No-Go Theorem 3, these must
generate SO(3) symmetries ΣL and ΣS on E. Let σ, σL , and σS be the actions on the base
manifold L+ corresponding to Σ, ΣL , and ΣS . For massless particles, the energy is given by
ω = |k|. If one enforces the constraint that ΣS is internal, then σS

R = I and σL
R = σR = R for

any R ∈ SO(3). In this case,
|σL

Rk|= |σS
Rk|= |k|, (39)

so L and S both generate symmetries which preserve the energy. The first no-go theorem shows
that there are no nontrivial splittings such that S is internal. We now prove this conclusion is
still true if we replace the assumption that S is internal with the weaker assumption that S and
L conserve energy in the sense of (39). To this end, we first establish the following lemmas.

Lemma 1. Suppose L and S are vector operators satisfying equation (38). Then L and S commute,
and therefore so do σL and σS .

Proof. From equations (38) and (16) we have that

[Lm, Jn] = iεmnp Lp + [Lm, Sn] (40)

= iεmnp Lp. (41)

Thus
[Lm, Sn] = 0, (42)

and since the generators commute, so do the generated actionsΣL andΣS . This in turn implies
that σL and σS commute.

10
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Let Diff(M) be the group of diffeomorphisms on a manifold M . A G-action

ζ : G→ Diff(M) (43)

g 7→ ζg (44)

on a manifold M is a continuous group homomorphism from the Lie group G to Diff(M). ζ
is transitive if for any m1, m2 ∈ M , there is a g ∈ G such that ζg m1 = m2. Under the energy
conserving assumption (39), σ, σL , and σS are all SO(3)-actions on the unit sphere S2 ⊆ L+.

Lemma 2. Suppose that ζ : SO(3)→ Diff(S2) is an SO(3)-action on S2. Then

(i) Either ζ is the identity operator or else it is transitive.

(ii) For every R ∈ SO(3), ζR has a fixed point, that is, there exists an x ∈ S2 such that ζR x = x.

Proof. (i) [41] For x ∈ S2, let Gx be the isotropy group of x with respect to ζ. Gx is a closed
subgroup of SO(3). The only closed subgroups of SO(3) are isomorphic to either a finite group,
SO(2), O(2), or SO(3) [42]. Consider the map F : SO(3)/Gx → S2 given by F(R) = ζR x . This
gives a homeomorphism of SO(3)/Gx with the orbit of x in S2 [43]. If Gx is a finite group,
then SO(3)/Gx would be three-dimensional but homeomorphic to a subset of S2, which is an
obvious contradiction. Similarly, SO(3)/O(2)∼= RP2, but the latter cannot be embedded in S2

[44], so Gx ̸∼= O(2). If Gx
∼= SO(2), the orbit of x is homeomorphic to SO(3)/SO(2)∼= S2 [43].

There are no proper subspaces of S2 homeomorphic to S2, thus the orbit of x must be all of
S2. Thus, if Gx

∼= SO(2) for some x , then ζ is transitive.
Lastly, if Gx = SO(3), then ζR x = x for all R ∈ SO(3). Furthermore, this implies that

ζR y = y for all R ∈ SO(3) and y ∈ S2. For suppose there were a y for which this were not
true. Then Gy

∼= SO(2) and the action is transitive and thus x would be in the orbit of y ,
which is a contradiction. Thus, if there exists any x for which Gx = SO(3), then ζ is just the
identity action on S2.

(ii) Let I be the identity in SO(3), and note that ζI = 1 is the identity operator on S2. Since
SO(3) is path-connected, ζR : S2 → S2 is homotopic to the identity for any R ∈ SO(3). The
degree of a map f : S2 → S2 is homotopy invariant [45], so deg(ζR) = deg(1) = 1. If a map
f : S2→ S2 has no fixed points, then deg( f ) = −1 [45]. Thus ζR must have a fixed point.

No-Go Theorem 4. Assume that the SO(3) action Σ of a massless particle splits into UIRs of
SO(3), ΣL and ΣS , which are generated by the vector operators L and S as in Eq. (38). Assume
further that these actions preserve energy in the sense of Eq. (39). Then either ΣL or ΣS acts
trivially. Thus, either L= 0 or S = 0, and consequently the splitting is trivial.

Proof. If either of ΣL or ΣS is an internal action then the result follows from No-Go Theorem
1, so consider the case when neither ΣL or ΣS are internal. Let ES2

r
be the bundle obtained by

restricting the base manifold of E0 to S2
r where S2

r ⊆ R
3\{0} ∼= L+ is the sphere of radius r > 0.

By the energy preserving condition, ΣL and ΣS restrict to SO(3)-actions on ES2
r
. Consider the

corresponding actions σL,r and σS,r on the base manifold S2
r
∼= S2. By Lemma 2 (i), for each

r, σL,r is either transitive or the identity. Since ΣL is not internal, there must be some r0 such
that σL,r0 is transitive. Furthermore, because the action σL is continuous, by varying r0 to
any other r > 0, we obtain that σL,r is also transitive. The same argument shows that σS,r is
transitive for every r.

Fix some r > 0. By Lemma 1,

σ
S,r
R1
σ

L,r
R2
= σL,r

R2
σ

S,r
R1

(45)

11
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for every R1, R2 ∈ SO(3). Consider an arbitrary but fixed R1. By Lemma 2 (ii), σS,r
R1

has some

fixed point y ∈ S2
r . By (45),

σ
S,r
R1
(σL,r

R2
y) = σL,r

R2
y, (46)

showing that σL,r
R2

y is a fixed point of σS,r
R1

for every R2. Since σL,r is transitive, σL,r
R2

y spans

all of S2
r as R2 is varied over SO(3). Therefore, every point is a fixed point of σS,r

R1
, and thus

σ
S,r
R1

is the identity. Since this argument can be applied to every R1, it follows that σS,r is

the trivial action. However, σS,r was nontrivial by assumption, so a contradiction has been
reached, showing that either ΣL or ΣS must be trivial.

7 Non-physical SAM operators arising from gauge redundancy

In this section we give an example of how gauge redundancies in the description of massless
particles can lead to the identification of non-physical SAM operators for massless particles.
For concreteness, we consider the case of photons. It is common to describe photons in mo-
mentum space using the Lorentz gauge vector potential Aµ(k) = (A0(k), A(k)), which satisfies
the Lorentz gauge condition

Aµkµ = 0. (47)

Note that while the Lorentz gauge has the advantage of being Lorentz covariant, it is not com-
plete, i.e., there is still residual redundancy in this description [46]. Condition (47) determines
A0 in terms of k and A, so the potential can be parameterized just by A(k). One can then form
the photon bundle πγ : γ→ L+ as the collection of all (k, A) where k ∈ L+ and A ∈ C3. Notice
that this bundle is topologically trivial γ ∼= L+ ×C3 since the fiber does not depend on k. As
such, it is similar to a mass m> 0 particle with spin 1, which is described by the vector bundle
Mm ×C3. In particular, one can define an SAM operator Sγ for γ which acts on the fibers by
the spin 1 matrices

(Sγn)pq = −iεnpq. (48)

By defining Lγ = J − Sγ, which generates rotations in Mm without affecting C3, it might then
seem that we have obtained an SAM-OAM decomposition of the photon angular momentum.
Indeed, this was one of the early attempts at such a splitting [11,18]. However, this splitting
is non-physical and is only possible due to residual redundancy in the Lorentz gauge. To see
this, let Σγ,S denote the SO(3) symmetry on γ generated by Sγ. γ is a rank-3 bundle, but there
are only two photon polarizations. A typical way of removing the remaining gauge freedom is
to impose the Coulomb gauge condition k · A = 0. Applying this condition in each fiber gives
the rank-2 Coulomb gauge photon bundle in which all vectors represent physically different
states [14]. More generally, the remaining gauge freedom can be removed without choosing
a specific gauge via the procedure of Asorey et al. [29]. At each fixed k ∈ L+, A and A+ αk
are physically equivalent for any α ∈ C, and thus we can use this to define an equivalence
relation ∼ on each fiber. We then remove all gauge redundancy by forming the rank-2 vector
bundle γ/ ∼ by taking the quotient in each fiber. Regardless of how the gauge redundancy is
removed, one obtains a rank-2 vector bundle γ̃ of physical states. If S is a true SAM operator,
it must descend to an operator on γ̃, generating an SO(3) action Σγ̃,S on γ̃. This is equivalent
to saying that if (k, A) and (k, A′) are physically equivalent, then Σγ,S

R (k, A) and Σγ,S
R (k, A′)

must be physically equivalent for any R ∈ SO(3). However, this is not possible for the same
dimensional reasons that lead to No-Go Theorem 1. In particular, Σγ̃,S would be an SO(3)
representation on the two-dimensional fibers of γ̃, but the only such representation is the trivial
representation. Thus Sγ would also have to be trivial, contradicting Equation (48). Therefore
Sγ cannot descend to a well-defined operator on the space of physical photon states; it is an
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artifact of gauge redundancy in the Lorentz gauge. Similarly, massless particles characterized
by helicity ±h with h> 0 can together be described by a spin h representation [29]. However,
the spin h representation has dimension 2h+1, while the the ±h massless particles only have
two independent internal degrees of freedom, and thus there is a dimension 2h − 1 gauge
redundancy in this description. While this gauge redundant description might appear to give
rise to an SAM-OAM decomposition, this decomposition cannot be gauge independent and is
thus not physical.

8 Single-particle states vs. Fock space

We note that we have obtained the No-Go Theorems by examining the symmetries of the single-
particle states rather than the multiparticle Fock space. Under very mild physical assumptions,
these treatments are equivalent for the SAM-OAM decomposition problem. Let H = L2(E) be
the single-particle Hilbert space. The boson Fock space F is constructed from symmetrized
sums of copies of H as [47]

F =
∞
⊕

n=0

Symn(H). (49)

Thus, any symmetry of the single-particle space H induces a corresponding symmetry of F
given by applying the symmetry to each copy of H. A priori, there is the possibility that there
exist SO(3) symmetries of the Fock space that do not arise in this manner, that is, actions of
SO(3) which mix states of different particle number. Our analysis has not accounted for such
symmetries. However, it is reasonable to make the assumption that such exotic symmetries,
if they exist, do not describe SAM or OAM operators. Indeed, the total angular momentum
operator does not mix states of different particle number, nor do any of the previously proposed
SAM or OAM operators for massless particles. For example, see Yang et al.’s [16] review
of the various proposed SAM and OAM operators, and note that in every term creation and
annihilation operators appear in equal numbers so that particle number is conserved. Indeed,
it seems to be implicitly assumed in discussions of the SAM or OAM of elementary particles
that these properties are defined at the single-particle level and are not emergent multiparticle
phenomena. We also make this assumption.

9 Conclusion

The fundamental results of this paper are No-Go Theorems 1 and 2, showing that the total
angular momentum operator of massless bosons cannot be split into SAM and OAM operators.
This result may be surprising given that the angular momentum of massive particles splits so
readily into SAM and OAM. On the other hand, this result could have been anticipated. Despite
the relevancy of the OAM and SAM of light to optics and photonics and despite sustained
interest in this problem, there is no agreement in the literature as to the correct definition
of such OAM and SAM operators. This suggests the existence of a fundamental obstruction
to such a splitting, one which we showed traces back to the singular limit that occurs as the
mass of a particle goes to zero. This limit entails a topological singularity, as the momentum
space jumps abruptly from a contractible mass hyperboloid to the non-contractible lightcone
and the topologically trivial rank-(2s + 1) massive vector bundles are replaced by nontrivial
massless line bundles. This topological singularity is accompanied by a geometric singularity
as the little group jumps from SO(3) for massive particles to SO(2) for massless particles.
Particles carry a canonical internal little group symmetry. As SAM is associated with an internal
SO(3) symmetry rather than an SO(2) symmetry, this singularity can be viewed as the essential
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obstruction to an SAM-OAM decomposition.
Furthermore, we have shown that this obstruction is not easily circumvented by gener-

alizing the definition of angular momentum operators. Perhaps the simplest generalization
is to allow spin to describe non-internal symmetries, however, No-Go Theorem 4 shows that
this does not yield nontrivial operators. Another option is to attempt to define SAM and OAM
operators which generate non-rotational symmetries; while this is less natural, it has been at-
tempted. Indeed, as Yang et al. [16] showed, most of the proposed SAM and OAM operators
do not actually generate 3D rotations. No-Go Theorem 3 shows that in these cases it is not
possible for both the SAM and OAM to generate any symmetries, even non-SO(3) symmetries.

These no-go theorems raise the following question. Although photon angular momentum
does not split into SAM and OAM, why is it that OAM beams have found such remarkable
success in experimental optics? The answer to this question certainly requires additional the-
oretical work and examination of specific experimental results. However, we suspect that an
important point in addressing this question is that while photon angular momentum cannot
be split into SAM and OAM, photons can still carry an arbitrarily large amount of angular mo-
mentum. We thus hypothesize that many of the useful features of so-called OAM beams result
because they carry large amounts of angular momentum, not necessarily because that angular
momentum is orbital.

We also note that as we have considered only non-projective representations, this analysis
does not directly apply to Weyl fermions. Nevertheless, we suspect that the no-go theorems
can be extended to projective representations, and thus to Weyl fermions; future research will
explore the possibility of such extensions.
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