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1 Introduction

The Gaudin model [1] describes an important class of one-dimensional many-body systems

with long-range interactions, which have found widespread applications in various branches

of physics, from condensed matter to high-energy physics. For example, they are relevant

in the simplified BCS theory for small metallic particles [2, 3] and in the Seiberg-Witten

theory of supersymmetric gauge theory [4, 5]. Moreover, Gaudin models provide powerful

tools for constructing integral representations of solutions to the Knizhnik-Zamolodchikov

(KZ) equations [6–9].

The Gaudin operators with integrable boundary conditions are well known to be con-

structed via a quasi-classical expansion of the inhomogeneous transfer matrix of quantum

models [7, 10, 11]. Within this framework, the Gaudin operators can be diagonalized once

the exact solutions of the corresponding transfer matrix are derived. As a result, the most

well-studied Gaudin models are those with U(1) symmetry [11–15], where the conventional

Bethe ansatz can be applied. The lack of exact solutions for many integrable models always

presents a significant challenge in studying novel Gaudin models.

Recent advancements in several analytical methodssuch as the (generalized) algebraic

Bethe ansatz method [16, 17], the functional T − Q relation [18, 19], and the off-diagonal

Bethe ansatz method [20–24]have enabled us to solve various non-trivial integrable models

that either lack U(1) symmetry or beyond the A-type Lie algebra [20, 21, 25–27]. This

progress has motivated us to explore and analyze new Gaudin models.

In this paper, we focus on the Izergin-Korepin (IK) Gaudin model [28] with periodic and

open boundary conditions. The IK model has played a fundamental role in the study of

non-A-type integrable models. Exact solutions of the IK model with periodic and generic

open boundaries have been constructed using the algebraic Bethe ansatz [29] and the off-

diagonal Bethe ansatz [20,27], respectively. Following the approach in Ref. [30], we construct

the exactly solvable IK Gaudin operators from the corresponding quantum transfer matrix.

With the help of the known exact solutions of the IK model, the eigenvalues of the Gaudin

operators are derived through analytical calculations.

The paper is organized as follows. In Section 2, we introduce the periodic IK model and

its exact solutions. Section 3 focuses on the construction of the IK Gaudin operators under

periodic boundary conditions and provides the solutions for these operators, including their
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eigenvalues and corresponding Bethe ansatz equations (BAEs). In Section 4, we present the

IK model with open boundaries, including its integrability and exact solutions. Section 5

is dedicated to the construction of the IK Gaudin model with generic open boundaries. In

Section 6, we derive the eigenvalues of the open Gaudin operators and the corresponding

BAEs. A summary is provided in the final section.

2 The IK model with periodic boundaries

2.1 Integrability of periodic IK model

The R-matrix of the IK model [28], associated with the simplest twisted affine algebra A
(2)
2 ,

is given by

R(u) =



c(u) 0 0 0 0 0 0 0 0

0 b(u) 0 e(u) 0 0 0 0 0

0 0 d(u) 0 g(u) 0 f(u) 0 0

0 ē(u) 0 b(u) 0 0 0 0 0

0 0 ḡ(u) 0 a(u) 0 g(u) 0 0

0 0 0 0 0 b(u) 0 e(u) 0

0 0 f̄(u) 0 ḡ(u) 0 d(u) 0 0

0 0 0 0 0 ē(u) 0 b(u) 0

0 0 0 0 0 0 0 0 c(u)


. (2.1)

The expressions for the functions in Eq. (2.1) are

a(u) = sinh(u− 3η)− sinh 5η + sinh 3η + sinh η, b(u) = sinh(u− 3η) + sinh 3η,

c(u) = sinh(u− 5η) + sinh η, d(u) = sinh(u− η) + sinh η,

e(u) = −2e−
u
2 sinh 2η cosh(u

2
− 3η), ē(u) = −2e

u
2 sinh 2η cosh(u

2
− 3η),

f(u) = −2e−u+2η sinh η sinh 2η − e−η sinh 4η,

f̄(u) = 2eu−2η sinh η sinh 2η − eη sinh 4η,

g(u) = 2e−
u
2

+2η sinh u
2

sinh 2η, ḡ(u) = −2e
u
2
−2η sinh u

2
sinh 2η.

(2.2)

The R-matrix in (2.1) satisfies the quantum Yang-Baxter equation (QYBE)

R1,2(u1 − u2)R1,3(u1 − u3)R2,3(u2 − u3) = R2,3(u2 − u3)R1,3(u1 − u3)R1,2(u1 − u2), (2.3)
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and possesses the following properties

Initial condition : R1,2(0) = κP1,2, κ = sinh η − sinh 5η, (2.4)

Unitarity relation : R1,2(u)R2,1(−u) = c(u)c(−u) × id, (2.5)

Crossing relation : R1,2(u) = V1R
t2
1,2(−u+ 6η + iπ)V −1

1 , (2.6)

Quasi-classical property : R(u)|η→0 = sinhu× id, (2.7)

where R2,1(u) = P1,2R1,2(u)P1,2, P1,2 is the permutation operator and the superscript ti

indicates the transposition in the i-th space.

From the algebraic Bethe ansatz method, one can construct the quantum transfer matrix

t(p)(u) = tr0{R0,N(u− θN)R0,N−1(u− θN−1) · · ·R0,1(u− θ1)}, (2.8)

where {θ1, . . . , θN} is a set of inhomogeneous parameters.

By using the QYBE (2.3) repeatedly, one can demonstrate that the transfer matrices

with different spectral parameters commute with each other [31] :

[t(p)(u), t(p)(v)] = 0. (2.9)

Therefore, t(p)(u) acts as the generating functional of the conserved quantities of the system

and the integrability of the system is proved.

2.2 Exact solutions of periodic IK model

Introduce some functions

ã(u) =
N∏
l=1

c(u− θl), (2.10)

d̃(u) =
N∏
l=1

d(u− θl), (2.11)

b̃(u) =
N∏
l=1

b(u− θl). (2.12)

From the conventional Bethe ansatz, the eigenvalues of the transfer matrix t(p)(u) are given

by the following T −Q relation [29,32]

Λ(p)(u) = ã(u)
Q̃(u+ 4η)

Q̃(u)
+ d̃(u)

Q̃(u− 6η + iπ)

Q̃(u− 2η + iπ)
+ b̃(u)

Q̃(u− 4η)Q̃(u+ 2η + iπ)

Q̃(u− 2η + iπ)Q̃(u)
, (2.13)
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where

Q̃(u) =
M∏
j=1

sinh
(u− λj − 2η

2

)
, (2.14)

and M = 0, 1, . . . , 2N . The Bethe roots {λ1, . . . , λM} satisfy the folowing Bethe ansatz

equations

N∏
l=1

sinh
(
λj−θl−2η

2

)
sinh

(
λj−θl+2η

2

) = −Q̃(λj − 2η)Q̃(λj + 4η + iπ)

Q̃(λj + 6η)Q̃(λj + iπ)
, j = 1, . . . ,M. (2.15)

3 IK Gaudin model with periodic boundaries and its

exact solutions

The IK Gaudin operators {H(p)
1 , . . . , H

(p)
N } with periodic boundary conditions can be ob-

tained by expanding the transfer matrix at the point u = θj around η = 0

t(p)(θj) = κ
[
t
(p)
0 (θj) + ηH

(p)
j + · · ·

]
, j = 1, . . . , N, (3.1)

H
(p)
j =

∂t(p)(θj)

κ ∂η

∣∣∣∣
η=0

. (3.2)

From Refs. [20,24], we know that

t(p)(θj) =κRj,j−1(θj − θj−1) · · ·Rj,1(θj − θ1)Rj,N(θj − θN) · · ·Rj,j+1(θj − θj+1). (3.3)

The quasi-classical properties of the R-matrix (2.7) allow us introduce the corresponding

classical r-matrix r(u)

R(u) = sinhu× id + η r(u) + o(η2), when η → 0,

r(u) =
∂R(u)

∂η

∣∣∣∣
η=0

. (3.4)
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The matrix representation of r(u) is

r(u) =



c′(u) 0 0 0 0 0 0 0 0

0 b′(u) 0 e′(u) 0 0 0 0 0

0 0 d′(u) 0 g′(u) 0 f ′(u) 0 0

0 ē′(u) 0 b′(u) 0 0 0 0 0

0 0 ḡ′(u) 0 a′(u) 0 g′(u) 0 0

0 0 0 0 0 b(u) 0 e′(u) 0

0 0 f̄ ′(u) 0 ḡ′(u) 0 d′(u) 0 0

0 0 0 0 0 ē′(u) 0 b′(u) 0

0 0 0 0 0 0 0 0 c′(u)


. (3.5)

The expressions for the functions in Eq. (3.5) read

a′(u) = −3 coshu− 1, b′(u) = 3− 3 coshu, c′(u) = 1− 5 coshu,

d′(u) = 1− coshu, e′(u) = −4e−
u
2 cosh u

2
, ē′(u) = −4e

u
2 cosh u

2
,

f ′(u) = −4, f̄ ′(u) = −4, g′(u) = 4e−
u
2 sinh u

2
, ḡ′(u) = −4e

u
2 sinh u

2
. (3.6)

With the help of Eq. (2.7), we can derive the expression of t
(p)
0 (θj) and the Gaudin operators

H
(p)
j

t
(p)
0 (θj) =

N∏
l 6=j

sinh(θj − θl)× id, (3.7)

H
(p)
j =

N∏
k 6=j

sinh(θj − θk)
N∑
l 6=j

Γj,l(θj, θl), Γj,l(θj, θl) =
rl,j(θj − θl)
sinh(θj − θl)

. (3.8)

Here Γj,l(θj, θl) is a long-range two-site interactions between site j and site l (with l 6= j),

which only depends on the homogeneous parameters θj and θl.

Based on the expansion of t(p)(θj) with respect to η (3.1) and the commutation relation

of the transfer matrix under different parameters (2.9), we can prove that H
(p)
j commute

with each other. The proof is as follows.

Proof. For convenience, we omit the symbol (p) in t
(p)
0 (θj) and H

(p)
j in the proof. From the

commutation relation [t(θj), t(θl)], we get

[t0(θj) + ηHj + η2H
(2)
j + · · · , t0(θl) + ηHl + η2H

(2)
l + · · · ]

= [t0(θj), t0(θl)] + η
{

[t0(θj), Hl] + [Hj, t0(θl)]
}

+ η2
{

[H
(2)
j , t0(θl)] + [t0(θj), H

(2)
l ] + [Hj, Hl]

}
+ · · · = 0, (3.9)
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Since η is arbitrary, the coefficients of each power of η in (3.9) must be zero, i.e.

[t0(θj), t0(θl)] = 0, (3.10)

[t0(θj), Hl] + [Hj, t0(θl)] = 0, (3.11)

[Hj, H
(2)
l ] + [H

(2)
j , Hl] + [Hj, Hl] = 0, (3.12)

· · · .

We see that t0(θj) is proportional to the identity matrix and commutes with any operator.

Then we have

[t0(θj), Hl] = 0, [Hj, t0(θl)] = 0,

[t0(θj), H
(2)
l ] = 0, [H

(2)
j , t0(θl)] = 0. (3.13)

Combining Eqs. (3.11) and (3.13), we derive

[Hj, Hl] = 0, j, l = 1, . . . , N. (3.14)

The aforementioned proof is also valid for the open system. It should be remarked

that we require lim
η→0

κ−1 t(θj) to be proportional to the identity operator. This condition is

automatically satisfied in the periodic system. However, for the open system, the model

parameters must satisfy certain constraints for this condition to hold (see Eq. (5.3)).

Therefore, the Gaudin model defined by (3.8) is exactly solvable. We can deirive the

eigenvalues of the Gaudin operators from the T − Q relation of the transfer matrix (2.13).

The Bethe roots in the T − Q relation are also related to the parameter η. Therefore, we

can expand the Bethe roots {λj|j=1,...,M} in terms of η as follows:

λj = λ
(0)
j + ηλ

(1)
j + o(η2). (3.15)

We can get the eigenvalues of the periodic IK Gaudin operators E
(p)
j by setting u = θj in

the T −Q relation (2.13) and taking the first derivative of κ−1Λ(p)(θj) with respect to η at

η = 0. After some analytical calculations, we arrive at

E
(p)
j = κ−1 ∂Λ(p)(θj)

∂η

∣∣∣∣
η=0

=
N∏
l 6=j

sinh(θj − θl)

{
1− 5 cosh(θj − θl)

sinh(θj − θl)
+ 2

M∑
k=1

coth
(θj − λ(0)

k

2

)}
. (3.16)
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With the help of Eq. (2.15), the corresponding BAEs for {λ(0)
j } can be obtained

M∑
l 6=j

[
−2 coth

(λ(0)
j − λ

(0)
l

2

)
+ tanh

(λ(0)
j − λ

(0)
l

2

)]

+
N∑
l=1

coth
(λ(0)

j − θl
2

)
= 0, j = 1, . . . ,M. (3.17)

4 The IK model with open boundaries

4.1 Integrability of open IK model

For an integrable open system, in addition to the R-matrix, we also require the boundary-

related K-matrices [31]. In this paper, we consider the type II generic non-diagonal K-

matrices in Ref. [33]

K−(u) =

 1 + 2e−u−ε sinh η 0 2e−ε+σ sinhu

0 1− 2e−ε sinh(u− η) 0

2e−ε−σ sinhu 0 1 + 2eu−ε sinh η

 , (4.1)

K+(u) =MK−(−u+ 6η + iπ)
∣∣∣
(ε,σ)→(ε′,σ′)

, (4.2)

where M is a constant diagonal matrix

M =

 e2η 0 0

0 1 0

0 0 e−2η

 . (4.3)

The matrices K−(u) and K+(u) satisfy the reflection equation (RE) and the dual RE

respectively [34,35], as follows

R1,2(u1 − u2)K−1 (u1)R2,1(u1 + u2)K−2 (u2)

= K−2 (u2)R1,2(u1 + u2)K−1 (u1)R2,1(u1 − u2), (4.4)

R1,2(u2 − u1)K+
1 (u1)M−1

1 R2,1(−u1 − u2 + 12η)M1K
+
2 (u2)

= K+
2 (u2)M−1

2 R1,2(−u1 − u2 + 12η)M2K
+
1 (u1)R2,1(u2 − u1). (4.5)

Then the double-row transfer matrix of the IK model is constructed

t(u) = tr0{K+
0 (u)R0,N(u− θN)R0,N−1(u− θN−1) · · ·R0,1(u− θ1)

×K−0 (u)R1,0(u+ θ1)R2,0(u+ θ2) · · ·RN,0(u+ θN)}. (4.6)

8



With the help of QYBE (2.3) and (dual) REs (4.4) and (4.5), one can prove that the transfer

matrices with different spectral parameters commute with each other [31] :

[t(u), t(v)] = 0. (4.7)

This ensures the integrability of the inhomogeneous IK model with open boundaries. It

should be noted that the transfer matrix (4.6) indeed does depend the inhomogeneous pa-

rameters {θj} and four free boundary parameters {ε, σ, ε′, σ′}.

4.2 Exact solutions of open IK model

In Refs. [20, 27], the transfer matrix t(u) in (4.6) has been exactly diagonalized by the off-

diagonal Bethe ansatz method. Let us recall the T −Q relation.

First, introduce some functions

a(u) =
N∏
l=1

c(u− θl)c(u+ θl)(1− 2e−ε sinh(u− η))(1− 2e−ε
′
sinh(u− η))

× sinh(u− 6η) cosh(u− η)

sinh(u− 2η) cosh(u− 3η)
, (4.8)

d(u) =
N∏
l=1

d(u− θl)d(u+ θl)(1− 2e−ε sinh(u− 5η))(1− 2e−ε
′
sinh(u− 5η))

× sinhu cosh(u− 5η)

sinh(u− 4η) cosh(u− 3η)
, (4.9)

b(u) =
N∏
l=1

b(u− θl)b(u+ θl)(1 + 2e−ε sinh(u− 3η))(1 + 2e−ε
′
sinh(u− 3η))

× sinhu sinh(u− 6η)

sinh(u− 2η) sinh(u− 4η)
, (4.10)

c(u) =41−Nc0 sinhu sinh(u− 6η)
N∏
l=1

c(u− θl)c(u+ θl)d(u− θl)d(u+ θl). (4.11)

The eigenvalue of the transfer matrix t(u), denoted as Λ(u), can be parameterized by the

following T −Q relation [20,27]

Λ(u) = a(u)
Q1(u+ 4η)

Q2(u)
+ d(u)

Q2(u− 6η + iπ)

Q1(u− 2η + iπ)
+ b(u)

Q1(u+ 2η + iπ)Q2(u− 4η)

Q2(u− 2η + iπ)Q1(u)

+
1

cosh(u− 3η)

[
c(u)Q1(u+ 2η + iπ)

Q1(u)Q2(u)
− c(−u+ 6η + iπ)Q2(u−4η)

Q1(u− 2η + iπ)Q2(u− 2η + iπ)

]
. (4.12)
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The function Qi(u) depends on N̄ parameters {λj|j = 1, . . . , N̄}

Q1(u) =
N̄∏
k=1

sinh
(u− λk − 2η

2

)
, N̄ = 4N − 2, (4.13)

Q2(u) =
N̄∏
k=1

sinh
(u+ λk − 2η

2

)
, (4.14)

and the functions c(u), b(u) and d(u) are the non-zero elements of the R-matrix given by

(2.2) and the constant c0 is specified as follows

c0 = −2e−ε−ε
′

{
cosh(σ′ − σ + 2η)− cosh(N̄η −

∑N̄
j=1 λj)

cosh( N̄η
2
− 1

2

∑N̄
j=1 λj)

}
. (4.15)

It is easy to verify that the functions Qi(u) possess the following properties

Qi(u+ 2iπ) = Qi(u), for i = 1, 2, and Q2(u) = Q1(−u+ 4η). (4.16)

The analyticity of Λ(u) requires the apparent and simple poles u = λj + 2η, j = 1 . . . , N̄ are

not real poles. Therefore, the residues of Λ(u) at these points must vanish, which leads to

the following Bethe asnatz equations

(1 + 2e−ε sinh(λj − η))(1 + 2e−ε
′
sinh(λj − η)) cosh(λj − η)

4 sinhλj sinh(λj − 2η)

=−
N∏
l=1

sinh
(λj − θl − 2η

2

)
sinh

(λj +θl − 2η

2

)
cosh

(λj−θl
2

)
cosh

(λj +θl
2

)
× c0Q2(λj +iπ)

Q2(λj − 2η)Q2(λj + 2η)
, j = 1, . . . , N̄ . (4.17)

Remark 4.1. The T −Q relation (4.12) is constructed by analyzing the analytic properties

of the polynomial Λ(u), which is obtained from a sufficient set of operator identities related

to the transfer matrix t(u). Consequently, the function Λ(u) given by the T − Q relation

satisfies any equations that the eigenvalue of the transfer matrix satisfies, although some of

these equations are not easily derived from the T −Q relation.

Compared with the T − Q relation of the periodic IK model in Eq. (2.13), the one in

(4.12) contains an inhomogeneous term due to the lack of U(1) symmetry. Under certain

conditions, the inhomogeneous T − Q relation will reduce to a homogeneous one, which are

discussed in Section 6.
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5 IK Gaudin model with generic open boundaries

Following the approach outlined in Refs. [10,13,36], one can construct the associated Gaudin

operators {Hj} by expanding the transfer matrix t(θj) around η = 0, specially as follows

t(θj) = κ(t0(θj) + ηHj + · · · ), j = 1, . . . , N,

Hj =
∂t(θj)

κ ∂η

∣∣∣∣
η=0

. (5.1)

Equation (2.7) implies that

t0(θj) = lim
η→0

tr0

{
N∏
l 6=j

sinh(θj − θl)
N∏
l=1

sinh(θj + θl)K
+
0 (θj)P0,jK

−
0 (θj)

}

=
N∏
l 6=j

sinh(θj − θl)
N∏
l=1

sinh(θj + θl) lim
η→0
{K−j (θj)K

+
j (θj)}. (5.2)

To ensure that the resulting Gaudin operators form a commuting family

[Hi, Hj] = 0, i, j = 1, 2, . . . , N,

which is essential for the integrability of the corresponding Gaudin model [1], we require

that t0(θj) be proportional to the identity operator (see Section 3)., i.e,

lim
η→0

{
K−j (θj)K

+
j (θj)

}
∝ id. (5.3)

Equation (5.3) gives rise to the following restrictions for the boundary parameters

lim
η→0

eσ = eσ
′
, lim

η→0
eε

′
= −eε. (5.4)

Without loss of generality, we assume that the boundary parameters ε, ε′ and σ do not

depend on the crossing parameter η, while σ′ does. Then, we get

σ′ = σ + σ̄η, ε′ = ε+ iπ. (5.5)

As a consequence, the following equation can be derived

t0(θj) =
N∏
l 6=j

sinh(θj − θl)
N∏
i=1

sinh(θj + θl) (1− 4e−2ε sinh2 θj)× id. (5.6)
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Using the initial condition of R-matrix (2.4) and the QYBE (2.3), the double row transfer

matrix at the point u = θj can be expressed as [20]

t(θj) =κRj,j−1(θj − θj−1) · · ·Rj,1(θj − θ1)K−j (θj)R1,j(θj + θ1) · · ·Rj−1,j(θj + θj−1)

×Rj+1,j(θj + θj+1) · · ·RN,j(θj + θN)tr0{K+
0 (θj)P0,jRj,0(2θj)}

×Rj,N(θj − θN) · · ·Rj,j+1(θj − θj+1). (5.7)

Then, we can derive the expression of the Gaudin operator

Hj =
N∏
l 6=j

sinh(θj − θl)
N∏
l=1

sinh(θj + θl)

{
Γj(θj) +

N∑
l 6=j

Γ′j,l(θj, θl)

}
, (5.8)

where the operator Γj(θj) and Γ′j,l(θj, θl) are given by

Γj(θj) =
1

sinh(2θj)
lim
η→0

∂

∂η

[
K−j (θj) tr0{K+

0 (θj)P0,jRj,0(2θj)}
]
, (5.9)

Γ′j,l(θj, θl) =
rj,l(θj − θl)K−j (θj)K

+
j (θj)

sinh(θj − θl)

∣∣∣∣∣
η→0

+
K−j (θj)rl,j(θj + θl)K

+
j (θj)

sinh(θj + θl)

∣∣∣∣∣
η→0

, (5.10)

and the operator rj,l is defined in (3.4). Here Γj(θj) describes the on-site potential, while

Γ′j, l(θj, θl) represents a site-dependent, long-range two-site interaction. Unlike the two-

site interaction Γj, l(θj, θl) in the periodic system (given in Eq. (3.8)), Γ′j,l(θj, θl) in the

open system depends not only on the inhomogeneous parameters θj and θl, but also on the

boundary parameters σ, σ̄, and ε.

The Gaudin operator defined by (5.8) is exactly solvable. In the next section, we will

derive the eigenvalues of the Gaudin operators and give the corresponding BAEs.

6 Exact solution of the IK Gaudin model with open

boundaries

6.1 Generic open boundary

Equation (5.1) allows us to extract the eigenvalues of the Gaudin operators and the cor-

responding Bethe ansatz equations from the exact spectrum of the transfer matrix t(u) at

u = θj, which are demonstrated in Eqs. (4.12)-(4.17).

12



To achieve this, let us evaluate the function, let us evaluate the function Λ(u) at η = 0

Λ(θj) = a(θj)
Q1(θj + 4η)

Q2(θj)

=κ
[
Λ(0)(θj) + η Ej + · · ·

]
, j = 1, . . . , N. (6.1)

From the operator identity (5.6), we can easily get the equation

Λ(0)(θj) =
N∏
l 6=j

sinh(θj − θl)
N∏
i=1

sinh(θj + θl) (1− 4e−2ε sinh2 θj). (6.2)

Expand the Bethe roots {λj|j=1,··· ,N̄} with respect to η as follows:

λj = λ
(0)
j + ηλ

(1)
j + o(η2). (6.3)

Then one can also derive the expression of Λ(0)(θj) from the T−Q relation (4.12), specifically

as follows

Λ(0)(θj) =
N∏
l 6=j

sinh(θj − θl)
N∏
l=1

sinh(θj + θl) (1− 4e−2ε sinh2 θj)
N̄∏
l=1

sinh
(
θj−λ

(0)
l

2

)
sinh

(
θj+λ

(0)
l

2

) . (6.4)

Comparing Eqs. (6.2) and (6.4), we conclude the following identities

N̄∏
l=1

sinh
(
θj−λ

(0)
l

2

)
sinh

(
θj+λ

(0)
l

2

) = 1, j = 1, . . . , N. (6.5)

As explained in Remark 4.1, the validity of Eq. (6.5) is guaranteed by the T − Q relation

and the corresponding Bethe ansatz equations.

Using Eqs. (5.1) and (6.5), the eigenvalue Ej of the Gaudin operators Hj can be derived

as follows

Ej =κ−1 ∂Λ(θj)

∂η

∣∣∣∣
η=0

=Λ(0)(θj)

{
− tanh θj − 6 coth θj +

N∑
l 6=j

[1− 5 cosh(θj − θl)
sinh(θj − θl)

+
1− 5 cosh(θj + θl)

sinh(θj + θl)

]

+
4 sinh(2θj)e

−2ε

1− 4e−2ε sinh2 θj
+

N̄∑
k=1

[
coth

θj + λ
(0)
k

2
+ coth

θj − λ(0)
k

2

](
1− λ

(1)
k

2

)}
. (6.6)

From the above expressions, we can see that the eigenvalues of the Gaudin operators Ej

depend on the zero-order and first-order expansion coefficients of the Bethe roots with respect

13



to η, namely {λ(0)
j } and {λ(1)

j }. Therefore, we need to obtain the equations for these two sets

of parameters. By expanding the left and right sides of BAEs (4.17) by η and comparing the

zero-order and first-order coefficients, we finally obtain the following two sets of equations(
e2ε − 4 sinh2 λ

(0)
j

)
coshλ

(0)
j

N̄∏
l=1

sinh2
(λ(0)

j + λ
(0)
l

2

)
cosh

(1

2

N̄∑
j=1

λ
(0)
j

)

= 8 sinh2 λ
(0)
j

[
1− cosh

( N̄∑
j=1

λ
(0)
j

)] N̄∏
l=1

cosh
(λ(0)

j + λ
(0)
l

2

)
×

N∏
l=1

[1

4
sinh(λ

(0)
j − θl) sinh(λ

(0)
j + θl)

]
, j = 1, . . . , N̄ , (6.7)

(
λ

(1)
j − 1

)
tanhλ

(0)
j −

2
(
λ

(1)
j − 1

)
cothλ

(0)
j

1− 4e−2ε sinh2 λ
(0)
j

− 1

2

(
N̄ −

N̄∑
j=1

λ
(1)
j

)
tanh

(
1

2

N̄∑
j=1

λ
(0)
j

)

=
N∑
l=1

2 sinhλ
(0)
j cosh θl − (λ

(1)
j − 1) sinh(2λ

(0)
j )

sinh(θl − λ(0)
j ) sinh(θl + λ

(0)
j )

+

(
N̄ −

∑N̄
j=1 λ

(1)
j

)
sinh

(∑N̄
j=1 λ

(0)
j

)
1− cosh

(∑N̄
j=1 λ

(0)
j

)

+
N̄∑
l=1

[
cosh

(
λ

(0)
j + λ

(0)
l

)
+ 3
] (

2− λ(1)
j − λ

(1)
l

)
2 sinh

(
λ

(0)
j + λ

(0)
l

) , j = 1, . . . , N̄ . (6.8)

It should be noted that in deriving the BAEs presented in Eq. (6.8), we used the equations

in (6.7). These 2N̄ equations will completely determine the 2N̄ unknown Bethe roots {λ(0)
j }

and {λ(1)
j }. We observe that the BAEs in (6.7) and (6.8) are independent of σ and σ̄.

Consequently, σ and σ̄ do not contribute to the energy of the Gaudin operator.

6.2 Constrained open boundaries

In the generic case, the T − Q relation (4.12) includes an inhomogeneous term. However,

under certain constraints, the inhomogeneous term will vanish, leading to simpler expressions

for the exact solution of the transfer matrix and the corresponding Gaudin operator.

If the boundary parameters σ and σ′ satisfy the following constraint [27]

eσ−σ
′
= e−4kη, k ∈ Z, (6.9)

the eigenvalue of the transfer matrix can be parameterized by a homogeneous T −Q relation

Λ(u) = a(u)
Q(u+ 4η)

Q(u)
+ d(u)

Q(u− 6η + iπ)

Q(u− 2η + iπ)
+ b(u)

Q(u+ 2η + iπ)Q(u− 4η)

Q(u− 2η + iπ)Q(u)
, (6.10)
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where the resulting function Q(u) is

Q(u) =
M∏
j=1

sinh
(u− λj − 2η

2

)
sinh

(u+ λj − 2η

2

)
. (6.11)

Here M is a non-negative integer and takes the following values

M =


N − k, k ≤ −N,
N + k + 1, k ≥ N + 1,

N − k, 1−N ≤ k ≤ N,

N + k− 1, 1−N ≤ k ≤ N.

(6.12)

The resulting BAEs now read

N∏
l=1

sinh
(
λj−θl−2η

2

)
sinh

(
λj+θl−2η

2

)
sinh

(
λj−θl+2η

2

)
sinh

(
λj+θl+2η

2

) (1− 2e−ε sinh(λj + η))(1− 2e−ε
′
sinh(λj + η))

(1 + 2e−ε sinh(λj − η))(1 + 2e−ε′ sinh(λj − η))

= −sinh(λj + 2η) cosh(λj − η)

sinh(λj − 2η) cosh(λj + η)

Q(λj − 2η)Q(λj + 4η + iπ)

Q(λj + 6η)Q(λj + iπ)
, j = 1, . . . ,M. (6.13)

Following Eqs. (5.4) and (6.9), one can construct the corresponding Gaudin operator by

letting σ̄ = k and eε
′
= −eε. The eigenvalues of the IK Gaudin operators become

Ej =Λ(0)(θj)

{
−6 coth θj − tanh θj +

M∑
l=1

4 sinh θj

cosh θj − coshλ
(0)
l

+
N∑
k 6=j

[
1− 5 cosh(θj − θk)

sinh(θj − θk)
+

1− 5 cosh(θj + θk)

sinh(θj + θk)

]
+

4e−2ε sinh(2θj)

1− 4e−2ε sinh2(2θj)

}
, (6.14)

and the Bethe ansatz equations are

M∑
k 6=j

[
2

coshλ
(0)
j − coshλ

(0)
k

− 1

coshλ
(0)
j + coshλ

(0)
k

]

+
N∑
l=1

1

coshλ
(0)
j − cosh θl

+
4 coshλ

(0)
j

e2ε + 4− 4 cosh2 λ
(0)
j

= 0, j = 1, . . . ,M. (6.15)

We observe that both the eigenvalue of the Gaudin operator Hj and the BAEs (6.15)

depend on the set
{

coshλ
(0)
j

}
.

Remark 6.1. Under the constrained boundary condition (6.9), the U(1) symmetry of the

system is still broken; however, the system possesses certain symmetries. In this case, the
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integer M is fixed by the system parameters. One can then find a proper ”local vacuum”

to proceed with the conventional Bethe ansatz and study the physical quantities of the model

[16, 37]. When M ≥ 2N , the T − Q relation (6.10) with M Bethe roots may provide the

complete set of eigenvalues of the transfer matrix. On the other hand, when 0 ≤ M < 2N ,

two T −Q relations may be needed to parameterize the full spectrum of the transfer matrix,

with the number of Bethe roots being M and 2N − M − 1, respectively. Such degenerate

points exist in various integrable models, e.g., the anisotropic spin-1
2

chains with non-diagonal

boundary fields [16, 18, 24, 37, 38]).

6.3 Diagonal open boundaries

As the boundary parameter ε approaches infinity ε→ +∞, the resulting K-matrices become

diagonal

K−(u) = id, K+(u) =M, (6.16)

where the matrix M is defined in (4.3). In this case, the K-matrices automatically satisfy

the operator relation

lim
η→0
{K+(u)K−(u)} = id. (6.17)

The U(1)-symmetry of the model is now recovered, and one can also use a homogeneous

T − Q relation to parameterize the spectrum of the transfer matrix. The functions a(u),

b(u) and d(u) given by Eqs. (4.8)-(4.10) reduce to [39]

ā(u) =
N∏
l=1

c(u− θl)c(u+ θl)
sinh(u− 6η) cosh(u− η)

sinh(u− 2η) cosh(u− 3η)
, (6.18)

d̄(u) =
N∏
l=1

d(u− θl)d(u+ θl)
sinhu cosh(u− 5η)

sinh(u− 4η) cosh(u− 3η)
, (6.19)

b̄(u) =
N∏
l=1

b(u− θl)b(u+ θl)
sinhu sinh(u− 6η)

sinh(u− 2η) sinh(u− 4η)
. (6.20)

The T −Q relation (4.12) is now a homogeneous one [39]

Λ(u) = ā(u)
Q(u+ 4η)

Q(u)
+ d̄(u)

Q(u− 6η + iπ)

Q(u− 2η + iπ)
+ b̄(u)

Q(u− 4η)Q(u+ 2η + iπ)

Q(u− 2η + iπ)Q(u)
, (6.21)
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where the function Q(u) is defined as

Q(u) =
M∏
j=1

sinh
(u− λj − 2η

2

)
sinh

(u+ λj − 2η

2

)
. (6.22)

In this case, the integer M is adjustable and can take the following values

M = 0, 1, . . . , 2N. (6.23)

For each of these permissble values, the resulting BAEs are

N∏
l=1

sinh
(
λj−θl−2η

2

)
sinh

(
λj+θl−2η

2

)
sinh

(
λj−θl+2η

2

)
sinh

(
λj+θl+2η

2

) sinh(λj − 2η) cosh(λj + η)

sinh(λj + 2η) cosh(λj − η)

= −Q(λj − 2η)Q(λj + 4η + iπ)

Q(λj + 6η)Q(λj + iπ)
, j = 1, . . . ,M. (6.24)

Thanks to the conditions (2.7) and (6.17), the IK Gaudin operators with diagonal bound-

ary K-matrices can be constructed by taking the first-order derivative of the transfer matrix

with respect to η as η → 0. Performing a Taylor series expansion in Eqs. (6.21)C(6.24)

around η = 0 and taking the first-order coefficient, the corresponding eigenvalues of the IK

Gaudin operators are derived as follows

Ej =
N∏
l 6=j

sinh(θj − θl)
N∏
l=1

sinh(θj + θl)

{
N∑
k 6=j

[
1− 5 cosh(θj − θk)

sinh(θj − θk)
+

1− 5 cosh(θj + θk)

sinh(θj + θk)

]

+
M∑
k=1

4 sinh θj

cosh θj − coshλ
(0)
k

− tanh θj − 6 coth θj

}
, (6.25)

where the Bethe roots {λ(0)
j |j = 1, . . . ,M} satisfy

N∑
l=1

1

coshλ
(0)
j − cosh θl

+
M∑
k 6=j

[
2

coshλ
(0)
j − coshλ

(0)
k

− 1

coshλ
(0)
j + coshλ

(0)
k

]
= 0, j = 1, . . . ,M. (6.26)

7 Conclusions

In this paper, we study the IK Gaudin model with both periodic and open boundary con-

ditions. We derive the Gaudin operator from the inhomogeneous quantum transfer matrix
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at the point u = θj, which ensures the solvability of the Gaudin operator. Thanks to the

exact solutions of the IK model obtained via the Bethe ansatz method, we derive the exact

spectrum of the Gaudin operator in terms of the Bethe roots, which are determined by the

corresponding Bethe ansatz equations.

The open system requires further explanation. In this paper, we focus on the non-diagonal

K-matrices in Eqs. (4.1) and (4.2). It is important to note that our approach is also valid

for other types of K-matrices discussed in Refs. [34,35]. Since the Gaudin operator depends

on the boundary parameters, different choices of K-matrices will lead to a different Gaudin

operator.

Subsequent research is analyzing the solutions of the Bethe ansatz equations, and it will

be interesting to explore the existence of infinite Bethe roots and string solutions in the IK

Gaudin model. Another open question is the construction of the eigenstates of the Gaudin

operator.
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