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Abstract

Many-variable differential equations with random coefficients provide powerful models
for the dynamics of many interacting species in ecology. These models are known to
exhibit a dynamical phase transition from a phase where population sizes reach a fixed
point, to a phase where they fluctuate indefinitely. Here we provide a theory for the
critical behavior close to the phase transition. We show that timescales diverge at the
transition and that temporal fluctuations grow continuously upon crossing it. We further
show the existence of three different universality classes, with different sets of critical
exponents, highlighting the importance of the migration rate coupling the system to its
surroundings.
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1 Introduction

Natural ecosystems can host a stunning diversity of coexisting species. A distinctive and perva-
sive pattern of these high-diversity assembly is the existence of large fluctuations of population
sizes, both across species at a given time [1] and across time for individual species. Indeed, at a
resolution where one identifies many species belonging to a given family, dramatic fluctuations
over time have been widely observed in the wild [1–3], with species alternating between states
of dominance and rarity, inducing a turnover in the identity of the most abundant species. Un-
derstanding how different mechanisms contribute to these large fluctuations remains a central
challenge in ecology. These fluctuations have also been observed in controlled laboratory ex-
periments under fixed external conditions [4], highlighting the possibility that species-species
interactions are a key driver of such fluctuations. From a theoretical perspective, various mod-
els of communities of interacting populations with heterogeneous interactions exhibit two
dynamical phases, one in which population sizes stabilize and another in which they fluctu-
ate [5–10]. Importantly, these fluctuations can extend over many orders of magnitude. In
fact, the ratio of the largest to smallest population size may be arbitrarily large [11], with
lowest populations limited only by migration of individuals from an outside species pool, if
such migration exists.

In a previous work [11], we have provided a detailed analytical description of these fluc-
tuations. We have shown that they are closely linked with the emergence of a long timescale
in the problem [11–13], interpreted as the time it takes for exponential growth or decline be-
tween the smallest and largest population sizes, which may last over many generations. Here
we go beyond this analysis and give a full account of the critical behavior near the transition
between the two phases. We show that, in addition to the long timescales described above,
there is another layer of critical slowing down: dynamics near the transition are slower. The
size of the abundance fluctuations (in terms of the abundances, rather than logarithm of the
abundances) are shown to grow continuously when crossing into the fluctuating phase.

The above-mentioned phase transition found in common ecological models, such as Lotka-
Volterra or resource-competition models [14], is one example in a broader family: high-
dimensional dynamical systems, of interest in neuroscience [15], game theory [16] and eco-
nomics [17], also exhibit a phase transition between two such phases. In many cases, this
transition has been linked to a loss of fixed point stability and the emergence of unstable fixed
points whose number is exponentially large in the dimension of the system [18–20]. However,
unique to the ecological case is the emergence of long timescales in the fluctuating phase and
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Figure 1: Phases of the Lotka-Volterra dynamics. Example degrees of freedom from
a simulation of the dynamics Eq. (1) with µ= 10 and S = 4000 for increasing values
of σ. When σ < σc , the dynamics reach a fixed point. When λ > 0 and σ > σc
the dynamics reach a time-translation invariant state. The amplitude of the time-
fluctuations grows with σ, and their correlation time decreases with σ. When λ= 0
and σ > σc , the dynamics is aging, with growing fluctuations of log-populations
sizes. Shown are simulations with δσ = σ −σc = −0.3 (left); λ = 10−8,δσ = 0.1
(upper center); λ= 10−8,δσ = 0.4 (upper right); and δσ = 0.4 (lower right).

the associated large fluctuations [11–13]. This is fundamentally due to the time-derivative of
population sizes automatically becoming small when population sizes are small, a behavior
recently called “stickiness” [1] and leading to possible heteroclinic networks [21]. As we show
below, this has striking consequences on the dynamics close to the transition.

In this work, we focus on the canonical Lotka-Volterra dynamics. The dynamics of the
population sizes Ni of the species i = 1 . . .S, with S ≫ 1 the number of species, in a well-
mixed system (no spatial extension), read [22–24]

Ṅi = Ni

 

1− Ni −
∑

j

αi jN j

!

+λ . (1)

The matrix αi j quantifies the interactions between species, and λ accounts for migration of
individuals into the community from its surroundings. In Eq. (1), time has been rescaled by
the generation time and population sizes by their long-time value in the absence of interac-
tions. We consider randomly sampled interaction matrices with independent and identically-
distributed entries, such that mean(αi j) = µ/S and std(αi j) = σ/

p
S. As the parameter σ is

increased and crosses a critical value σc , the system exhibits a transition between a fixed point
phase and a fluctuating one [6,25], see Fig. 1 for representative trajectories generated by Eq.
(1). The biological relevance of such theoretical descriptions was demonstrated experimen-
tally in [26].

As mentioned above, we have recently shown that in the fluctuating phase, the system
collectively self-organizes to evolve over long timescales when the migration rate is small but
positive [11], 0 < λ≪ 1. In this regime, the abundance of every species exhibits exponential
growth and decline between high values of order O(1) and low values of order O(λ), inducing a
turnover in the identity of the most abundant species over time, see Fig. 2. This is accompanied
by the emergence of a long correlation timescale, that scales as O(| lnλ|).

In the absence of migration, when λ = 0, the above-mentioned timescale diverges and
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Figure 2: Slow dynamics in the fluctuating phase with small migration rate
(0 < λ ≪ 1). Example degrees of freedom from a simulation of the dynamics of a
community of interacting species following Eq. (1), showing exponential growth and
decline of abundances between O(λ) and O(1), over timescales of order | lnλ|. This
is formalized by considering the process z(s) with s = t/| lnλ| and z = ln N/| lnλ|,
that converges as λ→ 0+ to a time-translation invariant process with finite correla-
tion time, confined between 0 and −1. Here λ = 10−40, µ = 10, σ −σc = 0.4 and
S = 4000.

instead one finds aging dynamics where the correlation time grows as the age t of the sys-
tem [11–13]. At the same time, the logarithm of the population sizes of the different species
experience ever larger fluctuations between high values of order O(1) and low values of order
O(−t), see the λ= 0 panel of Fig. 1. This aging regime is very different from the one observed
in standard glasses with an rough energy landscape–or in the Lotka-Volterra model with mi-
gration and symmetric interactions [27,28]. In fact, the slow dynamics emerging when λ= 0
and when λ ≪ 1 can be thought of as high-dimensional generalizations of the rock-paper-
scissors dynamics [29] (a three-species dynamics where A inhibits the growth of C , C inhibits
B and B inhibits A), in which the dynamics ever slows down as the system gets ever closer
to the heteroclinic cycle connecting three unstable fixed points (one for each species alone).
Crucially, unlike in low dimension where this mechanism requires a specific structure of the
interaction matrix, it appears to generically emerge in high-dimensional population dynamics
models [11, 13, 21]. However, in this high-dimensional generalization, dynamics do not fol-
low cycles and the system always exhibits a large number of species with high abundances.
Taken together, these results highlight the crucial role that migration might play in setting the
timescale over which population sizes fluctuate in real ecosystems.

Understanding the behavior of these dynamics in the critical regime close to the transition,
and how they are affected by the migration rate λ, has so far remained an open problem.
Earlier numerical work [12] showed that, as the transition is approached from σ > σc , the
amplitude of the fluctuations continuously vanishes, and timescales grow, see the λ > 0 panels
of Fig. 1, but the precise scaling behavior has not been elucidated.

In this work, we provide a comprehensive analytical description of the critical regime of
the Lotka-Volterra dynamics Eq. (1) when σ goes to σc from above, meaning from inside the
fluctuating phase. Our main contribution is to identify three different universality classes, and
compute in each of them the two critical exponents relating the growth of fluctuations and
the divergence of timescales to the distance to the critical point. We show that these three
universality classes depend on the relative size of the migration rate λ and the distance to the
transition σ−σc , corresponding to the different regions of parameter space sketched in Fig.
3(a). One scaling regime is obtained when λ= 0, where the transition point σ = σc separates
a fixed point phase from an aging phase. Another scaling regime is obtained when the limit
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Figure 3: Critical regimes of the Lotka-Volterra dynamics. (a) Three different
scaling regimes are identified when σ − σc is small: when λ = 0; when λ > 0
and fixed; and in the limit λ → 0+, taken before the limit σ → σ+c . The crossover
between the second and third regimes takes place at σ − σc ∼

p
λ. (b) Two-time

autocorrelation function C(t, t ′) ≡
∑

i Ni(t)Ni(t ′)/S in the fluctuating phase, with
definitions of the order parameters Q (the amplitude of the fluctuations) and τr (the
relaxation time of the fluctuations). As the critical point is approached from above,
σ→ σ+c , Q decreases and τr increases. Here C(t, t ′) is shown for λ = 0.1, µ = 10
and σ−σc = 0.1.

λ → 0+ is taken before the limit σ − σc → 0+, in which case the transition point separates
a fixed point phase from a phase with time-translation invariant statistics with a diverging
timescale. Lastly, a third scaling regime is obtained when σ−σc → 0+ for λ > 0 fixed, where
the transition is from a fixed point phase to a time-translation invariant chaotic phase with
finite correlation time. Only this last transition bears similarity with that observed in models
of random neural networks and in fact, as we show, it is characterized by the same set of
critical exponents as that of such models with a strongly non-linear transfer function [30].
Additionally, we find the position of the critical point σc(λ,µ) for arbitrary values of λ and
µ, generalizing earlier results [6] showing that σc(λ = 0,µ) =

p
2. We also demonstrate that

the chaotic phase does not exist for large values of λ, where the system directly undergoes a
transition from a fixed point phase to one of unbounded growth.

The paper is organized as follows. We first present a summary of our main results in Sec.
2. The rest of the paper is dedicated to the derivation of these results. In Sec. 3, we recall the
Dynamical Mean Field Theory (DMFT) equations associated to the Lotka-Volterra dynamics,
which form the basis of our analysis. We then discuss the two cases λ= 0 and λ→ 0+ in Sec.
4. Lastly, in Sec. 5, we consider the case where the migration rate λ > 0 is fixed and positive.

2 Summary of the main results

We quantify the near-critical dynamics by evaluating the amplitude of the population sizes
fluctuations and their correlation time. For that, we study the two-point correlation function
C(t, t ′)≡

∑

i Ni(t)Ni(t ′)/S, and extract from it the amplitude Q and the associated correlation
timescale τr , which are graphically depicted in Fig. 3 (b). As explained in Sec. 3, the auto-
correlation function fully characterizes the long-time trajectories of the abundances. In this
section, we summarize our results for each of the three above-mentioned universality classes.
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Figure 4: Growth of fluctuations in the vicinity of the critical point. (a) λ > 0
criticality. For small σ − σc(λ,µ) the amplitude of the fluctuations is predicted to
grow to leading order as Q/Qc = (σ−σc) with Qc a known function of λ and µ. The
dots are obtained from numerically solving the DMFT equations of Sec. 3. The solid
line is the analytical prediction Q/Qc = (σ−σc). This is a parameter-free agreement,
as Qc is here known analytically. At larger values of σ−σc(λ,µ) the scaling becomes
quadratic, as shown by a fit of the form Q/Qc = a (σ − σc)2 (dashed line). Here
λ = 0.1 and µ = 10. (b) λ = 0 criticality. For small σ−σc(λ = 0,µ), the amplitude
of the fluctuations is predicted to grow as Q ∼ (σ−σc)2. The dots are obtained from
numerically solving the rescaled DMFT equations of Sec. 4.3 and the dashed line is a
fit of parameter Qc to the form Q =Qc (σ−σc)2. Here µ= 10. (c) λ→ 0+ criticality.
For small σ−σc(λ= 0,µ), the amplitude of the fluctuations is predicted to grow as
Q ∼ (σ −σc)2. The dots are obtained from numerically solving the rescaled DMFT
equations of Sec. 4.1 and the dashed line is a fit of parameter Qc to the functional
form Q =Qc (σ−σc)2. Here µ= 10.

2.1 Growth of fluctuations

The average amplitude square Q of the temporal fluctuations of the population sizes is obtained
from C(t, t ′) through

Q = lim
t→∞

�

C(t, t)− lim
τ→∞

C(t, t +τ)
�

. (2)

At the transition, there are no fluctuations and Q = 0. Entering the fluctuating phase, Q grows
continuously with the distance to the critical point σ−σc . This growth is characterized by a
critical exponent β defined by the scaling relation

Q ∼ |σ−σc(λ,µ)|β . (3)

In the two cases where the limit λ → 0+ is taken before the limit σ → σc(0,µ) =
p

2, and
when λ = 0, we obtain the same value β = 2, see Sec. 4.2 and Sec. 4.4 respectively. A
different exponent β = 1 is found when λ > 0 fixed. In that case, we managed to obtain a
more precise description of the near-critical regime as

Q ∼Qc(λ,µ)|σ−σc(λ,µ)| , (4)

where the coefficient Qc(λ,µ) is a non-universal parameter-dependent amplitude that we de-
termine, see Sec. 5.4. We confirm these predictions in numerical solutions of the DMFT equa-
tions established in Sec. 3, see Fig. 4.

2.2 Critical slowing down

We now describe the temporal dynamics of these fluctuations close to the transition, which
will provide us with a precise characterization of the timescales involved in the dynamics. At

6



SciPost Physics Submission

long times, it is useful to note that the autocorrelation function C(t, t ′) can be written as a
sum of a steady part and a transient part δC(t, t ′),

C(t, t ′) = w2 +QδC(t, t ′) (5)

with δC(t, t) = 1 and limτ→∞δC(t, t + τ) = 0. All the information about the time-behavior
of the fluctuations is contained in δC(t, t ′).

We start by considering the regime where λ→ 0+ before σ−
p

2→ 0+. From Eq. (1), we
introduce gi(t) ≡ 1−

∑

αi jN j(t) the growth rate of species i at time t. Despite the fact that
interaction coefficients are independent and identically distributed, the time-averaged value
of gi is different from species to species, and is in fact Gaussian distributed, see Sec. 3. This is
crucial to the behavior of the dynamics near the critical point. The form of the empirical cor-
relation function in Eq. (5) might indeed suggest that all species experience small fluctuations
in their population sizes, with typical amplitude

p

Q. This picture is however incomplete and
too simplistic. In fact, it is correct only for the most abundant species, whose time-averaged
growth rate is of order O(1) and whose population size slightly fluctuates around a finite O(1)
time-averaged value. Another group of species are the rarest ones, those whose time-averaged
growth rate is negative and of order O(1), that are only rescued by the migration and have
very small population sizes of order O(λ). As λ→ 0+, these do not contribute to the empir-
ical correlation function. In between, there is a small fraction of species, of order O(

p

Q),
whose time-averaged growth rate is small and also of order O(

p

Q). These experience large
fluctuations in the logarithm of their abundance, that alternates between small values of order
O(
p

Q) and much smaller values O(λ), as λ≪
p

Q in this regime. Transition between these
two values happen on timescales of order O(Q−1/2| lnλ|), since the growth rate of these species
is itself of order O(

p

Q). This argument, together with the dependence of Q near the critical
point described above, sets the behavior of the correlation time of δC(t, t ′).

Indeed, in this regime, we find that the naturally slow dynamics in the fluctuating phase,
with timescales of order O(| lnλ|) at fixed σ >

p
2, is further slowed down in the vicinity of

the critical point with a correlation time τr ∼ (σ−
p

2)−1| lnλ|. This leads to the scaling form

δC(t, t ′)∼ δĈ+

�

|t − t ′|/| lnλ|
|σ−
p

2|−ζ

�

, (6)

with ζ= 1 and δĈ+ a scaling function, see Sec. 4.2.
We now discuss the case λ = 0. For σ >

p
2 fixed, the dynamics is aging with a correla-

tion time that grows linearly with the elapsed time t, meaning that the long-time correlation
function becomes time-translation invariant in log-time. Close to the transition, we also find
that only a small fraction O(

p

Q) of the species, those with time-averaged growth rate of order
O(
p

Q), experience large fluctuations in the logarithm of their population sizes. However, we
find that there is no extra slowing down of the aging dynamics in the vicinity of the critical
point. In fact, after some long time t, the log-population size of these species fluctuates be-
tween small values of order O(ln(Q)) and much smaller values O(−t

p

Q). These transitions
happen on timescales of order O(t), which does not scale with Q, since growth rates are of
order O(

p

Q) for those species. In other words, close to the transition, we obtain

δC(t, t ′)∼ δĈ0

�

| ln t − ln t ′|
|σ−
p

2|−ζ

�

, (7)

with ζ= 0 and δĈ0 a scaling function, see Sec. 4.4.
When λ > 0 fixed, the dynamics in the fluctuating phase reach a time-translation invariant

state with a finite correlation time, that is δC(t, t ′)→ δC(t−t ′) at long times. At odds with the
previously discussed results, close to the transition, all species experience small fluctuations of
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Figure 5: Growth of timescales in the vicinity of the critical point. (a) λ > 0 crit-
icality. For small δσ = σ −σc(λ,µ), the rescaled correlation function δC(t, t + τ)
converges to the scaling form given in Eq. (8). The continuous lines are obtained
by numerically solving the DMFT equation of Sec. 3. This is a parameter-free agree-
ment: the dashed red line is the analytical prediction of Eq. (8), and τc(λ,µ) is
known. Here λ = 0.1 and µ = 10. (b) λ = 0 criticality. For small δσ = σ−

p
2, the

rescaled correlation function converges to the scaling form of Eq. (7). Note the col-
lapse of the correlation functions for different values of δσ without rescaling of the
log-time axis. The continuous lines are obtained by numerically solving the DMFT
equation of Sec. 4.3. Here µ= 10. (c, d) λ→ 0+ criticality. (c) The correlation time
of the fluctuations diverge as σ→

p
2 from above. (d) For small δσ = σ−

p
2, the

timescale in rescaled time grows as (σ −
p

2)−1. The continuous lines are obtained
by numerically solving the DMFT equation of Sec. 4.1. Here µ= 10.

order O(
p

Q) of their population size around a value set by their time-averaged growth rate.
At the critical point, it is known that the fixed point reached by the dynamics is marginally
stable [31]. Beyond the critical point, unstable directions are thus nearly marginal, giving rise
to slow fluctuations. We obtain the entire correlation function close to the transition, see Sec.
5.3, which reads

δC(t, t ′)∼ 1− Tanh2
�

|t − t ′|
τc(λ,µ)|σ−σc(λ,µ)|−ζ

�

, (8)

with the critical exponent ζ= 1/2 and τc(λ,µ) a non-universal timescale that we characterize
in Sec. 5.4. We confirm these predictions in numerical solutions of the Dynamical Mean Field
Theory equations established in Sec. 3, see Fig. 5.

2.3 Crossover between the finite λ > 0 and the λ→ 0+ critical behaviors

In this section, we discuss the crossover existing between the two universality classes defined
by λ > 0 and λ→ 0+. We start by describing the dynamics obtained when the limit λ→ 0+

is taken after the limit σ→ σc(λ,µ). We show in Sec. 5.6 that a small amount of migration
stabilizes the fixed point phase and that the shift in the position of the critical point is propor-
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tional to
p
λ, meaning σc(λ,µ)−

p
2 ∼
p
λ at small λ. We also show that the amplitude of

the critical fluctuations Qc(λ,µ), see Eq. (4), becomes vanishingly small in this regime and
we get

Q ∼
p

λ |σ−σc(λ,µ)| ,

see Eq. (57) in Sec. 5.6. At the same time, the timescale τc(λ,µ) in Eq. (8) increases with
decreasing λ and we get the timescale

τc(λ,µ)|σ−σc(λ,µ)|−1/2 ∼ λ−1/4 |σ−σc(λ,µ)|−1/2 ,

see Eq. (58) in Sec. 5.6. On the other hand, when the limit λ→ 0+ is taken before the limit
σ →
p

2, we obtain Eq. (6) and Eq. (3) with β = 1, showing that the correlation time and
the amplitude of the fluctuations behave as |σ−

p
2|−1 and |σ−

p
2|2 respectively. Therefore,

when both λ ≪ 1 and σ −
p

2 ≪ 1, one observes a crossover between these two regimes at
σ−
p

2∼
p
λ. The finite λ > 0 critical regime dominates for σ−

p
2≪
p
λ while the λ→ 0+

critical regime dominates when σ−
p

2≫
p
λ. The crossover is illustrated in Fig. 4 (a).

3 Dynamical mean-field theory

Our theory is built on dynamical mean-field theory (DMFT). Originally developed in the con-
text of spin-glasses [32], and later adapted to ecological dynamics in [5] and to the present
equations in [12, 25], it shows that in the limit S →∞ and for Ni sampled independently at
the initial time, the dynamics of the population sizes are described by independent realizations
of the stochastic differential equation

Ṅ(t) = N(t) [1− N(t)−µm(t) +σξ(t)] +λ , (9)

where the index i has been dropped, and where ξ(t) is a zero-mean Gaussian process and
m(t) a deterministic function of time. This can be shown to come from the fact that the term
ξi(t) ≡

∑

j αi jN j(t) in Eq. (1) is the sum of many weakly-correlated contributions. However,
m(t) and the correlations of ξ(t) are not provided in advance. Instead, they are derived
through self-consistency conditions. This is a dynamical equivalent of the self-consistency
condition on the magnetization derived in the mean-field Ising model, for instance. Recalling
that 〈αi j〉= µ/S and 〈αi jαkl〉 − 〈αi j〉〈αkl〉= σ2δikδkl/S, the self-consistency conditions read

m(t) = 〈N(t)〉 , (10)

and



ξ(t)ξ(t ′)
�

=



N(t)N(t ′)
�

, (11)

where the average 〈. . . 〉 stands for an average over the stochastic process in (9). Because
ξ(t) is a Gaussian process, obtaining the first two moments of the population size 〈N(t)〉 and



N(t)N(t ′)
�

allows to completely characterize the dynamics of N(t) by using Eq. (9).
We denote by m∞ the steady-state value of m(t). At long-times, we further decompose the
noise ξ(t) into a frozen Gaussian random variable ξ̄ and a Gaussian process δξ(t) that com-
pletely decorrelates over time, meaning ξ(t)≡ ξ̄+εδξ(t)with limτ→∞ 〈δξ(t)δξ(t +τ)〉= 0.
The amplitude ε of the fluctuating part is defined so that




δξ(t)2
�

= 1. Using the self-
consistency condition Eq. (11), we get from the decomposition in Eq. (5) that




ξ̄2
�

= w2

and 〈δξ(t)δξ(t +τ)〉= δC(t, t +τ) together with Q = ε2. To make the notations more com-
pact, especially in Sec. 4, we introduce the time-averaged growth rate g ≡ (1− µm∞) +σξ̄
and m̃≡ 1−µm∞. The dynamics in Eq. (9) then becomes at long-times

Ṅ(t) = N(t) [g + εσδξ(t)− N(t)] +λ . (12)

9
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The random variable g is Gaussian distributed with yet unknown mean and variance. Its
distribution is denoted P(g) and is given by

P(g) =
1

p
2πwσ

exp

�

−
(g − m̃)2

2w2σ2

�

. (13)

It is finally interesting to note that N(t) defined in Eq. (9) is a non-Gaussian process, so that the
methods used to solve the DMFT equations for random recurrent neural networks [15,30,33]
do not apply.

4 Critical regimes when λ→ 0+ and λ= 0

In this section, we determine the properties of the dynamical phase transition first when the
limit λ → 0+ is taken before the limit σ →

p
2, and then when λ = 0. As discussed in Sec.

2.3, the former regime is relevant when λ≪ σ−
p

2≪ 1.
In those two cases, for any σ >

p
2 finite, it was shown in [11], that the dynamics evolve

over long timescales. When λ→ 0+, the dynamics reach a steady-state that is time-translation
invariant with a long correlation time proportional to | lnλ|, meaning that

lim
λ→0+

δCλ(t, t + | lnλ|s)→ δĈ+(s) , (14)

with δĈ+(s) a regular function as s → 0+. On the other hand, in the absence of migration
(λ = 0), the dynamics do not reach a steady-state, but instead are time-translation invariant
in log-time

lim
t→∞

δCλ=0(t, tes) = δĈ0(s) ,

with δĈ0(s) another regular function as s → 0+. This is typical of aging dynamics, with a
growth of timescale proportional to the age of the system. Leveraging these two relations,
effective equations for the long-time dynamics of the population size N(t) were obtained in
[11]. Below, these long-time effective dynamics are reviewed in Sec. 4.1 and Sec. 4.3, for
dynamics with λ→ 0+ and λ= 0 respectively. In Sec. 4.2 and Sec. 4.4, we use these effective
dynamics as a starting point to infer the properties of the near-critical regime.

4.1 Steady-state dynamics when λ→ 0+

When λ → 0+ and σ −
p

2 > 0 fixed, the effective steady-state dynamics is described by a
rescaling of the original DMFT equations Eq. (12).. Following [11], we briefly recall the trans-
formations allowing to describe this long-time dynamics. First, we introduce z = ln N/| lnλ|
and s = t/| lnλ|. From Eq. (12), we get

z′(s) = g +σεδξ̂(s)−Wλ(z) +Wλ(−z − 1) ,

where Wλ(z) = exp(| lnλ|z). Here δξ̂(s) ≡ δξ(t) is a zero-mean Gaussian noise with well-
defined correlations δĈ+(s) when λ→ 0+, as follows from Eq. (14). Note that when z > 0,
Wλ(z)→ +∞ when λ→ 0+, while Wλ(z)→ 0 for z < 0. Therefore, in the limit λ→ 0+, the
process z(s) follows a well-defined stochastic differential equation [11],

z′(s) = g +σεδξ̂(s)−W (z) +W (−z − 1) (15)

where W (z) acts as a hard wall with W (z > 0) = +∞ and W (z < 0) = 0, so that the dynamics
are confined in −1≤ z ≤ 0. The DMFT equations in (10, 11) however require to express N(s)

10
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in terms of the noise δξ̂(s). Note that for any λ, N(s) =Wλ(z(s)). Additionally, when λ→ 0+,
the confining force exerted by the effective hard-wall must exactly compensate the drive on
the dynamics of z(s) when z(s) = 0. Therefore, Eq. (15) is supplemented by an expression for
N(s) valid at long times,

N(s) = Θ(z(s))
�

g +σεδξ̂(s)
�

, (16)

where the Heaviside function Θ is used with the convention Θ(0) = 1. Therefore, the system
of self-consistency equations in the λ→ 0+ regime reads

1− m̃
µ

=



Θ(z(s))
�

g + εσδξ̂(s)
��

, (17)

and
w2 + ε2δĈ+(s) =




Θ(z(s))Θ(z(0))
�

g + εσδξ̂(s)
� �

g + εσδξ̂(0)
��

, (18)

where all averages are performed in the steady state. The dynamics of the many-body dynam-
ics in Eq. (1) at small λ, showing the effective confined stochastic process Eq. (15) are shown
in Fig. 2.

4.2 Growth of fluctuations and timescales when λ→ 0+

Equation (18), together with the dynamics in Eq. (15), gives us the self-consistency equation
satisfied by the correlation function δĈ+(s). When ε ≪ 1, we claim that fluctuations are
primarily generated by the small fraction of populations whose time-averaged growth rate g
is of order O(ε). Indeed, if g > 0 and of order O(1), Eq. (15) implies that exponentially rare
large fluctuations of the noise δξ̂ are needed to get z(s)< 0, while for g < 0 and of order O(1),
it implies that z(s)> 0 is also an exponentially rare event in ε. Considering only contributions
where g ∼ O(1) and neglecting exponentially small terms thus amounts to replacing Θ(z(s))
by Θ(g), and the self-consistency equation would become

w2 + ε2δĈ+(s) =
�


Θ(g)g2
�

+ ε2σ2δĈ+(s)
�

, (19)

from which no solution for δĈ+(s) respecting δĈ+(0) = 1 and δĈ+(∞) = 0 can be obtained.
This motivates the need to properly take into account the effect of populations with small
time-averaged growth rate g ∼ O(ε). The critical exponents β and ζ introduced in Sec. 2 are
then obtained by requiring that the amplitude of these contributions is such that there exists a
well-behaved solution of the DMFT equations. More precisely, when the temporal fluctuations
εδξ̂(s) are small, only species whose time-averaged growth rate g is O(ε) show any significant
fluctuations in their ln N values. The instantaneous growth rates of those that do is of order ε
(negative or positive), and so the exponential growth and decline of N between O(λ) and O(1)
(see Fig. 2) takes a time of order |lnλ|/ε. As, by definition, Q ∼ ε2 this explains the scaling
relation β = ζ/2. We now formalize these results, also allowing us to obtain the scaling of ε
with the distance from the critical point.

To proceed, in the right-hand side of Eq. (18), we split the average over g between (i)
g > 0, in which case Θ(z) = 1 with high probability for small ε, and (ii) g < 0 in which case
Θ(z) = 0 with high probability for small ε. We can obtain from Eq. (18),

w2 + ε2δĈ+(s) =

∫ +∞

0

dg P(g)
�

g2 + ε2σ2δC+(s)
�

+

∫ +∞

−∞
dg P(g)




[Θ(z(s))Θ(z(0))−Θ(g)]
�

g + εσδξ̂(0)
� �

g + εσδξ̂(s)
��

g

(20)

11
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where 〈. . . 〉g denotes an average over realizations of the noise δξ̂ at fixed g. As argued above,
the only perturbative contributions to the second integral arise from values g = O(ε). We
therefore introduce g̃ ≡ g/ε, rescale time as s̃ = εs, and denote z̃(s̃)≡ z(s̃/ε). z̃(s̃) satisfies an
equation like that of the original process z(s) in Eq. (15), but with an O(1) fluctuating noise,

dz̃
ds̃
= g̃ +σδξ(s̃)−W (z̃) +W (−z̃ − 1) . (21)

In terms of this process, and after performing the first integral in the right-hand side of Eq.
(20), we get

�

1−
σ2

2

�

�

w2 + ε2δĈ+(s̃)
�

+
σ2

2

�

w2 + ε2δĈ+(s̃)
�

Erf
�

m̃
p

2wσ

�

+
m̃2

2

�

1+ Erf
�

m̃
p

2wσ

��

+
m̃w
p

2πσ
exp

�

−
m̃2

2w2σ2

�

= ε3 I(s̃) . (22)

where we have introduced

I(s̃) =

∫ +∞

−∞
d g̃ P(ε g̃) 〈[Θ(z̃(s̃))Θ(z̃(0))−Θ( g̃)] ( g̃ +σδξ(0)) ( g̃ +σδξ(s̃))〉 g̃ .

Assuming that the statistics of δξ(s̃) are independent of ε, meaning that the typical timescale
over which fluctuations of δξ(s) take place behaves as ε−1, we obtain that I(s̃) has a finite
limit I0(s̃) when ε→ 0 and σ→

p
2 given by

I0(s̃) = P(0)

∫ +∞

−∞
d g̃



[Θ(z̃(s̃))Θ(z̃(0))−Θ( g̃)]
�

g̃ +
p

2δξ(0)
� �

g̃ +
p

2δξ(s̃)
��

g̃ . (23)

In fact, when | g̃| is large, Θ(z̃(s̃))Θ(z̃(0))−Θ( g̃) = 0 with large probability, which guarantees
the convergence of the above integral. Using the conditions δĈ+(0) = 1 and δĈ+(∞) = 0,
we get from Eq. (22) the leading order equation satisfied by the correlation function

δĈ+(s̃) =
I0(s̃)− I0(∞)
I0(0)− I0(∞)

. (24)

This equation cannot be solved explicitly since the average entering Eq. (23) cannot be per-
formed. However, both Eq. (24) and the dynamical equation (21), after setting σ→

p
2, are

parameter-free and thus allow to formally determine δĈ+(s̃) to lowest order near the critical
point. Given δĈ+(s̃), we are then left with three equations to solve for m̃, w and ε near the
transition, allowing us to find how the amplitude ε scales with the distance from the critical
point δσ. Two such equations are obtained by considering Eq. (22) with s̃ =∞ and s̃ = 0,
yielding to leading order
�

1−
σ2

2

�

w2+
σ2

2
w2Erf

�

m̃
p

2wσ

�

+
m̃2

2

�

1+ Erf
�

m̃
p

2wσ

��

+
m̃w
p

2πσ
exp

�

−
m̃2

2w2σ2

�

= ε3 I0(∞) .

(25)
and

ε−1

�

1−
σ2

2
+
σ2

2
Erf
�

m̃
p

2wσ

�

�

= I0(0)− I0(∞). (26)

The third one is obtained by applying a similar reasoning to the first moment equation (17),
which yields to leading order,

�

1
µ
−
σw
p

2π

�

−
m̃
µ
−
σw
p

2π

�

exp

�

−
m̃2

2w2σ2

�

− 1

�

−
m̃
2

�

1+ Erf
�

m̃
p

2wσ

��

= ε2J , (27)
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with

J = P(0)

∫ +∞

−∞
d g̃



[Θ(z̃(s̃))−Θ( g̃)]
�

g̃ +
p

2δξ(s̃)
��

g̃ .

At the transition, σ =
p

2, m̃ = 0, w =
p
π/µ and ε = 0. Close to the transition, for

σ =
p

2+δσ with 0< δσ≪ 1, we expand

m̃= m1δσ+m2δσ
2 + . . . ,

and

w=
p
π

µ
(1+w1δσ+ . . . ) ,

and lastly
ε= ε1δσ+ . . . (28)

The form of the expansion for the amplitude ε of the fluctuations in Eq. (28) is imposed by
Eq. (26), recalling that σ =

p
2+ δσ. It turns out that the first corrections to m̃ and w can

be derived explicitly from Eqs. (25, 27) alone. We find that m̃ agrees with the analytical
continuation of the fixed point branch [6] up to order O

�

δσ2
�

with

m1 = −
π
p

2µ
and m2 =

−4π2 + 2πµ− 3π2µ

16µ2
, (29)

while w agrees with the analytical continuation of the fixed point branch up to order O (δσ)
with

w1 =
2π− 2µ+πµ

2
p

2µ
. (30)

To lowest order, Eq. (26) gives the expression of the amplitude of fluctuations close to the
critical point

ε1 =
π

2µ (I0(∞)− I0(0))
. (31)

Since Q = ε2, and ε≃ ε1δσ with ε1 finite, we obtain the value of the critical exponent

β = 2 ,

as defined through Eq. (4). The expression for ε1 is not explicit, as it relies of the solution of
the nonlinear equation Eq. (24) for the correlation function, so the non-universal amplitude
Qc appearing in Eq. (4) is not known explicitly. However, since I0(∞) and I0(0) are both
independent of µ, we can conclude that the amplitude of the fluctuations in the near-critical
region decreases with the average interaction strength. Additionally, the rescaling of time used
to obtain Eq. (24) entails the scaling exponent

ζ= β/2= 1 .

4.3 Steady-state dynamics when λ= 0

When λ= 0, the long-time dynamics can be described in a similar way using a Lamperti trans-
formation of the original equations of motion Eq. (12), see Fig. 6. We introduce z = ln N/t
and s = ln t. When t → ∞, the process z(s) follows a well-defined stochastic differential
equation [11],

z′(s) = −z(s) + g +σεδξ̂(s) +W (z) , (32)
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Figure 6: Aging dynamics at λ = 0, and time-translation invariant dynamics of
the process z(s). Example degrees of freedom from a simulation of the dynamics
Eq. (1). (a) Growth of the relaxation time and amplitude of the fluctuations of
log-population sizes with the elapsed time in the aging regime. (b) Corresponding
time-translation invariant process z(s) where s = ln t and z = ln N/t. Here λ = 0,
µ= 10, σ−σc = 0.4 and S = 4000.

confined to z ≤ 0 and with with δξ̂(s) ≡ δξ(t) a zero-mean Gaussian noise with correlations
δĈ0(s). The expression for the population size when λ = 0 remains the same as in Sec. 4.1,
with

N(s) = Θ(z(s))
�

g + εσδξ̂(s)
�

.

Therefore, the self-consistency conditions Eqs. (17, 18) also hold upon replacing δĈ+(s) by
δĈ0(s). The long-time effective dynamics for λ= 0 and λ→ 0+differ by the nature of the pro-
cess z(s): when λ= 0, the process is confined on the negative-z side by a harmonic potential,
whereas it is confined by another hard wall at z = −1 when λ→ 0+. This seemingly innocuous
difference entails a profound distinction when it comes to critical slowing down. However, the
formal resemblance between the two dynamics allows us to investigate their critical property
in a similar way.

4.4 Growth of fluctuations when λ= 0

The calculation for λ= 0 proceeds similarly to the λ→ 0+ case, yet with a crucial difference.
When λ → 0+, we obtained to leading order an ε-independent equation for the correlation
function by introducing the rescaled process z̃(s̃) ≡ z(s̃/ε). Here, one achieves a similar con-
clusion by rescaling z following z̃(s)≡ z(s)/ε. From Eq. (32), we find that the latter obeys

dz̃
ds
= −z + g̃ +σδξ(s)−W (z̃) .

The rest follows as before and to leading order,

δĈ0(s) =
I0(∞)− I0(s)
I0(∞)− I0(0)

, (33)

with

I0(s) = P(0)

∫ +∞

−∞
d g̃ 〈[Θ(z̃(s))Θ(z̃(0))−Θ( g̃)] ( g̃ +σδξ(0)) ( g̃ +σδξ(s))〉 g̃ .

The expansion aroundσ =
p

2 of m̃, w and ε remains the same. Thus Eqs. (29, 30, 31) remain
valid and the exponent

β = 2

14
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is preserved. The absence of rescaling of time to obtain Eq. (33) entails the scaling exponent

ζ= 0 ,

showing that there is no extra slowing down of the aging dynamics when approaching the
transition.

5 Finite λ criticality

In this section, we now interest ourselves to the critical regime obtained whenσ−σc(λ,µ)→ 0+

at fixed λ > 0. Note that here the critical value σc must be determined, since it is affected by
λ. At the critical point, we denote the mean and variance of the population sizes by m∞ = mc
and w= wc respectively. To proceed, it is also convenient to introduce the function

N̄ (x) =
1− x +

p
1− x + 4λ
2

so that N̄
�

µm∞ −σξ̄
�

is the long-time solution of Eq. (9) when ε = 0. As δσ → 0 and
ε→ 0, it is reasonable to expand the equations of motion Eq. (9) around N̄

�

µm∞ −σξ̄
�

and
introduce εδN ≡ N(t)− N̄

�

µm∞ −σξ̄
�

. In terms of these quantities, the self-consistency Eq.
(11) becomes
¬

N̄
�

µm∞ −σξ̄
�2¶
+2ε




N̄
�

µm∞ −σξ̄
�

δN
�

+ε2 〈δN(t)δN(t +τ)〉= w2+ε2 〈δξ(t)δξ(t +τ)〉 .

Since 〈δξ(t)δξ(t +τ)〉 → 0 as τ →∞, we can take advantage of the τ →∞ limit of the
previous equation to obtain

¬

N̄
�

µm∞ −σξ̄
�2¶
+ 2ε




N̄
�

µm∞ −σξ̄
�

δN
�

+ ε2 lim
τ→∞
〈δN(t)δN(t +τ)〉= w2 , (34)

and
〈δN(t)δN(t +τ)〉 − lim

τ→∞
〈δN(t)δN(t +τ)〉= 〈δξ(t)δξ(t +τ)〉 . (35)

We also have from Eq. (10)

m∞ =



N̄
�

µm∞ −σξ̄
��

+ ε 〈δN〉 . (36)

We now proceed by expanding these equations for δσ ≪ 1 and ε ≪ 1. To leading order,
we obtain the position of the critical point σc and show that the dynamics experience critical
slowing down, meaning, in this context, that the correlation time of the noise δξ diverges as
δσ→ 0. However, the scaling of ε with δσ, as well as the scaling of this relaxation timescale,
are not captured by the expansion to that order, and to fully characterize the properties of the
near-critical regime, one needs to go to the next-to-leading order. The resulting expansion is a
mixed expansion in terms of δσ, ε and τ−1

c , where τc is the typical long timescale over which
near-critical fluctuations take place. Requiring that the resulting equation for the correlation
function δC(τ) has a well-defined nontrivial solution imposes scaling relations between these
three expansion parameters, finally allowing to derive the critical exponents defined in Sec. 2.

5.1 Leading-order expansion: position of the critical point and critical slowing
down

Here we locate the position of the critical point, σc . A conventional way to do this from
the DMFT equations, is to work in the phase where the dynamics converge to a fixed point,
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and perturb the effective noise ξ(t) by adding an infinitesimally small Gaussian white noise
[5, 25]. The critical point is then identified by a diverging linear response of the dynamics to
the perturbation. Here we follow a slightly different, but equivalent, route by working directly
in the chaotic phase. Because fluctuations are already self-generated by the dynamics, there
is no need to introduce an additional perturbing field. To proceed, we introduce the function

f (N , g) = N(1− g − N) +λ

so that the equation of motion for δN(t) writes

δ̇N =
1
ε

f
�

N̄
�

µm∞ −σξ̄
�

+ εδN ,µm∞ −σξ̄
�

+σ
�

N̄
�

µm∞ −σξ̄
�

+ εδN
�

δξ . (37)

Using the condition f
�

N̄
�

µm∞ −σξ̄
�

,µm∞ −σξ̄
�

= 0, we can develop the nonlinearity is
δN to first order and obtain, to leading order as δσ→ 0,

δ̇N = ∂N f
�

N̄
�

µmc −σcξ̄
�

,µmc −σcξ̄
�

δN +σc N̄
�

µmc −σcξ̄
�

δξ .

Note that, to this order, 〈δN(t)δN(t +τ)〉 → 0 as τ→∞ since δN is linear in δξ. Therefore,
in the Fourier domain, and making use of the self-consistency condition Eq. (35), we get




|δN(ω)|2
�

=

*

σ2
c N̄
�

µmc −σξ̄
�2

ω2 + ∂N f
�

N̄
�

µmc −σξ̄
�

,µmc −σcξ̄
�2

+

wc




|δN(ω)|2
�

. (38)

Here the notation emphases that, to leading order, ξ̄ is a Gaussian random variable sampled
with variance w2

c . The critical point is thus reached at σc which is such that

*

σ2
c N̄
�

µmc −σξ̄
�2

∂N f
�

N̄
�

µmc −σξ̄
�

,µmc −σcξ̄
�2

+

wc

= 1 . (39)

Indeed, for
*

σ2
c N̄
�

µmc −σcξ̄
�2

∂N f
�

N̄
�

µmc −σξ̄
�

,µmc −σcξ̄
�2

+

wc

< 1 .

the only solution to Eq. (38) would be



|δN(ω)|2
�

= 0 for allω. Atσ = σc , non-trivial fluctua-
tions are possible only forω→ 0, thus showing that the near-critical dynamics is characterized
by a slow timescale that diverges as δσ→ 0. We have therefore identified the condition spec-
ifying the position of the critical point σc as given by Eq. (39), when supplemented by Eqs.
(34, 36) with ε= 0, meaning

mc =



N̄
�

µmc −σcξ̄
��

wc
, (40)

and
w2

c =
¬

N̄
�

µmc −σcξ̄
�2¶

. (41)

Numerically solving Eqs. (39,40,41) therefore allows one to obtain wc , mc and σc . Note that
the critical condition Eq. (39) can be rewritten as

1−σ2
c

¬

N̄ ′
�

µmc −σcξ̄
�2¶
= 0 . (42)

This condition ensures that Eq. (35) is satisfied to leading order close to the critical point.
For finite λ > 0, the result is that the transition line is pushed upwards, σc > σc(λ = 0). In
other words, migration helps to stabilize the fixed point, see Fig. 7 (a) and Eq. (54) below.
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5.2 Beyond leading order: Expansion around the adiabatic approximation

In the previous section, we have shown that the fluctuations take place on timescales that
diverge as the transition is approached, which we denote τc = ε−r with r > 0 a yet unknown
critical exponent. To fully characterize the critical regime, that is the scaling of τc and ε
with the distance δσ from the critical point, one needs to go beyond leading order in the
perturbative expansion. To proceed, it is therefore useful to expand the dynamics of δN(t)
around the adiabatic approximation δN0 defined by the condition

δN0(t) =
1
ε

�

N̄
�

µm∞ −σξ̄
�

− N̄
�

µm∞ −σξ̄−σεδξ(t)
��

, (43)

which is obtained by setting δ̇N to 0 in Eq. (37). The fluctuation timescale τc controls the devi-
ations of δN(t) from the adiabatic solution, allowing us to write δN(t) = δN0(t)+τ−1

c δN1(t).
After rescaling time by introducing τ= t/τc , the dynamics of δN1(τ) is found to be governed
by

τ−1
c δN ′1(τ) = σδξ

′(τ)N̄ ′
�

µm∞ −σξ̄−σεδξ(t)
�

+
τc

ε
f
�

N̄
�

µm∞ −σξ̄
�

+ εδN0(t) +
ε

τc
δN1(t), µm∞ −σξ̄−σεδξ(t)

�

,
(44)

and the self-consistency condition on the correlation function becomes

〈δN1(t)δN1(t +τ)〉+τc (〈δN1(t)δN0(t +τ)〉+ 〈δN0(t)δN1(t +τ)〉)

−τ2
c

�

δC(τ)− 〈δN0(t)δN0(t +τ)〉+ lim
τ→∞
〈δN(t)δN(t +τ)〉

�

= 0 . (45)

To lowest order, δN1(t) is proportional to δξ′(τ), as one finds

δN1(τ) = −σcδξ
′(τ)

N̄ ′
�

µmc −σcξ̄
�2

N̄
�

µmc −σcξ̄
� . (46)

The fact that δN1(τ) depends on the derivative of the noise, unlike δN0(τ) which is a function
of δξ(τ), is what allows to rephrase Eq. (45) as a differential equation for the correlation
function δC(τ). To understand the scaling of ε and τc close to the critical point, it is instructive
to inspect Eq. (45) term by term.

• The first term 〈δN1(t)δN1(t +τ)〉 is of O(1) and is proportional to δC ′′(τ), see Eq. (46),
since




δξ′(t +τ)δξ′(t)
�

= −δC ′′(τ).

• The second termτc (〈δN1(t)δN0(t +τ)〉+ 〈δN0(t)δN1(t +τ)〉) seems to diverge as O(τc),
but actually vanishes to that order. In fact, δN0(t)∼ δξ(t) and δN1(t)∼ δξ′(t) so that
to leading order 〈δN1(t)δN0(t +τ)〉 + 〈δN0(t)δN1(t +τ)〉 ∼ δC ′(τ) + δC ′(−τ) = 0.
By going to the next order, we show below that this term yields an O(1) contribution
proportional to δC ′′(τ).

• The last term δC(τ)− 〈δN0(t)δN0(t +τ)〉+ limτ→∞ 〈δN(t)δN(t +τ)〉 is a nonlinear
function of δC(τ), without any derivative. A meaningful equation for δC(τ) can thus be
obtained only if this term is combined with the first two terms proportional to δC ′′(τ),
which thus requires it to scale as τ−2

c . The critical condition in Eq. (42) ensures that
it vanishes to order O(1). Smaller corrections can then be obtained as an expansion in
powers of δσ and ε2 (since the dynamics is invariant under ε↔−ε). Demanding that
these corrections generate O(1) contributions in Eq. (45) then imposes τ−1

c ∼ ε∼
p
δσ,

therefore yielding the value of the critical exponents β = 1 and ζ = 1/2 introduced in
Sec. 2.
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The rest of the calculation, which involves expanding the three above mentioned terms to
collect all contributions of O(1), is straightforward but rather tedious. The detail of that ex-
pansion is presented in App. B. We eventually obtain a second-order differential equation for
the correlation function δC(τ). After setting τc = ε−1 and, to leading order, ε = ε0

p
δσ, we

find that the parameters of that equation explicitly depend on the yet unknown quantities ε0,
m1 and w1 where m1 and w1 are defined by the leading-order expansions m−mc = m1δσ and
w−wc = w1δσ. To close the system, and get ε0, m1 and w1, three equations are needed. Two
come from the self-consistency condition Eqs. (34, 36) while the third one comes from impos-
ing that the differential equation satisfied by δC(τ) admits a solution such that δC(0) = 0,
δC(∞) = 0 and δC ′(0) = 0.

5.3 A differential equation for the correlation function

The expansion presented in App. B shows that, to leading order as δσ→ 0,

ωδC ′′(τ) = −κδC(τ)2 + γδC(τ) , (47)

where

ω= σ2
c

*

N̄ ′
�

µmc −σcξ̄
�4

N̄
�

µmc −σcξ̄
�2

+

wc

,

κ=
σ4

c

2

¬

N̄ ′′
�

µmc −σcξ̄
�2¶

wc
,

and

γ=
1

ε2
0

h

−2σc

¬

N̄ ′
�

µmc −σcξ̄
�2¶

wc
− 2σ2

c


�

µm1 − ξ̄
�

N̄ ′
�

µmc −σcξ̄
�

N̄ ′′
�

µmc −σcξ̄
��

wc

−σ2
c w1∂w

¬

N̄ ′
�

µmc −σcξ̄
�2¶

wc

i

−σ2
c w1∂w

¬

N̄ ′
�

µmc −σcξ̄
�2¶

wc

−σ4
c




N̄ ′
�

µmc −σcξ̄
�

N̄ ′′′
�

µmc −σcξ̄
��

wc
.

The parameters κ,γ and ω explicitly depend on ε1, m1 and w1 which we haven’t derived
yet. However, for any given values of ε1, m1 and w1, Eq. (47) can be seen as the classical
equation of motion of a massive particle in a cubic potential. The conditions δC0(0) = 1,
δC ′0(0) = 0 and δC0(∞) = 0 then constrain the admissible value of γ to be

γ=
2κ
3

. (48)

When this constraint is met, the equation can be solved exactly and its solution reads

δC0(τ) = 1− Tanh2
�p
κτ

6
p
ω

�

. (49)

Recalling that τ= εt and ε∼ ε0

p

|σ−σc|, we recover the scaling form given in Eq. (8). The
coefficient τc(λ,µ) of Eq. (8) can be read from Eq. (49) as

τc(λ,µ) =
6
p
ω

ε0
p
κ

. (50)

Next we compute ε0, m1 and w1, therefore leading to a closed-form expression for τc(λ,µ).
The result takes a simple form when λ≪ 1 and is reported in Sec. 5.6.
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5.4 Obtaining the amplitude Qc(λ,µ) and timescale τc(λ,µ)

So far, we have obtained the value of the critical exponents β and ζ as well as the scaling func-
tion governing the temporal decay of correlations. We have all the ingredients necessary to go
further in characterizing the near-critical dynamics by deriving the amplitude Qc(λ,µ) = ε2

0
and timescale τc(λ,µ), whose expression has been obtained in Eq. (50). This requires finding
ε0, m1 and w1. We can obtain two equations relating these three quantities by expanding the
self-consistent DMFT equations for the variance of the frozen component of the noise and the
mean population size–Eqs. (34) and (36) respectively–to order O(δσ), by using the expan-
sions of δN0 and δN1 presented in App. B. After some straightforward but tedious algebra,
this leads to

m1

�

1−µ



N̄ ′
�

µmc −σcξ̄
��

wc

�

−w1∂w




N̄
�

µmc −σcξ̄
��

wc

+
σ2

c

2
ε2

0




N̄ ′′
�

µmc −σcξ̄
��

=



ξ̄N̄ ′
�

µmc −σcξ̄
��

wc
,

(51)

and

− 2µm1

¬

N̄
�

µmc −σcξ̄
�

N̄ ′
�

µmc −σcξ̄
�2¶

wc
+w1

�

2wc − ∂w

¬

N̄
�

µmc −σcξ̄
�2¶

wc

�

+σ2
c ε

2
0

�

N̄
�

µmc −σcξ̄
�

N̄ ′′
�

µmc −σcξ̄
�

−
σ2

c

4
N̄ ′′

�

µmc −σcξ̄
�2
�

wc

= −2
¬

ξ̄N̄
�

µmc −σcξ̄
�

N̄ ′
�

µmc −σcξ̄
�2¶

wc

(52)

The third equation necessary to solve for ε0, m1 and w1 is provided by Eq. (48), which reads
− 2µσ2

c m1




N̄ ′
�

µmc −σcξ̄
�

N̄ ′′
�

µmc −σcξ̄
��

wc
−σ2

c w1∂w

¬

N̄ ′
�

µmc −σcξ̄
�2¶

wc

− ε2
0

σ4
c

3

¬

N̄ ′′
�

µmc −σcξ̄
�2¶

wc
= σ4

c




N̄ ′
�

µmc −σcξ̄
�

N̄ ′′′
�

µmc −σcξ̄
��

wc

+ 2σc

¬

N̄ ′
�

µmc −σcξ̄
�2¶

wc
− 2σ2

c




ξ̄N̄ ′
�

µmc −σcξ̄
�

N̄ ′′
�

µmc −σcξ̄
��

wc

(53)

The values of m1, w1 and ε0, and from them those of Qc(λ,µ) and τc(λ,µ), can then be
obtained by solving this linear system of equations. This allows to close the system of DMFT
equations and characterize the dynamics to lowest order in the vicinity of the critical point.

5.5 Suppression of the chaotic phase at large λ

As we show now, these results indicate that the chaotic phase is suppressed for large values of
λ, above a critical value λc(µ). In fact, for λ > λc(µ), we find that the collective dynamics in
Eq. (1) directly experiences a transition from the fixed point phase when σ < σc(λ,µ) to a
phase of unbounded growth when σ > σc(λ,µ), see Fig. 7. This phase of unbounded growth,
in which population sizes blow up, was already investigated at low migration and was found
to appear for large values of σ [6,31].

The critical parameter σc(λ,µ) which describes the onset of stability loss of the fixed
point solution is still given by the solution of Eqs. (40, 41, 42). However, the set of linear
equations prescribing the steady-state amplitude of the fluctuations close to the critical point
ε2

0 = Qc(λ,µ), see Eqs. (51, 52, 53), admits a diverging solution at λ = λc(µ) and only
(unphysical) negative solutions for λ > λc(µ), thus indicating the suppression of the chaotic
phase.
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Figure 7: Suppression of the chaotic phase at large migration rate. (a) Onset of
stability of the fixed point phase σc(λ,µ) as a function of λ for µ = 10. (b) Ampli-
tude of the chaotic fluctuations close to the transition Qc(λ,µ) = ε2

0 as a function
of λ for µ = 10 as predicted by the linear system of Eqs. (40, 41, 42). Above a
certain value λ > λc(µ) ≃ 0.6, the predicted value for Qc(λ,µ) is negative, there-
fore signaling the suppression of the chaotic phase. (c, d) Many-body simulations
of Eq. (1) with S = 4000 for µ = 10 and λ = 0.8 > λc(µ). The loss of stability of
the fixed phase is predicted to take place around σc(λ,µ) ≃ 0.65. (c) Simulations
at σ = 0.6 < σc(λ,µ). The dynamics converges to a fixed point. (d) Simulations
at σ = 0.7 > σc(λ,µ). The dynamics enters a regime of unbounded growth of the
population sizes.
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5.6 Results when λ≪ 1

To connect these finite-λ results with the results obtained in the absence of migration and
presented in Sec. 2, it is interesting to investigate the fate of our results when 0 < λ≪ 1. By
computing Qc(λ,µ) and τc(λ,µ) in that regime, we demonstrate the existence of the crossover
discussed in Sec. 2.3. First, we need to investigate how the critical point σc , as well as the
critical values mc and wc , are shifted in the presence of migration. By expanding Eqs. (40, 41,
42) at small λ≪ 1, we obtain that the deviations from the λ= 0 values scale as

p
λ and that,

to leading order,

σc ≃
p

2+

p
λµ
p

2
, (54)

showing that the position of the critical point now explicitly depends on µ and that a small
amount of migration stabilizes the fixed point phase. We also obtain

wc ≃
p
π

µ

�

1+
p
λ

4
(π(µ+ 2)− 2µ)

�

, (55)

and

mc ≃
1
µ

�

1+
p
λπ

2

�

. (56)

Details about the perturbative expansion of Eqs. (40, 41, 42) leading to these expressions can
be found in App. C. The results in Eqs. (54, 55, 56) can then be used in the linear system of Eqs.
(51, 52, 53) that specify the value of ε1, m1 and w1. After some lengthy but straightforward
algebra, we obtain the leading order expression of these coefficients for λ≪ 1. Crucially, the
amplitude of the fluctuations vanishes when λ→ 0 as we find

Qc(λ,µ) = ε2
0 ≃

16
p
λ

p
2µ

, (57)

and the timescale τc(λ,µ) entering Eq. (8) diverges in that regime as we get

τc(λ,µ)≃

Æ

3µ
p

2
λ1/4

. (58)

Since
p

λ|σ−σc| ≪ |σ − σc| for λ ≪
p

σ−σc , these results suggest that the near-critical
regime is controlled by another scaling limit when λ≪ 1 and

p
λ≪ σ−

p
2≪ 1, as discussed

in Sec. 2.3. In fact, if that is the case, fluctuations whose amplitude and timescale behave as
|σ−
p

2| and |σ−
p

2|−1/2, which are typical of the λ→ 0+ universality class, are both much
larger and faster than the ones identified here.

6 Conclusion

We have analytically described the Lotka-Volterra dynamics with many species and random
interactions between them in the vicinity of the critical point separating the fixed phase to
a phase of perpetual fluctuations. When approaching the critical point from the fluctuating
phase, timescales are large and diverge at the transition (critical slowing down), while the size
of the temporal fluctuations decreases continuously to zero. To characterize these two effects,
we obtain the scaling behavior of the correlation function near the critical point. We identify
two critical exponents β and ζ in the scaling theory, and calculate their values.

Our study highlights the effect of the migration rate λ on the critical dynamics. Depending
on λ and the distance from the critical pointσ−σc , we identify three different scaling regimes:
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one for λ= 0, one for λ > 0 fixed, and one for λ→ 0+, meaning that
p
λ≪ σ−σc ≪ 1. This

third regime
p
λ≪ σ −σc is commonly probed in numerical investigations of the dynamics

[7, 12]. The scaling behavior and the values of the exponents are different between these
regimes.

This work raises a number of interesting questions for future study. One is the study of
critical behavior when approaching the transition from the fixed point phase. In this phase
there are no endogenous fluctuations at long times, but one can consider the relaxation close
to the fixed point, and the response to external noise. Previous works have considered the
linearized dynamics around the fixed point [5,12], looking only at the surviving species (those
with N > 0 at the fixed point reached when λ → 0+). Yet the present and previous works
[11, 13] highlight the importance of “species turnover” events where species abundances are
exchanged between O(λ) and O(1) values, and this non-linear effect might be relevant also
on the fixed point side of the transition. Another question of interest is the robustness of our
results to changes in the model. We conjecture that the scenario outlined in this paper, of
three universality classes corresponding to different regimes of migration, is quite generic,
however with possible changes in the set of critical exponents. Indeed, as was shown in [11],
the existence of a slow timescale when λ → 0+ extends to the Lotka-Volterra model with
a level of symmetry in the interactions (presumably as long as the interaction matrix is not
perfectly symmetric or antisymmetric). We also believe that the existence of a slow timescale
is not specific to the Lotka-Volterra model with quadratic self-regulation. Dynamics described
by Ṅi = Ni

�

1− f (Ni)−
∑

j αi jN j

�

+ λ where f (Ni) is monotonous and diverges at infinity,
should also follow a similar behavior, as indicated by extending the mapping described in
Sec. 4.1 to this case. Lastly, another interesting direction is the behavior at finite number of
species S. The question of the width of the crossover region between the fixed-point phase
and the chaotic or aging ones in finite size systems remains open, as is the behavior in this
region; Simulations show that close to the transition limit cycles are sometimes reached, even
with hundreds of variables.

Finally, it would be interesting to see if any of the critical behavior could be observed in
experiments [26] or field studies. The main qualitative features–large timescales and small
temporal fluctuations near the transition–are promising candidates.
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A Numerical methods

Here we detail the numerical procedures used to solve the DMFT equations. We start by giving
detail about the λ > 0 case. We recall the DMFT equations

Ṅ(t) = N(t) [1− N(t)−µm(t) +σξ(t)] +λ , (59)

with the conditions

m(t) = 〈N(t)〉 , (60)

and
C(t, t ′) =




ξ(t)ξ(t ′)
�

=



N(t)N(t ′)
�

, (61)
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These are self-consistent equations. The trajectory N(t) depends on ξ(t), which is sampled
from the correlation function C(t, t ′), and the function m(t). Self-consistently, C(t, t), m(t)
depend on the statistics of N(t), see Eqs. (60, 61). This self-consistency is standard in DMFT
formulations. We used a well-known numerical method to solve it [12, 34]. It starts with a
guess for C(t, t ′), m(t), generates realizations of ξ(t), and from that trajectories N(t), which
are then used to update C(t, t ′), m(t). The algorithm is summarized as follows:

1. We define a working time interval [0, T] which we discretize at a sequence of interme-
diate times {t i}. We also introduce a matrix C0(i, j) and a function m0(i) which serve
as initial guesses for the searched correlation matrix C(t i , t j) and mean population size
m(t i).

2. We generate a matrix of random elements ξa
i , where a = 1, . . . , Ntraj, with correlations

¬

ξa
i ξ

b
j

¶

= δabC0(i, j), corresponding to a number Ntraj of independent realizations of
Gaussian processes with correlations C0(i, j).

3. We use these noise vectors to generate Ntraj trajectories {N a
i } of population sizes fol-

lowing Eq. (59). Starting from some initial distribution of population sizes N a
0 , we

approximate Eq. (59) by the recurrence relation defined by solving

Ṅ a(t) = N a(t)
�

1− N a(t)−µm0(i) +σξ
a
i

�

+λ

with initial condition N a(t i) = N a
i and set N a

i+1 ≡ N a(t i+1). This yields

N a
i+1 =

χ+ia
�

N a
i −χ

−
ia

�

−χ−ia
�

N a
i −χ

+
ia

�

exp
�

−(χ+ia −χ
−
ia)(t i+1 − t i)

�

�

N a
i −χ

−
ia

�

−
�

N a
i −χ

+
ia

�

exp
�

−(χ+ia −χ
−
ia)(t i+1 − t i)

� ,

where

χ±ia =
1−µm0(i) +σξa

i ±
Ç

�

1−µm0(i) +σξa
i

�2
+ 4λ

2
.

Recall that, close to the transition, the noise varies slowly in time. This discretization is
thus useful because it allows us to properly sample the population size trajectories using
a time discretization binning that can be of arbitrary size, as long as t i+1 − t i is small
compared to the correlation time of the noise.

4. We compute the corresponding empirical mean and correlation matrix as

memp(i) =
1

Ntraj

∑

a

N a
i

and

Cemp(i, j) =
1

Ntraj

∑

a

N a
i N a

j .

We use these to update our guesses for the correlation function and mean population
size using the update rule

m1(i) = (1− e)m0(i) + ememp(i) ,

C1(i, j) = (1− e)C0(i, j) + eCemp(i, j) ,

where e is coined the injection fraction.

5. We repeat steps (2-4), replacing the initial guesses C0(i, j) and m0(i) by the updated
correlation function and mean population size, until convergence.
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In practice, at small δσ = σ−σc , the DMFT simulations were implemented with some theo-
retical knowledge of the expected outcome. In particular, we used τexp = τc(λ,µ)/

p
δσ, an

expectation for the steady-state correlation time at finite δσ, to discretize the time interval.
For each iteration, the noise ξ(t) was sampled from the correlation function C(t, t ′) over a
time interval t ∈ [0, 100τexp]. The time interval was discretized in such a way that the bining
d t becomes smaller and smaller with time, allowing a fast approach to and a precise sampling
of the time-translation invariant steady state. Here we used d t = 0.048τexp for t ∈ [0, 60τexp],
d t = 0.0075τexp for t ∈ [60τexp, 90τexp] and d t = 0.0033τexp for t ∈ [90τexp, 100τexp]. For
each realization of the discrete version of the dynamics in Eq. (10), the population size was ini-
tialized at a near fixed point value, so that

�

N a
0 − 0.01

� �

1−
�

N a
0 − 0.01

�

−µm(0) +σξa
0

�

+λ= 0.
For the first iteration, leveraging on our estimates for fluctuations and timescales, the initial
guess for the correlation function C0(t, t ′) and mean m0(t) were the following: m0(t) = mc
and C0(t, t ′) = w2

c +δσ exp(−|t− t ′|/τexp), which are small perturbations around their values
at the critical point. We then used (i) 150 iterations with averaging over 1 000 trajectories and
injection fraction 0.3 followed by (ii) 40 iterations with averaging over 10 000 realizations and
injection fraction 0.3 followed by (iii) 400 iterations with averaging over 10000 realizations
and injection fraction 0.03 followed by (iv) 300 iterations with averaging over 10000 realiza-
tions and injection fraction 0.003 followed by (v) 100 iterations with averaging over 100000
realizations and injection fraction 0.003 and followed by (vi) 10 iterations with averaging over
1 000000 realizations and injection fraction 0.003.

The simulations in rescaled time for the cases λ→ 0+ and λ= 0, corresponding to the self-
consistency equations (15, 16, 17, 18) and Eqs. (16, 17, 18, 32) respectively, used a very sim-
ilar protocol (upon replacing t by s). For λ= 0, we chose τexp = 2, and we took τexp = 2/δσ
for λ→ 0+. For the first iteration, we also chose C(s, s′) = w2

c +δσ
2 exp(−|s−s′|/τexp). Lastly,

the initial condition for the variable z(s) at the beginning of each realization of the dynamics
was z(s) = −1 if 1− µm(0) +σξ(0) < 0 and z(s) = 0 otherwise. The time integration of the
dynamics for z(s) in Eq. (15) and (32), both when λ→ 0+ and λ = 0 , was performed using
a first order integration scheme taking into account the hard wall boundaries. For the λ→ 0+

case, we used

za
i+1 =











za
i +

�

1−µm(i) +σξa
i

�

(t i+1 − t i) if − 1< za
i +

�

1−µm(i) +σξa
i

�

(t i+1 − t i)< 0

0 if za
i +

�

1−µm(i) +σξa
i

�

(t i+1 − t i)> 0

−1 if za
i +

�

1−µm(i) +σξa
i

�

(t i+1 − t i)< −1

,

and for the case λ= 0 we used

za
i+1 =

¨

za
i +

�

1−µm(i) +σξa
i − za

i

�

(t i+1 − t i) if za
i +

�

1−µm(i) +σξa
i − za

i

�

(t i+1 − t i)< 0

0 if za
i +

�

1−µm(i) +σξa
i − za

i

�

(t i+1 − t i)> 0
.

Note that close to the transition

(1−µm+σξ)∼
p

2π
µ

,

since at the transition σ =
p

2, 1− µm = 0, and ξ has variance π/µ2. For the values of δσ
and µ used in Fig. (4, 5), the time binning is such that (1− µm(i) +σξa

i )(t i+1 − t i) remains
small compared to 1, which is compatible with the use of a first order integration scheme.

B Perturbative expansion for λ > 0

This section aims at providing detail about the perturbative expansions of the three terms
appearing in Eq. (45) used to obtain the results detailed in Sec. 5.3 of the main text.

24



SciPost Physics Submission

B.0.1 Expanding 〈δN1(t)δN1(t +τ)〉

To compute this term, one can use the leading order expression in Eq. 46. We immediately
obtain

〈δN1(t)δN1(t +τ)〉= −σ2
c

*

N̄ ′
�

µmc −σcξ̄
�4

N̄
�

µmc −σcξ̄
�2

+

wc

δC ′′(τ) .

B.0.2 Expanding τc (〈δN1(t)δN0(t +τ)〉+ 〈δN0(t)δN1(t +τ)〉)

To collect all terms to O(1), we need to expand δN1(t) and δN0(t) up to order τ−1
c . We use

the result τ−1
c ∼ ε that we will prove later on to expand δN0 up to order O(ε). From Eq. (43),

we get

δN0(t) = σN̄ ′
�

µm∞ −σξ̄
�

δξ(t)−
σ2

2
εδξ(t)2N̄ ′′

�

µm∞ −σξ̄−σεδξ(t)
�

+O
�

ε2
�

.

Accordingly, we get from Eq. (44)

δN1(t) = −σδξ′(t)
N̄ ′
�

µm∞ −σξ̄−σεδξ(t)
�2

N̄
�
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� −τ−1

c σδξ
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+O
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.

Therefore we get to O(1)

τc (〈δN1(t)δN0(t +τ)〉+ 〈δN0(t)δN1(t +τ)〉) = 2σ2
c
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+
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B.0.3 Expanding τ2
c

�

δC(τ)− 〈δN0(t)δN0(t +τ)〉+ lim
τ→∞
〈δN0(t)δN0(t +τ)〉

�

To proceed, we need to expand first δN0 to order O
�

ε2
�

. We get
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�

.

Hence

〈δN0(t)δN0(t +τ)〉= δC(τ)
�

σ2
¬

N̄ ′
�

µm∞ −σξ̄
�2¶

w
+σ4

c ε
2



N̄ ′
�

µmc −σcξ̄
�

N̄ ′′′
�

µmc −σcξ̄
��

wc

�

+
σ4

c

4
ε2
¬

N̄ ′′
�

µmc −σcξ̄
�2¶

wc
(2δC(τ)2 + 1) +O

�

ε4
�

.

Therefore, we have

τ2
c

�

δC(τ)− 〈δN0(t)δN0(t +τ)〉+ lim
τ→∞
〈δN0(t)δN0(t +τ)〉

�

= τ2
c

�

1−σ2
¬

N̄ ′
�

µm∞ −σξ̄
�2¶

w

�

δC(τ)−σ4
cτ

2
cε

2



N̄ ′
�

µmc −σcξ̄
�

N̄ ′′′
�

µmc −σcξ̄
��

wc
δC(τ)

−
σ4

c

2
τ2

cε
2
¬

N̄ ′′
�

µmc −σcξ̄
�2¶

wc
δC(τ)2 .

As claimed before, that the nonlinear term in δC yields an O(1) contribution requires τc ∼ ε−1.
In order to obtain the scaling of ε with δσ, we now need to expand the first term in powers

25



SciPost Physics Submission

of δσ. From the criticality condition Eq. (42), we know that the leading order term in that
expansion vanishes. Going to next order yields,

1−σ2
¬

N̄ ′
�

µm∞ −σξ̄
�2¶

w
= −2σcδσ

¬

N̄ ′
�

µmc −σcξ̄
�2¶

wc

− 2σ2
c


�

µδm−δσξ̄
�

N̄ ′
�

µmc −σcξ̄
�

N̄ ′′
�

µmc −σcξ̄
��

wc
−σ2

cδw∂w

¬

N̄ ′
�

µmc −σcξ̄
�2¶

wc
.

Additionally, to leading order, δm= m1δσ and δw= w1δσ, so that we get

τ2
c

�

1−σ2
¬

N̄ ′
�

µm∞ −σξ̄
�2¶

w

�

= τ2
cδσ

h

−2σc

¬

N̄ ′
�

µmc −σcξ̄
�2¶

wc

−2σ2
c


�

µm1 − ξ̄
�

N̄ ′
�

µmc −σcξ̄
�

N̄ ′′
�

µmc −σcξ̄
��

wc

−σ2
c w1∂w

¬

N̄ ′
�

µmc −σcξ̄
�2¶

wc

i

.

We can therefore conclude that τ−1
c ∼
p
δσ, from which one gets the critical exponents β = 1

and ζ= 1/2 introduced in Sec. 2.

C Expansion when λ≪ 1

Here we present the expansion allowing us to obtain the shift in the critical values σc , wc and
mc when λ≪ 1. The results are reported in Sec. 5.6 of the main text. When λ = 0, we have
σc =
p

2, mc = 1/µ and wc =
p
π/µ. At finite 0< λ≪ 1, we write mc = 1/µ+

p
λδmc which

allows us to expand Eq. (42) as

0= 1−
σ2

c
Æ

2πw2
c

∫ +∞

−∞
dξexp

�

−
ξ̄2

2w2
c

�

N̄ ′
�

µmc −σcξ̄
�

2 ,

≃ 1−
σ2

c

2
−
σ2

c

p
λ

Æ

2πw2
c

∫ +∞

−∞
dξexp

�

−
λξ̄2

2w2
c

�





1
4



1+
σcξ̄−µδmc

Ç

�

σcξ̄−µδmc

�2
+ 4





2

−Θ(ξ̄)



 ,

≃ 1−
σ2

c

2
−
p

2λµ
π

∫ +∞

−∞
dξ̄





1
4

�

1+
ξ̄

Æ

ξ̄2 + 2

�2

−Θ(ξ+µδmc/
p

2)



 ,

≃ 1−
σ2

c

2
+

p
λµ

π

�

µδmc +
π

2

�

.

We therefore expand σc =
p

2+
p
λδσc and wc =

p
π/µ+

p
λδwc to obtain to leading order

δσc =
µ
p

2π

�

µδmc +
π

2

�

. (62)
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We proceed similarly to expand Eq. (41)

0= w2
c −

1
Æ

2πw2
c

∫ +∞
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dξ̄exp

�

−
ξ̄2

2w2
c
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c −

1
Æ
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c
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0
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�

−
ξ̄2
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c

�

h
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p

λδmc

�2
+ 2λ

i

−
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Æ

2πw2
c
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1
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�

�
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�

σcξ̄−µδmc

�2
+ 4
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−
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�
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�

,

≃ w2
c −

1
Æ

2πw2
c

∫ +∞

0

dξ̄exp

�

−
ξ̄2

2w2
c

�

h
�
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p

λδmc

�2
+ 2λ
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+O
�

λ3/2
�

,

≃ w2
c

�

1−
σ2

c

2

�

+

√

√2λ
π
µδmcwcσc +O (λ) .

Therefore, to leading order, we obtain

δmc =
π
p

2µ2
δσc . (63)

Hence, we obtain from Eqs. (62, 63)

δσc ≃
µ
p

2
,

δmc ≃
π

2µ
.

Lastly, δwc can be obtained to leading order by expanding Eq. (40)

0=
1
µ
+
p

λδmc −
1

Æ

2πw2
c

∫ +∞
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dξexp

�

−
ξ̄2

2w2
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1
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Ç
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2
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 .

Note that the last term scales as O (λ lnλ) since
Ç

4+
�

σcξ̄+µδmc

�2

2
−σcξ̄Θ(ξ̄) =x→±∞ O

�

1
x

�

.

Therefore, we obtain to leading order

0=
1
µ
+
p

λδmc −
�

σcwcp
2π
−µ
p
λδmc

2

�

+ o
�p

λ
�

,

which yields

δwc ≃
p
π

4µ
(π(µ+ 2)− 2µ) .

27



SciPost Physics Submission

References

[1] E. H. van Nes, D. G. Pujoni, S. A. Shetty, G. Straatsma, W. M. de Vos and M. Scheffer, A
tiny fraction of all species forms most of nature: Rarity as a sticky state, Proceedings of the
National Academy of Sciences 121(2), e2221791120 (2024).

[2] A. M. Martin-Platero, B. Cleary, K. Kauffman, S. P. Preheim, D. J. McGillicuddy, E. J. Alm
and M. F. Polz, High resolution time series reveals cohesive but short-lived communities in
coastal plankton, Nature communications 9(1), 266 (2018).

[3] J. G. Caporaso, C. L. Lauber, E. K. Costello, D. Berg-Lyons, A. Gonzalez, J. Stombaugh,
D. Knights, P. Gajer, J. Ravel, N. Fierer et al., Moving pictures of the human microbiome,
Genome biology 12, 1 (2011).

[4] E. Benincà, J. Huisman, R. Heerkloss, K. D. Jöhnk, P. Branco, E. H. Van Nes, M. Scheffer
and S. P. Ellner, Chaos in a long-term experiment with a plankton community, Nature
451(7180), 822 (2008).

[5] M. Opper and S. Diederich, Phase transition and 1/f noise in a game dynamical model,
Physical review letters 69(10), 1616 (1992).

[6] G. Bunin, Ecological communities with lotka-volterra dynamics, Physical Review E 95(4),
042414 (2017).

[7] I. Dalmedigos and G. Bunin, Dynamical persistence in high-diversity resource-consumer
communities, PLoS computational biology 16(10), e1008189 (2020).

[8] F. Roy, M. Barbier, G. Biroli and G. Bunin, Complex interactions can create persistent
fluctuations in high-diversity ecosystems, PLoS computational biology 16(5), e1007827
(2020).

[9] M. T. Pearce, A. Agarwala and D. S. Fisher, Stabilization of extensive fine-scale diversity by
ecologically driven spatiotemporal chaos, Proceedings of the National Academy of Sciences
117(25), 14572 (2020).

[10] E. Blumenthal, J. W. Rocks and P. Mehta, Phase transition to chaos in complex ecosystems
with nonreciprocal species-resource interactions, Physical Review Letters 132(12), 127401
(2024).

[11] T. Arnoulx de Pirey and G. Bunin, Many-species ecological fluctuations as a jump process
from the brink of extinction, Physical Review X 14(1), 011037 (2024).

[12] F. Roy, G. Biroli, G. Bunin and C. Cammarota, Numerical implementation of dynamical
mean field theory for disordered systems: Application to the lotka–volterra model of ecosys-
tems, Journal of Physics A: Mathematical and Theoretical 52(48), 484001 (2019).

[13] T. Arnoulx de Pirey and G. Bunin, Aging by near-extinctions in many-variable interacting
populations, Physical Review Letters 130(9), 098401 (2023).

[14] J. Hofbauer and K. Sigmund, Evolutionary games and population dynamics, Cambridge
university press (1998).

[15] H. Sompolinsky, A. Crisanti and H.-J. Sommers, Chaos in random neural networks, Phys-
ical review letters 61(3), 259 (1988).

28



SciPost Physics Submission

[16] T. Galla and J. D. Farmer, Complex dynamics in learning complicated games, Proceedings
of the National Academy of Sciences 110(4), 1232 (2013).

[17] T. Dessertaine, J. Moran, M. Benzaquen and J.-P. Bouchaud, Out-of-equilibrium dynamics
and excess volatility in firm networks, Journal of Economic Dynamics and Control 138,
104362 (2022).

[18] G. B. Arous, Y. V. Fyodorov and B. A. Khoruzhenko, Counting equilibria of large complex
systems by instability index, Proceedings of the National Academy of Sciences 118(34),
e2023719118 (2021), doi:10.1073/pnas.2023719118.

[19] V. Ros, F. Roy, G. Biroli, G. Bunin and A. M. Turner, Generalized lotka-volterra equations
with random, nonreciprocal interactions: The typical number of equilibria, Physical Review
Letters 130(25), 257401 (2023).

[20] G. Wainrib and J. Touboul, Topological and dynamical complexity of random neural net-
works, Phys. Rev. Lett. 110, 118101 (2013), doi:10.1103/PhysRevLett.110.118101.

[21] J. D. O’Sullivan, J. C. D. Terry and A. G. Rossberg, Intrinsic ecological dynamics drive
biodiversity turnover in model metacommunities, Nature Communications 12(1), 3627
(2021).

[22] R. May and A. R. McLean, Theoretical ecology: principles and applications, Oxford Uni-
versity Press (2007).

[23] Y. Takeuchi, Global dynamical properties of Lotka-Volterra systems, World Scientific
(1996).

[24] M. Barbier, J.-F. Arnoldi, G. Bunin and M. Loreau, Generic assembly patterns in complex
ecological communities, Proceedings of the National Academy of Sciences 115(9), 2156
(2018).

[25] T. Galla, Dynamically evolved community size and stability of random lotka-volterra ecosys-
tems (a), Europhysics Letters 123(4), 48004 (2018).

[26] J. Hu, D. R. Amor, M. Barbier, G. Bunin and J. Gore, Emergent phases of ecological diversity
and dynamics mapped in microcosms, Science 378(6615), 85 (2022).

[27] G. Biroli, G. Bunin and C. Cammarota, Marginally stable equilibria in critical ecosystems,
New Journal of Physics 20(8), 083051 (2018).

[28] A. Altieri, F. Roy, C. Cammarota and G. Biroli, Properties of equilibria and glassy phases
of the random lotka-volterra model with demographic noise, Physical Review Letters
126(25), 258301 (2021).

[29] R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species, SIAM
journal on applied mathematics 29(2), 243 (1975).

[30] J. Kadmon and H. Sompolinsky, Transition to chaos in random neuronal networks, Physical
Review X 5(4), 041030 (2015).

[31] J. W. Baron, T. J. Jewell, C. Ryder and T. Galla, Breakdown of random-matrix univer-
sality in persistent lotka-volterra communities, Physical Review Letters 130(13), 137401
(2023).

[32] C. De Dominicis, Dynamics as a substitute for replicas in systems with quenched random
impurities, Physical Review B 18(9), 4913 (1978).

29

https://doi.org/10.1073/pnas.2023719118
https://doi.org/10.1103/PhysRevLett.110.118101


SciPost Physics Submission

[33] J. Kadmon and H. Sompolinsky, Transition to chaos in random neuronal networks, Phys.
Rev. X 5, 041030 (2015), doi:10.1103/PhysRevX.5.041030.

[34] H. Eissfeller and M. Opper, New method for studying the dynamics of disordered spin
systems without finite-size effects, Physical review letters 68(13), 2094 (1992).

30

https://doi.org/10.1103/PhysRevX.5.041030

	Introduction
	Summary of the main results
	Growth of fluctuations
	Critical slowing down
	Crossover between the finite >0 and the 0+ critical behaviors

	Dynamical mean-field theory
	Critical regimes when 0+ and =0
	Steady-state dynamics when 0+
	Growth of fluctuations and timescales when 0+
	Steady-state dynamics when =0
	Growth of fluctuations when =0

	Finite  criticality
	Leading-order expansion: position of the critical point and critical slowing down
	Beyond leading order: Expansion around the adiabatic approximation
	A differential equation for the correlation function
	Obtaining the amplitude Qc(,) and timescale c(,)
	Suppression of the chaotic phase at large 
	Results when 1

	Conclusion
	Numerical methods
	Perturbative expansion for >0
	Expanding N1(t)N1(t+)
	Expanding c(N1(t)N0(t+)+N0(t)N1(t+))
	Expanding c2(C()-N0(t)N0(t+)+0mu mumu 2005/06/28 ver: 1.3 subfig packageN0(t)N0(t+))


	Expansion when 1
	References

