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Abstract

Carlo.jl is a Monte Carlo simulation framework written in Julia. It provides MPI-parallel
scheduling (including parallel tempering), organized storage of input, checkpoint, and
output files, as well as statistical postprocessing. With a minimalist design, it aims to aid
the development of high-quality Monte Carlo codes, especially for demanding applications
in condensed matter and statistical physics. This hands-on user guide shows how to
implement a simple code with Carlo.jl, how to run an existing stochastic series expansion
code based on Carlo.jl, and provides benchmarks to show its efficacy.
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1 Introduction

Monte Carlo methods have been a powerful computational tool since the very beginnings of
the fields of statistical and condensed matter physics [1]. Initially built to study the classical
Boltzmann distribution, they perform well on a wide variety of high-dimensional integration
problems due to their ability to break the curse of dimensionality. In quantum systems, where a
probabilistic interpretation of the partition function is in general not possible, quantum Monte
Carlo algorithms can exploit certain quantum-to-classical mappings to make powerful and
accurate predictions for models that are out of reach of other state-of-the art methods [2].

In exchange for simulating high-dimensional problems, quantum Monte Carlo simulations
in particular rely on efficient implementations making use of massive parallelism. In the course
of a simulation, many random samples are produced that have to be stored and statistically
postprocessed to arrive at results with reliable error bars. These requirements typically necessi-
tate some amount of “bookkeeping” code that is unrelated to the Monte Carlo algorithm itself,
but still crucial to its performance. This inspired the development of earlier frameworks such
as the ones included in ALPS [3] and the subsequent ALPSCore [4] in C++.

The Julia programming language [5] is becoming increasingly popular as an alternative to
traditional scientific computing languages such as C++ and FORTRAN. Its heavy reliance on
type inference, dynamic dispatch, and just-in-time compilation allow it to provide both high
performance and the flexibility of a high-level scripting language. Furthermore, its modern
approach to dependency management greatly facilitates installing and reusing existing software.

The purpose of Carlo.jl is to help implementers of Monte Carlo codes in Julia to write high-
quality, high-performance packages without worrying about the peripheral bookkeeping tasks
that are common to all Monte Carlo simulations. Its features include (i) Monte Carlo aware
parallel scheduling (including parallel tempering) (ii) organized and reproducible storage
of simulation inputs, checkpoints, and results, as well as (iii) statistical postprocessing of
autocorrelated Monte Carlo samples.

In Section 2, the features of Carlo.jl and their inner workings are explained in detail. Sec-
tion 3 contains three examples: an Ising code that provides a minimal skeleton for implementing
Monte Carlo algorithms in Carlo.jl, a state-of-the-art stochastic series expansion Monte Carlo
code [6], and an example of the parallel tempering feature. Afterwards, in Section 4, we
show correctness and performance benchmarks of Carlo.jl, including a direct performance
comparison of a Julia and a C++ implementation of the stochastic series expansion code.
Finally, in Section 5, a short conclusion and outlook are given. Apart from this user guide, users
may refer to the Carlo.jl documentation1 for more detailed descriptions of each component.

1The documentation can be viewed online on GitHub, built locally by running cd docs; julia —-project
make.jl, or accessed directly within the Julia REPL.
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Figure 1: Parallelism in Monte Carlo simulations. (a) Monte Carlo unaware
parallelization over different parameters (e.g. system sizes, temperatures) can lead
to suboptimal resource usage if tasks are not well balanced. (b) Carlo.jl parallelizes
over different parameter sets but also takes advantage of the possibility to share work
between different Monte Carlo processes for the same task. Each new process needs
to thermalize first, which is a serial cost that can only be reduced by more fine-grained
parallelization.

2 Features

The purpose of this section is to give a high-level overview of the way Carlo.jl works without
descending too far into technical details and concrete usage instructions. For a more hands-on
introduction to the usage of Carlo.jl in practice, see Section 3.

2.1 Monte Carlo aware parallel scheduling

One useful property of Monte Carlo simulations is that they are embarrassingly parallel. An
arbitrary number of random processes can be allocated to many workers simultaneously, which,
once thermalized, can all produce samples that are finally averaged together. Apart from this
intrinsic parallelism, simulations are often run for a variety of different parameters in parallel.
Both of these kinds of parallelism can be exploited using a standard parallel scheduler. However,
if the load between different parameter sets is not balanced, the resource usage of this approach
is not optimal: Most workers can run out of work while few are still stuck simulating the last
few expensive parameter sets (Fig. 1(a)). In Monte Carlo simulations, such a situation can
always be avoided by simply allowing the idle workers to join other tasks and share the work
(Fig. 1(b)).

Carlo.jl uses MPI.jl [7] to orchestrate this kind of Monte Carlo aware, work-sharing schedul-
ing and automatically averages the results. Each parameter set in the simulation corresponds
to a task and each task may have multiple runs, which correspond to independent random
processes that are averaged. If workers are idle, the scheduler will assign them a new task
from the set of unfinished tasks in a round-robin manner and start a new run for that task,
provided the remaining work is not less that the number of thermalization sweeps.

On top of this model of trivial parallelism, Carlo.jl also supports nontrivial MPI parallelism:
The work of each single run may optionally be shared by a team of MPI ranks. This advanced
feature, called parallel run mode allows the natural implementation of certain Monte Carlo
meta-techniques such as parallel tempering, which will be illustrated in Section 3.3. Another
possible use case is the implementation of branching-random walk codes that propagate an
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population of walkers in parallel.

2.2 Organized storage of inputs, checkpoints and results

As mentioned in the previous section, large-scale Monte Carlo simulations can involve scanning
large parameter spaces and produce large numbers of random samples. In addition, long-
running simulations should also implement checkpointing so that valuable computation time is
not wasted when an error occurs or the job runs out of its allocated run time on a computing
cluster. These boundary conditions induce data management challenges at the beginning,
during, and at the end of a simulation. This section explains how Carlo.jl handles these
challenges for the user.

2.2.1 Input

Rather than specifying simulation parameters in traditional configuration files, Carlo.jl leverages
the dynamic nature of Julia to set parameters programmatically. The recommended workflow
for this is to write a job script as shown in Listing 1. The job script can be split into three parts.
First, the TaskMaker from Carlo.JobTools is used to procedurally generate a list of parameter
sets. Then, this list is retrieved using make_tasks(tm) and fed into the JobInfo alongside other
options such as the maximum run time limit and the checkpoint interval. Finally, start(job,
ARGS) initiates the Carlo.jl command line interface (CLI) when the job script is executed. The
CLI allows running the simulation, and for unfinished simulations allows checking their status
and merging the already available data to obtain preliminary results.

While recommended, the use of TaskMaker and the CLI is optional. For more information
on how to manually start simulations from within Julia, interested readers are referred to the
documentations of JobInfo and the start function.

2.2.2 Checkpointing

In a high-performance computing environment, calculations often run on limited time allo-
cations that may be shorter than the length of the calculation one wishes to perform. If a
calculation runs out of time or uses too much memory, it may be terminated by the environment,
which leads to the loss the entire progress.

Checkpointing, i.e. saving the complete Monte Carlo configuration to disk at regular
intervals, allows to gracefully recover from such situations and simply continue the calculation
from the point it left off. Carlo provides a simple interface to save the configuration state to an
HDF5 [8,9] group. Internally, it makes sure that these checkpoints are never corrupted, even if
the process is terminated in the middle of writing.2 Running a simulation as described in the
previous subsection will automatically resume from checkpoints if they exist.

While packages like JLD2.jl [10] exist that allow automatically saving arbitrary Julia objects,
the Carlo.jl checkpointing interface instead requires developers to manually choose which data
to save in what way. This can be helpful in reducing the checkpoint file size and encourages
maintaining stable serialization interfaces.

2.2.3 Results

Like checkpoints, Carlo.jl stores simulation results in HDF5 files. Inspecting these files allows
retrieving the entire Monte Carlo time series. In the postprocessing step that is described in
Section 2.3, these raw files are merged and averaged to produce means, statistically correct

2This works by writing to a temporary file first and then moving that file to the final location, overwriting the
old file. Moving (as opposed to writing) is an atomic operation that cannot be interrupted.
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# example_job.jl

using Carlo
using Carlo.JobTools
using Ising

tm = TaskMaker ()

tm.sweeps = 20000
tm.thermalization = 2000
tm.binsize = 100

Ts = range(1, 3, 10)
Ls = [8, 12, 16]
for L in Ls

for T in Ts
tm.T = T
tm.Lx = L
tm.Ly = L
task(tm)

end
end

job = JobInfo("example_job", Ising.MC;
run_time = "24:00:00",
checkpoint_time = "30:00",
tasks = make_tasks(tm),

)
start(job , ARGS)

Listing 1: Carlo job script. This snippet generates a job for the Ising code implemented
in Section 3.1. Arbitrary parameters can be assigned to the TaskMaker tm. The
function task(tm) creates a snapshot of all currently set values and turns it into a task
that will be simulated. The list of tasks is returned by make_tasks and passed to the
JobInfo structure. The detailed meanings of the options are explained in Section 3.1.
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error bars and approximate autocorrelation times. The merged results are saved in a human-
readable JSON file. For subsequent postprocessing, the Carlo.ResultTools module provides a
simple way to import these JSON files into a Julia Dataframe (e.g. from DataFrames.jl [11]).

To facilitate reproducibility, and conform with the best practices of research data manage-
ment, the result files produced by Carlo.jl contain all parameters used to run the simulation
as well as the version of Carlo.jl and of the package containing the Monte Carlo algorithm
implementation.

2.3 Postprocessing

Monte Carlo time-series are in general autocorrelated. Carlo.jl performs postprocessing on
measured observables to provide the user with statistically sound means and standard errors
using a binning analysis. The binning analysis works in two steps.

The first, internal binning step is performed during the simulation before Monte Carlo
measurements are written to disk. The bin size for this step is set by binsize in the task
parameters. The purpose of internal binning is simply to reduce memory and disk-I/O overhead.
As long as binsize is not big compared to the total number of samples, it does not influence
the magnitude of the final errors computed by Carlo.jl.

The second binning step happens once the simulation is complete. For a given task, there
will be multiple files containing measurement results from different independent runs that
were scheduled by Carlo.jl (Fig. 1(b)). These internally binned Monte Carlo time series are
concatenated and binned further. The purpose of this “rebinning” step is to produce sufficiently
large bins to recover uncorrelated statistics that allow extracting the statistical errors using the
standard estimator

σA =

√

√

√

1
Nrebin(Nrebin − 1)

∑

n

�

An − A
�2

, (1)

where An are the means of each rebinned sample and A=
∑

n An/Nrebin. By default, the number
of rebins Nrebin is chosen using the heuristic

Nrebin(N) = Nmin
rebin +max{0, 3
Ç

N − Nmin
rebin} (2)

where N is the total number of measured bins and Nmin
rebin = 10 is a minimum in case there are

only few bins in the simulation. Choosing a cube-root scaling is a simple way to ensure that
both Nrebin and the length of each rebin, N/Nrebin, approach infinity for increasing N , while
devoting more resources to the latter. The default value of Nrebin can be overridden using the
task parameter rebin_length in the job script.

A rough estimate for the autocorrelation time τauto is calculated based on the ratio of the
rebinned error σA and naive error computed without any rebinning, σ̃A, [12]

τauto =
σ2

A

2σ̃2
A

. (3)

Note that τauto is measured in units of the internal bin size (set by the binsize parameter). To
find the autocorrelation time in terms of Monte Carlo sweeps, binsize should be set to 1.

Apart from the observables themselves, users can also define evaluables that depend on the
observables via some function. The bias-corrected means and errors for evaluables are then
propagated using the jackknife [13] method on the rebinned samples.
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3 Examples

The specifics of implementing and running codes with Carlo.jl are best explained using examples.
In the following, we will show three examples, in raising complexity.

The first example, Section 3.1, will be the paradigmatic Metropolis Monte Carlo algorithm
for the Ising model. While this algorithm itself is very simple and of limited use in practice, it
provides a minimal skeleton for implementing new Monte Carlo algorithms in Carlo.jl without
the distractions of method-specific details.

The second example, Section 3.2, will be an implementation of the stochastic series ex-
pansion Monte Carlo [6] approach on top of Carlo.jl. While this implementation is a separate
package and we will not go into details about its inner workings, it here serves to show how
Carlo.jl is useful in state-of-the-art Monte Carlo calculations. This will be supplemented in
Section 4 by a benchmark directly comparing Julia and C++ performance for that code.

The last example, Section 3.3, will have a split purpose. First, it will introduce the parallel-
tempering feature that is included in Carlo.jl. Second, it will show how parallel-tempering was
implemented as a simple wrapper on top of the parallel run mode feature.

3.1 Ising model

In this section, we will give a hands-on usage example for Carlo.jl by implementing and running
the Metropolis Monte Carlo algorithm [1] for the Ising model on a square lattice,

H = −
∑

x ,y

σz
x ,y(σ

z
x+1,y +σ

z
x ,y+1), (4)

with periodic boundary conditions. All code for this example is available in a separate reposi-
tory [14].

3.1.1 Implementation

First, we need to implement the algorithm. It is a good idea to write such an implementation
as its own Julia package. In the following, we will assume that we have generated a package
called Ising, with a file Ising.jl containing all the code.

In this file, we declare a new subtype of AbstractMC.

# Ising.jl
module Ising

using Carlo
using HDF5

struct MC <: AbstractMC
T:: Float64

spins:: Matrix{Int8}
end

The type MC holds two fields: the temperature T and a matrix of integers representing the spins
on the square lattice.

The constructor of MC should accept a dictionary of parameters that are defined in the job
script (see Listing 1).

function MC(params :: AbstractDict)
Lx = params [:Lx]
Ly = get(params , :Ly, Lx)
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T = params [:T]
return MC(T, zeros(Lx, Ly))

end

We read the temperature and lattice dimensions from the parameters and construct the MC
structure accordingly.

The remainder of the implementation consists of methods for Carlo.jl’s AbstractMC inter-
face.

function Carlo.init!(mc::MC, ctx::MCContext , params :: AbstractDict)
mc.spins .= rand(ctx.rng , Bool , size(mc.spins)) .* 2 .- 1
return nothing

end

The Carlo.init! function is called to initialize the Monte Carlo configuration at the beginning
of a new simulation (but not when restarting from a checkpoint). In addition to the MC object,
it receives a MCContext, which is our handle to interact with Carlo.jl’s functionality. Here, we
use the integrated random number generator ctx.rng to generate a spin configuration. It is
important to always use ctx.rng for random numbers to maintain reproducibility from a given
random seed.3

Next we implement the Monte Carlo updates or sweeps.

function periodic_elem(spins :: AbstractArray , x::Integer , y:: Integer)
return spins[mod1 .((x, y), size(spins ))...]

end

function Carlo.sweep!(mc::MC, ctx:: MCContext)
Lx = size(mc.spins , 1)

for _ = 1: length(mc.spins)
i = rand(ctx.rng , eachindex(mc.spins))
x, y = fldmod1(i, size(mc.spins ,1))

neighbor(dx, dy) = periodic_elem(mc.spins , x + dx, y + dy)
ratio = exp(

-2.0 / mc.T *
mc.spins[x, y] *
(neighbor(1, 0) + neighbor(-1, 0)
+ neighbor(0, 1) + neighbor(0, -1)),

)

if ratio >= 1 || ratio > rand(ctx.rng)
mc.spins[x, y] *= -1

end
end
return nothing

end

According to the Metropolis algorithm, we propose a spin flip and calculate the energy differ-
ence between the new and old configurations, which can be reduced to a calculation of the
neighboring spins. Note the use of functions like mod1 and fldmod1, which are helpful when
applying modular arithmetic to the 1-based indices of Julia arrays.

Next are the measurements.

function Carlo.measure !(mc::MC, ctx:: MCContext)

3The seed can be set in the job script via the parameter seed.
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mag = sum(mc.spins) / length(mc.spins)

energy = 0.0
correlation = zeros(size(mc.spins , 1))

for y = 1:size(mc.spins , 2)
for x = 1:size(mc.spins , 1)

neighbor(dx, dy) = periodic_elem(mc.spins , x + dx, y + dy)
energy += -mc.spins[x, y]*( neighbor (1,0)+ neighbor (0,1))

# in practice , one should use more lattice symmetries!
correlation[x] += mc.spins[1, y] * mc.spins[x, y]

end
end

measure !(ctx , :Energy , energy / length(mc.spins))

measure !(ctx , :Magnetization , mag)
measure !(ctx , :AbsMagnetization , abs(mag))
measure !(ctx , :Magnetization2 , mag^2)
measure !(ctx , :Magnetization4 , mag^4)

measure !(ctx , :SpinCorrelation , correlation ./ size(mc.spins , 2))
return nothing

end

We calculate the magnetization and its moments, the energy per spin, and the spin correlation
function. The function measure!(ctx, name, value) passes each result to Carlo.jl. As we see
for the correlation function, observables need not be scalars. Vectors (or higher-rank) arrays
are also supported.

The next method is optional, but can be used to register evaluables, that is, quantities that
depend on Monte Carlo expectation values. Carlo.jl will perform error-propagation and bias
correction on these (see Section 2.3).

function Carlo.register_evaluables(
::Type{MC}, eval:: AbstractEvaluator , params :: AbstractDict

)
T = params [:T]
Lx = params [:Lx]
Ly = get(params , :Ly, Lx)

evaluate !(eval , :BinderRatio ,
(: Magnetization2 , :Magnetization4)

) do mag2 , mag4
return mag2 * mag2 / mag4

end

evaluate !(eval , :Susceptibility , (: Magnetization2 ,)) do mag2
return Lx * Ly * mag2 / T

end

evaluate !(eval , :SpinCorrelationK , (: SpinCorrelation ,)) do corr
corrk = zero(corr)
for i = 1: length(corr), j = 1: length(corr)

corrk[i] += corr[j] * cos(2pi/length(corr )*(i-1)*(j-1))
end
return corrk

9



SciPost Physics Codebases Submission

end

return nothing
end

Using evaluate!, we provide formulas for useful quantities such as the Binder ratio, the suscepti-
bility and the Fourier transform of the correlation function. Note that Carlo.register_evaluables
is called during the postprocessing step, after the simulation is complete. It has no access to
any simulation state.

Finally, we implement the checkpointing interface.

function Carlo.write_checkpoint(mc::MC, out::HDF5.Group)
out["spins"] = mc.spins
return nothing

end

function Carlo.read_checkpoint !(mc::MC, in::HDF5.Group)
mc.spins .= read(in, "spins")
return nothing

end

end # module Ising

When starting a simulation from a checkpoint, Carlo.read_checkpoint! is called instead of
Carlo.init!, so that we have to recover everything from disk that is not already calculated in
the constructor MC(params). The temperature is set in the constructor so we do not have to
save it to disk. The spin configuration, however, has to be saved. For more information on how
to read and write to an HDF5.Group, see the documentation of HDF5.jl [8].

This concludes the Ising.jl file and our implementation. Next, we will use it to run some
simulations.

3.1.2 Running simulations

To run a simulation, we first need to install Carlo.jl and the Ising module. This works via the
Julia REPL.

julia >]
pkg > add Carlo
pkg > add https :// github.com/lukas -weber/Ising.jl

Readers who have followed along in the last section and wrote their own code in a different
directory, can instead import it in development mode using dev path/to/Ising.

Next, we write the job script from Listing 1. The meanings of the parameters are as follows.

Lx, Ly, T used by our implementation to set the size and temperature of the Ising model.

thermalization the number of sweeps that are performed in the thermalization phase of the
simulation, before measurements are taken.

sweeps the number of measurement sweeps.

binsize the internal bin size, that is the number of samples that are averaged before writing
to disk. This should be much smaller than the total number of sweeps but large enough
to not waste too much disk space in large simulations.

There are more optional parameters that are explained in greater detail in the documentation
for TaskInfo and JobInfo.
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Using the given system sizes and temperatures, we generate a collection of tasks. Then, all
information about the job is fed to the JobInfo constructor, which additionally takes the job
name (here "example_job") the Monte Carlo type we implemented (Ising.MC), as well as the
total run time and the interval between checkpoints.

Finally, start(job, ARGS) invokes the Carlo.jl CLI, which we can run from the shell as
follows.

$ julia example_job.jl --help
$ julia example_job.jl run

The first line gives an overview over the CLI, the second line starts the simulation. For long-
running simulations, the commands status and merge are helpful to check the progress and
postprocess those results that are already available, respectively.

After the simulation has completed, we should see a directory example_job.data, which
contains raw data and check points, and a file example_job.results.json, which contains the
postprocessed results of our simulation. The submodule Carlo.ResultTools provides tools
for reading these results back into Julia as follows:

using Plots
using DataFrames
using Carlo.ResultTools

df = DataFrame(ResultTools.dataframe("example_job.results.json"))
plot(df.T, df.BinderRatio;

xlabel = "Temperature",
ylabel = "Binder ratio",
group = df.Lx,
legendtitle = "L",

)

The output of this snippet can be seen in Fig. 2.
To inspect a raw Monte Carlo time series, we can read it directly from the respective HDF5

file. For example, for the first temperature and system size,

using HDF5

samples = h5read(
"example_job.data/task0001/run0001.meas.h5",
"observables/Energy/samples",

)

retrieves a vector containing each recorded sample of the energy.
In the example above, we ran Carlo.jl with a single processor. In order to use the parallel

scheduler, we can simply launch the Carlo.jl CLI with MPI.

$ mpirun -n $ncores julia example_job.jl run

If the simulation has already been completed before, this will stop without doing further work.
To restart the simulation, we should use the flag run -r or call the delete command before
running.

In production runs, it is advisable to configure MPI.jl and HDF5.jl to use the system-provided
binaries.

using MPIPreferences
MPIPreferences.use_system_binary ()
using HDF5
HDF5.API.set_libraries !(
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Figure 2: Binder ratio, 〈m2〉2 / 〈m4〉, of the magnetization m, in the L × L square-
lattice Ising model as a function of temperature. As one would expect, there is a
crossing close to the critical temperature Tc ≈ 2.269. The error bars are calculated
automatically by Carlo.jl using the jackknife method.

"path/to/libhdf5.so",
"path/to/libhdf5_hl.so",

)

Further, by default, Julia will use multithreading for linear algebra operations. Without care,
together with MPI parallelization, this can cause overusage of the available CPUs, so it should
be controlled, e.g. by setting the environment variable OPENBLAS_NUM_THREADS=1.

3.2 Stochastic series expansion

In the last section, we covered the Metropolis algorithm for the Ising magnet. More complicated
models of magnetism – or other quantum phenomena – generally contain noncommuting
operators, which require more sophisticated quantum Monte Carlo algorithms to solve. One
quantum Monte Carlo method that is particularly effective for lattice models of bosons is the
stochastic series expansion [6]. In basic terms, it works by expanding the trace over Boltzmann
operator Z = Tr e−βH with the Hamiltonian H and the inverse temperature β into a power series
and performing the resulting sums over over operator products using Monte Carlo sampling.
More details can be found, e.g. in Ref. [15].

StochasticSeriesExpansion.jl [16] is an implementation of the abstract-loop flavor [17] of
the algorithm that can flexibly handle any model consisting of bond operators acting on a graph
of bonds (as long as the sign problem [18] is not severe). It is built in Julia on top of Carlo.jl,
based on the C++ code that was used in earlier publications to simulate frustrated magnets in
cluster bases [19–21] and spin-photon coupled systems [22].

While this arbitrary model capability requires some code to specify the Hamiltonians and
associated observables, some models are supported out of the box. One example, that we will
explore in this section are arbitrary-spin anisotropic Heisenberg models of the form

H =
∑

〈i, j〉

Ji j

�

Si · S j + di jS
z
i Sz

j

�

+
∑

i

hz
i S

z
i + Dx

i (S
x
i )

2 + Dz
i (S

z
i )

2, (5)

where 〈i, j〉 sums over the bonds of an arbitrary lattice. As long as the signs of Ji j and Dx
i

in combination with the bonds of the lattice do not imply magnetic frustration, the model is
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sign-problem free. This is the case, e.g., for Ji j > 0 on a bipartite lattice if Dx
i does not change

sign throughout the lattice.
As a registered package, we can install StochasticSeriesExpansion.jl (and Carlo.jl if we have

not already) from the Julia REPL.

julia >]
pkg > add StochasticSeriesExpansion

Then we can write a job script. In this example, we calculate the susceptibility of an effective
model for the anisotropic antiferromagnet BaNi2V2O8from Ref. [23], which is also available as
an example in the StochasticSeriesExpansion.jl documentation.

# bani2v2o8.jl

using Carlo
using Carlo.JobTools
using StochasticSeriesExpansion

tm = TaskMaker ()
tm.sweeps = 80000
tm.thermalization = 10000
tm.binsize = 100

temperatures = range (0.05, 4, 20)
system_sizes = [10, 20]

tm.model = MagnetModel
tm.S = 1
tm.J = 1
tm.Dz = 0.005645 # D^{QMC}_{EP(XY)}/J^{QMC}_n from PRB 104, 065502

tm.measure = [: magnetization]
for L in system_sizes

tm.lattice = (unitcell = UnitCells.honeycomb , size = (L, L))

for T in temperatures
tm.T = T
task(tm)

end
end

job = JobInfo(
splitext(@__FILE__ )[1],
StochasticSeriesExpansion.MC;
run_time = "24:00:00",
checkpoint_time = "30:00",
tasks = make_tasks(tm),

)

start(job , ARGS)

The meanings of the StochasticSeriesExpansion.jl-specific parameters are the following

model the model to simulate, here MagnetModel which corresponds to Eq. (5).

S the spin magnitude.

T the temperature.
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Figure 3: Example calculation with StochasticSeriesExpansion.jl. The magnetic
susceptibility perpendicular to the easy plane, χz , of an effective model for BaNi2V2O8,
as a function of the temperature T .

J,d,h,Dx,Dz correspond to the parameters in Eq. (5). Can also be made site-dependent, see
StochasticSeriesExpansion.jl documentation.

lattice the unit cell and the dimensions of the supercell. Honeycomb and other popular ones
are predefined. Otherwise, an instance of UnitCell can be passed.

measure specifies the observables to be measured (on top of the energy and specific heat). Here,
just measure uniform magnetization-related quantities. :staggered_magnetization
would additionally compute the staggered magnetization. There is an operator string
estimator interface for implementing custom observable estimators.

For details, the reader is referred to the StochasticSeriesExpansion.jl documentation.
Even though the run time scaling of stochastic series expansion is linear in system size and

inverse temperature, this example takes more computational effort than the previous one for
the Ising model. It is therefore recommended to run it with MPI.

$ mpirun -n $ncores julia example_job.jl run

Nevertheless, it is still tractable within a few minutes on a workstation or strong laptop and
should yield the result file bani2v2o8.result.json. Like in the Ising example, we can use
Carlo.ResultTools to plot the observable MagChi which corresponds to the static uniform
magnetic susceptibility Fig. 3. We observe the dip feature that is caused by the easy-plane
anisotropy Dz and is also observed in experiment [23]. However, this feature is not quite
converged with system size at L = 20 and larger systems should be simulated in practice.

This concludes the present example, which showcases the effectiveness of a state-of-the-art
Monte Carlo code built on Carlo.jl. Since this code was ported from an earlier C++ version, it
also gives us an opportunity to directly compare the performance between the two languages,
which we will do in Section 4.

3.3 Parallel tempering and the parallel run mode

Parallel tempering [24] is a technique that allows speeding up autocorrelation times in an
ensemble of simulations by introducing additional Monte Carlo moves that exchange configura-
tions between different simulation parameters. A typical application of this are glassy models,
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which can be simulated ergodically at high temperatures but freeze at low temperatures. If
we simulate a chain of increasing temperatures in parallel, the probability distributions of
adjacent temperatures may have some overlap so that higher temperature configurations may
be accepted as updates in lower temperature simulations and vice versa. This leads to a steady
exchange of configurations up and down the chain of temperatures, which can decrease the
overall autocorrelation time significantly.

Carlo supports parallel tempering through the ParallelTemperingMC wrapper, which is a
meta-implementation of the AbstractMC interface that allows to run other implementations
with parallel tempering. We will first illustrate its usage with an example that is of interest to
readers planning to use parallel tempering. Afterwards, we sketch its implementation as an
example for implementing new algorithms with the parallel run mode feature in Carlo.jl.

3.3.1 Usage

Parallel tempering can be used with any implementation of the AbstractMC interface as long
as the following methods are implemented:

Carlo.parallel_tempering_log_weight_ratio(
mc::MC, parameter ::Symbol , new_value

)

Carlo.parallel_tempering_change_parameter !(
mc::MC, parameter ::Symbol , new_value

)

Both of them receive the name of the parameter along which parallel tempering is performed.
In a tempering update, this parameter may be changed to a new_value. The first function
returns the logarithmic weight change log[W (p′)/W (p)] that would result from changing the
parameter from p to p′. The second function puts that same change into action. Both the Ising
reference implementation and StochasticSeriesExpansion.jl implement this interface and
can be used with ParallelTemperingMC.

Parallel tempering is useful in situations where the untempered autocorrelation time of
a simulation is longer than the time it takes to exchange replicas in the tempering process.
Such a situation is not easy to achieve for the SSE algorithm in standard models due to its
efficient global loop updates, but can be useful in more involved situations [25]. To keep the
presentation of this usage example transparent, we will not introduce an involved model here
and instead return to the Ising reference implementation that only contains local updates and
is therefore known to have long autocorrelation times around the critical point.

Using ParallelTemperingMC requires just a few changes to the job script of Listing 1,

# parallel_tempering.jl

using Carlo
using Carlo.JobTools
using Ising

tm = TaskMaker ()

tm.sweeps = 20000
tm.thermalization = 2000
tm.binsize = 100

Ts = range (1.5, 4, 30)

# contract temperatures around Tc for better distribution overlap

15



SciPost Physics Codebases Submission

Tc = 2.269
Ts += 0.5 .* (Tc .- Ts) ./ (0.6 .+ (Tc .- Ts) .^ 2)

tm.parallel_tempering = (
mc = Ising.MC,
parameter = :T,
values = Ts,
interval = 1

)

Ls = [32, 64]
for L in Ls

tm.Lx = L
tm.Ly = L

# tm.T is set implicitly by ParallelTemperingMC

task(tm)
end

job = JobInfo(
splitext(@__FILE__ )[1],
ParallelTemperingMC; # underlying MC set in tm.parallel_tempering
run_time = "24:00:00",
checkpoint_time = "30:00",
tasks = make_tasks(tm),
ranks_per_run = length(tm.parallel_tempering.values), # needs to match!

)

start(job , ARGS)

Most notably, we replace the MC algorithm in JobInfo by ParallelTemperingMC and use the
parameter tm.parallel_tempering to specify the details of how parallel tempering should be
performed as follows

mc the underlying model MC implementation.

parameter name of the parameter along which parallel tempering is performed, e.g. :T for
the temperature.

values a chain of values of the parameter, which is simulated in parallel with nearest neighbor
replica exchange.

interval the number of sweeps between proposing replica exchanges.

Lastly, ParallelTemperingMC has to be run in parallel run mode, which as of Carlo v0.2.3
has to be enabled manually by setting the ranks_per_run option in JobInfo. In the case of
ParallelTemperingMC, the number of ranks per run has to be set to the number of parameters
in the parallel tempering chain.

Running the job script works just as in the previous examples,

$ mpirun -n $N julia parallel_tempering.jl run

except running with MPI is required and the number of MPI ranks N has to be equal to m *
ranks_per_run + 1 with some integer m. For the example above, N = 61 will simulate the
two length-30 parallel tempering chains for L = 32 and L = 64 in parallel.
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Figure 4: Parallel tempering in the Ising model. The specific heat of the 64× 64
square lattice Ising model as a function of the temperature, simulated with and without
parallel tempering. Both simulations are performed with 20000 measurement sweeps
and 2000 thermalization sweeps.

As shown in Fig. 4, in this case, parallel tempering greatly decreases the statistical uncer-
tainties close to the critical point and cures thermalization issues that arise at low temperatures.
It should be mentioned that in the case of the Ising model, the critical slowing down can be
more efficiently cured by introducing cluster updates [26]. However, designing such global
updates is not always possible for more complicated models.

3.3.2 Implementation

In the last subsection, we explained the usage of the parallel tempering feature. We now sketch
its underlying implementation as an example of writing an algorithm with the parallel run
mode feature of Carlo.jl.

In general, introducing parallel tempering into a simulation greatly increases the complexity
of the parallel scheduling, since multiple simulations need to be orchestrated to run in lock
step. However, Carlo.jl already supports this kind of parallelism through its parallel run mode.
Parallel tempering (and similar meta-algorithms) can therefore be implemented as a thin layer
on top of parallel run mode.

To use parallel run mode, algorithms have to implement an alternative version of the
AbstractMC interface, which essentially receives an additional MPI communicator (Table 1)
spanning a team of MPI ranks that are collaborating on a single Carlo.jl run (that is, a single
bar in Fig. 1). In the parallel tempering scenario, we thus assign one chain of the tempered
parameter to one Carlo run, and write a meta-implementation of the parallel run AbstractMC
interface that runs the simulations for each value of the parameter.

mutable struct ParallelTemperingMC{T} <: AbstractMC
parameter_name :: Symbol
parameter_values :: Vector{T}
tempering_interval ::Int

parallel_measure :: ParallelMeasurements
chain_idx ::Int
child_mc :: AbstractMC

end
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Single run interface
MC(parameters::AbstractDict)
init!(::MC, ::MCContext, params::AbstractDict)
sweep!(::MC, ::MCContext)
measure!(::MC, ::MCContext)
register_evaluables(::TypeMC, ::AbstractEvaluator, params::AbstractDict)
write_checkpoint(::MC, ::HDF5.Group)
read_checkpoint!(::MC, ::HDF5.Group)

Parallel run interface
MC(parameters::AbstractDict)∗

init!(::MC, ::MCContext, params::AbstractDict, comm::MPI.Comm)
sweep!(::MC, ::MCContext, comm::MPI.Comm)
measure!(::MC, ::MCContext, comm::MPI.Comm)†

register_evaluables(::Type{MC}, ::AbstractEvaluator, params::AbstractDict)
write_checkpoint(::MC, ::Union{HDF5.Group,Nothing}, comm::MPI.Comm)†

read_checkpoint!(::MC, ::Union{HDF5.Group,Nothing}, comm::MPI.Comm)†

Table 1: Comparison between the standard single run interface for a type MC <:
AbstractMC, where one Carlo.jl run (i.e. one simulation of a single parameter set) is
handled by one MPI rank, to the parallel run interface, where the work of one run is
shared among a team of MPI ranks. The communicator comm passed as an additional
argument spans this team of ranks. ∗The constructor has the same signature, but
additionally, params[:_comm] contains the MPI communicator. †In these methods,
only the 0th rank of comm is allowed to call measure!(ctx,...), read, or write to
HDF5. The second argument of the checkpointing functions is nothing on the other
ranks.
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The name of the tempered parameter is stored in parameter_name with the values stored in
parameter_values. Tempering updates are performed every tempering_interval sweeps,
and ParallelMeasurements is a helper object for performing distributed measurements. Each
instance of ParallelTemperingMC corresponds to one link in the parallel tempering chain and
a single parameter value. chain_idx stores the current position of the link and child_mc stores
a child Monte Carlo implementation that does the simulation between the tempering updates.

Most of the implementation work is then to implement the interface functions and calling
the respective function of the child implementation, making it believe that it is running normally.
In the constructor and the initialization function, we retrieve the configuration and inject the
current value of the tempering parameter into the normal parameter set before passing it on to
the child.

function ParallelTemperingMC(params :: AbstractDict)
config = params [: parallel_tempering]
MC = config.mc
tempering_interval = config.interval

comm = params [:_comm]
chain_idx = MPI.Comm_rank(comm) + 1

modified_params = deepcopy(params)
modified_params[config.parameter] = config.values[chain_idx]

return ParallelTemperingMC(
config.parameter ,
collect(config.values),
config.interval ,
ParallelMeasurements (),
chain_idx ,
MC(modified_params),

)
end

function Carlo.init!(
mc:: ParallelTemperingMC ,
ctx::MCContext ,
params :: AbstractDict ,
comm::MPI.Comm ,

)
modified_params = deepcopy(params)
modified_params[mc.parameter_name] = mc.parameter_values[mc.chain_idx]

Carlo.init!(mc.child_mc , ctx , modified_params)
end

In the sweep! function we let the child do sweeps, performing a tempering update periodically.

function Carlo.sweep!(
mc:: ParallelTemperingMC , ctx::MCContext , comm::MPI.Comm

)
Carlo.sweep!(mc.child_mc ,

make_parallel_context(ctx , mc.parallel_measure ))

if ctx.sweeps % mc.tempering_interval == 0
synchronize_measurements !(

ctx , mc.parallel_measure , mc.chain_idx , comm
)
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tempering_update !(mc, ctx , comm)
end
return nothing

end

The function make_parallel_context creates a modified MCContext that reroutes possible
measurements using mc.parallel_measure.

Then, periodically, synchronize_measurements! performs the necessary communications
that collect these measurements from different ranks and combine them into vectors in the
correct order. This is necessary because in parallel run mode, only the zeroth rank of the
comm is allowed to do measurements. Afterwards, tempering_update! implements a standard
neighbor swapping update [24] calling the functions parallel_tempering_log_weight_ratio
to compare weight ratios and, if accepted, parallel_tempering_change_parameter! to switch
the tempering parameter values. For further details, the interested reader is referred to the
source code (src/parallel_tempering.jl).

For the measurements, analogously, we call the Carlo.measure! function on the child.

function Carlo.measure !(
mc:: ParallelTemperingMC , ctx::MCContext , comm::MPI.Comm

)
Carlo.measure !(mc.child_mc ,

make_parallel_context(ctx , mc.parallel_measure)
)

end

The register_evaluables function works the same in single run and parallel run mode. There
is no MPI communication as this function is called only once per run in the postprocessing
phase, after the actual simulation is already done. For the parallel tempering implementation,
this still takes some bookkeeping, as we need to string together the evaluables from the child
implementations in a similar way as the measurements. We will skip these details here for
brevity.

Finally, the checkpointing functions require some more MPI communication. The second
argument in both of them is nothing on any rank except the 0th rank of comm. We therefore
communicate the state, given by the chain permutation, the parallel measurement object, and
the internal state of the child implementations, before reading from or writing to the HDF5 file.

function Carlo.write_checkpoint(
mc:: ParallelTemperingMC ,
out::Union{HDF5.Group ,Nothing},
comm::MPI.Comm ,

)
chain_permutation = MPI.Gather(mc.chain_idx , comm)
child_mcs = MPI.gather(mc.child_mc , comm)
parallel_measures = MPI.gather(mc.parallel_measure , comm)

if MPI.Comm_rank(comm) == 0
out["chain_permutation"] = chain_permutation

for (i, (child_mc , parallel_measure )) in
enumerate(zip(child_mcs , parallel_measures ))
Carlo.write_checkpoint(child_mc ,

create_group(out , "child_mcs /$i"))
Carlo.write_checkpoint(parallel_measure ,

create_group(out , "parallel_measures /$i"))
end

end
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return nothing
end

function Carlo.read_checkpoint !(
mc:: ParallelTemperingMC ,
in::Union{HDF5.Group ,Nothing},
comm::MPI.Comm ,

)
child_mcs = MPI.gather(mc.child_mc , comm)

if MPI.Comm_rank(comm) == 0
chain_permutation = read(in, "chain_permutation")
parallel_measures = [

Carlo.read_checkpoint(ParallelMeasurements ,
in["parallel_measures /$i"])
for i in eachindex(child_mcs)

]

for (i, child_mc) in enumerate(child_mcs)
Carlo.read_checkpoint !(child_mc , in["child_mcs /$i"])

end
else

chain_permutation = nothing
end

mc.chain_idx = MPI.scatter(chain_permutation , comm)
mc.child_mc = MPI.scatter(child_mcs , comm)

mc.parallel_measure = MPI.scatter(parallel_measures , comm)

parallel_tempering_change_parameter !(
mc.child_mc ,
mc.parameter_name ,
mc.parameter_values[mc.chain_idx],

)

return nothing
end

This concludes the implementation of ParallelTemperingMC as an example of leveraging the
parallel run mode feature. While some MPI communication and bookkeeping is required, the
heavy lifting in terms of scheduling is being done behind the scenes by Carlo.jl. The main
source of complexity in the parallel tempering implementation is the design requirement that
it should work transparently with normal AbstractMC implementations. Utilities for this kind
of interfacing, such as the ParallelMeasurements used above may also be useful for other
meta-algorithms. While they are not currently part of the public Carlo.jl API, this may change
in a future release.

4 Benchmarks

In this section, we provide benchmarks to show (i) the run time scaling of the parallel scheduler
and (ii) the validity of the statistical postprocessing in the face of strongly autocorrelated data.
For both, we use the Ising example code implemented in Section 3.1. Finally, we (iii) directly
compare the performance of the Julia and C++ versions of the stochastic series expansion code.
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Figure 6: Binning analysis benchmark using the 20× 20 square-lattice Ising model
at temperature T = 2.3, close to the critical point. The same simulation with 20000
sweeps and 4000 thermalization sweeps is repeated 9000 times. We then compare the
distribution of these results to the distribution predicted by the binning analysis. (a)
Histogram of the energy per spin compared to a Gaussian distribution with the average
mean and standard deviation predicted from the binning analysis. (b) Histogram
of the Binder ratio compared to a Gaussian distribution with the average mean
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by Carlo.jl.
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4.1 Scheduler run time scaling

For the run time scaling, we consider a workload inspired by Listing 1, where we make the
replacements Ls = [100, 200, 300, 500] and sweeps = 200000 to increase the computational
effort. Since the Ising code scales quadratically with the linear system size Lx, the tasks of
this workload are quite imbalanced, comparable to the situation in Fig. 1. Nevertheless, we
observe nearly linear scaling of the run time with number CPUs used (Fig. 5). We expect that
the deviation from perfect scaling in this case is dominated by the serial cost of thermalization,
which, based on the number of sweeps, is about 1% of the total serial run time.

4.2 Validity of the postprocessing

To confirm the accuracy of the statistical postprocessing, we consider the Ising model with
L = 20 and T = 2.3, close to the critical point. In this region, the local updates of the Metropolis
algorithm that we implemented are quite inefficient, leading to long autocorrelation times that
require a careful analysis to retrieve the correct statistics.

To obtain the statistics of this model, there are two ways. The first one is to run many
identical, independent simulations and create a histogram of the results. The second, more
practical approach is to run a single simulation and perform a binning analysis on the correlated
time series. By comparing the histogram of many independent simulations with the average
results from the binning analysis implemented in Carlo.jl (Fig. 6(a)), we confirm that the
binning procedure outlined in Section 2.3 yields the correct errors for observables. As an
example for the jackknifing feature, the Binder ratio (Fig. 6(b)) also shows correct statistics.
Finally, in Fig. 6(c) we show the autocorrelation function for the energy per spin. We find that
the autocorrelation time estimated from the binning analysis using Eq. (3) is a good estimate
for the true decay of the autocorrelations.

4.3 Performance comparison between Julia and C++

The StochasticSeriesExpansion.jl package mentioned in Section 3.2 is a Julia translation of the
earlier C++ code [27] that was used in Refs. [17,19–22]. Since many of their inner workings
are identical and both codes have seen a similar amount of optimization efforts, they provide
an ideal opportunity for benchmarking the performance of Julia for quantum Monte Carlo
applications, which we do in the following.

Although the codes behave identically at the core, a number of details need to be taken
into account for a quantitative performance comparison. Firstly, the models implemented for
use with them are not the same. For example, the anisotropic magnet from Section 3.2 is not
implemented in the C++ code. A model that is implemented for both codes is the spin-1/2
fully-frustrated bilayer [28,29] in the interlayer dimer basis, which we therefore use here. It is
accessible through the ClusterModel in StochasticSeriesExpansion.jl. Another, more technical
intricacy are the length of the SSE operator string and the number of worm updates. Both
are parameters that are automatically tuned by the algorithm during its thermalization phase.
Both codes use exactly the same controller logic for this, however the result is subject to noise.
To eliminate this noise, we set both of them to the same values, predetermined by an earlier
simulation. Lastly, the C++ version used a custom implementation of the mt19937 Mersenne
Twister [30]. Carlo.jl uses Julias Random.Xoshiro by default, which for this comparison, we
replace by Random.MersenneTwister. All of these settings are implemented in the job script
from Listing 2. The C++ code was compiled with GCC 12.2.0 with -march=znver4 -ffast-
math and link-time optimization enabled. The Julia version was 1.11.1. The two simulations
were carried out on AMD EPYC 9474F CPUs with 16 MPI ranks at a time.

In Fig. 7, both codes show the characteristic linear scaling of the SSE algorithm with inverse
temperature. The Julia version shows slightly better performance than the C++ version for both
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using Carlo
using Carlo.JobTools
using StochasticSeriesExpansion
using Random

tm = TaskMaker ()
tm.sweeps = 100000
tm.thermalization = 10000
tm.binsize = 100

tm.model = ClusterModel
tm.inner_model = MagnetModel
tm.cluster_bases = (StochasticSeriesExpansion.ClusterBases.dimer ,)

tm.measure_quantum_numbers = [(; name=Symbol(), quantum_number =2)]
tm.parameter_map = (;

J = vcat ([: Jperp], repeat ([: Jpar ],8))
)

tm.Jpar = 1
tm.Jperp = 0.5

betas = range (1,10,16)
L = 30

tm.lattice = (
unitcell = UnitCells.fully_frust_square_bilayer ,
size=(L,L)

)
for beta in betas

tm.init_opstring_cutoff = 160000* beta/maximum(betas)
tm.init_num_worms = 8
tm.num_worms_attenuation_factor = 0.0
tm.T = 1/beta
tm.Lx = L
tm.Ly = L
task(tm)

end

job = JobInfo(
"path/to/job",
StochasticSeriesExpansion.MC;
run_time = "24:00:00",
checkpoint_time = "30:00",
rng = Random.MersenneTwister ,
tasks = make_tasks(tm),

)

start(job , ARGS)

Listing 2: The StochasticSeriesExpansion.jl job file used for the performance compari-
son in Fig. 7.

24



SciPost Physics Codebases Submission

Inverse temperature J/T
2 4 6 8 10

T
im

e 
pe

r 
sw

ee
p 

(m
s)

0

5

10 sweep (C++)

sweep (Julia)

measure (C++)

measure (Julia)

Figure 7: Language performance comparison between the Julia and C++ imple-
mentations of the same SSE QMC algorithm. Shown are the average times spent on a
sweep and a measurement as a function of inverse temperature β = 1/T for the fully
frustrated bilayer with interlayer to intralayer coupling ratio J/J⊥ = 2 and 30× 30
dimer unit cells.

sweeps and measurements. This should not be seen as proof that one language is inherently
faster or slower, as further optimizations on either side are likely possible.

Some plausible explanations for the different performance could be the following. First,
the sweep time could be partly affected by the different performance of the Mersenne Twister
implementations. Second, due to just-in-time compilation, the Julia compiler has more compile-
time knowledge. For example, both codes allow the SSE bond operators to connect an arbitrary
number of sites. If the number of sites per operator is known at compile-time, which has been
ensured in the Julia code, several expensive integer divisions can be replaced by cheaper bit
shift operations. Achieving something similar in C++ is possible using sophisticated templating
techniques, however, in the present code, this is only done in part. Lastly, the reason could
be a random difference in the LLVM optimizer, used by Julia, and the GCC optimizer, used for
C++ here, that happens to be relevant for the performance of the given code on the given
architecture.

Despite these technical details that make performance comparisons of this kind hard to
interpret, we can confidently conclude that it is possible to write state-of-the-art QMC codes in
Julia without paying a price in performance.

5 Conclusion

Carlo.jl is a framework for writing Monte Carlo simulation codes in Julia. It features a Monte
Carlo aware parallel scheduler with parallel tempering support, organized storage of input,
checkpoint, and result files, as well as statistical postprocessing of the Monte Carlo results.

We have illustrated these features and the general usage of the framework by providing
examples for the Ising model, the SSE QMC algorithm, and parallel tempering. Our benchmarks
show the efficient run time scaling of the scheduler and the correctness of the statistical post-
processing. Additionally, since the SSE QMC code is based on an earlier C++ implementation,
we performed a language performance comparison, in which the Julia version was faster,
demonstrating the applicability of Julia for Monte Carlo workloads.
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Based on these features and properties, the availability of a framework like Carlo.jl should
enable the quick development of new user-friendly high-performance Monte Carlo codes in
Julia.
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