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Higher-matter is defined by higher-representation of a symmetry algebra, such as the p-form

symmetries, higher-group symmetries or higher-categorical symmetries. In this paper, we

focus on the cases of higher-group symmetries, which are formulated in terms of the stric-

tification of weak higher-groups. We systematically investigate higher-matter charged under

2-group symmetries, defined by automorphism 2-representations. Furthermore, we construct a

Lagrangian formulation of such higher-matter fields coupled to 2-group gauge fields in the path

space of the spacetime manifold. We interpret such model as the Landau-Ginzburg theory for

2-group symmetries, and discuss the spontaneous symmetry breaking (SSB) of 2-group sym-

metries under this framework. Examples of discrete and continuous 2-groups are discussed.

Interestingly, we find that a non-split 2-group symmetry can admit an SSB to a split 2-group

symmetry, where the Postnikov class is trivialized. We also briefly discuss the strictification

of weak 3-groups, weak 3-group gauge fields and 3-representations in special cases.
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1 Introduction

In the recent years, there have been a plethora of approaches to extend the notion of symme-

tries beyond the group theory paradigm, see the review articles [1–5]. The most general alge-

braic structure for generalized symmetries is an n-category, where the morphisms correspond

to symmetry transformations. If these morphisms are all invertible, the algebraic structure

is called an n-group. Physically, it consists of codimension-1, 2, . . . , n-topological generators

of symmetry transformations. Higher-group symmetries have been extensively discussed in

physics literature, see e.g. [6–53].

For 2-groups, there are actually two different mathematical formulations that are used in

different contexts:

1. Strict 2-group, which is defined as a strict 2-category whose morphisms are invertible

and associative. Strict 2-groups commonly appears in the mathematical formulations
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of 2-group gauge theories [6, 7, 54–56]. Algebraically, a strict 2-group is described by a

crossed module (G,H, ∂,▷), as reviewed in section 2.

2. Weak 2-group, which is defined as a weak 2-category (bicategory) whose morphisms are

invertible but not associative. A weak 2-group is characterized by a tuple (Π1,Π2, ρ, β),

where Π1 and Π2 are interpreted as the physical “0-form” and 1-form symmetries, ρ :

Π1 →Aut(Π2) is a group action and β ∈ H3
ρ (BΠ1; Π2) is called the Postnikov class.

When the Postnikov class β = 0( ̸= 0), the weak 2-group is called split (non-split).

In condensed matter physics literature, a split 2-group symmetry is also denoted as

“symmetry fractionalization”, see e.g. [20, 57, 58]. Weak 2-group is the most commonly

used notion of 2-groups in the generalized symmetry literature.

Different strict 2-groups could be equivalent to the same weak 2-group via weak equiva-

lence. On the other hand, for a given weak 2-group (Π1,Π2, ρ, β), there are multiple ways to

construct a corresponding strict 2-group. Such a choice of strict 2-group (crossed module) is

called a strictification of the weak 2-group (Π1,Π2, ρ, β).

Although the weak 2-group description is more appropriate to define symmetry generators,

we find that the strict 2-group description is more convenient in many physical aspects. In a

theory with 2-group global symmetry, the symmetry defects can be labeled by weak 2-group

elements or by elements of the corresponding strict 2-group. For the latter case, the strict

2-group labeling is not faithful because the map from the strict 2-group to the corresponding

weak 2-group description is not injective.

Strictification of gauge fields First, when discussing the gauging of 2-group symmetry

and constructing a 2-group gauge theory, the gauge transformation rules of strict 2-group

gauge theory in terms of the strict gauge fields (A,B) is much simpler than that of weak 2-

group gauge theory with weak gauge fields (a, b) [7]. We present a derivation of strict 2-group

gauge fields from the weak 2-group counterpart in section 4.

Higher-matter For an ordinary symmetry group G, it acts on matter fields ϕ ∈ V in forms

of a representation G → Hom(V, V ). More abstractly, a representation is defined as a functor

G → Vect from the 1-category G into the category of vector spaces Vect.

As a generalization, the (higher-)matter fields charged under higher-group G global or

gauge symmetries are described by a higher-representation, defined as a functor G → nVect

from the higher-group to an n-category of n-vector spaces (also known as the higher charge) [43,

59]. The detailed definitions and structures of general higher-representations are open prob-
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lems in mathematics. For weak 2-groups, the characterization and classification of 2-representations

are well studied, see e.g. [43,45,60,61]. Nonetheless, we would still like to ask a question: how

to write down higher-matter coupled to higher gauge fields in a more physical, Lagrangian

formulation?

It turns out that the higher vector spaces are not convenient for our purpose. In this paper,

we instead propose to use the automorphism 2-representation of an algebra A, to model the

2-representations of 2-groups in the strict description. In particular, we often use the group

algebra A = C[K] for a group K, which can correspond to a collection of “Wilson loop”

operators physically.

Then there is another question: what is the physical operator on which the 2-group act,

in the Lagrangian form?

Our answer is that the proper way for writing down the coupling of 2-group gauge fields

with 2-matter is to work in the path space (loop space) P(M) of the spacetime manifold M ,

which we elaborate in section 6. Again we would utilize the strict 2-group gauge fields, and

realizing the 2-matter in terms of an automorphism 2-representation.

Landau-Ginzburg model for strict 2-group symmetries For the physical applications,

we establish the Landau-Ginzburg model of 2-group symmetries as a strict 2-gauge theory in

the path space in section 7. We discuss the SSB (Spontaneous Symmetry Breaking) of 2-group

symmetry using this effective field theory. When the 2-group only contains a 1-form symmetry,

our model is reduced to the Mean String Field Theory, which is the Landau-Ginzburg model

of 1-form symmetries [62].

We apply the formalism to a simple example of non-split weak 2-group (Z2,Z2, id., β ̸=
0 ∈ H3(BZ2;Z2)), which has a strictification (Z4,Z4, ∂ = ×2, 1▷a = 4−a) (note that we use

the additive notation for Zn cyclic groups in the paper). Interestingly, we found that in the

strict formulation, the non-split 2-group can be SSB to a split 2-group with a trivial Postnikov

class, without breaking Π1 = Z2 or Π2 = Z2!

We also attempt to discuss the SSB of a continuous non-split weak 2-group (ZN , U(1), id., β ̸=
0 ∈ H3(BZN ;U(1)) by the approximation limM→∞ ZM = U(1). The SSB behavior of this

2-group Landau-Ginzberg model can break the symmetry to Π1 = ZK , Π2 = ZP , and the

Postnikov class is broken to β mod gcd(P,K). With suitably chosen parameters, we can still

realize a symmetry breaking from a non-split 2-group to a split 2-group.

3-groups We have also extended beyond the level of 2-category, and explored the cases of

3-group symmetries, whose physical applications were explored in [16, 22, 63]. In this case, a
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weak 3-group is formulated by the following Postnikov tower [64]:

B3Π3 → BG3

↓
B2Π2 → BG2

↓
BΠ1

(1.1)

and is parameterized by the tuple (Π1,Π2,Π3, ρ, β, γ). Where ρ is a group action of Π1 and

β, γ are two group cohomology elements:

β ∈ H3(BΠ1,Π2) , γ ∈ H4(BG2,Π3) . (1.2)

For a general weak 2-category, one can always strictify it into a strict 2-category. But for

a general weak 3-category, it can only be strictified into a semi-strict (Gray) 3-category [65].

Hence for a weak 3-group, one can only strictify it into a semi-strict 3-group in general, which

is described by the algebraic structure of 2-crossed-module (G,H,L, ∂1, ∂2,▷, {−,−}). We

discuss the definitions of these notions of 3-groups and the strictification in the special cases

of either Π1 = 0 or Π2 = 0 in section 3. We have also shortly discussed the 3-representations

and physical aspects of strict 3-gauge theories.

Structure of This Paper

In pursuit of higher-gauge theory with matter under higher representations, we must clarify

the algebraic structure of higher-groups (2-group and 3-group), and work out how the weak-

category language of predecessors aligns with the strict-category language we predominantly

utilize.

In section 2, we briefly review the basic algebraic structure of 2-groups in both strict and

weak languages, and discuss their transitions. We also explicitly construct both discrete and

continuous examples. More examples can be found in appendix B.

In section 3, we investigate the algebraic structure of semi-strict and weak 3-groups, and

construct algebraic models for strictification of weak 3-groups in the special cases of Π2 = 0

or Π1 = 0.

In section 4, we present a dictionary of gauge fields, gauge transformations and observables

between the weak-/strict- categorical languages in 2-group gauge theories. We also build the

strictification of 3-gauge theories.

With the algebraic structures and categorical languages clarified, we can define higher-

matter through automorphism higher-representations of higher-groups, and fit them into gauge

theories.
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In section 5, we introduce automorphism 2-representation with explicit examples, and

discuss its relation with previous definition of higher-representation. We also extend the

automorphism 2-representation to define 3-representation for semi-strict 3-groups with Π1 = 0.

In section 6, we build 2-group gauge theories with 2-matter using the path space formalism

developed in [55]. We give explicit construction of 2-matter in both continuous and discrete

cases using fields in the path space, and discuss n-matter forming brane fields.

In section 7, with all the previously defined 2-matter, we construct the Lagrangian Landau-

Ginzberg theory of 2-groups in both continuous and discrete languages, and discuss their

spontaneously symmetry breaking patterns.

2 Strictification of 2-groups

2.1 A review of 2-groups

As mentioned in section 1, there are two notions of 2-groups that are used in different refer-

ences. We review the relation between strict 2-groups and weak 2-groups in this section.

We first write down the formulation of a strict 2-group in terms of a crossed module

(G,H, ∂,▷). G and H are two groups, the map ∂ : H → G is a group homomorphism, i.e.

∂(h1h2) = (∂h1)(∂h2) for all h1, h2 ∈ H, and ▷ : G → Aut(H) is an action of G on H. In

particular, for any g ∈ G, g▷ induces a group automorphism of H, and it is required that

g ▷ 1H = 1H .

Furthermore, for all g ∈ G, h, h′ ∈ H, the following equations hold:

∂(g ▷ h) = g(∂h)g−1 (2.1)

(∂h)▷ h′ = hh′h−1 . (2.2)

If we define the action of G on itself ▷ : G×G → G as

g ▷ g′ = gg′g−1 , (2.3)

(2.1) can be rewritten as

∂(g ▷ h) = g ▷ (∂h) (2.4)

Following [7], a better way to classify a crossed module (G,H, ∂,▷) is by the equivalent

classes of strict 2-groups, which preserves the groups Π1 = G/im(∂) and Π2 = ker(∂) instead

of G and H.

One defines the quadruple (Π1,Π2, ρ, β), which is called a weak 2-group out of the crossed

module (G,H, ∂,▷). The action of ρ : Π1×Π2 → Π2 is naturally induced from ▷ : G×H → H.
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The non-trivial element β ∈ H3
ρ (BΠ1; Π2) ∼= H3

grp,ρ(Π1; Π2) is called the Postnikov class of

the weak 2-group. If the group action ρ is trivial, β is an element of the group cohomology,

otherwise it is an element of the twisted group cohomology with action ρ.

Now we want to ask the following question: given a weak 2-group (Π1,Π2, ρ, β), how to

construct its corresponding strict 2-group (G,H, ∂,▷) (which is not unique). If the Postnikov

class β is trivial, we can simply construct the strict 2-group as

G = Π1 , H = Π2 , ∂h = 1G (∀h ∈ H) , ▷ = ρ . (2.5)

If β is a non-trivial element, the answer is not obvious, and we need to construct an exact

sequence accompanied with an action ▷ : G → Aut(H):

1 → Π2
i−→ H

∂−→ G
p−→ Π1 → 1 , (2.6)

such that it gives the correct group cohomology element β ∈ H3(BΠ1; Π2).

After the strictification, the pullback of the Postnikov class is trivial, p∗(β) = 0, see

appendix A for a proof.

We use the procedure and notations in [66] to compute the Postnikov class β. First we

choose a cross-section function s : Π1 → G, which satisfies p ◦ s = id.. The failure of group

associativity for s(g) is encoded in a map f : Π1 ×Π1 → ker(p), defined as

s(g)s(h) = s(gh)f(g, h) . (2.7)

The function f(g, h) satisfies the 3-cocycle condition

s(g)f(h, k)s(g)−1f(g, hk) = f(g, h)f(gh, k) . (2.8)

Now we uplift f to a function F : Π1 × Π1 → H by requiring that ∂(F (g)) ≡ f(g) for all

g ∈ Π1. The failure of cocycle condition for F (g, h) can be written in terms of

(s(g)▷ F (h, k))F (g, hk) = i(β(g, h, k))F (g, h)F (gh, k) , (2.9)

where β : Π1 ×Π1 ×Π1 → Π2 is the desired Postnikov class in H3(BΠ1; Π2) .

It is worth noting that if two exact sequences of strictification with the same (Π1,Π2, ρ)

can weave a commutative diagram:

H1 G1

1 Π2 Π1 1

H2 G2

i1

i2

∂1

∂2

tH tG

p1

p2

(2.10)
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then the two strict two groups renders the same Postnikov class β, and are thus equivalent up

to the classification by (Π1,Π2, ρ, β) [66].

We have to emphasize the point that middle arrows above (i.e. tH , tG) are not necessarily

isomorphisms. In this case, there is no “inverse” of above morphism between 2-groups in

general. In mathematics, this equivalence relation is called weak equivalence.

As a consequence, given a weak 2-group, we can strictify it into many different crossed

modules. Although these crossed modules have the same Postnikov class, there might be no

weak equivalence between them.

For the later application to gauge theory, to construct a sensible 2-bundle, we require that

im(∂) ⊂ Z(G) (Z(G) is the center of G), see (4.2.2).

2.2 A general procedure of strictification

In this section, we describe a general procedure of strictification that works for (finitely gen-

erated) abelian groups as well as U(1). This construction is a slight generalization of [67].

Let c ∈ H3(BΠ1; Π2) be a cocycle that is additive w.r.t the first argument. Let us denote

A = Hom(Π1; Π2) in this section. Thus, ω determines a 2-cocycle Z ∈ H2(BΠ1;A), that is

Z(g2, g3)(g1) := c(g1, g2, g3) . (2.11)

Hence Z determines a central extension

1 → A → G → Π1 → 1 . (2.12)

Locally, G can be described by a pair (γ, g) ∈ A× Π1. However, the group operation of G is

twisted by Z as

(γ, g) · (γ′, g′) = (γ γ′Z(g, g′), gg′) . (2.13)

In the next step, we fix an extension

1 → Π2 → H → A → 1 . (2.14)

It turns out that the choice of H is rather arbitrary, and we can simply choose H = Π2 × A

and use the trivial extension1. Now the decomposition H → A → G gives a desired boundary

map ∂:

∂(b, γ) = (γ, 0) . (2.15)

0 is the identity element of Π1. The group action of G on H can be described as (Π2 is

additive)

(γ, g) ▷ (b, γ′) = (b+ γ′(g), γ′) . (2.16)

1Other choices are also possible, but following steps must be modified as well.
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Now we show that above construction indeed gives our desired Postnikov class. It’s easy

to see that

F (g1, g2) = (0, Z(g1, g2)) . (2.17)

Now we have

β(g1, g2, g3) = (Z(g2, g3)(g1), δZ(g1, g2, g3)) = (β(g1, g2, g3), 0) (2.18)

where we used the fact δZ = 0 (cocycle condition of Z).

So the only question is, how general it is to assume that cocycle β ∈ H3(BΠ1; Π2) is

additive (w.r.t. at least one argument). Actually, it is indeed the case provided Π1 is finitely

generated abelian groups or their product of U(1). This can be deduced by investigating the

structure of cohomology ring and the additivity of generators.

In the following subsections, we present three examples of weak 2-groups and discuss their

strictifications. We show more examples in appendix B.

2.3 Example: Π1 = Π2 = Z2

The first example is a case of discrete 2-group, with Π1 = Z2, Π2 = Z2. Since H3(BZ2;Z2) =

Z2, there is only one non-trivial element β ̸= 0 ∈ H3(BZ2;Z2).

Because Aut(Z2) = 1, the action of Π1 = Z2 on Π2 = Z2 can only be taken as the trivial

one.

For the strictification, let us choose G = H = Z4 and the following exact sequence:

1 → Z2
i−→ Z4

∂−→ Z4
p−→ Z2 → 1 (2.19)

The maps are

i : a → 2a , ∂ : a → 2a , p : (mod 2) . (2.20)

Note that we are using the additive notation for the group elements of Zn.

Besides the exact sequence, we also need to specify the action ▷ : G × H → H, which

trivializes after restricted to ▷ : Π1 ×Π2 → Π2 .

We show that there are two different choices of ▷, which realizes the two different elements

of H3(BZ2;Z2) = Z2.

In the computation of the Postnikov class β, we choose the cross-section s : Π1 → G as

the identity map s(g) ≡ g. Then the function f : Π1 ×Π1 → ker(p) defined as

s(g)s(h) = f(g, h)s(gh) (2.21)
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takes the following values:

f(0, 0) = f(0, 1) = f(1, 0) = 0 , f(1, 1) = 2 . (2.22)

After lifting f to a function F : Π1 × Π1 → H by requiring that ∂(F (g, h)) ≡ f(g, h), we can

choose

F (0, 0) = F (0, 1) = F (1, 0) = 0 , F (1, 1) = 1 . (2.23)

The failure of cocycle condition for F (g, h) can be written in terms of

(s(g)▷ F (h, k))F (g, hk) = i(β(g, h, k))F (g, h)F (gh, k) , (2.24)

where β : Π1 ×Π1 ×Π1 → Π2 is the desired Postnikov class in H3(BΠ1; Π2) .

Now there are the following two choices of ▷:

1. Trivial action: a▷ b = b for any a ∈ G, b ∈ H. In this case, one can check that

F (h, k)F (g, hk) = F (g, h)F (gh, k) (2.25)

holds for every g, h, k ∈ Π1. Hence we have a trivial Postnikov class β = 0 ∈ H3(BZ2;Z2) =

Z2.

2. Non-trivial action: a▷ b = (2a+ 1)b (mod 4). One can check that the action is indeed

trivial for b ∈ im(i) ⊂ H .

In this case, we can compute the evaluation table for β(g, h, k):

β(g, h, k) g h k

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
1 1 1 1

(2.26)

Hence β(g, h, k) leads to the non-trivial Postnikov class β = 1 ∈ H3(BZ2;Z2) = Z2.

2.4 Example: Π1 = ZN , Π2 = U(1)

We take an example where Π1 is discrete and Π2 is continuous. When Π1 = ZN , Π2 = U(1),

we can choose the following exact sequence

1 → U(1)
i−→ U(1)× ZN

∂−→ ZN .ZN
p−→ ZN → 1 (2.27)
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We use additive notations for ZN and multiplicative notations for U(1). G = ZN .ZN denotes

a generally non-split group extension of ZN by ZN , and its group elements are in form of (a, b),

(0 ≤ a, b < N). The group elements of H = U(1)×ZN are (e2πia, b), (0 ≤ a < 1 , 0 ≤ b < N).

The maps are

i : e2πia → (e2πia, 0) , ∂ : (e2πia, b) → (b, 0) , p : (a, b) → b . (2.28)

The group action ▷ : G → Aut(H) is

(a, b)▷ (e2πic, d) = (e2πi(c+bd/N), d) . (2.29)

The Postnikov class element

m ∈ H3(BZN ;U(1)) = ZN (2.30)

is encoded in the group operation on G = ZN .ZN , which takes the form of

(a, b) + (c, d) =

{
(a+ c, b+ d) (b+ d < N)

(a+ c+m, b+ d) (otherwise)
. (2.31)

Hence for different Postnikov class elements, in order to strictify the weak 2-group, we should

choose different groups G with N2 elements. If m = 0, the 2-group is split and we have

G = ZN × ZN .

2.5 Example: Π1 = Π2 = U(1)

We also discuss the case of continuous weak 2-group of Π1 = Π2 = U(1). This case was

extensively studied in [9]. where the weak 2-group symmetry (U(1), U(1), 1,m) is denoted as

U(1)(0) ×m U(1)(1). The element of H3(BU(1);U(1)) = Z is characterized by an integer m.

We can use the following exact sequence

1 → U(1)
i−→ U(1)× Z ∂−→ Z.U(1)

p−→ U(1) → 1 (2.32)

We use additive notations for Z and multiplicative notations for U(1).

The maps are

i : e2πia → (e2πia, 0) , ∂ : (e2πia, b) → (b, 1) , p : (a, e2πib) → e2πib . (2.33)

The group action ▷ : G → Aut(H) is

(a, e2πib)▷ (e2πic, d) = (e2πi(c+bd), d) . (2.34)
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The Postnikov class element

m ∈ H3(BU(1);U(1)) = Z (2.35)

is encoded in the group operation on G = Z.U(1), which takes the form of

(a, e2πib) + (c, e2πid) =

{
(a+ c, e2πi(b+d)) (b+ d < 1)

(a+ c+m, e2πi(b+d)) (otherwise)
. (2.36)

3 Strictification of 3-groups

3.1 Semi-strict 3-group as a 2-crossed-module

In this section we discuss the strictification of weak 3-groups. Let us review the notion of a

semi-strict 3-group in terms of a 2-crossed-module: (G,H,L, ∂1, ∂2,▷, {−,−}), which has the

following components (see e.g. the appendix of [16]):

1. G, H and L are groups.

2. ∂1 : H → G and ∂2 : L → H are group homomorphisms, which means that ∂1(h1h2) =

(∂1h1)(∂1h2) for all h1, h2 ∈ H and ∂2(l1l2) = (∂2l1)(∂2l2) for all l1, l2 ∈ L. Furthermore,

they satisfy

∂1 ◦ ∂2(l) = 1G (3.1)

for all l ∈ L.

3. There are group actions ▷ : G × G → G, ▷ : G ×H → H, ▷ : G × L → L, where the

first one is

g ▷ g′ = gg′g−1 (3.2)

for all g, g′ ∈ G.

4. G-equivariance of ∂1, ∂2: for all g ∈ G, h ∈ H, l ∈ L,

∂1(g ▷ h) = g ▷ (∂1h) , ∂2(g ▷ l) = g ▷ (∂2l) . (3.3)

5. Finally, there is a map called Peiffer lifting: {−,−} : H × H → L, which satisfies for

any h1,2,3 ∈ H, l, l1, l2 ∈ L:

∂2{h1, h2} = h1h2h
−1
1 (∂1h1)▷ h−1

2 ,

g ▷ {h1, h2} = {g ▷ h1, g ▷ h2} ,

{∂2l1, ∂2l2} = l1l2l
−1
1 l−1

2 ,

{h1h2, h3} = {h1, h2h3h−1
2 }(∂1h1)▷ {h2, h3} ,

{h1, h2h3} = {h1, h2}{h1, h3}{∂2{h1, h3}−1, (∂1h1)▷ h2} ,

{∂2l, h}{h, ∂2l} = l(∂1h)▷ l−1 .

(3.4)
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A 3-group (G,H,L, ∂1, ∂2,▷, {−,−}) contains a 2-group (H,L, ∂2,▷′) as a subgroup, where

the action ▷′ is defined as
h▷′ h′ = hh′h−1

h▷′ l = l{∂2l−1, h}
(3.5)

for h, h′ ∈ H and l ∈ L.

If we want to realize the 0-form, 1-form and 2-form symmetry of a physical theory using

a 2-crossed-module. It is natural to let H and L be abelian, which simplifies a lot of axioms

in the previous section. Furthermore, similar to the classification of 2-groups, the physical

symmetry group is given by a weak 3-group, with the group components

Π1 = G/im(∂1) , Π2 = ker(∂1)/im(∂2) , Π3 = ker(∂2) . (3.6)

The maps ∂1 and ∂2 becomes trivial when acting on Π2 and Π3: ∂1h = 1Π1 for any h ∈ Π2,

∂2l = 1Π2 for any l ∈ Π3.

In general, the classification of weak 3-groups is based on the following Postnikov tower [64]:

B3Π3 → BG3

↓
B2Π2 → BG2

↓
BΠ1

(3.7)

Here G3 is the structure group of the whole 3-group, and G2 ⊂ G3 is the structure group

involving Π1 and Π2.

A general weak 3-group (Π1,Π2,Π3, ρ, β, γ) is characterized by two group cohomology

elements

β ∈ H3(BΠ1; Π2) , γ ∈ H4(BG2; Π3) . (3.8)

The group homology H3(BΠ1; Π2) characterizes the equivalence class of the following exact

sequence:

0 → Π2 → H/(im∂2)
∂1→ G → Π1 → 0 . (3.9)

This sequence is exact because ∂1 ◦ ∂2(l) = 1G always holds for any l ∈ L, hence the image of

the map ∂1 : H/(im∂2) → G is exactly the same as the image of the map ∂1 : H → G.

3.2 Weak 3-groups with Π2 = 0

The strictification of a general weak 3-group is involved. Here we first discuss the special

case where Π2 = 0. Physically, this case can arise from gauging a finite subgroup of 0-form
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symmetry in 4d in presence of mixed ’t Hooft anomaly [68]. In this case, as ker(∂1)/im(∂2) =

Π2 = 0 in (3.6), the following sequence is exact:

1 → Π3 → L
∂2→ H

∂1→ G → Π1 → 1 . (3.10)

Thus the equivalence class is characterized by a degree 4 cohomology class c ∈ H4(BΠ1; Π3).

We can also assume c is additive with respect to the first argument, which holds if Π1 is product

of finitely generated abelian groups and U(1)-factors. Let us again denote A := Hom(Π1; Π3).

Then we have a degree 3 cocycle Z ∈ H3(BΠ1;A), which is given by

Z(g2, g3, g4)(g1) := c(g1, g2, g3, g4) . (3.11)

Now Z determines a 2-group, and we can translate it into a crossed module as in the section

2.2:

1 → A → H
∂1−→ G

p−→ Π1 → 1 . (3.12)

In addition, we fix a trivial exact sequence

1 → Π3 → L → A → 1 (3.13)

where L := Π3 ×A. Similarly, the G-action on L factorizes through Π1. Explicitly, if g ∈ G

g ▷ (b, γ) := (b+ γ(p(g)), γ) (3.14)

where (b, γ) ∈ L = Π3 ×A and Π3 is additive.

At last, the boundary map ∂2 is given by composition L → A → H. Hence we obtain a

2-crossed module with trivial Peiffer lifting. Triviality of Peiffer lifting is completely due to

Π2 = 0.

It is easy to verify that this 2-crossed module has the desired Postnikov class. Apparently,

similar procedure works for Hn+2(BΠ1; Πn+1) provided Π1 satisfies our assumption (i.e. it is

a product of finitely generated abelian group and U(1) factors).

Example: Π1 = Z2, Π2 = 0, Π3 = Z2 In this case, A = Hom(Z2;Z2) = Z2, and the

elements of A are
f0 ∈ A : f0(x) := 0 ,

f1 ∈ A : f1(x) := x .
(3.15)

Let us construct the crossed module (3.12) which is a strictification of 2-group (Π1 = Z2, A =

Z2, 0, Z):

1 → Z2 → Z4
∂1−→ Z4

p−→ Z2 → 1 . (3.16)
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As in the strictification of 2-group in section 2.3, we take G = H = Z4, ∂1 : a → 2a,

p : (mod 2). Now there are two different group actions ▷ : G → Aut(H), leading to different

Z ∈ H3(BΠ1;A) and finally different Postnikov classes c ∈ H4(BΠ1; Π3) for the weak 3-group:

1. Trivial group action g ▷ h = h, giving rise to the trivial element 0 ∈ H3(BΠ1;A) =

Z2. In this case, from (3.11), since Z(g2, g3, g4) = f0 for all g2, g3, g4 ∈ Π1, we have

c(g1, g2, g3, g4) = 0 for all g1, g2, g3, g4 ∈ Π1, hence the weak 3-group (Z2, 1,Z2, id., 0, c0)

has a trivial Postnikov class c = c0 ∈ H4(BΠ1; Π3) = Z2.

2. Non-trivial group action g ▷ h = (2g + 1)h, giving rise to the non-trivial element β ∈
H3(BΠ1;A) = Z2. In this case, we have

Z(g2, g3, g4) =

{
f1 g2 = g3 = g4 = 1
f0 other cases

. (3.17)

Hence

c(g1, g2, g3, g4) =

{
1 g1 = g2 = g3 = g4 = 1
0 other cases

. (3.18)

This corresponds to the weak 3-group (Z2, 1,Z2, id., 0, c1) with non-trivial Postnikov

class c1 ∈ H4(BΠ1; Π3) = Z2. Note that in this case BG2 ≡ BΠ1 since Π2 = 0.

Finally, for either of these two cases, from (3.13) we have L = Z2 × Z2, and the group action

▷ : G → Aut(L) is defined as (3.14):

g ▷ (a, b) = (a+ fb(g mod 2), b) . (3.19)

3.3 An algebraic model of weak 3-groups with Π1 = 0

In this section, we provide an algebraic model of weak 3-groups with Π1 = 0, which is more

convenient for computations.

Before that, we need to recall the notion of quadratic functions/forms.

Definition 3.1. Given A and B are abelian groups, a function on A (valued in B) is said to

be quadratic if there is a bilinear function F : A×A → B such that

f(x) = F (x, x), x, y ∈ A . (3.20)

The key point is following result by Eilenberg and Maclane [69]

Theorem 1. The cohomology class H4(B2Π2; Π3) is in one to one correspondence with Π3-

valued quadratic functions on Π2.
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Given an abelian group A, there is an associated group Γ(A) called the universal quadratic

group [11] (unique) with a (non-unique) map γ : A → Γ(A) such that for any quadratic

function f on A (values in B), there is a unique homomorphism f̃ : Γ(A) → B with f = f̃ ◦ γ.
In this sense, we only have to consider the universal quadratic groups.

We have following theorem:

Theorem 2. 1. If A = Zr with even r, then Γ(A) = Z2r and γ(1) = 1.

2. If A = Zr with r odd, then Γ(A) = Zr with γ(1) = 1.

3. for finite abelian group A =
⊕n

i Ai, we have

Γ(A) =
⊕
i

Γ(Ai)
⊕
i<j

Ai ⊗Aj (3.21)

where ⊗ stands for the tensor product of Z-modules.

Example 1. Let’s consider A = Z4 and B = Z4. In this case, the bilinear forms Fk : A×A →
B are given by Fk(x, y) = kxy (k = 0, 1, 2, 3). The associated quadratic form fk : A → B are

classified as fk(x) = kx2 (k = 0, 1, 2, 3).

Next, we strictify the weak 3-group with Π1 = 0 to semi-strict 3-group, i.e. the 2-crossed

module. We claim that the choice

(G,H,L, ∂1, ∂2,▷, {−,−}) = (0,Π2,Π3, 0, 0, id., F ) (3.22)

will do the job, where F is the bilinear form defined by (3.20). Note that this choice ensures

that H and L are abelian groups. Especially this construction will satisfy the axioms of Peiffer

lifting listed in (3.4), as we will check below.

The first axiom that ∂2{h1, h2} = h1h2h
−1
1 (∂1h1)▷h−1

2 follows trivially because both sides

are 1. This follows from that ∂2 = 0 and H is abelian.

The second axiom states that g▷ {h1, h2} = {g▷ h1, g▷ h2}, which is also obviously true

since G = 1 by our choice so it acts trivially on H,L.

The third axiom {∂2l, ∂2l2} = l1l2l
−1
1 l−1

2 is true because ∂2 = 0 and L is abelian.

The fourth property and fifth axiom is ensured by bilinearity of F and abelian nature of

H and L.

The sixth, the last axiom {∂2l, h}{h, ∂2l} = l(∂1h)▷ l−1 is ensured by ∂1 = 0 = ∂2.

So the choice (0,Π2,Π3, 0, 0, id., F ) does give us a 2-crossed module, which is semi-strict

3-group.
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4 Strictification on higher gauge fields

In most of the physics literature, people prefer to work with weak 2-groups as they describe

“physical” global symmetries. However, in mathematics literature, people prefer to construct

2-gauge theories with strict 2-groups, e.g. [55]. Based on the fact that strict version of 2-groups

is equivalent to weak 2-groups [54], we should expect that gauge theories based on strict or

weak 2-groups should be somehow equivalent as well. In this section, we obtain an explicit

relation between “strict gauge fields” and “weak gauge fields”. We derive the Green-Schwarz

shift in [7, 9]. Furthermore, we will consider this equivalence at the level of observables, and

extend the discussions to the cases of 3-groups. In section 4.1 we focus on the cases of discrete

2-groups,

4.1 The dictionary of discrete gauge fields

In this section we will perform the strictification on the level of gauge field content. In the

following discussion, we will use Čech cohomology to formulate bundles.

For simplicity, we work with discrete groups. Given following crossed module extension:

1 → Π2
i−→ H

∂−→ G
p−→ Π1 → 1 (4.1)

with the group action ▷ : G → Aut(H) and the associated Postnikov class β ∈ H3(BΠ1; Π2).

We will collect these data (G,H, ∂,▷) and denote it as the 2-group G. We introduce the

following notations:

1. M is our n-dimensional spacetime.

2. a, b are “weak” gauge fields on M with gauge groups Π
[0]
1 and Π

[1]
2 respectively, where

the superscript means that Π2 acts as a 1-form symmetry group and Π1 is a 0-form

symmetry group. We will model a as a 1-cochain and b as a 2-cochain. Similarly A and

B will be the gauge fields of G and H respectively and again, A is a 1-cochain, B is a

2-cochain.

3. The Čech differential will be denoted as δ, and the differential twisted by A will be δA.

4. BG will be the classifying space of our 2-group [70].

5. Some notations of crossed module extension will be the same as section 2.1.

Gauge fields of discrete gauge group can play many roles, including classifying map, or

transition functions of the bundle (equivalently, lattice gauge field defined on the nerve of
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trivialization charts), see e.g. [5] for more details. Hence we will not distinguish the gauge

field a and the classifying map M → BΠ1 for the Π1 bundle over M .

We have the following commutative diagram:

M BG B2Π2

BΠ1

Bp

f

Bi

a
(4.2)

The right hand part is the Postnikov tower associated to the 2-group G. It means that whenever

we have a 2-bundle f : M → BG, we automatically get a principal Π1 bundle a : M → BΠ1,

which implies that

δa = 1Π1 . (4.3)

This is the cocycle condition of the transition function. However, we should not expect

δb = 1Π2 since the image of the map f does not fall into B2Π2 in general. Let us choose a

lift of s : Π1 → G that satisfies p ◦ s = 1, and define A = s(a). In fact, our construction

does not depend on the choice of the lift. Different choices of s result in a “1-form” gauge

transformation, as will be clear in section 4.2.

We apply the Čech differential δ on A = s(a):

p(δA) = δp(A) = δa = 1Π1 , (4.4)

hence δA = ∂B for some B ∈ H (note that ker(p) = im(∂)). This is the exactly the flat

condition of fake curvature described in [55].

On the other hand we have A = s(a) = a∗(s), where a∗ is the pullback by the map a.

Hence δA = a∗(δs) = a∗(∂F ), where F is the one in (2.9). Using

∂(a∗F ) = ∂(B) , (4.5)

we finally get

b = B−1(a∗F ) ∈ ker∂ . (4.6)

Note that there exists the 2-truncation condition for our case δAB = 1H [55], since we have a

2-group rather than a 3-group (there is no 3-morphism). Now we apply the twisted differential

δA on both sides of (4.6):

δAb = δA(a
∗F ) = a∗(δAF ) . (4.7)

Recall that δAF = β ∈ H3(BΠ1; Π2) (2.9). Furthermore, since b ∈ Π2, which is an element of

the central subgroup of H, the group action by A on b will descent to an action by a = p(A).

Hence we can write

δab = a∗β . (4.8)
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This is the Green-Schwarz shift occured in [7]. We demand the equation (4.8) to be covariant

under the gauge transformation of a, i.e. after a → aδλ, we need to impose b → bγ, where γ

satisfies

δaγ = (δλ)∗F . (4.9)

This equation determines the gauge transformation of weak gauge fields and explain how the

gauge transformations in [9] arise.

4.2 Gauge transformations and consistency

In this section, we discuss the gauge transformations of gauge field A and B. In particular, we

will write down a discrete analogy of the gauge transformations for Lie 2-gauge theory in [55].

We will work with Čech cohomology, and we need to choose trivialization charts {Ui}i∈I (I
is the set of indices). We define Aij as the locally constant gauge field A on Ui ∩Uj , similarly

Bijk is that of B on Ui ∩ Uj ∩ Uk.

Let us summarize the dictionary between strict and weak gauge fields derived in section 4.1:

Aij = s(aij) ,

∂Bijk = (δA)ijk ,

bijk = B−1
ijkF (aij , ajk) .

(4.10)

Here s : Π1 → G is a section and see (2.9) for the definition of F .

4.2.1 0-form gauge transformations

First, we expect

Aij → λiAijλ
−1
j (4.11)

where λi is a G-valued function on Ui. To preserve δA = ∂B, note that (δA)ijk = AijAjkA
−1
ik ,

we have

(δA)ijk → λi(δA)ijkλ
−1
i . (4.12)

Hence we expect

(∂B)ijk → λj(∂B)ijkλ
−1
i = ∂(λi ▷ Bijk) . (4.13)

Thus we deduce that under the gauge transformation Aij → λiAijλ
−1
j , B transforms as

Bijk → B′
ijk = (λj ▷ Bijk)ρijk, where ρijk ∈ ker(∂) = Π2. However, this ρ does not play a

significant role and can be omitted here.

Let us check that the 2-truncation condition δAB = 1H is well-defined (covariant) under

the gauge transformation with parameter λ. Note that both A and B will undergo the gauge
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transformation, not only B:

δA′(B′)ijkl = (A′
ij ▷ B

′
jkl)B

′−1
ikl B

′−1
ikl B

′
ijk . (4.14)

It simplifies to

δA′(B′)ijkl = (λi)(▷(Aij ▷ Bjkl)B
−1
iklB

−1
iklBijk) = λi ▷ (δAB) = 1H , (4.15)

and the 2-truncation condition is indeed gauge invariant.

In summary, under the 0-form gauge transformation, we have

Aij → λiAijλ
−1
j (4.16)

Bijk → λi ▷ Bijk (4.17)

for a G-valued function λi defined on Ui.

4.2.2 1-form gauge transformation

Before starting the discussions, we emphasize that it is necessary to assume im(∂) is a central

subgroup of G in order to have a well-defined

δA = ∂B . (4.18)

We apply δ on both sides of (4.18), and get

1G = ∂(δB) . (4.19)

Meanwhile we have δAB = 1H , so

∂(δAB) = 1G (4.20)

trivially. We compare (4.19) and (4.20) and deduce that

∂(Aij ▷ Bijk) = ∂Bijk . (4.21)

Again it is equivalent to Aij∂(Bijk) = ∂(Bijk)Aij , which holds under the assumption that

im(∂) is central in G, for arbitary Aij and Bijk. This justifies the use of Bockstein homomor-

phisms.

For the 1-form gauge transformation, we observe that δAB = 1H is preserved by Bijk →
Bijk(δAΛ)ijk, since δ2A = 1 (Λij ∈ H here). We perform such a transformation in ∂Bijk =

(δA)ijk. Note ∂ ◦ δA = δ ◦ ∂, hence the full 1-form gauge transformation is given by

Aij → Aij∂Λij

Bijk → Bijk(δAΛ)ijk
(4.22)

for Λ ∈ H.
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Remark 1. Consider A = s(a) as in the dictionary, let us choose another section s′. Note

that s′(a) = s(a)∂Λ where Λ ∈ H. Hence A′ = s′(a) = s(a)∂Λ = A∂Λ, and changing the

choice of section amounts to a 1-form gauge transformation.

4.3 Dictionary on observables

Now we discuss the definition of observables in terms of the strict gauge fields (A,B). For

simplicity we work on a spacetime lattice, i.e. picking up a good cover of the spacetime

manifold and taking its nerve2. On this lattice, the 1-form gauge field A is defined on links.

Given a link e we will write Ae for the gauge field on it. Similarly, given a 2-simplex σ, there

is a 2-form gauge field defined on it σ.

Given a loop γ on the lattice and a representation ρ of group G, we can define the Wilson

loop operator

Wγ := Tr(
∏
e∈γ

ρ(Ae)) . (4.23)

Now let us check gauge invariance of (4.23). Under the 0-form gauge transformation

Aij → λiAijλ
−1
j . (4.24)

It is easy to see the Wilson loop is invariant. On the other hand, to make the Wilson line

(4.23) invariant under the 1-form gauge transformation

Aij → Aij∂(Λij) , (4.25)

we need to impose that im∂ ⊂ ker(ρ). In this case, ρ induces a well-defined map ρ̃ on G/im∂ =

Π1. Hence the gauge invariant Wilson loops of the theory is labelled by representations of Π1.

Now we consider surface operators. Given a closed surface Σ and a representation η of H,

we define the surface operator by

WΣ := Tr(
∏
σ∈Σ

η(Bσ)) . (4.26)

To ensure the Wilson surface operator is invariant under the 0-form gauge transformation

Bijk → λi ▷ Bijk , (4.27)

we impose that η is a G-invariant representation of H, that is

η(g ▷ h) = η(h) (4.28)

2A good cover means that for {Ui} a cover of M, each Ui
∼= Rn and each intersection ∩iUi

∼= Rn. Also, we
do always have such a choice of good cover.
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for any g ∈ G, h ∈ H. With such constraint, Wilson surface is manifestly invariant under the

0-form gauge transformation.

For the 1-form gauge transformation

Bijk → Bijk(δAΛ)ijk , (4.29)

we note that η(δAΛ) = δη(Λ) since η is G-invariant. Hence Λ will contribute a factor∏
σ∈Σ

(δη(Λ))σ = 1 (4.30)

by “Stokes” theorem. In conclusion, gauge invariant Wilson surface operators correspond to

G-invariant representations of H.

One can also construct gauge invariant operator using the fake curvature F = dA−∂B (in

the additive form). We take a surface Σ with boundary ∂Σ, and define the gauge invariant

operator

WΣ,ρ = exp

(ˆ
Σ
ρ(F)

)
= exp

(ˆ
∂Σ

ρ(A)

)
exp

(ˆ
Σ
ρ(∂(B))

)
.

(4.31)

ρ is an arbitary representation of G.

In the multiplicative notations, we can write an equivalent form

WΣ,ρ = Tr(
∏
e∈∂Σ

ρ(Ae))Tr(
∏
σ∈Σ

ρ(∂(Bσ))
−1) . (4.32)

4.4 Lie 2-gauge theory

Now we briefly discuss the case of Lie 2-groups, and we will derive the famous Green-Schwarz

shift [9] algebraically.

As before, we have the exact sequence

1 → Π2 → H
∂−→ G

p−→ Π1 → 1 (4.33)

and a section map s : Π1 → G st. p ◦ s = id.. Here Π1,2 are both Lie groups.

Now we start from a Π1-bundle and derive Čech cohomology. We denote a an Lie(Π1)-

valued 1-form (1-form gauge field), where Lie denotes the functor mapping Lie groups to their

corresponding Lie algebras. As a principal Π1-bundle, we should obviously have

gijgjkgki = 1Π1 . (4.34)
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Taking section s on both sides (g̃ij ≡ s(gij) ),

g̃ij g̃jkg̃ki = s(1Π1) ≡ Ωijk . (4.35)

Since p ◦ s = id., we clearly have Ωijk ∈ ker(p) = im(∂). Thus we can assign an ωijk st.

Ωijk = ∂(ωijk).

Consider the g-valued 1-form A induced by Π1 connection a through A = s(a) where the

underline denotes the differential of a map. The induced gauge transformation of A is therefore

Ai −Aj = g̃−1
ij dg̃ij (4.36)

To arrive at the relation for ωijk, we permute the labels of (4.36) (ij, jk, ki) and sum them

up, to get

0 = ∂(ω−1
ijkdωijk) (4.37)

Thus the h-valued 1-form ω−1
ijkdωijk ∈ ker(∂) = Lie(Π2).

Then let’s consider the derivation of Čech 3-cocycle β. This would require an intersection

of four Ui patches, namely we can calculate g̃ij g̃jkg̃kl in two different orders of composition

and the result should agree in G:

ΩijlΩjkl = ΩijkΩjkl . (4.38)

So the corresponding ωs should have the following relation,

ωijlωjkl = ωijkωjklβijkl (4.39)

where βijkl ∈ ker(∂) = Π2 carries the information of Postnikov class. We can check that by

taking ∂ on both sides of (4.39) we clearly have (4.38).

To view βijkl as an element in group cohomology H3
grp(Π1; Π2), we simply take βijkl :

Π1 × Π1 × Π1 → Π2, (gij , gjk, gkl) 7→ βijkl, and the cocycle condition can be checked by

pentagon identity. To view β as Čech cohomology Ȟ3(Π1; Π2), we naturally take the indices

as intersection of elements of {Ui} and β as the map from 3 Čech simplexes into Π1. Note that

in the crossed module p∗β = 0, we can describe the bundle with strict 2-group (G,H, ∂,▷) in

the way of [55].

To consider the gauge transformation, we make the following correspondence, a is the

Lie(Π1)-valued 1-form gauge field, B as a Lie(Π2)-valued 2-form gauge field and β the 3-form

gauge field on BΠ1. Consider the classifying map f : M → BΠ1, we directly derive from Čech

cohomology that

dB = f∗β (4.40)
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and the gauge transformation rules can be derived from that.

An example would be the Chern-Simons form for Π1 = Π2 = U(1). For β ∈ H3(BU(1);U(1)) =

Z, its pullback corresponds to the Z-graded Chern-Simons form, namely,

dB =
κ

2π
a ∧ da (4.41)

with corresponding gauge transformation when a 7→ a+ dλ,

B′ = B +
κ

2π
λ ∧ da . (4.42)

4.5 Strictification of 3-gauge fields

In this subsection, we present a similar construction for 3-group gauge fields. We focus on

two special cases which are discussed in section 3, which are 3-groups with either Π1 = 0 or

Π2 = 0.

The case of Π1 = 0. This case is completely in analogue with the 2-group case with degree

shift by one. More precisely, let us fix the exact sequences

1 → Π3 → L → im(∂2) → 1 (4.43)

and

1 → im(∂2) → H → Π2 → 1 . (4.44)

Given b ∈ H2(M,Π2) for spacetime manifold M which satisfies δb = 1Π2 where δ is the Čech

differential. Then one chooses a section s : Π2 → H which may not be a homomorphism.

So δs(b) ̸= 1H in general. Nonetheless, we can easily verify that δs(b) ∈ im(∂2), so one can

further lift

δ(s(b)) = ∂2(l) (4.45)

for some l ∈ L. Note that δ2 = 0, hence we obtain

∂2(δl) = 1H . (4.46)

It means that δl = b∗γ ∈ H4(M,Π3) where γ ∈ H4(B2Π2; Π3) is the Postnikov cocycle.

The case of Π2 = 0. In the case of Π2 = 0, let us fix the exact sequences

1 → Π3 → L → im(∂2) → 1

1 → ker(∂1) → H → G → Π1 → 1 .
(4.47)
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Consider the second exact sequence in (4.47), one starts with a ∈ H1(M,Π1) in this case

which satisfies δa = 1Π1 as usual. We fix a set theoretic section s : Π1 → G and we have

δ(s(a)) = ∂1(b) (4.48)

as before. Taking Čech differential of (4.48), we obtain

∂1(δb) = 1 (4.49)

which means that there exists l ∈ L such that ∂2(l) = δ(b). We take yet another Čech

differential, we obtain ∂2(δl) = 1. So it defines a Cech cohomology class γ = δ(l) ∈ H4(M ; Π3),

which is the pullback of Postnikov cocycle in H4(BΠ1; Π3) by the classifying map a : M →
BΠ1.

5 Higher-representations

5.1 Automorphism 2-representation

The mathematical theory of higher representations of higher groups is not fully established.

In this paper, for the physical application purpose, we would construct 2-representations of

strict and weak 2-groups using the automorphism 2-group of algebras.

Definition 5.1. Given an algebra A, the automorphism 2-group [71] of the algebra Aut(A)

is defined to be
H = A× = {invertible elements in A}

G = Aut(A)

Ad. : A× → Aut(A), a 7→ Adja .

(5.1)

This definition gives a crossed extension sequence,

1 → Z(A×) → A× → Aut(A) → Out(A) → 1 . (5.2)

Therefore we define a 2-representation of a 2-group on A as follows.

Definition 5.2. Given an algebra A, Aut(A) is the automorphism 2-group, we define a rep-

resentation of a strict 2-group G on A to be a strict intertwiner [72]

R : G → Aut(A) , (5.3)

see figure 1.
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H

G

A×

Aut(A)

A

R

Figure 1: This figure shows how we construct an automorphism 2-representation. We choose
a suitable algebra A, and its automorphism 2-group Aut(A) can be calculated by definition.
Then we build an intertwiner R to embed the 2-group structure into Aut(A).

This could be considered as a “homomorphism” (with respect to the group laws, ∂ map

and action) from a strict 2-group to an automorphism 2-group of an algebra. Note that this

is not a weak equivalence, since we do not require the Π1 and Π2 of the two crossed modules

to be the same.

Algebraically, a 2-representation breaks down to building a commutative diagram preserv-

ing the strict 2-group action ▷, namely,

H G tG(g)
(
tH(h)

)
= tH(g ▷ h)

A× Aut(A)

∂

tH tG

Ad·

(5.4)

thus we can denote a 2-representation by (tH , tG, A). We define the automorphism 2-representation

to be faithful if both tH and tG are injective group homomorphisms.

During the process of constructing automorphism 2-representations, we may sometimes

take considerations of the subgroup of our choices, since the entirety could be massive and

redundant. For example, when we take A = C[K], we sometimes only consider

im(tG) ⊆ Aut(K) ⊆ Aut(A) . (5.5)

We will write out the maps explicitly if anything may cause confusion.

The physical meaning of the algebra A here is typically the fusion algebra of line operators.

For example, in the case of pure U(1) 1-form symmetry of Maxwell theory, these line

operators are Wilson lines of electromagnetic fields. They are described by the algebra A =

C[Û(1)] where C[K] stands for the group algebra of discrete group K and K̂ := Hom(K,U(1))

is the Pontryagin dual. More concretely, let’s denote the Wilson line with fundamental charge

as x, then

A = C[x, x−1] (5.6)

27



Note that only finite sums are allowed. In this situation, Aut(A) = C× ⋊ Z2. Given k ∈ C×,

the automorphism acts as x → kx. On the other hand, for 1 ̸= σ ∈ Z2, we have σ(x) = x−1,

which is actually charge conjugation.

Thus, the automorphism 2-representation of BU(1) on A is labelled by Hom(U(1),C×) =

Z, which is the charge of Wilson lines, as expected.

More generally, for Wilson lines in K-gauge theory, we have A = C[K̂].

In the 2-representation, both Aut(A) and A×
0 shall admit an action on the algebra A, the

former by natural action, and the latter by left multiplication. However, if we choose the

algebra A to be a group algebra A = C[K] as we do in most cases, there can be another type

of action given by Pontryagin dual. We denote the duality map by

̂: K → K̂ = HomGrp(K,U(1)) , k 7→ k̂ . (5.7)

In this notation, the two types of actions of the 2-group G on the algebra A can also be

constructed as

tG(g)▷
∑
k∈K

f(k) k =
∑
k∈K

f(k) tG(g)(k) , (5.8)

tH(h) ·
∑
k∈K

f(k) k =
∑
k∈K

f(k) · k̂(tH(h)) k . (5.9)

In the following, we will call the first type of action in (5.8), in which H acts by left

multiplication, the natural H-action. The second type of action in (5.9), in which H acts by

a phase determined by Pontryagin dual of each element, is called the Wilsonian H-action,

as the 2-matter operator would correspond to a linear combination of a collection of Wilson

loops with coefficients.

5.1.1 Example: Π1 = Π2 = Z2

Here we give a concrete example of faithful automorphism 2-representation for the case of

Π1 = Π2 = Z2. We present both cases of Postnikov classes β = 0, 1 ∈ H3
grp(Z2;Z2) ∼= Z2. In

the construction below, we use the scheme of taking the algebra A to be group algebra C[K],

and roughly takes Aut(K) ⊆ Aut(C[K]). It does not cause any problem, since we can always

embed Aut(K) back into Aut(C[K]).

Trivial β: With the above formulation, one simple example we can show is for

1 → Z2
i−→ Z4

∂−→ Z4
p−→ Z2 → 1 (5.10)

and the strict action ▷ being trivial, we choose the algebra of representation to be C[D4]. The
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notation for group elements of D4 is D4 =
〈
a, x|a4 = e, (anx)2 = e ∀n

〉
. Thus we have

Z4 Z4

D4 D4

tH

∂=×2

tG

Ad·

(5.11)

where Aut(D4) = D4; tH(1) = a, from this one can see that Ada2 = id. is exactly what we

would expect for the diagram to commute; tG(1) = κ is the representative of outer automor-

phism, acting as κ(x) = ax, κ(a) = a, and acts on Im(tH) trivially.

Non-Trivial β: Suppose now we are trying to represent the Π1 = Π2 = Z2 case with

a non-trivial Postnikov class non-trivial. The closest automorphism 2-group we can naively

imagine would be
(Z4,Z2 = Aut(Z4),▷, ∂)

1▷ 1 = 3 , 1▷ 3 = 1 , ∂ = ×2 .
(5.12)

But this 2-representation is not faithful. The construction we attempt to build now is to

properly expand the algebra (and in this simple case, a group K) to accommodate the G.

Here is how we can do it in the example of 2.3 with non-trivial action.

We can slightly decorate to the automorphism 2-group that fixes the deficiency of order-

4-elements in the automorphism group. The proposal is

Z4 Z4

K = Z4 × S4 Z2 × S4 ⊂ Aut(K) ,

tH

∂=×2

tG

Ad·

(5.13)

where

tH(1) = (1, (13)(24)) , tG(1) = ((1 ↔ 3),Ad(1234)) (5.14)

In this way, we successfully made tG injective by decorating some group with order-4 auto-

morphism element.

One may ask if we can choose an abelian K. The answer is no, since we hope for both tH

and tG to be faithful, and im∂ ̸= {eG}, tG ◦ im∂ ̸= {id.Aut(K)}. But an abelian K will most

certainly have Ad·(K) = {id.Aut(K)}.

5.2 Relation to 2-representations of weak 2-groups

Here we review the 2-representations for weak 2-groups, see e.g. [45], and observe how it could

be related with automorphic 2-representations for strict 2-groups.

For a weak 2-group (Π1,Π2, ρ, β), a 2-representation is labeled by (n, σ, χi, ci), (i =

1, . . . , n). The object for the 2-representation is n line operators Li(γ), i = 1, . . . , n. σ :

Π1 → Sn is a permutation of the line operators.
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An element g ∈ Π1 acts on Li(γ) as

g · Li(γ) = Lσg(i)(γ) , (5.15)

where σg(i) ∈ {1, . . . , n}.
χi : Π2 → U(1)n is a n-dimensional unitary representation of Π2, which obeys

χi(a)χi(b) = χi(ab) . (5.16)

It is also called the character of the 2-representation.

An element a ∈ Π2 acts on Li(γ) as

a · Li(γ) = χi(a)Li(γ) . (5.17)

The functions χ also satisfy the constraint

χi(a) = χσg(i)(ρg(a)) . (5.18)

Finally, we have ci : Π1 ×Π1 → U(1)n (i = 1, . . . , n), which describes the additional phase

factor when two Π1 symmetry generators act on the same line operator, see Figure 14 of [45].

They are required to satisfy

(δσc)i(g, h, k) = χi(β(g, h, k)) . (5.19)

Hence for a split weak 2-group with β = 0, c is an element of H2
σ(BΠ1, U(1)n).

Two 2-representations (n, σ, χ, c) and (n, σ′, χ′, c′) are equivalent if there exists a permu-

tation τ ∈ Sn such that

σ′ = τ ◦ σ ◦ τ−1 , [c′] = [τ · c] , χ′ = τ · χ . (5.20)

How does the weak 2-representation relate to the automorphism 2-representation for strict

2-groups? One way is to construct the following commutative diagram.

Π2 H G Π1

1 1

U(1)n A× Aut(A) Sn

i

χ

∂

tH

p

tG σ

i′ Ad· p′

(5.21)

By carefully choosing the algebra A, and respectively the homomorphisms tG,H , we shall

ensure that (tH , tG, A) forms an automorphism 2-representation, and the lower row forms a

crossed module.
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Notably, the role of c is played by F in the procedure of obtaining the Postnikov class from

strict 2-group in section 2.1. More precisely, we should have

i′(c(g1, g2)) = tH(F (g1, g2)) , (5.22)

which in terms re-generate (2.9) mapped into the lower crossed module in (5.21).

5.2.1 Example: Π1 = Π2 = Z2

Let us shed some concreteness into the construction relating strict and weak 2-representations

through the simplest discrete example. Unless specified, we will still adopt the abbreviation

by taking group algebra and only consider the automorphism of groups. In this example, we

do not consider one particular outer automorphism of U(1),

αi : U(1) → U(1) , eiθ 7→ e−iθ . (5.23)

Trivial β: In the case where the crossed module is

1 → Z2
i−→ Z4

∂−→ Z4
p−→ Z2 → 1 (5.24)

with the action ▷ trivial, one can have myriad choices of weak 2-representations. In the

follows, we will discuss some of these weak 2-representations (n, σ, χi, ci) and relate them with

automorphism 2-representations.

1. When n = 1, σ has to be trivial, and we can choose χ1 to be either χ1(a) = 1 or

χ1(a) = (−1)a. c1 ∈ C2(Z2, U(1)) is a choice independent of χ1.

In the strict description, we choose A× = U(1), tG(1) = id.A, hence the actual Aut(A)

does not matter. There are 2 choices for tH , tH(1) = ±1 if χ1(a) = 1; tH(1) = e±
πi
2 if

χ1(a) = (−1)a. Any of the above choices yields trivial Postnikov class and gives trivial

c up to coboundary.

2. When n = 2, there are two choices for σ:

(a) σ is trivial, and one may choose χ1, χ2, c1, c2 independently. The representation

is a direct sum (1, 1, χ1, c1)⊕ (1, 1, χ2, c2).

In the strict description, one correspondingly choose A× = U(1)2, tH = (±1,±1)

being the direct sum of previous results, and tG(1) = id.
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(b) σ(0) = id, σ(1) = (12). In this case, because of the condition (5.18), we have to

impose

χ1(a) = χ2(a) ∀a . (5.25)

Hence we have either χ1(a) = χ2(a) = 1 or χ1(a) = χ2(a) = (−1)a.

The choices of c1, c2 are independent of χ1, χ2, they need to satisfy

cσg(i)(h, k)ci(g, hk)c
−1
i (g, h)c−1

i (gh, k) = 1 (i = 1, 2) . (5.26)

In this case we can still choose A× = U(1)2, and take S2 ⊂ Aut(A) to be where

im(tG) resides. Then we can still have 2 choices for tH , tH(1) = (±1,±1) if χ1(a) =

1; tH(1) = (e±
πi
2 , e±

πi
2 ) if χ1(a) = (−1)a. For tG, we take tG(1) = (12). One can

check that this choice will make the diagram commutative while preserving the

action.

Non-trivial β: Now suppose the crossed module is same as before,

1 → Z2
i−→ Z4

∂−→ Z4
p−→ Z2 → 1 (5.27)

but the action ▷ is non-trivial, thus yielding the Postnikov class non-trivial. The situation

becomes more interesting.

1. When n = 1, σ has to be trivial, and we can choose χ1 to be either χ1(a) = 1 or

χ1(a) = (−1)a.

(a) If χ1(a) = 1, c1 ∈ C2(Z2, U(1)). The strict automorphic representation is same as

before, since we do not allow any information of action (and Postnikov class) to

appear.

(b) If χ1(a) = (−1)a, c1 satisfies

c1(h, k)c1(g, hk)c
−1
1 (g, h)c−1

1 (gh, k) = χ1(β(g, h, k)) . (5.28)

However, the above equation has no solution, hence when this weak 2-group has a

non-trivial β, there is no one-dimensional non-trivial representation.

2. When n = 2, if σ is trivial, the 2-representation is a direct sum of two 1-dimensional

2-representations. And we do not repeat the details here.

However, if σ(1) = (12), from (5.18) we have to impose

χ1(a) = χ2(a) ∀a . (5.29)

There are two choices for χi:
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(a) If χ1(a) = χ2(a) = 1, the choices of χi satisfy the same equation of (5.26), hence

the strict automorphic 2-representation has the same structure.

(b) If χ1(a) = χ2(a) = (−1)a, the equations (5.19) for ci become

c1(0, 0) = c1(0, 1) = c2(1, 0) ,

c2(0, 0) = c2(0, 1) = c1(1, 0) ,

c2(1, 1)c1(1, 0)c
−1
1 (1, 1)c−1

1 (0, 1) = −1 .

(5.30)

There are eight choices of (c1, c2). Using a construction resembling the non-trivial

Postnikov class case of section 5.1.1, we give a commutative diagram

Z2 Z4 Z4 Z2

1 1

U(1)2 U(1)2 × S4 Aut(U(1)2 × S4) Out(U(1)2 × S4)

χ tH tG σ

(5.31)

where we take

tH(1) =

((
e±

πi
2 0

0 e±
πi
2

)
, (1234)

)
, tG(1) = ((12), (1234)) ∈ S2 × S4 ⊂ Aut(U(1)2 × S4)

iA : U(1)2 → U(1)2 × S4 ,

(
−1 0
0 −1

)
7→

((
−1 0
0 −1

)
, (13)(24)

)

σ(1) = (12) ∈ Out(U(1)2 × S4) , σ(1) ·
(
a 0
0 b

)
=

(
b 0
0 a

)
, ∀a, b ∈ U(1) .

(5.32)

One can verify that this diagram is indeed commutative and is consistent with the

group action.

With this construction, we can uncover the information of [c] in 2-representation by

choosing im(tH), where each diagonal element e±
πi
2 can take the ± independently.

If tH(1) ∝ diag(1, 1), then the swapping generated by tG(1) and σ(1) acts trivially;

if tH(1) ∝ diag(1,−1), tG(1) acts non-trivially on im(tH), rendering the automor-

phism 2-representation faithful, while σ acting on im(χ) is still trivial by definition.

It’s the two classes of choices gives different [c] information: the tH(1) ∝ diag(1, 1)

case cannot generate c satisfying Eq.(5.30) from F ; while the tH(1) ∝ diag(1,−1)

can generate a non-trivial Postnikov class in the 2-representation of our choice, in

other words, it faithfully represent the Postnikov class information.
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5.3 3-representations

In this section, we discuss the 3-representations of 3-group (G,H,L, ∂1, ∂2,▷, {, }) in the spe-

cial case of Π1 = G/im(∂1) = 0.

When Π1 = 0, we can choose G to be trivial in the semi-strict 3-group. In this case,

the 3-group is essentially characterized by a 2-group structure (H,L, ∂2,▷′) as described by

(3.5). Therefore, we can still use the automorphism representation for 2-groups to construct

the representation of 3-groups. We will now see for the simplest case how this works.

Example: Π2 = Π3 = Z4. In this example, we consider the case when Π1 = 0 and Π2 =

Π3 = Z4. With the choice of ∂2 = ×2, to determine the 2-group (Π2,Π3, ∂2,▷′), we long

to see what choices of Peiffer lifting could give trivial or non-trivial actions ▷′. The results

of calculation is presented in Table 1. We can construct both the case of trivial action and

the case of non-trivial action with suitable choices of the quadratic form F , which correspond

to elements of H4(B2Z4;Z4). With the 2-group structure determined, we can extradite this

case back to section 5.1.1 where the 2-representation of this particular 2-group is explicitly

constructed.

F ▷′ F ▷′
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 trivial


0 0 0 0
0 2 0 2
0 0 0 0
0 2 0 2

 trivial

F ▷′ F ▷′
0 0 0 0
0 1 2 3
0 2 0 2
0 3 2 1

 non-trivial


0 0 0 0
0 3 2 1
0 2 0 2
0 1 2 3

 non-trivial

Table 1: This table shows the choice of quadratic forms F : Z4 × Z4 → Z4 and the resulting
action ▷′ : Z4 → Aut(Z4) ∼= Z2 in the sub 2-group structure. In this table, F = (F )4×4 means
that F (i, j) = Fi+1,j+1 for i, j ∈ Z4.
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6 Higher gauge theory in path space

6.1 Path space formalism

In this section, we formulate the 2-group gauge theory in the path space following [55]. We

denote by M the base manifold, (G,H, ∂,▷) the Lie 2-group, and the Lie algebras take basis

g = Span(T a, a = 1, · · · ,dim(g))

h = Span(Sa, a = 1, · · · ,dim(h))
(6.1)

and we follow the mathematicians’ notation of gauge group and holonomy as in [55] (i.e. a

Wilson line is exp
(´

γ A
)
instead of exp

(
i
´
γ A
)
). For two points s, t ∈ M , Pt

s(M) denotes the

path space,

Pt
s(M) = {X : [0, 1] → M, X(0) = s, X(1) = t} . (6.2)

We also define the evaluation map

eσ : Pt
s → M, X 7→ X(σ) , (6.3)

which would induce a natural pullback,

e∗σ : Ωp(M) → Ωp(Pt
s(M)), ω 7→ e∗σ(ω) ≡ ω(σ) . (6.4)

The specific components are

ω(σ) ≡ e∗σ(ω) = ωµ1···µp

∂X(µ1,σ)

∂X(ν1,ρ1)
· ∂X

(µ2,σ)

∂X(ν2,ρ2)
. . .

∂X(µp,σ)

∂X(νp,ρp)
dX(ν1,ρ1) ∧ · · ·X(νp,ρp) . (6.5)

Given that
∂X(µi,σ)

∂X(νi,ρi)
= δµi

νi δ(σ − ρi) , (6.6)

the components are explicitly

ω(σ) = ωµ1···µp(X(σ)) dX(µ1,σ) ∧ · · · ∧ dX(µp,σ) . (6.7)

As such, the exterior differential d on the path space Pt
s(M) is written as

d = dX(µ,σ) ∧ δ

δX(µ,σ)
. (6.8)

For a given line X, there is a vector field generating reparameterizations,

K(X) =
dX

dσ
. (6.9)
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Given a family of forms {ωi} on M , we introduce an integral

Ω{ωi},(α,β) ≡
˛
X|βα

(ω1, · · · , ωn)

≡
ˆ
α≤σi≤σi+1≤β

ιKω1(σ1) ∧ · · · ∧ ιKωn(σn)

(6.10)

If each deg(ωi) = pi + 1, then deg(Ω{ωi}) =
∑

i pi.

Now we introduce the line holonomy,

WA[X](σ1, σ2) ≡ P exp

(ˆ
X|σ2σ1

A

)

≡
∞∑
n=0

˛
X|σ2σ1

(Aa1 , · · · , Aan) · T a1 · · ·T an

(6.11)

The parallel transport of g-valued element is

TA(σ) ≡ TWA[X](σ) = W−1
A [X](σ, 1)T (σ)WA[X](σ, 1)

SA(σ) ≡ SWA[X](σ) = W−1
A [X](σ, 1)▷ S(σ) .

(6.12)

Now we abbreviate the integral for g-valued forms on M ,

˛
A
(ω1, · · · , ωn) ≡

˛
(ωWA

1 , · · · , ωWA
n )

=

ˆ
α≤σi≤σi+1≤β

ιK(W−1
A [X](σ1, 1)ω1(σ1)WA[X](σ1, 1)) ∧ · · ·

∧ ιK(W−1
A [X](σn, 1)ωn(σn)WA[X](σn, 1))

(6.13)

and similarly for the h-valued forms, we substitute the adjoint with 2-group action.

More precisely, for
¸
A(a) for an h-valued 1-form a, the explicit expression is

a ∈ h⊗ Ω1(M) 7→ a(σ) ≡ e∗σ(a) ∈ h⊗ Ω1(Pt
s(M))

7→ W−1
A [X](σ, 1)▷ a(σ) ∈ h⊗ Ω1(Pt

s(M))

7→ ιK(W−1
A [X](σ, 1)▷ a(σ)) ∈ h

7→
˛
A
(a) ≡

ˆ 1

0
dσ ιK(W−1

A [X](σ, 1)▷ a(σ)) ∈ h .

(6.14)

Notably, the integral
¸
A helps us to see how a correspondence

Ωp(M) ↔ Ωp−1(P(M)) (6.15)

takes place, the important thing here is that a 1-form connection A in path space shall

correspond to a 2-form field B in the real space, and a first-order derivative d of the path
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space correspond to an area derivative in the real space. Notably, there is the following formula

for ω ∈ Ωk(M),

d

˛
A
(ω) = −

˛
A
(dAω)− (−1)deg(ω)

˛
A
(T a ▷ ω, F a

A) . (6.16)

Given A a g-valued 1-form and B an h-valued 2-form on M , we define the path space

1-form

A(A,B) ≡
˛
A
(B) =

ˆ 1

0
dσ ιK(W−1

A [X](σ, 1)▷B(σ)) ∈ Ω1(Pt
s(M))⊗ h (6.17)

and the path space holonomy is thus (Σ in Pt
s(M) is a curve from X0 to X1, which sweep

through a surface in M)

WA(Σ) ≡ P exp

(ˆ
Σ
A
)

, (6.18)

which admits 2 kinds of gauge transformations.

The first kind of gauge transformation is for a given ϕ ∈ Ω0(M,G), when the path space

is a loop space Px
x (M),

WA(A′,B′)(Σ) = ϕ(x)▷WA(A,B)
(Σ)

A′ = ϕAϕ−1 + ϕdϕ−1

B′ = ϕ▷B .

(6.19)

The second kind of gauge transformation is for a given a ∈ Ω1(M, h), (infinitesimal version)

WA(A′,B′)(Σ|
X1
X0

) = (1− ϵ

˛
A
(a))X0WA(A,B)

(Σ|X1
X0

)(1 + ϵ

˛
A
(a))X1

A′ = A+ ϵ ∂(a)

B′ = B − ϵ dAa

(6.20)

the finite version of the second kind is denoted aγ in the above.

Now we see precisely what should Φ the matter field be. We would like to have a term

looking like

(d+A) · Φ , (6.21)

so Φ ∈ Ω0(Pt
s(M), V ), where A admits a representation on V . Also, for the 0-form action g

to be well-defined, we should assert that Φ ∈ Ω0(Px
x (M), V ).

6.2 Path space derivative

In this subsection we provide more detailed explanations of the exterior derivative in the path

space.

In the above, the basis for differential are denoted as dX(µ,σ), which could be depicted

as infinitesimally dragging the line segment at σ along the µ direction, pictorially shown as

Figure 2.
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∂(µ,σ)

σ + ϵσ

µ

Figure 2: Here we demonstrate the picture of path space derivative. The above shows the
original line in magenta, the below shows both the original line in magenta and the deformed
line in cyan. The line in cyan is formed by a deviation from σ to σ + ϵ along the µ direction.

Formally speaking, we consider two vectors tµ and nµ, which are tangent vector of the

line and the normal vector that generates the shift of line segment at σ. The area of the zone

swept through by the line segment is therefore

δAµν = nµtν − nνtµ . (6.22)

We can re-write this in the path space language, suppose δXµ(σ) denotes such a deviation

and plays the role of normal vector, and K = dX/dσ plays the role of tangent vector, thus

δAµν =

ˆ 1

0
dσ δX [µKν]

∣∣∣
σ
. (6.23)

When we take δXµ(σ) to be localized in a certain point γ(σ0), namely

δXµ(σ) = δvµδ(σ − σ0) (6.24)

one can decompose vµ = vµn +vµt into components normal and tangent to the chosen path. By

doing this, one finds out that only normal component contributes to the area, while tangent

components generate reparameterization. To sum up, the localized path space derivative goes

back to the area derivative described in [62].

6.3 Pure 1-form gauge theory

In this subsection, we observe that this formulation derives the mean string field theory for-

mulation in [62], when Π1 = G = 0.

Consider the case of gauge theory with pure 1-form symmetry described by a Lie group

H = Π2. The covariant derivative written in explicit formula is

d+A = d+

ˆ 1

0
dσ ιK(B) . (6.25)
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The exact meaning of d in the path space can be perceived from using the (6.16) . In the

absence of group G, (6.16) reads

d

ˆ 1

0
dσ ιK(ω) = −

ˆ 1

0
dσ ιK(dω) . (6.26)

Consider the action on the matter field,

(1− ϵ

˛
A
(a)) 7→ exp

(
−
ˆ 1

0
dσ ιK(a)

)
= exp

(
−
˛

(a)

)
,

d exp

(
−
˛
(a)

)
= exp

(˛
(a)

)
·
˛
(da) .

(6.27)

While its action on the 2-form gauge field B gives

A =

˛
(B) 7→ A′ =

˛
(B − da) . (6.28)

Since the G-action is trivial, we omit the A in
¸
A. Thus, a matter field Φ in the path space

transforming as

Φ 7→ exp

(
−
˛
(a)

)
· Φ (6.29)

generates the covariant term

(d+A) · Φ 7→(d+A′) · exp
(
−
˛
(a)

)
Φ

=(d exp

(
−
˛
(a)

)
)Φ + exp

(
−
˛
(a)

)
dΦ+

˛
(B + da) exp

(
−
˛
(a)

)
Φ

=exp

(
−
˛
(a)

)
· [dΦ+

˛
(B + da− da)Φ]

= exp

(
−
˛
(a)

)
(d+A) · Φ .

(6.30)

The resulting covariant derivative on Φ exactly matches the one in [62] (with a difference of

conventions). Along this line, we can choose a unitary representation for H, and construct

the kinetic terms and mass terms which lead to a Landau-Ginzburg Lagrangian for the 1-form

symmetry H.

6.4 Discrete gauge fields

For the discrete case, we take a triangulation of the spacetime manifold M , with each vertex

labelled by i. A path on M is defined to be a ordered set of vertex labels

γ = [i1, i2, . . . , in] (6.31)
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with each link (ik, ik+1) being a 1-simplex in the triangulation. A 1-form field A ∈ Ω1(M, g)

is translated as an assignment of each link with a G element, with

Aij = A−1
ji . (6.32)

Likewise, a 2-form field B ∈ Ω2(M, h) is translated as an assignment of each 2-simplex with

an H element.

As we previously described, the path space derivative is generated by deviation of a path

on a certain point, which should be translated as

∆k,j : γ = [i1, . . . , in] 7→ γ′ = [i1, . . . , ik, j, ik+1, . . . , in] (6.33)

where (ik, j, ik+1) forms a 2-simplex 3. Thus, a path space 1-form should be defined as

Aγ,∆k,j(γ) ∈ H , Aγ1,γ2 = A−1
γ2,γ1 . (6.34)

Following the continuous version (6.17), we could define the discrete version of path space

1-form as

Aγ,∆k,j(γ) = (WA[ik+1, . . . , in])
−1 ▷Bik+1,j,ik . (6.35)

For multiple such line segments placed together, the 2-holonomy should be an ordered product

WA =
∏

ki≤ki+1

Aγ,∆ki,ji
(γ) . (6.36)

Under the 0-form gauge transformation, the 1-form connection A of path space transforms as

(WA[ik+1, . . . , in])
−1 7→ gin · (WA[ik+1, . . . , in])

−1 · g−1
ik+1

, Bik+1,j,k 7→ gik+1
▷Bik+1,j,k

⇒ Aγ,∆k,j(γ) 7→ gin ▷Aγ,∆k,j(γ) ,
(6.37)

For 1-form transformation, we only have to do a direct translation. But if we take the as-

sumption we had before in section 4.2.2, A shall become

Aγ,∆k,j(γ) 7→ AdH(Λ−1
in−1in

) ◦A−1
in−1in

▷ . . .AdH(Λ−1
ik+1ik+2

) ◦A−1
ik+1ik+2

▷ (Bik+1jik(δAΛ)ik+1jik)

(6.38)

for computational convenience, if we take the assumption that H is abelian4, we get

Aγ,∆k,j(γ) 7→W−1
A [ik+1, . . . , in]▷Bik+1jik ·W

−1
A [ik+1, . . . , in]▷ (δAΛ)ik+1jik

=Aγ,∆k,j(γ) ·W
−1
A [ik+1, . . . , in]▷ (δAΛ)ik+1jik

(6.39)

3To make things consistent, we induce an identification of [i1, . . . , ik−1, ik, j, ik, ik+1 . . . , in] ∼=
[i1, . . . , ik−1, ik, ik+1, . . . , in].

4Note that by assuming H is abelian, we do not mean that the chosen group algebra of the automorphism
2-representation should also be abelian. Suppose that the automorphism 2-representation is faithful and H is
abelian, we should still have Im(tH) is abelian, and the formulas we introduce here will still hold.
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Note that in the discrete scenario, we still require that the fake curvature should vanish,

meaning that

δA = ∂(B) (6.40)

as Čech cocycles.

We can also see at what the 1-form transformation looks like in the discrete case. A 1-form

transformation is defined as (ϵ = 1/N)

lim
N→∞

(1− ϵ

˛
A
(a))(1− ϵ

˛
A+ϵ∂(a)

(a))(1− ϵ

˛
A+2ϵ∂(a)

(a)) . . . (1− ϵ

˛
A+N−1

N
∂(a)

(a)) (6.41)

and in the discrete language, for a ∈ Ω1(M)⊗ h, a gives an H element on each link, then for

a given line γ = [i1, . . . , in],

exp

(˛
A
(a)

)
7→

1∏
k=n−1

W−1
A [ik+1, . . . , in]▷ a[ik, ik+1] . (6.42)

Thus the consistency condition is

exp

(
−
˛
A
(a)

)
γ1

WA(Σγ1,γ2) exp

(˛
A
(a)

)
γ2

= WA′(Σγ1,γ2) , (6.43)

which in the case of minimal deformation ∆k,j ,

LHS =W−1
A [ik+1, . . . , in]▷Bik+1,j,ik · [W

−1
A [ik+1, . . . , in]▷ aik,ik+1

]−1 ·W−1
A [ik+1, . . . , in]▷ aj,ik+1

·W−1
A [j, ik+1, . . . , in]▷ aik,j

=Aγ,∆k,j(γ) ·W
−1
A [ik+1, . . . , in]▷ (Aik+1,j ▷ a−1

j,ik
aik+1,ika

−1
ik+1,j

)

=Aγ,∆k,j(γ) ·W
−1
A [ik+1, . . . , in]▷ (δA(a

−1)) = RHS( taking a = −Λ ) .

(6.44)

is indeed correct.

6.5 Discrete 2-matter

In this section, we build the non-local matter fields in the discrete case. In this section, we

suppose the 2-group is represented by an automorphism 2-group,

1 → Z(Υ×) → Υ× → Aut(Υ) → Out(Υ) → 1 (6.45)

naturally, the matter field should take value in the algebra Υ. Note that we do not require

any abelian property of the Υ in the 2-representation we choose.

Suppose we would like the matter Φ to be a scalar field in the path space, then due to

the
¸
A construction, we should build Φ by an Υ-valued 1-form ϕ in the real spacetime. We
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could take the construction 5

Φγ =

n∑
k=1

W−1
A [ik+1, . . . , in]▷ ϕik,ik+1

, (6.47)

where under 0-form gauge transformation

ϕij 7→ gi ▷ ϕij , (6.48)

Φ is covariant under this construction,

Φγ 7→ gin ▷ Φγ . (6.49)

Now we should consider how dAΦ(Λ) transforms under 0-form gauge transformation. Note

that

(dAΦ)γ1,γ2 = (Aγ1,γ2 · Φγ2)Φ
−1
γ1 7→ gin ◦ (dAΦ)γ1,γ2 (6.50)

where ◦ is the adjoint action of element ofH on A = Υ×. Now let’s consider the transformation

of dAΦ under 1-form gauge transformation,

Φγ 7→ exp

(˛
A
(a)

)
γ

Φγ

(dAΦ)γ1,γ2 7→
{[

Aγ1,γ2 · (W−1
A [ik+1, . . . , in

]
▷ (δAa))] ◦

[
exp

(˛
A
(a)

)
γ2

Φγ2

]}
·
{
exp

(˛
A
(a)

)
γ1

Φγ1

}−1

=exp

(˛
A
(a)

)
γ1

· Aγ1,γ2 · Φγ2 · Φ−1
γ1 · exp

(
−
˛
A
(a)

)
γ1

=exp

(˛
A
(a)

)
γ1

· (dAΦ)γ1,γ2 · exp
(
−
˛
A
(a)

)
γ1

(6.51)

where exp
(¸

A(a)
)
is defined in the discrete case by (6.42), and we see this is indeed covariant

under both 0-form and 1-form gauge transformation.

6.6 Continuous 2-matter

The discrete version shed light on how we can define the continuous 2-matter.

5There can be another valid construction by substituting sum (in the algebra) with multiplication (in the
algebra),

Λγ =

n∏
k=1

W−1
A [ik+1, . . . , in]▷ ϕik,ik+1 , (6.46)

but as we will see, Φ is a better choice for discussing 2-matter for higher gauge theories.
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Given an Υ(the algebra of 2-representation)-valued 1-form ϕ ∈ Ω1(M,Υ), one can build

the 2-matter in path space by

Φγ ≡
˛
A
(ϕ) =

ˆ 1

0
dσ ιK(W−1

A (σ, 1) ◦ ϕ(σ)) ∈ Ω0(Pt
s(M),Υ) . (6.52)

Here ◦ denotes the G = Aut(Υ) element acting on Υ-element. But in general, we merely

require the 2-matter to be

Φ ∈ Ω0(Pt
s(M),Υ) . (6.53)

The gauge transformation for ϕ

ϕµ(x) 7→ g(x) ◦ ϕµ(x) , WA(σ, 1) 7→ g(γ(1))WAg
−1(γ(σ)) . (6.54)

induces the transformation

Φγ 7→ g(γ(1)) ◦ Φγ . (6.55)

The 1-form gauge transformation is non-local, since it’s related to a path. We write the

infinitesimal transformation as

Φγ 7→ (1 + ϵ

˛
A
(a))γ ◦ Φγ = (1 + ϵ

˛
A
(a))γ · Φγ (6.56)

where ◦ denotes the H = Υ×
0 element acting on Υ-element by adjoint action, and · denotes

the multiplication of Υ-elements. Similarly, we can deduce the 1-form gauge transformation

dAΦ =dΦ+A ◦ Φ

7→d[(1 + ϵ

˛
A
(a)) ◦ Φ] + [A′(1 + ϵ

˛
A
(a))] ◦ Φ

=(1 + ϵ

˛
A
(a)) ◦ (dΦ)

+ (ϵd

˛
A
(a)) ◦ Φ+ {[(1 + ϵ

˛
A
)(d+A)(1− ϵ

˛
A
(a))](1 + ϵ

˛
A
(a))} ◦ Φ

=(1 + ϵ

˛
A
(a)) ◦ (dAΦ) +O(ϵ2) .

(6.57)

Thus we have proved this covariant derivative term is indeed covariant under both 0-form and

1-form gauge transformation. Notably, for the continuous case, we do not require H to be

abelian.

6.7 Towards n-matter

In this part, we consider a Lie 3-group with Π1 = 0. In this case we have showed that the

structure of 3-group is essentially encoded a 2-group, see section 5.3). Hence we can also
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describe the 3-representation of the 3-group by the language of 2-representation as depicted

in section 5. The corresponding spacetime gauge fields are

C ∈ Ω3(M, l) , B ∈ Ω2(M, h) . (6.58)

Since we turn off the zero form part G and its 1-form gauge field A in the 3-group, it is within

our purview to write

C ≡
˛
(C) ∈ Ω2(P(M), l) ,

B ≡
˛
(B) ∈ Ω1(P(M), h) .

(6.59)

We could observe an acquainted visage on the path space! We could once again define

D ≡
‹

B
(C) ∈ Ω1(P(P(M)), l) (6.60)

where P(P(M)) = P2(M) is the surface space of M . There should also be a fake-curvature

condition

d(1)B − ∂(C) = 0 , (6.61)

where d(k) denotes the exterior derivative in the k−path space Pk(M). Thus the 3-curvature

constructed is

Z = d
(1)
B C ∈ Ω3(P(M), l) , FB,C =

‹
B
(Z) ∈ Ω2(P2(M), l) (6.62)

Likewise, given a 2-representation on algebra Υ, we can similarly define a matter field

Ψ ∈ Ω0(P2(M),Υ), which is a brane field, s.t. d
(2)
D Ψ is covariant under both 1-form and

2-form gauge transformations.

This could be easily generalized to n-group with only the n-th and (n− 1)-th categorical

layer non-trivial. This generalizes the result in [73].

7 Landau-Ginzburg model of higher-group symmetries

7.1 2-group gauge theory with 2-matter

With the formalism constructed in the last sections, we summarize the 2-group covariant terms

as follows,

Z = dAB , FA =

˛
A
(Z) , dAΦ , Φ (7.1)

and the vanishing condition for the fake curvature,

∂(B)− FA = dZ +A ∧▷ Z = 0 (7.2)
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which could be inserted into the Lagrangian through Lagrange multipliers.

With this regard, suppose both Υ×
0 and Aut(Υ) act on Υ unitarily, we propose an action

of the following form,

Z =

ˆ
[DA][DB][Dλ][Dϕ]

exp
{
i

ˆ
P(M)

[
− 1

2g2
|FA|2 +

1

L(C)
(dAΦ)

†(dAΦ) + V (Φ,Φ†)

]
[dC] + i

ˆ
M

λ(d−2) ∧ (∂(B)− FA)
}
.

(7.3)

[dC] denotes the integration measure of the path space.

For 3-group with Π1 = 0, we can build a similar 3-group gauge theory with 3-matter

utilizing the 3-gauge-covariant terms constructed in section(6.7).

7.1.1 Spontaneously symmetry breaking and area law

In absence of gauge fields, i.e. A = B = 0, above Lagrangian reduces to following form

S =

ˆ
P(M)

[
1

L(C)
(dΦ)†(dΦ) + V (Φ,Φ†)

]
[dC] . (7.4)

This Lagrangian has following global symmetries:

1. Φ → g ◦Φ, where g ∈ G. This action is induced by the automorphic 2-representation on

Υ-valued 1-form ϕ (Recall that 2-representation contains a map G → Aut(Υ)).

2. Φγ → eiθ
¸
γ a ◦ Φγ , where a is a h-valued 1-form. This action is induced by the 2-

representation H → Υ×.

The equation of motion is

⋆ d ⋆

(
1

L(C)
dΦ

)
− δV

δΦ† = 0 , (7.5)

where L(C) is the length of the path (especially, it is not a constant on the path space) and

⋆ is supposed to be the Hodge start operator on path space P(M). In components, we have

∂µ,σ

(
1

L(C)
∂µ,σΦ

)
− δV

δΦ† = 0 (7.6)

The contraction of index µ is usual Einstein convention, however, σ should be thought as a

continuous index, hence the contraction of σ involves an integration over σ.

Now, let us focus on loops for now, thus we can talk about the area A(C) bounded by the

loop C. Notice that dA should be thought as a 1-form on P(M). Given a tangent vector, i.e.

a deformation vector δXµ,σ (they are really vector fields defined along the curve C), we have

dA

(
δ

δXµ,σ

)
= Kµ(σ) . (7.7)
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Let us recall that Kµ(σ) = dXµ(σ)
dσ is the tangent vector of the curve. Below, we fix the

parameter σ to be the arc length s of path C. Hence, we can define

|dA|2 := ∂µ,σA∂
µ,σA =

ˆ L(C)

0
|K|2ds = L(C) . (7.8)

Since |K|2 = 1 if σ = s. Intuitively, above equation means, the infinitesimal variation of area

is proportional to length.

Now we focus on the simplest potential V (Φ†Φ) = r|Φ|2. Without higher order terms, r

should be positive to make sure that V is bounded from below. Besides, we take the ansatz

Φ = eS[A] where S[A] is a functional of A on the path space.

The equation of motion reduces to

S′[A]2 + ∂µ,σ

(
1

L(C)
S′[A]∂µ,σA

)
= r (7.9)

where we have used (7.8) in the first term. If we only consider loops with large areas, for regular

curves, we should expect that L(C) ∝
√
A, so the second term is as worst as S′[A]/

√
A, hence

it can be omitted safely.

To sum up, we have

S[A] = −
√
rA+O(A

1
2 ) . (7.10)

In the lowest order, we can see Φ decays with area-law.

Now suppose that r < 0, in that case we have to incorporate the u|Φ|4 term, making the

equation of motion Eq.(7.6)

∂µ,σ

(
1

L(C)
∂µ,σΦ

)
= rΦ+ 2u|Φ|2Φ . (7.11)

One can consider a static stable solution of the form

|Φ| =
√

−r

2u
. (7.12)

An easy observation is that one can choose a special direction s.t. the 0-form part of the

symmetry is broken. Let’s take the example of Υ = C(U(1)n), thus Aut(Υ) = Sn , Υ× =

U(1)n. Under this specific 2-representation, one can choose

Φ =

√
−r

2u
(1, 0, . . . , 0) (7.13)

Thus, the Sn symmetry breaks down to Sn−1 symmetry. Yet one is not limited to make only

this choice, for example,

Φ =

√
−r

2nu
(1, . . . , 1) (7.14)
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which preserves the entire Sn permutation symmetry is also plausible. For the 1-form sym-

metry spontaneously broken phase, one can fix a local counter term on Φ,

Φ 7→ exp

(
ic

ˆ
γ
dx

)
Φ (7.15)

s.t. the ⟨Φ⟩ = const phase is equivalent to the ⟨Φ⟩ = exp(−aL[C]) perimeter law phase.

We can also formulate the above discussion in the discrete scenario. For simplicity, let us

assume that the spacetime is discretized into square lattices with uniform edge length 1, and

we work in the loop space of the system. Thus a loop is defined as6

C = [i1, . . . , iL[C]−1, iL[C]] (7.16)

s.t. iL(C) = i1 and each ikik+1 is a link in the plaquettes. In this sense, a minimal deformation

of a loop at site ik ∈ C = [i1, . . . , iL[C]−1, iL(C)] towards the direction µ becomes

∆ik,µC = [i1, . . . , ik, jk, jk+1, ik+1, . . . , iL[C]−1, iL[C]] = C ′ (7.17)

s.t. ik, jk, jk+1, ik+1 forms a plaquette spanning the µ direction and the ikik+1 direction.

Note that the sequence described in (7.17) may be redundant, and can be reduced up to thin

homotopy equivalence.

One can classify the loop deformation into 3 types, (we always assume that ikik+1 is

orthogonal to the µ direction), see figure 3 for visual demonstration:

• Suppose jk+1 ̸= ik+2, ik−1 ̸= jk and jk+1 ̸= ik+2 we have

∆ik,µL[C] = +2 , ∆ik,µA[C] = ±1 . (7.18)

• Suppose jk+1 = ik+2, then the sequence [. . . ikjkjk+1ik+1ik+2 . . . ] = [. . . ikjkik+2 . . . ],

rendering

∆ik,µL[C] = 0 , ∆ik,µA[C] = ±1 . (7.19)

• Suppose ik−1 = jk and jk+1 = ik+2, then [. . . ik−1ikjkjk+1ik+1ik+2 . . . ] = [. . . ik−1ik+2 . . . ],

resulting in

∆ik,µL[C] = −2 , ∆ik,µA[C] = ±1 . (7.20)

We could recover (7.8) up to a normalization factor,∣∣∣dA[C]
∣∣∣2 = ∑

ik∈C , µ

gµ µ

∣∣∣∆ik,µA[C]
∣∣∣2 = (D − 2)L[C] . (7.21)
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loop after deformation

loop before deformation

ik jk

jk+1ik+1

ik jk

jk+1 = ik+2ik+1

ik−1 = jk ik

ik+1jk+1 = ik+2

Figure 3: From left to right, this figure demonstrates three different cases of loop deformation
described above. The orange lines are the loops before deformation and cyan lines are loops
after deformation. The lime-coloured region signifies the change of area.

To write down the equation of motion, we need to explicitly define how the differential

operators acts on the functions. We define

∆ik,µf [C] ≡ f [∆ik,µC]− f [C] . (7.22)

For example,

∆ik,µ

(
1

L[C]

)
=


− 2

L[C](L[C] + 2)
, ∆L[C] = 2

0, ∆L[C] = 0

2

L[C](L[C]− 2)
, ∆L[C] = −2

(7.23)

Suppose V (Φ) = r|Φ|2 (r > 0), the equation of motion is

(D − 2)S′[A]2 +∆ik,µ

( 1

L[C]
S′[A]∆ik,µA[C]

)
= r , (7.24)

where the (D − 2) comes from the normalization in (7.21). Taking that the loop is large and

roughly rectangular, we can assume L[C] ∝
√
A and omit the second term as we previously

analyzed. Thus

S[A[C]] ∝
√

r

D − 2
A+O(A

1
2 ) . (7.25)

The result unabated if we do a discrete analysis.

6A loop is defined up to thin homotopy equivalence when we consider the mapping into the algebra. When
we count length, we choose the configuration with minimal length.
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7.1.2 A concrete example: G = H = Z4

In this section we make precise of the simplest non-trivial example of 2-group gauge theory

with the framework we just developed.

Suppose we have a 2-group G = (Z2,Z2, α = id, β ̸= 0), this weak 2-group admits a

strictification (Z4,Z4,▷, ∂), where ∂ = ×2, (1)▷ (k) = 4− k mod 4 as established in section

2.3. The next thing to do is automorphic 2-representation, which is discussed in section 5.1.1.

In this simple case, we merely use the 2-representation for completeness of the procedure,

since after 2-representation, we choose a group representation s.t. only the

im(tH) ∼= Z4 , im(tG) ∼= Z4 (7.26)

parts are left non-trivial.

With the chosen representation, the 2-group globally symmetric action takes the form of

(7.4), with space discretized and ∂(µ,σ) substituted by ∆k,j defined as (6.33),

S =

ˆ
P(M)

[
1

L(C)
(dΦ)†(dΦ) + V (Φ)

]
[dC] . (7.27)

In this example, there are two ways of H = Z4 action on the vector Φ as stated in section 5.1.

The natural action is given by

1 ◦n


a
b
c
d

 =


d
a
b
c

 , (7.28)

and the Wilsonian action is given by

1 ◦W


a
b
c
d

 =


a
ib
−c
−id

 . (7.29)

With discrete 2-global symmetry (Z4,Z4,×2,▷), the potential term V (Φ) to the lowest orders

shall include

|Φ|2 , |Φ|4 . (7.30)

Only for the natural action can we admit Φ4 term into the potential.

Now suppose the spacetime dimension D > 2, we study the 2-matter field configuration

Φ[C] = eS[A[C]]Φ0 = eS[A[C]]


a
b
c
d

 = eS[A[C]](a0+ b1+ c2+ d3) (7.31)
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where we have chosen a canonical representation for group H, and the group algebra structure

should be

Φ1 · Φ2 =


a1
b1
c1
d1

 ·


a2
b2
c2
d2

 =


a1a2 + b1d2 + d1b2 + c1c2
b1a2 + a1b2 + c1d2 + d1c2
c1a2 + c2a1 + b1b2 + d1d2
d1a2 + d2a1 + b1c2 + b2c1

 , (7.32)

one can verify that this multiplication is associative. Later we will use
a
b
c
d


3

=


a3 + 3(ac2 + b2c+ cd2) + 6abd
d3 + 3(a2b+ bc2 + b2d) + 6acd
c3 + 3(a2c+ ab2 + ad2) + 6bcd
b3 + 3(a2d+ bd2 + c2d) + 6abc

 (7.33)

Since we assume that a, b, c, d do not depend on the path space, the variation only concerns

the eS[A[C]] factor. In the following, we always assume Φ0 ̸= 0.

The result of V (Φ) = r|Φ|2 (r > 0) is given previously by (7.25). In the following, we

will discuss the case of r < 0 for this 2-group, and analyze the configurations of spontaneous

symmetry breaking.

A potential admitting broken symmetry can take the form of7

V1(Φ) = r|Φ|2 + u|Φ|4 (r < 0 , u > 0) , (7.34)

for both choices of H-action. The analysis is identical with the previous analysis. A static

solution with

|Φ| =
√

−r

2u
(7.35)

would satisfy the equation of motion.

Also one can consider the potential (when taking the natural H-action)

V2(Φ) = r|Φ|2 + u|Φ|4 + sTrΥ(ΦΦ
∗ΦΦ∗) (r < 0 , u, s > 0) , (7.36)

where

TrΥ


a
b
c
d

 = TrΥ(Φ) = a+ b+ c+ d (7.37)

TrΥ(ΦΦ
∗ΦΦ∗) = (a+ b+ c+ d)2(ā+ b̄+ c̄+ d̄)2 . (7.38)

The static solution shall satisfy

rΦ+ 2u|Φ|2Φ+ 2sTrΥ(Φ)
2TrΥ(Φ

∗)


1
1
1
1

 = 0 . (7.39)

7Note that here we take |Φ|2 = |a|2 + |b|2 + |c|2 + |d|2
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When considering the Wilsonian H-action, we can add another
∣∣Φ2
∣∣ term into V1(Φ)

8,

resulting in the potential

V3(Φ) = r|Φ|2 + w
∣∣Φ2
∣∣+ u|Φ|4 (7.40)

and the equation of motion

rΦ+ 2u|Φ|2Φ+ w
∣∣Φ2
∣∣′ = 0 . (7.41)

In the following we will analyze the configurations and the symmetries they preserve and

break with either the natural H action or the Wilsonian H action.

With Natural H Action and V1(Φ)

Note that as stated before, the solution could both preserve and break the G-action symmetry.

Namely, the Φ configurations of the form

Φ =

√
−r

2u


a
b
c
d

 , |a|2 + |b|2 + |c|2 + |d|2 = 1 , b = d (7.42)

preserves the G symmetry, while configurations with b ̸= d breaks the G symmetry.

ForH symmetry acting on Φ by multiplying an element in the group, the only configuration

preserving the complete H = Z4 symmetry is

Φ =

√
−r

8u
eiθ


1
1
1
1

 . (7.43)

This configuration preserves the entire 2-group symmetry, both strict and weak.

The configuration preserving Z2 ⊂ H is

Φ =

√
−r

2u


a
b
a
b

 , 2|a|2 + 2|b|2 = 1 , a, b ̸= 0 . (7.44)

This configuration preserves the sub-2-group symmetry (Z2,Z2,×2, id), which has Π1 = Π2 =

Z2, a trivial Postnikov class and trivial action in the weak 2-group language.

8It is also plausible to add
∣∣Φ4

∣∣ term, but doing so will significantly increase the complexity of the situation
without providing new insights.
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With Natural H-Action and V2(Φ)

There can be several non-trivial solutions, one type of which is

Φ = c ·


1
1
1
1

 , (7.45)

making (7.39)

(r + 8u|c|2 + 128s|c|2)c = 0 , (7.46)

solved by

Φ =

√
−r

8u+ 128s
eiθ


1
1
1
1

 , Φ = 0 ,
(
∀θ ∈ [0, 2π)

)
. (7.47)

These solutions preserve the entire 2-group symmetry.

Another type of solution is

Φ1 = b


−2
1
0
1

 , Φ2 = b


0
1
−2
1

 , (7.48)

with

|b| =
√

− r

12u
. (7.49)

From the strict 2-group perspective, these two solutions preserve the G-action symmetry

and breaks the H-symmetry completely, the preserved sub-2-group is (Z2, 0, 0, id). From the

weak 2-group perspective, the only remaining symmetry is the Z2 0-from symmetry, rendering

(Z2, 0, id, 0).

The third type of solution we introduce here is

Φ =


a
b
a
b

 , a ̸= b . (7.50)

Notice that now (7.39) reads

(
r + 4u(|a|2 + |b|2)

)
a
b
a
b

 = −16s(a+ b)2(ā+ b̄)


1
1
1
1

 , (7.51)
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which is never going to hold for a ̸= b, unless certain terms equal to zero. Here the obvious

choice is a = −b, rendering |a| =
√
−r/(8u), the final configuration becomes

Φ =

√
−r

8u
eiθ


1
−1
1
−1

 , ∀θ ∈ [0, 2π) . (7.52)

This configuration preserves the G symmetry and Z2 ⊂ H = Z4 symmetry. From the strict

2-group perspective it preserves (Z2,Z2, 0, id) symmetry. From the weak 2-group perspective,

it preserves the (Z2,Z2, id, 0) symmetry, the 0-form and 1-form symmetry groups are preserved

respectively, but the Postnikov class is trivialized.

With Wilsonian H-Action and V1(Φ)

The analysis procedure is largely the same. The Φ configurations can be classified as follows,

1. Configuration

Φ =

√
−r

2u
eiθ


1
0
0
0

 (7.53)

preserves the entire 2-group symmetry from both strict and weak perspective;

2. Configuration

Φ =

√
−r

2u


a
0
b
0

 , |a|2 + |b|2 = 1 , a, b ̸= 0 (7.54)

preserves the (Z2,Z2,×2, id) sub-2-group symmetry, as before, the Π1 = Π2 = Z2 are

preserved but the Postnikov class is rendered trivial;

3. Configuration

Φ =

√
−r

2u


a
b
c
b

 , |a|2 + 2|b|2 + |c|2 = 1 , b ̸= 0 (7.55)

preserves only G symmetry action, thus the remaining 2-group symmetry is (Z2, 0, 0, id).

From the weak perspective, only Π1 = Z2 survives.

With Wilsonian H-Action and V3(Φ)

Adding |Φ2| term into the potential drastically changes the structure of the equation of motion.

Here we analyze a few types of solutions.
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1. The first type of solution is

Φ =

√
−(r + w)

2u
eiθ


1
0
0
0

 , r + w < 0, u > 0 (7.56)

which preserves the entire 2-group symmetry.

2. The second type of solution is

Φ =

√
−(r + w)

2u
eiθ


0
1
0
0

 , Φ =

√
−(r + w)

2u
eiθ


0
0
0
1

 , r + w < 0, u > 0 (7.57)

which completely breaks the 2-group symmetry.

3. The third type of solution is

Φ =

√
−r +

√
2w

4u
eiθ


0
1
0
1

 , Φ =

√
−r +

√
2w

4u
eiθ


0
1
0
−1

 , r +
√
2w < 0, u > 0 . (7.58)

The first solution preserves the G-symmetry and breaks the entire H-symmetry, pre-

serving the weak 2-group (Z2, 0, 0, 0), while the second solution completely breaks the

2-group symmetry.

In summary, we discussed various phases of SSB of the weak 2-group symmetry (Z2,Z2, id., β ̸=
0) in the strict formulation, and interestingly we found that such a non-split 2-group symmetry

can be spontaneously broken to a split 2-group (Z2,Z2, id., 0) with trivial Postnikov class!

7.1.3 Approaching continuous 2-groups

In this section we consider the Landau-Ginzberg model of the 2-group

1 → U(1)
i−→ U(1)× ZN

∂−→ ZN .ZN
p−→ ZN → 1 (7.59)

as described in section 2.4. It is a 2-group (G = ZN .ZN , H = U(1)× ZN , ∂,▷) with

∂(e2πia, b) = (b, 0) , (a, b)▷ (e2πic, d) = (e2πi(c+
bd
N
), d) (7.60)

and the addition in G = ZN .ZN is

(a, b) + (c, d) =

{
(a+ c, b+ d) (b+ d < N)

(a+ c+m, b+ d) (otherwise)
. (7.61)
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Here we will approach the U(1) × ZN continuous group by considering a sequence of

{ZM × ZN}M with increasing M to infinity. In other words, we consider the limit of {(G =

ZN .ZN , H = ZM × ZN , ∂,▷)}M with

∂(a, b) = (b, 0) , (a, b)▷ (c, d) =
(
c+

bd

N
, d
)
. (7.62)

For the action to be well-defined, we require that gcd(M,N) = 1.

We can build an automorphism 2-representation for such a discrete 2-group (ZN .ZN ,ZM ×
ZN , ∂,▷) and build the Landau-Ginzberg theory as we previously performed. We consider

the 2-matter field Φ to take value in C[ZM × ZN ].

The question is what kind of terms can appear in the potential V (Φ). Of course |Φ|2 and

terms proportional to that can appear, and all the Φk terms do not survive the limit M → ∞,

since such term depends explicitly on M and N to satisfy 2-group global symmetry in the

Lagrangian.

Therefore, we can consider the previously considered potential

V1(Φ) = r|Φ|2 + u|Φ|4 , (r < 0 , u > 0) (7.63)

with static solution satisfying

|Φ| =
√

−r

2u
. (7.64)

Passing to the M → ∞ limit, this should become

Φ =

N−1∑
k=0

ˆ 2π

0
f(θ, k)

[
eiθ, k

]
dθ

N−1∑
k=0

ˆ 2π

0
|f(θ, k)|2 dθ =

−r

2u
,

(7.65)

where [eiθ, k] signifies group element.

With Natural H-Action

There are several possible types of solutions. The first type is uniform distribution of coeffi-

cients,

f(θ, k) =

√
−r

4πuN
eiα , α ∈ R . (7.66)

This configuration preserves the entire 2-group symmetry. Also we can observe another type

of solution

f(θ, k) =

√
−r

4πuN
e2πiPθ , P ∈ Z>0 (7.67)
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which breaks H = U(1) × ZN down to H ′ = ZP × ZN , and the G = ZN .ZN is broken down

to G′ = ZN .ZN/Q, where Q is the smallest positive integer satisfying

Q|N ,
QP

N
∈ Z , (7.68)

and we will denote K = N/Q. While the additive rule signifying the Postnikov class is

unchanged, the Postnikov class would generically be changed. Since the weak symmetries

after the SSB are given by Π′
1 = ZK , Π′

2 = ZP , the group cohomology accommodating the

Postnikov class is H3
grp(ZK ,ZP ) ∼= Zgcd(P,K).

Since all groups are subgroups of the entire 2-group symmetry while preserving the alge-

braic structure of i, ∂ and p, each step of the calculation of the Postnikov class can be directly

transformed by substituting the group elements with sub-group elements (id est, cosets).

More precisely, the exact sequence after the SSB is

1 → ZP
i−→ ZP × ZN

∂−→ ZN .ZK
p−→ ZQ → 1 , (7.69)

where we still have

i : a → (a, 0) , ∂ : (a, b) → (b, 0) , p : (c, d) → d , (7.70)

(a, b)▷ (c, d) = (c+ bd (mod P ), d) (7.71)

and the group operation on ZN .ZK :

(a, b) + (c, d) =

{
(a+ c, b+ d) b+ d < N

Q

(a+ c+m, b+ d) otherwise
. (7.72)

As a result the Postnikov class inherited from m ∈ ZN
∼= H3

grp(ZN , U(1)) is

[m] = m mod gcd(P,K) ∈ Zgcd(P,K)
∼= H3

grp(ZK ,ZP ) . (7.73)

Therefore, such configuration completely trivializes the Postnikov class if m
∣∣gcd(P,K).

With Wilsonian H-Action

With Wilsonian H action, the only configuration that preserves the H-symmetry is to con-

centrate on the identity. Consider the sequence of C[ZM × ZN ], the coefficients are given

by

f(p, k) =

√
−r

2u
eiαδp,0δk,0 . (7.74)

The reason we fall back to finite group case is that for U(1) × ZN , we would encounter the

difficulty of defining a square root of Dirac Delta function. Since only identity element enjoys
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a non-zero coefficient, it automatically preserves the G-symmetry, rendering the entire 2-group

symmetry preserved from both strong/weak category perspective.

The previously considered

f(θ, k) =

√
−r

4πuN
eiα (7.75)

solution, however, breaks the entire H symmetry while preserving the entire G symmetry. In

weak 2-group perspective, it preserves (Π1 = ZN .ZN , 0, 0, 0).

Then, the previously considered

f(θ, k) =

√
−r

4πuN
e2πiPθ , P ∈ Z>0 (7.76)

solution with

Q|N ,
QP

N
∈ Z ,K = N/Q (7.77)

would preserve only (Π1 = ZN .ZK , 0, 0, 0).

7.2 Screening center 2-form symmetry in 2-group gauge theory

In the scenario of screening 1-form symmetry, if one can construct a Wilson line with end

points (i.e. if there is a field ϕ in the same representation with the Wilson line),

ϕ(x)†P[ei
´ y
x A]ϕ(y) , (7.78)

which becomes gauge invariant under

ϕ(x) 7→ e−iα(x)ϕ(x) , P[ei
´ y
x A] 7→ e−iα(x)P[ei

´ y
x A]eiα(y) , (7.79)

then we say the matter field screens the 1-form symmetry. In many cases, the 1-form symmetry

acting on the Wilson lines are the center 1-form symmetry, i.e., G(1) = Z(G(0)).

We can build an analog mechanism in 2-group gauge theories. In pure 2-group gauge

theories without matter, consider a closed Wilson surface

WA(Σγ1,γ2) = P exp

(
i

ˆ
Σγ1,γ2

A

)
(7.80)

where γ1 = γ2 and thus the surface Σγ1,γ2 resembles a spindle. This operator also possess a

center symmetry. Suppose there is a 2-form field λ ∈ Ω2(M,Z(h)) valued in the center of the

Lie algebra h, since automorphisms shall preserve the center, we have

˛
A
(λ) =

ˆ 1

0
dσ ιK

(
W−1

A [X](σ, 1)▷ λ(σ)
)
∈ Ω1(P(M), Z(h)) . (7.81)
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Thus we arrive at

[

˛
A
(B),

˛
A
(λ)]h = [A,

˛
A
(λ)]h = 0 .

Following the previous formalism of center 1-form symmetry in a 0-form symmetry gauge

theory, we have a center 2-form symmetry for a 2-group gauge theory.

Now we can elaborate on the idea of screening a 2-form center symmetry with the presence

of 2-matter. Since under H-gauge transformation, the 2-matter field Φ transforms as (6.56),

we can also define a gauge-invariant term

Φ†
γ1WA(Σγ1,γ2)Φγ2 . (7.82)

As a result, in a 2-group gauge theory with matter, the center 2-form symmetry can be

screened.

7.3 Higgs mechanism

The Higgs mechanism of our effective model does not differ much to the Higgs mechanism of

the ordinary gauge theory. Suppose that we take the form of potential and the ansatz of Φ

matter field to be

V (Φ†Φ) =
1

4
λ
(
Φ†Φ− v2

2

)2
(7.83)

Φ(γ) =
1√
2
(v + ρ(γ)) exp

(
iχ(γ)

v

)
. (7.84)

With this assumption, the action becomes

L =− 1

2
∂(µ,σ)ρ∂(µ,σ)ρ−

1

2

(
1 +

ρ

v

)2
(∂(µ,σ)χ− evA(µ,σ))(∂

(µ,σ)χ− evA(µ,σ))

− 1

4
λ
(
v2ρ2 − vρ3 − 1

4
ρ4
)
− 1

4
F (µ,σ)(ν,σ′)F(µ,σ)(ν,σ′) .

(7.85)

Just as in QFT, here we can do a gauge transformation to make

(∂(µ,σ)χ− evA(µ,σ))
2 7→ e2v2A2 . (7.86)

The Lagrangian becomes

L =− 1

2
∂(µ,σ)ρ∂(µ,σ)ρ−

1

4
λ
(
v2ρ2 − vρ3 − 1

4
ρ4
)

− 1

4
F (µ,σ)(ν,σ′)F(µ,σ)(ν,σ′) −

1

2

(
1 +

ρ

v

)2
e2v2A2 .

(7.87)

We can observe that the Higgs mechanism of 2-gauge theories with 2-matter resembles that

of ordinary gauge theories. With proper gauge-fixing, one can have a massive boson in the

path space.
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8 Discussions

In this paper, we provided a Lagrangian formulation of 2-matter charged under 2-group sym-

metries in the path space, and discussed the spontaneous symmetry breaking of 2-group

symmetries under such Landau-Ginzburg model. A key technique is to consider the stric-

tification of weak 2-group symmetry, and construct the 2-matter Φ living in an automorphism

2-representation. Using different Landau-Ginzburg potential V (Φ), we can realize different

symmetry breaking patterns including the one from a non-split 2-group to a split 2-group. In

the future, it would be interesting to further investigate the dynamics of the 2-group gauge

theory defined in the path space, and it is also worthy to extend the discussions to other

2-representations and 2-groups.

For weak 3-groups, we only provided the strictification procedure for special scenarios with

either Π1 = 0 or Π2 = 0. Hence a more complete discussion of the strictification of general weak

3-groups would be subject to future work. The discussions of 3-representations of 3-groups

are also quite limited, and we hope to further investigate the structures of 3-representations

in a more detailed manner, for instance, using automorphism 3-groups Aut(G) for 2-groups

G. As a goal of this line of research, we hope to formulate higher representations of higher

groups in a more clear, algebraic language.

We have shown that when generalized into n-groups and n-matter, the brane fields natu-

rally appear into the higher gauge theory with higher-matter (for higher-form symmetry case,

it was discussed in [73, 74]). A natural question would be to build an algebraic and physical

model to formulate such brane-field mechanism for general n-group symmetries and further,

generic higher-categorical symmetries.

Another important direction is to apply this formulation to physical systems with higher-

group global symmetries, and discuss the SSB of these symmetries, such the lattice models

in [33,39] which possess higher-group symmetries and realize topological error correction codes.

It would also be interesting to further investigate concrete continuous QFT models with higher-

group symmetries, and see how to encode its SSB structure in the path space Landau-Ginzburg

theory. There could also be interesting interplay with supersymmetry if we also consider the

fermionic 2-group gauge theory discussed in [75].

We briefly discussed the screening of center 2-form symmetry in 2-group gauge theory,

without specifying the particular 2-representation. It is known in the usual gauge theory that

matter under different representations shall provide different screenings of the center 1-form

symmetries. The role of different higher-representations in screening such center higher-from

symmetries shall be subject to future research.
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The Higgs mechanism of field theory in path space is also to be developed. Future research

may consider the formulation of Goldstone bosons and their counting in path space, and relate

such theories with physical models.
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A Triviality of Postnikov class after the strictification

We present a general proof that given exact sequence

1 → Π2 → H → G
p−→ Π1 → 1 (A.1)

the Postnikov class satisfies p∗β = 0.

Let us consider following lemma case first.

Lemma 1. Given a principal G bundle (G is assumed to be a 1-group) P
p−→ M , then the

pullback bundle p∗P → P is trivial.

Proof. Recall that for principal bundles, they are trivial iff they admit a global section (in

contrast to vector bundles, they always have trivial zero section). Set theoretically, the pull-

back bundle is constructed as P ×π P := {(x, y) ∈ P × P |π(x) = π(y)}, there is a canonical

diagonal map ∆ : P → P ×π P given by x → (x, x). As a result, the pullback bundle admits

a global section and hence trivial.

Let us go back to 2-group case. Consider the Postnikov tower of the bottom layer, as

indicated in following diagram.

B2Π2 BG

BΠ1

p
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The classifying space of 2-group G is a total space of a principal B2Π2 bundle over BΠ1.

As a result, it is labelled by a particular class in Čech cohomology Ȟ1(BΠ1;B
2Π2). We have

known that this is Postnikov class β.

Now the Postnikov class is trivial iff the bundle itself is trivial. We have argued that p∗BG
is trivial, as a result p∗β = 0.

This has confirmed that Postnikov class is necessarily zero after strictification.

There is another algebraic proof based on decomposition of 2-groups:

1 Π2 H im∂ 1

1 im∂ G Π1 1

i ∂

i p

(A.2)

We view the bottom line as a group extension and top line as a sequence of coefficients. Hence

we have Bockstein homomorphism:

Bock : H2
grp(Π1; im∂) → H3

grp(Π1; Π2) (A.3)

This is completely valid at least when H is abelian. We denote the extension class of the

bottom line as α ∈ H2
grp(Π1; im∂), so

p∗(Bock(α)) = Bock(p∗α) = 0 (A.4)

(This is due to the naturality of Bock.)

B More examples of strictification of weak 2-groups

B.1 Π1 = ZN , Π2 = ZM

We discuss the case for a general Π1 = ZN , Π2 = ZM . In this case, H3(BZN ;ZM ) is generated

by the N -torsion subgroup of ZM , which consists of elements {a ∈ ZM |Na = 0 (mod M)}.
Hence we have

H3(BZN ;ZM ) = Zgcd(N,M). (B.1)

The general exact sequence is

1 → ZM
i−→ ZMK

∂−→ ZNK
p−→ ZN → 1 (B.2)

The maps are

i : a → Ka , ∂ : a → Na (mod NK) , p : (mod N) . (B.3)
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The section s : ZN → ZNK is chosen as s(g) ≡ g, and the map f : ZN × ZN → ZNK is

f(g, h) =

{
0 (g + h < N)
N (g + h ≥ N)

. (B.4)

The map F : ZN × ZN → ZMK is

F (g, h) =

{
0 (g + h < N)
1 (g + h ≥ N)

. (B.5)

In order to have a non-trivial Postnikov class, it is required that the short exact sequence

1 → ker(∂)
∂−→ ZNK

p−→ ZN → 1 (B.6)

is a non-split central extension (H2(BZN ;ZK) ̸= 0), such that s cannot be taken as a homo-

morphism.

The Postnikov class element c : ZN ×ZN ×ZN → ZM and the action ▷ : ZN → Aut(ZM )

depends on the choice of action ▷ : ZNK → Aut(ZMK).

If the action ▷ : ZNK → Aut(ZMK) is trivial, then both the Postnikov class and the

action of ZN on ZM will be trivial. To write down all the non-trivial actions, we first need

a mathematical fact that Aut(ZMK) is generated by the units of ZMK , which form a set

{p ∈ ZMK |gcd(p,MK) = 1}. Each element p corresponds to the following action:

a▷p b = (pa (mod MK)) · b . (B.7)

Furthermore, to satisfy the conditions (2.1) of a strict 2-group, it is also required that

p = 1 (mod K) ,

pN = 1 (mod MK) .
(B.8)

For each p ∈ {0, 1, . . . ,MK − 1} satisfying (B.8), there is a well-defined strict 2-group

(ZNK ,ZMK , ∂,▷p) that gives rise to different weak 2-groups (ZN ,ZM , ρ, β).

In particular, when p = 1 (mod M), the action ▷ : ZN → ZM is trivial, and we get an

element in the untwisted cohomology H3(BZN ,ZM ). On the other hand, if p ̸= 1 (mod M),

the action ▷ : ZN → ZM is non-trivial, and we get an element in the twisted cohomology

H3
ρ (BZN ,ZM ).

Actually, all classes in (B.1) can be constructed in this way, as we will describe below.

First, we have three constraints on the choice of p in (B.7): two of them are given by (B.8)

and the other is gcd(p,MK) = 1.

For general K, we have p = 1 (modK), hence we can write

p = wK + 1 (modMK), w = 1, 2, ...,M − 1 (B.9)
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The untwisted condition is p = 1(modM), which amounts to say M |wK. We require

(wK + 1)N − 1 = NwK +
N(N − 1)

2
(wK)2 + ... = 0 (modMK) (B.10)

Note M |wK, above equation is actually equivalent to M |Nw. Now we write M = md,N = nd

where d = gcd(M,N) and gcd(m,n) = 1. The condition is m|nw hence m|w.
We can now write an admissible w as w = ms, s = 0, 1, .., d − 1. But we need M |wK

(untwisted condition), which now simplifies to d|sK for any s = 0, 1, 2, ..., d − 1. Hence we

have d|K by taking s = 1. So we have K ≥ d = gcd(M,N).

Let us fix K = d and choose any admissible w, one can compute the Postnikov class on

(g1, g2, g3), 0 ≤ g1, g2, g3 < N

c(g1, g2, g3) =

{
wg1, g2 + g3 ≥ N

0, g2 + g3 < N
(B.11)

This class has some general features:

1. It’s linear in the first argument g1.

2. We can check, using GAP package that it’s indeed a nontrivial cohomology class param-

eterized by group actions.

Let’s comment on twisted case, i.e., there is nontrivial group action of Π1 on Π2. We

still have (B.9) and (B.10) in this case. Given M,N , one can always check if there is any

p ̸= 1 (modM) satisfying these equations, however, it’s unlikely to obtain a general solution

in this case. We will be content with several examples described below:

1. M = N = 2. This is the case in section 2.3. The action Z2 → Aut(Z2) is always trivial.

The minimal K is

min.(K) =

{
1 (trivial β)
2 (non-trivial β)

(B.12)

2. M = N = 3. In this case there is no non-trivial action of Z3 → Aut(Z3).

The smallest K with a non-trivial H2(BZ3;ZK) is K = 3. The actions ▷p satis-

fying (B.8) are p = 1, 4, 7, which one-to-one corresponds to the three elements in

H3(BZ3;Z3) = Z3.

Hence for any non-trivial Postnikov class β, the smallest K = 3.

min.(K) =

{
1 (trivial β)
3 (non-trivial β)

(B.13)
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3. N = 2, M = 4. In this case there exists a non-trivial action of Z4 → Aut(Z4) = Z2.

H3(BZ2;Z4) = Z2 and we denote its generator by α.

min.(K) =

{
1 (trivial β)
2 (non-trivial β or non-trivial ρ)

(B.14)

4. M = N = 4. In this case there exists a non-trivial action of Z4 → Aut(Z4) = Z2.

H3(BZ4;Z4) = Z4 and we denote its generator by α.

The smallest K with a non-trivial H2(BZ4;ZK) is K = 2. For K = 2, the actions ▷p

satisfying (B.8) are p = 1, 3, 5, 7. For p = 5, the induced action of Z4 → Aut(Z4)

is trivial, and the Postnikov class β = 2α. For p = 3 or p = 7, the induced action of

Z4 → Aut(Z4) is non-trivial.

On the other hand, we can also choose K = 4, and the actions ▷p satisfying (B.8) are

p = 1, 5, 9, 13. For these cases, the induced action of Z4 → Aut(Z4) is always trivial.

The Postnikov class β = 1
4(p− 1)α.

As a conclusion, for a given weak 2-group (Z4,Z4, ρ, β), the smallest K is

min.(K) =


1 (trivial β)
2 (non-trivial ρ or trivial ρ, β = 2α)
4 (trivial ρ, β = (2k + 1)α)

(B.15)

B.2 Π1 = ZN , Π2 =
⊕m

i=1 ZMi

In this case, we note following identity in cohomology groups:

H3(Π1;
m⊕
i=1

ZMi) ≃
m⊕
i=1

H3(Π1;ZMi) (B.16)

It means, essentially summands in Π2 are decoupled, we can treat them separately. As a

result, we can obtain following crossed module extension:

1 →
m⊕
i=1

ZMi → ZMjK ⊕
⊕
i ̸=j

ZMi → ZNK → ZN → 1 (B.17)

The boundary map ∂ : ZMjK ⊕
⊕

i ̸=j ZMi → ZNK is given by

∂(x1, x2, ...xj ..., xm) := Nxj , (modNK) (B.18)

where xj ∈ ZMjK and xi ∈ ZMi for i ̸= j and K can be chosen as K = gcd(Mj , N) as we

described in sec B.1. These extensions realized all classes in (B.17).
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B.3 Π1 =
⊕n

i=1 ZNi
, Π2 = ZM

For simplicity, we will begin with n = 2 case, i.e., Π1 = ZN1 × ZN2 .

We define a group

Γα(N1, N2,K) :=
〈
a, b, x|xK = aN1 = bN2 = 1, ax = xa, bx = xb, bab−1 = axα

〉
(B.19)

where K ∈ Z>0 is a free parameter to be specified later.The group can be viewed as some kind

of generalization of finite Heisenberg group. Note bab−1 = axα imposes a strong constraint on

α: taking N1-th power of both sides, we find:

xαN1 = 1 (B.20)

which means K|αN1. Analogously, K|αN2, Bezout’s identity shows

K|α gcd(N1, N2) (B.21)

Denote K = kd where d := gcd(N1, N2,K),we now obtain admissible values of α:

α = 0, k, ..., (d− 1)k < kd = K (B.22)

This group satisfies following exact sequence:

0 → ZK −→ i
↪→ Γα(N1, N2,K)

p−→ ZN1 × ZN2 → 1 (B.23)

where we write ZK additively and ZN1 × ZN2 multiplicatively. The maps are i(a) = xa, ∀a ∈
ZK , p is a surjection whose kernel is generated by x, i.e., p(x) = 1. Sometimes, we will denote

p(a) as a and p(b) as b if there is no confusion.

We now construct the crossed module extension. Note the cohomology class is calculated

by Künneth formula

H3(ZN1 × ZN2 ;ZM ) ≃
⊕
i+j=3

H i(ZN1 ;H
j(ZN2 ;ZM )) (B.24)

Note following result:

Hk(BZm;Zn) ≃ Zgcd(m,n), k > 0 (B.25)

Now, we have

H3(B(ZN1 × ZN2);ZM ) ≃ Zgcd(N1,M) ⊕ Zgcd(N2,M) ⊕ Z2
gcd(M,N1,N2)

(B.26)

where Z2
gcd(M,N1,N2)

= Zgcd(M,N1,N2) ⊕Zgcd(M,N1,N2). The first two terms above correspond to

those extensions in which ZN1 or ZN2 decouple in the sense of following sequences:

1 → ZM → ZMK → ZN1K × ZN2 → ZN1 × ZN2 → 1 (B.27)
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where the map ∂ : ZMK → ZN1K × ZN2 is given by ∂(a) = (N1a, 0). Symmetrically, we have

the same construction involving ZN2 but ZN1 decouples.

So we only concentrate on mixing case, i.e., corresponding to Z2
gcd(M,N1,N2)

in the coho-

mology group. We will argue following extension can realize all the mixing classes:

0 → ZM
i−→ ZMK

∂−→ Γα(N1, N2,K)
π−→ ZN1 × ZN2 → 1 (B.28)

(See (B.19) for the definition of Γα.)

Before diving into details, note following commutative diagram:

ZMK Γα

0 ZM ZN1 × ZN2 1

ZlMK Γlα

×K

×lK

×l ϕl
(B.29)

where l = 0, 1, 2, ..., gcd(K,N1, N2) and the morphism ϕl is given by ϕl(x) = x′l where x and x′

are generators of the centers of Γα and Γlα respectively. By definition, we know the sequence

(B.28) is (weakly) equivalent to

0 → ZM
i−→ ZlMK

∂−→ Γlα(N1, N2,K)
π−→ ZN1 × ZN2 → 1 (B.30)

hence, they correspond to the same element in cohomology class H3(Π1; Π2). For this reason,

we can limit us with minimal choice: α = K
gcd(K,N1,N2)

.

Let’s discuss the group action in this case. It is determined by a homomorphism Γα →
Z×
MK , where Z×

MK is the group of units in ZMK (i.e., invertible elements under ring multipli-

cation). Since Γα is generated by x, a, b, we only need to determine their images in Z×
MK . We

will denote the image of a, b, x as p1, p2, p3 respectively. They are subject to group relations

from Γalpha, that is

pNi
i = 1 (modMK), i = 1, 2 (B.31)

Note x = [b, a] = bab−1a−1 and Z×
MK is abelian, hence p3 = 1, i.e., the center ZK must act

trivially. And pi’s have to satisfy equivariance (2.1) and Peiffer identity (2.2), explicitly,

pi = 1 (modK), i = 1, 2 (B.32)

And we assume the weak 2-group is untwisted, hence

pi = 1 (modM), i = 1, 2, (B.33)
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We can combine (B.32) and (B.33), write

pi = wi
MK

gcd(M,K)
+ 1 (modMK) (B.34)

where wi = 0, 1, 2, ..., gcd(M,K) − 1. We now solve (B.31). It’s easy to see MK|( MK
gcd(M,K))

n

if n ≥ 2, so if we expand (B.31), we see it is equivalent to

gcd(M,K)|(wiNi) (B.35)

Let di := gcd(M,K,Ni) and mi :=
gcd(M,K)

di
. We have wi = simi, si = 0, 1, 2, ..., di − 1. There

is no more constraint on group actions.

Let’s summarize the discussion on group actions: group Γα acts on ZMK as

a ▷ l = (
s1MK

gcd(M,K,N1)
+ 1)l (modMK) (B.36)

b ▷ l = (
s2MK

gcd(M,K,N2)
+ 1)l (modMK) (B.37)

where si = 0, 1, ..., gcd(M,K,Ni) − 1, i = 1, 2. There is no further constraint on the group

action.

Let’s compute the Postnikov cocyle. Following the notation of section B.1, we denote

x = (x1, x2) ∈ ZN1 × ZN2 (in additive notation) and s((1, 0)) = a, s((0, 1)) = b, hence

f(x, y) = xαx1y2 (B.38)

We then lift f to F (x, y) = αx1y2. According to (2.9), we have

c(x, y, z) = αy1z2(
2∑

i=1

Msixi
gcd(M,K,Ni)

), si = 0, 1, ..., gcd(M,K,Ni)− 1 (B.39)

We can argue that these classes are indeed mixing case. Note c vanishes if it’s evaluated on

(x, y, z) with x1 = y1 = z1 = 0 or x2 = y2 = z2 = 0. It cannot happen in non-mixing case (i.e.

first two summands in (B.26)) unless the class is trivial.

In fact, if K = gcd(M,N1, N2), then we set α = 1 (see the discussion below (B.30)). In this

case s1, s2 ∈ {0, 1, 2, ..., gcd(M,N1, N2)− 1} in one-to-one correspondence with Z2
gcd(M,N1,N2)

.

Obviously,K can’t be smaller than gcd(M,N1, N2), otherwise, gcd(M,Ni,K) ≤ K < gcd(M,Ni, N2), i =

1, 2. In that situation, one cannot realize all (mixing) cohomology classes in (B.26).

There is no difficulty to generalize above construction to any finite abelian group (which

is product of cyclic groups after all). So one immediate corollary of our construction is that:

if one starts with finite abelian Π1, Π2 (without twist), one can always assume that H in (2.6)

is also finite abelian (a cyclic group actually).
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B.4 Examples with non-abelian Lie groups

Let us consider the field theory examples with a weak 2-group symmetry (Π1,Π2, id., β). Π1

is the 0-form symmetry group, which is non-simply-connected. We can write Π1 = G/(im∂),

where G is a simply-connected Lie group and im∂ is a subgroup of the center of G. Π2 is the

1-form symmetry group of the theory.

In the terminology of [26], we have the identification

Π1 = F , Π2 = O , G = F , H = E , im∂ = Z , (B.40)

and these groups fit into the following commutative diagram

1 Π2 H im∂ 1

1 im∂ G Π1 1

i

∂

p

(B.41)

Here H = E ⊂ Z(F ) × Z(Ggauge) is the maximal subgroup of the product of flavor center

Z(F ) and gauge center Z(Ggauge) ⊃ O that acts trivially on matter fields. For example see

the context of 5D SCFTs with M-theory geometric construction [26,32].

For example, Let us consider the 5d rank-1 SCFT with IR gauge theory description SU(2)0.

In [26] it is shown that the theory has a weak 2-group symmetry with Π1 = SO(3), Π2 = Z2.

We first use the following commutative diagram

1 Z2 Z4 Z2 1

1 Z2 SU(2) SO(3) 1

i

∂

p

(B.42)

We show that the exact sequence

1 → Z2
i−→ Z4

∂−→ SU(2)
p−→ SO(3) → 1 (B.43)

realizes the non-trivial element β in H3(BSO(3),Z2) = Z2.

Let us denote the group elements in SU(2) by g and the group elements in SO(3) by the

conjugacy class {g,−g}. The identity element of SO(3) is {I,−I}. The maps in (B.43) are

i : a → 2a , ∂ : a → eπiaI , p : g → {g,−g} . (B.44)

Let us choose the section s : SO(3) → SU(2) as a canonical way to embed an SO(3)

element into SU(2). The group multiplication in SO(3) can be written as

{g,−g} · {h,−h} =

{
{gh,−gh} s(g)s(h) = s(gh)
{−gh, gh} s(g)s(h) = −s(gh)

. (B.45)
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Hence we can write down the function f(g, h) (in the multiplicative notation) and its uplift

F (g, h) (in the additive notation):

f(g, h) =

{
I {g,−g} · {h,−h} = {gh,−gh}

−I {g,−g} · {h,−h} = {−gh, gh} . (B.46)

F (g, h) =

{
0 {g,−g} · {h,−h} = {gh,−gh}
1 {g,−g} · {h,−h} = {−gh, gh} . (B.47)

Plug in the formula (2.9), we can compute the following discontinuous map c(g, h, k)

c(g, h, k) =
1

2
(F (h, k) + F (g, hk)− F (g, h)− F (gh, k))

=

{
1 s(g)s(hk) = −s(gh)s(k) , s(g)s(h)s(k) = s(ghk)
0 other cases

.
(B.48)

c(g, h, k) corresponds to the non-trivial element in H3(BSO(3);Z2), because it cannot be

written as a coboundary (12F (g, h) is not a well-defined function).

On the other hand, if one uses the exact sequence

1 → Z2
i−→ Z2 × Z2

∂−→ SU(2)
p−→ SO(3) → 1 , (B.49)

one can derive c(g, h, k) ≡ 0 and the Postnikov class is trivial.

Physical Example Let us show an physical example corresponding to the case of non-

trivial c(g, h, k) ∈ H3(BSO(3);Z2), which can be applied to the case of 5d SU(2)0 SCFT

in [26]. Consider a gauge theory with gauge group Ggauge = SU(2) and flavor algebra su(2)

(with simply-connected group G = SU(2)), and the following charges of matter fields:

u(1)gauge u(1)flavor Z2,flavor

ϕ1 2 −1 1
ϕ2 0 2 0

(B.50)

The listed numbers are the charges under the Cartan subalgebra and center of Ggauge = SU(2)

and su(2). We have the following observations:

1. Each matter field has integral charge under the linear combination 1
4(u(1)gauge+2u(1)flavor).

This is the source of H = Z4. Roughly speaking, the computation of H = Z4 is achieved

by computing the Smith normal form of the charge matrix which involves both u(1)gauge

and u(1)flavor.

2. The Z2 center part of the G = SU(2) is a part of the U(1)gauge, hence the actual flavor

symmetry group is Π1 = G/Z2 = SO(3), which is consistent with the weak 2-group

structure.
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In summary, one can see that in the strictification (B.43), the group G = SU(2) is bigger than

the actual 0-form symmetry group Π1 = SO(3). The group H = Z4 is also bigger than the

actual 1-form symmetry group Π2 = Z2.

Gauge theory For the strict 2-group, we have the following gauge transformation (following

[56] for example)
A′ = λAλ−1 + λdλ−1 + ∂Λ

B′ = B + δΛ .
(B.51)

A is the gauge field for G = SU(2), which takes value in the Lie algebra su(2) = so(3). B is

the discrete gauge field for H = Z4. The gauge parameters λ ∈ SU(2), Λ ∈ Z4. Finally, ∂Λ

corresponds to the center gauge transformation Z2 ⊂ SU(2) when Λ ∈ {1, 3}, which is not a

part of the su(2) Lie algebra.

Representations We investigate the representation of this strict (weak) 2-group. First let

us take the 2d fundamental rep. π of SU(2). Now note that we can naturally define a unitary

projective representation π̃ : SO(3) → SU(2) of SO(3), such that π = π̃ ◦ p, π̃ = s ◦ π. For

any {g,−g}, {h,−h} ∈ SO(3), we have

π̃({g,−g})π̃({h,−h}) = π̃({gh,−gh})f(g, h) . (B.52)

Similar to the computation of Postnikov class, the phase factor f(g, h) = ±I can also be

uplifted to F (g, h) = 0, 1 and one can compute the non-trivial c(g, h, k) ∈ H3(BSO(3);Z2).

If we start from other irreducible representation π, there are two different scenarios. If

π is even-dimensional, it corresponds to a projective representation of SO(3), and the above

discussions still hold. If π is odd-dimensional, it would correspond to a representation of

SO(3), hence in (B.52) the phase factor f(g, h) = I, and we are unable to generate a non-

trivial Postnikov class (the representation is not faithful).

Nonetheless, this is not the notion of 2-representations introduced in the main text.
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