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Abstract

Continuous quantum measurement and feedback induce energy exchange between a
dissipative qubit and a monitor even in the steady state, as a measurement backac-
tion. Using the Lindblad equation, we identified the maximum and minimum values
of the steady-state energy flow as the measurement and feedback states vary, and we
demonstrate the qubit cooling induced by these processes. Turning our attention to
quantum trajectories under continuous measurement and feedback, we observe that the
energy flow fluctuates around the steady-state values. We reveal that the fluctuations
are strongly influenced by the measurement backaction, distinguishing them from the
standard Poisson noise typically observed in electronic circuits. Our results offer poten-
tial application in the development of quantum refrigerators controlled by continuous
measurement and feedback, and provide deep insight into quantum thermodynamics
from the perspective of fluctuation.
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1 Introduction

Quantum measurement and feedback induce unique non-unitary dynamics in a measured
quantum system [1–3]. This measurement backaction has advanced the fields of quantum
thermodynamics [4–6] and the application of quantum thermal machines [7–13]. The heat
change in the measured quantum system due to the measurement and the feedback is a key
concept in quantum energetics, e.g., work or heat extraction by operating measurement and
feedback [14, 15]. Recent advances in quantum technology have allowed us to observe the
energy exchange between the measured quantum system and the monitor under the measure-
ment, which does not commute with the system Hamiltonian, in superconducting circuits [16].
This experimental progress motivates further theoretical research on the energy exchange by
the non-commuting measurements. While the projective quantum measurement and feedback
have been extensively studied so far [17–24], recently, the continuous quantum measurement
and feedback attract attention from fundamental aspects of quantum thermodynamics, such
as the quantum fluctuation theorem [25] and quantum thermodynamics uncertainty relations
(QTURs) [26, 27], as well as quantum thermal machines [28–30]. Most studies on quantum
measurement have been conducted in the context of ideal systems without dissipation. It is
crucial to take dissipation into account not only because of its ubiquity in nature but also due
to its qualitative effects on energy exchange. This consideration enables us to address steady-
state properties of energy flow under continuous quantum measurement and feedback, as
measurement and feedback alone induce no energy exchange in the steady-state limit.

Continuous quantum measurement and feedback process is inherently stochastic, as the
quantum state probabilistically jumps to a measured state. Consequently, the energy exchange
induced by continuous quantum measurement and feedback fluctuates around the ensemble-
averaged energy flow with respect to the measurement outcomes. Current fluctuations in
quantum transport have been studied in the mesoscopic physics [31, 32]. For instance, for
non-interacting electrons in a one-dimensional nanowire with weak transmission, the variance
of the electronic current, which characterizes current fluctuations, is proportional to the mean
electronic current. This is reflected by the fact that free electrons transferring through the
nanowire obey the Poisson statistics. Observing current fluctuations provides deeper insights
into the microscopic scattering process of carriers. Now, current fluctuations have been studied
theoretically and experimentally in strongly correlated systems, such as the fractional quantum
Hall effect [33,34], the Kondo effect [35,36], and superconductivity [37–39]. Moreover, since
the statistical properties lie behind the current noise, it is closely related to the fluctuation
theorem [40,41].

In this paper, we investigate the energy exchange between a monitor and a qubit with dis-
sipation by connecting the qubit to bosonic environments, under continuous quantum mea-
surement and feedback. In the first part, we examine the steady-state energy flow using the
Lindblad equation and derive its minimum and maximum values by varying the measurement
and feedback states. Reference [42] has demonstrated that, in the absence of feedback, the
energy exchange does not occur from the dissipative qubit to the monitor under continuous
quantum measurement. In this work, we incorporate a feedback sequence following quantum
measurement to create and stabilize desired quantum states that cannot be achieved through
measurement alone. As a result, we demonstrate that the monitor can extract energy from the
dissipative qubit. This cooling effect could have potential applications in measurement-based
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Figure 1: Monitored qubit is coupled to the heat baths. The qubit state is continuously
measured with the strength γ, and affected by the measurement as a backaction and
feedback.

quantum refrigerators. The second part focuses on the fluctuations in the energy flow by trac-
ing individual quantum trajectories. We demonstrate that the power spectrum consists of two
distinct processes unique to continuous quantum measurement: Poisson noise and backaction
noise, associated with quantum jumps and measurement backaction dynamics, respectively.
Notably, we observe that the Fano factor, which is the ratio of total noise to Poisson noise,
remains below unity across a wide range of parameters. The perspective from fluctuations of
the continuous quantum measurement and feedback can lead to the further understating of
thermodynamics in quantum dissipative systems.

This paper is organized as follows. In the next section, we introduce the theoretical model
used in this study and describe quantum dynamics with both dissipation and continuous mea-
surement and feedback. In Sec. 3, we calculate the steady-state energy flow between the
dissipative qubit and the monitor and obtain its minimum and maximum values. In Sec. 4, we
address the fluctuations of the energy exchange and analyze the noise power spectra. Finally,
the summary is drawn in Sec. 5. Throughout this paper, We set ħh= kB = 1.

2 Model

In this section, we introduce the Hamiltonian of the dissipative qubit and describe the quan-
tum dynamics of the reduced density matrix under continuous quantum measurement and
feedback, as shown in Fig. 1.

2.1 Dissipative qubit

The dissipation of the qubit is described by the Jaynes-Cummings-type coupling when the qubit
is weakly coupled with heat baths. The Hamiltonian is given by

H = H0 +
∑

rk

ωrk b†
rk brk +
∑

rk

λrk

2

�

σ+brk +σ−b†
rk

�

. (1)

The first term is the qubit, H0 = (∆/2)σz , where σx ,y,z are the Pauli operators and ∆ is the
qubit energy between the ground state |g〉= |σz = −1〉 and the excited state |e〉= |σz = +1〉.
The second term denotes the heat baths modeled as a collection of harmonic oscillators.
The operator brk (b†

rk) annihilates (creates) a boson of the heat bath r in mode k of en-
ergy ωrk. The heat bath r is in thermal equilibrium characterized by the Bose-Einstein dis-
tribution nr(ω) = (eω/Tr − 1)−1 with the temperature Tr . The remaining term represents
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the coupling between the qubit and the heat bath r with the interaction strength λrk. Here,
σ± = (σx ± iσy)/2.

2.2 Measurement and feedback

We consider that the qubit pure state |m〉 is measured with the strength γ and then transferred
to a desired pure state |n〉 by a unitary operator

Unm = |n〉 〈m|+ |n̄〉 〈m̄| , (2)

where |m̄〉 and |n̄〉 are the orthogonal states of |m〉 and |n〉, respectively, i.e., 〈m|m̄〉= 〈n|n̄〉= 0.
For |n〉 = |m〉, the unitary operator becomes the identity operator, Unn = I , and then the
quantum dynamics induced by the monitor is only the quantum measurement. The qubit pure
state |m〉 is a state on the surface of the Bloch sphere and characterized by the polar angle θm
and azimuthal angle φm, as |m〉= cos(θm/2) |g〉+ eiφm sin(θm/2) |e〉. When the measurement
outcomes are discarded, the averaged dynamics of the density matrix ϱ(t) under continuous
measurement and feedback follow the Lindblad equation, ϱ̇(t) = −i[H,ϱ(t)] + DM[ϱ(t)].
The effects of the measurement and feedback are incorporated through [1,3]

DM[ϱ(t)] = γ
�

UnmPmϱ(t)PmU†
nm −

1
2
{Pm,ϱ(t)}
�

, (3)

where Pm = |m〉 〈m| is the projection operator.
When the coupling between the qubit and the heat baths is weak, the Born-Markov ap-

proximation allows us to obtain the dynamics of the reduced density matrix ρ(t) = trB[ϱ(t)],
where trB[· · · ] denotes the tracing out of the degrees of freedom of the heat baths, as

ρ̇(t) = −i [H0,ρ(t)] +DB[ρ(t)] +DM[ρ(t)], (4)

where the dissipator to the heat baths is

DB[ρ(t)]=
∑

r

DB,r[ρ(t)] =
∑

s=±
Γs

�

σs̄ρ(t)σs −
1
2
{σsσs̄,ρ(t)}
�

, (5)

with s̄ = −s. Here, Γ+ =
∑

r(π/2)Ir(∆)[1+nr(∆)] and Γ− =
∑

r(π/2)Ir(∆)nr(∆) are the total
emission and absorption rates of multiple heat baths, respectively, where Ir(ω) =

∑

k λ
2
rkδ(ω−ωrk)

is the spectral density for the heat bath r. In this work, we assume the Ohmic heat bath,
Ir(ω) = 2αrωe−ω/ωc with the dimensionless coupling strength αr and the cutoff frequency
ωc [43, 44]. Note that, to justify the Born-Markov approximation, the total emission and ab-
sorption rates Γ± must be much smaller compared with the qubit energy ∆ [45]. As long as
this condition is met, it does not matter if the heat baths have different temperatures.

3 Steady-state energy flow

We are interested in the energy flow from the monitor into the qubit [29,42],

J(t) = tr0 [H0DM[ρ(t)]] = γ 〈m|ρ(t) |m〉 tr0[H0Pn]−
γ

2
tr0[H0{Pm,ρ(t)}], (6)

where tr0[· · · ] denotes the trace about the degrees of freedom of the qubit. The positive (neg-
ative) energy flow indicates the heating (cooling) of the qubit by the quantum measurement
and feedback.
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Figure 2: Steady-state energy flow as a function of the measurement state θm and the
feedback state θn for Γ+/∆ = 0.1, Γ−/∆ = 0.05, and γ/∆ = 0.1. These parameters
correspond to αeff ≈ 0.0191 and Teff/∆ ≈ 1.44. For the measurement-only case
(θm = θn), the energy flow never takes negative values.

3.1 Minimum and maximum

At the steady-state limit, we can evaluate the steady-state energy flow by solving the Lindblad
equation (4) for ρ̇(t) = 0. For the weak coupling case (γ, Γ± ≪ ∆), the steady-state energy
flow is approximated as

J ≈
γ∆

2
γ+(cosθn − cosθm)− γ−(1− cosθm cosθn)

γ(cosθn cosθm − 1)− 2γ+
, (7)

where γ± = Γ+ ± Γ−, thus, 0 < γ− < γ+. Note that the dependence of the steady-state energy
flow (7) on φm and φn is a minor correction for the weak coupling case. Thus, the measure-
ment and feedback states are characterized by θm and θn, respectively. The steady-state energy
flow satisfies the following inequality,

−
Γ−
γ+ + γ

≤
J
γ∆
≤

Γ+
γ+ + γ

. (8)

The maximum and minimum energy flows Jmax/min = ±γ∆Γ±/(γ++γ) occur at (θm,θn) = (0,π)
and (π, 0), respectively. This inequality indicates that the qubit can be both heated and cooled
by the monitoring and feedback.

For (θm,θn) = (π, 0), the measurement is to the excited state and then feedback is to the
ground state. In this process, the qubit energy decreases by ∆, cooling the qubit. The steady-
state energy flow takes minimum Jmin = −γρee(〈e|H0 |e〉 − 〈g|H0 |g〉) = −γ∆Γ−/(γ+ + γ),
whereρi j = 〈i|ρ | j〉. On the other side, for (θm,θn) = (0,π), the measurement projects the sys-
tem in the ground state and the feedback in the excited state. For this case, the qubit energy is
increased by the measurement and the feedback, changing the qubit energy by∆. The steady-
state energy flow is maximum and written as Jmax = −γρg g(〈g|H0 |g〉−〈e|H0 |e〉) = γ∆Γ+/(γ++γ).

Figure 2 shows the steady-state energy flow for Γ+/∆= 0.1, Γ−/∆= 0.05, and γ/∆= 0.1,
which corresponds to the effective coupling strength αeff ≈ 0.0191 and the effective temper-
ature Teff/∆ ≈ 1.44 when the effects of multiple heat baths are represented by an effective
single heat bath. The steady-state energy flow reaches maximum at (θm,θn) = (0,π) and
minimum at (θm,θn) = (π, 0), as expected, and its sign changes between them. The energy
exchange does not occur at the edges (θm,θn) = (0,0) and (π,π) and on the convex curve
towards the measurement state θm connecting the edges. The convex curve indicates that
the steady-state energy flow never takes negative (J ≥ 0) for the measurement only case,
θn = θm [42].
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Note that the energy flow can exceed the minimum and maximum values of the steady-
state energy flow. When the qubit is prepared in the excited (ground) state for measurement to
the excited (ground) state and feedback to the ground (excited) state, the energy flow reaches
its minimum (maximum) value, ∓γ∆.

3.2 Symmetry at θm + θn = π

The steady-state energy flow is symmetric with θm + θn = π, corresponding to the feedback
of the measurement state to the opposite side of the Bloch sphere, in the weak coupling case.
On the axis of the mirror symmetry, θm + θn = π, the steady-state energy flow reads

J =
γ∆

2
γ−(1+ cos2 θm) + 2γ+ cosθm

γ(1+ cos2 θm) + 2γ+
. (9)

This monotonically decreases from the maximum to the minimum energy flow as a function
of θm, and its sign changes at θm = π − cos−1[tanh(∆/4T )] (> π/2). As the temperature
decreases, the positive energy flow area is extended. This asymmetry between the positive
and negative energy flows is controlled by the temperature of the heat baths coupled with the
qubit. For θm = |ε| and θm = π−|ε|, where the steady-state energy flow goes to maximum and
minimum at |ε| → 0, respectively, the steady-state energy flow deviates quadratically from the
maximum and minimum energy flows in the same way for |ε| ≪ 1,

J(θm ≈ 0)
Jmax

≈
J(θm ≈ π)

Jmin
≈ 1−

Γ+ + Γ−
Γ+ + Γ− + γ

|ε|2

2
. (10)

3.3 Zero energy exchange

Finally, we consider the condition of the zero energy exchange (J = 0). At the edges, (θm,θn) = (0,0)
and (π,π), the measurement is commuting with the qubit Hamiltonian. The commuting mea-
surement does not disturb the qubit state, and then the steady-state energy flow does not flow.
When the feedback process is present, |m〉 ≠ |n〉, the qubit state is disturbed by the measure-
ment and feedback process. Near the lower-left edge, where θm,θn≪ 1, the energy flow van-
ishes when θn = e−∆/(2T )θm. Conversely, near the upper-right edge, where π−θm,π−θn≪ 1,
energy flow ceases when π−θn = e+∆/(2T )(π−θm). As the temperature decreases, the curve in
which the steady-state energy flow vanishes deviates more from the diagonal line (θn = θm),
and then the positive energy flow area is extended.

Now, we consider the unraveling of the Lindblad equation (4), which describes the quan-
tum dynamics of the reduced density matrix conditioned by the measurement outcomes, ρc(t) [1],

ρc(t +∆t) =ρc(t)− i [H0,ρc(t)]∆t −DB[ρc(t)]∆t

+D(1)M [ρc(t)]∆t +D(2)M [ρc(t)]∆Nt , (11)

where the measurement and feedback effects are decomposed into two contributions,

D(1)M [ρc] = γ 〈m|ρc |m〉ρc −
γ

2
{Pm,ρc} , (12a)

D(2)M [ρc] = Pn −ρc. (12b)

Here, ∆Nt is the Poisson increment and satisfies ∆Nt∆Nt =∆Nt . It takes ∆Nt = 1 when the
monitor detects that the qubit is in |m〉 at time t and ∆Nt = 0 otherwise. The probability of
∆Nt = 1 is given by E[∆Nt] = γ 〈m|ρc(t) |m〉∆t, where E[· · · ] denotes the ensemble average
over the measurement outcomes. The unraveled equation (11) reproduces the Lindblad equa-
tion (4) after the ensemble average, ρ(t) = E[ρc(t)]. For ∆Nt = 1, the conditional reduced
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Figure 3: (a) Heat current from the cold heat bath to the qubit Jc as a function of
θm and θn, obtained by solving the quantum master equation (4), for Th/∆ = 1.5,
Tc/∆ = 1, αh = αc = 0.01, and γ/∆ = 0.01. The quantum measurement cooling
occurs in the red region (Jc > 0). (b) The COP as a function of Jc (> 0) at symmetric
point θm + θn = π for different temperature biases.

density matrix jumps to the feedback state, ρc(t +∆t) = |n〉 〈n|, called a quantum jump, and
then the ensemble-averaged qubit energy at t + ∆t is (γ∆/2)ρmmtr0[H0Pn]∆t. Since this
energy change by the quantum jump is due to the quantum measurement and feedback, the
energy flow induced by the monitor is J (2) = γρmmtr0[H0Pn]− γρmmtr0[H0ρ]. For ∆Nt = 0,
since the reduced density matrix evolves as ρ̇ = −i[H0,ρ]+DB[ρ]+D

(1)
M [ρ], the energy flow

by the monitor is J (1) = tr0[H0D
(1)
M [ρ]] = γρmmtr0[H0ρ] − (γ/2)tr0[H0{Pm,ρ}] [46]. Note

that J = J (1) + J (2). Therefore, the first term of the energy flow (6) represents the backaction
of the detection (∆N = 1) and the second term the backaction of no detection (∆N = 0). The
energy exchange does not occur between the qubit and the monitor when they are balanced,
i.e., J (1)+ J (2) = 0, corresponding to ρmm(cosθm− cosθn) = sinθmRe[ρmm̄]. One can confirm
that it reproduces θm = 0 and π for the measurement-only case (θm = θn).

3.4 Quantum measurement cooling

The continuous measurement and feedback can induce the qubit cooling (J < 0), as discussed
in Sec. 3.1. This indicates the possibility of the quantum measurement cooling [22], which is
the energy extraction from the colder heat bath by quantum measurement. Now, we consider
the two heat baths (r = h, c) with different temperatures (Th < Tc). The sign of the heat
current from the cold heat bath determines if the quantum measurement cooling occurs. The
heat currents from the cold and hot heat baths to the qubit are defined as

Jc(t) = tr0[H0DB,c[ρ(t)]], (13a)

Jh(t) = tr0[H0DB,h[ρ(t)]], (13b)

respectively. We demonstrate the steady-state heat current flowing out of the cold heat bath
Jc for different temperature biases in Fig. 3 (a). The region where the quantum measurement
cooling occurs (Jc > 0) is observed, and smaller than the region of the qubit cooling (J < 0),
as shown in Fig. 2.

The efficiency of the quantum measurement cooling is characterized by the coefficient of
performance (COP) [5,29,47],

COP =

�

�

�

�

Jc

Jh + Jc

�

�

�

�

. (14)
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Figure 3 (b) shows the COP as a function of Jc (> 0), i.e., the region where the quantum
measurement cooling occurs, at θm+θn = π. The COP monotonically increases with increasing
Jc and decreasing the temperature bias.

4 Fluctuation

So far, we considered the steady-state energy flow after taking the ensemble average over
the measurement outcomes. However, since the measurements are a stochastic process, the
energy flow fluctuates around the averaged energy flow even at the steady-state limit. To
characterize the fluctuation of the energy flow, we introduce the power spectrum as

S(ω) =
2
T

∫ T /2

−T /2
d t

∫ T /2

−T /2
d t ′ eiω(t−t ′)CJ (t, t ′; t0) (15)

where CJ (t, t ′; t0) = E[δJc(t + t0)δJc(t ′ + t0)] is the correlation function of the energy flow
fluctuation around the averaged energy flow, δJc(t) ≡ Jc(t) − J(t). The conditional energy
flow Jc(t) is decomposed into the contributions from the backaction of no detection (∆Nt = 0)
and the quantum jump (∆Nt = 1),

J (1)c (t)∆t = tr0

�

H0D
(1)
M [ρc(t)]
�

∆t, (16a)

J (2)c (t)∆t = tr0

�

H0D
(2)
M [ρc(t)]
�

∆Nt , (16b)

respectively. Here, t0 is large enough that the qubit reaches the steady state and the time T is
sufficiently long for the current correlation to vanish and will eventually be taken to infinity.
Below, we address the correlation function of the energy change during the infinitesimal time
∆t,

C(t, t ′; t0) = E[δQc(t + t0)δQc(t
′ + t0)] = CJ (t, t ′; t0)(∆t)2, (17)

where the conditional energy change is Qc(t) =Q(1)c (t) +Q(2)c (t) = J (1)c (t)∆t + J (2)c (t)∆t.
Now, the qubit is in the steady state at t0, and thus the correlation function depends only

on the time difference t − t ′. Then, the power spectrum is rewritten as

S(ω) =
2

(∆t)2

∫ T

−T
d t eiωt C(t). (18)

We note that we finally take∆t → 0 after performing the integration. The correlation function
is decomposed in a delta-function term, coming from the time local correlation, and a time
non-local correlation function,

C(t) = C0∆tδ(t) + C1(t ̸= 0). (19)

Since the non-local term is the even function, C1(t) = C1(−t), the power spectrum consists of
the frequency-independent and the frequency-dependent terms as S(ω) = S0 + S1(ω),

S0 =
2
∆t

C0, (20a)

S1(ω) =
4

(∆t)2

∫ ∞

0

d t cos(ωt)C1(t). (20b)

We note that we here took T →∞ because C1(t) vanishes for a sufficiently long time. In this
work, we focus on the condition τ0 ≫ τr , where τ0 = (γρmm)−1 is the average time interval
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Figure 4: (a) Poisson noise S0 as a function of the measurement state θm and the
feedback state θn for Γ+/∆ = 0.3, Γ−/∆ = 0.15, and γ/∆ = 0.01, obtained by
Eq. (21) and the numerical simulation for 〈σz〉 using the quantum master equa-
tion (4). The solid line represents S0 = 0. (b) θm dependence of the Poisson noise
for the measurement-only protocol, which corresponds to the diagonal line (θm = θn)
in panel (a). The solid line represents the analytical formula (22) and the plots are
obtained by the numerical simulation using the stochastic master equation (11) with
3.2× 106 trajectories.

between the measurements and τr is the relaxation time it takes for the qubit to reach the
steady state from a pure state due to dissipation with heat baths. This region means that the
measurements are rare events compared with the relaxation time scale, and it is justified for
γ≪ Γ± [46].

4.1 Poisson noise

The frequency-independent term (20a) of the power spectrum comes from the local correlation
in time, C(0) = E

�

Q2
c

�

−E[Qc]2. In the following, we drop the time index for the steady state.
At ∆t → 0, the correlation of the energy changes by the quantum jump process, E[(Q(2)c )

2] is
predominant. Therefore, the frequency-independent power spectrum is obtained as

S0 ≈ 2γρmmQ2
jump = 2QjumpJ (2), (21)

where Qjump = tr0[H0(Pn−ρ)] and J (2) = E[Q(2)c ]/∆t = γρmmtr0[H0(Pn−ρ)] are the energy
change and the steady-state energy flow induced by the quantum jump process. This ex-
pression corresponds to the Poisson noise for non-interacting electrons in a one-dimensional
nanowire with weak transmission; SPoisson(t) ≈ 2eI(t), where I(t) represents the mean elec-
tronic current [31, 32]. In this work, we call the frequency-independent contribution of the
power spectrum S0 as the “Poisson” noise. In the weak coupling regime, the Poisson noise is
approximated as

S0 ≈
γ∆2

4
(〈σz〉+ cosθn)

2 (1− 〈σz〉 cosθm) (22)

with 〈σz〉 ≈ −[2γ− − γ(cosθm − cosθn)]/[2γ+ + γ(1− cosθm cosθn)].
Figure 4 (a) shows the Poisson noise for Γ+/∆ = 0.3, Γ−/∆ = 0.15, and γ/∆ = 0.01. The

Poisson noise varies, depending on the measurement and feedback states, and vanishes, as
shown in the solid line, when the qubit energy of the steady state matches that of the feedback
state, tr0[H0ρ] = tr0[H0Pn]. The line of S0 = 0 is almost independent of the measurement
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Figure 5: (a) The backaction noise S1 as a function of θm and θn using Eq. (27) and
the numerical simulation of the quantum master equation (4). The parameters are
the same as Fig. 4. (b) For the measurement-only case (θm = θn), the measurement
state θm dependence of the backaction noise. The solid line is obtained in the same
way as the panel (a) and plots are obtained by the numerical simulation using the
stochastic master equation (11) with 3.7× 108 trajectories. The inset shows an en-
larged view near S1 = 0.

state. The energy change due to the quantum jump is expressed as Qjump = −(∆/2)(cosθn+〈σz〉),
and the γ dependence of 〈σz〉 is small for γ≪ γ±, i.e., it is primarily determined by the dissipa-
tion due to the heat baths. Thus, Qjump is almost independent of the measurement state, while
it strongly depends on the feedback state. Since 〈σz〉< 0 and 〈σz〉 is almost independent of γ,
equivalently θm and θn, |Qjump| takes maximum at θn = π and its value is positive, Qjump > 0.
Concerning another contribution of the Poisson noise, ρmm, because ρmm ≈ (1−〈σz〉 cosθm)/2
for γ≪ γ±, it is almost independent of the feedback state and reaches maximum at θm = 0.
Therefore, the Poisson noise has a maximum value at θm = 0 and θn = π, as shown in Fig. 4.
There, more energy is transferred between the qubit and the monitor more frequently.

We also show the θm dependence of the Poisson noise for the measurement-only protocol,
|m〉 = |n〉, in Fig. 4 (b). The expression for the Poisson noise (22), describes the numerical
simulation well. The Poisson noise is not symmetric with respect to θm = π/2, unlike the
steady-state energy flow. This is reflected in the characteristic statistics induced by the contin-
uous measurement and feedback, which differs from the case of the electronic current. The
resulting fluctuations provide direct access to the quantum jump, which is indistinguishable
from the backaction of no detection at the level of the energy exchange. The characteristic
statistics arise from the fact the probability of a measurement occurring depends on the qubit
state, and the energy exchange is also affected by the measurement backaction, discussed in
Sec. 4.2.

4.2 Backaction noise

After the quantum jump, energy exchanges between the qubit and the monitor to reach the
steady state as a measurement backaction. The energy flow fluctuation induced by the mea-
surement backaction is characterized by the non-local correlation in time, C1(t), providing the
frequency-dependent contribution of the power spectrum S1(ω), called the backaction noise.
At the dc limit (ω= 0), the power spectrum is written as

S1 ≡ S1(0) =
4

(∆t)2

∫ ∞

0

d t E[δQc(t + t0)δQc(t0)]. (23)
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Under the condition, τ0 ≫ τr , we assume the quantum jumps are independent of each
other and the qubit just before the quantum jump is in a steady state. The dynamics there
can be interpreted as the relaxation from the post-selected state, Pn. When the quantum jump
occurs at t0, the backaction noise is approximated as

S1(∆Nt0
= 1)≈

4
∆t

QjumpQex, (24)

where we took ∆t → 0 limit. Here, Qex =
∫∞

0 d t[J(t; 0)− J] is the excess energy from the
post-selected state, i.e., ρ(0) = Pn, and is a quantity related to the transient dynamics. On
the other hand, when the quantum jump does not occur at t0 and occurs at t−1 (< t0), the
backaction noise is approximately given by

S1(∆Nt0
= 0)≈ 4[J(t0; t−1)− J]

∫ ∞

0

d t [J(t + t0; t−1)− J]. (25)

Hence, the approximated form of the backaction noise is obtained as

S1 ≈ P(∆Nt0
= 1)S1(∆Nt0

= 1) +
t0−∆t
∑

t−1=0

P(∆Nt−1
= 1)S1(∆Nt0

= 0) (26)

≈ 4γρmm

�

Qjump +
1
2

Qex

�

Qex, (27)

at ∆t → 0, where P(∆Nt0
= 1) = 1 − P(∆Nt0

= 0) = γρmm(t0)∆t is the probability of the
quantum jump at t0.

We plot the backaction noise in the plane of (θm,θn) in Fig. 5 (a) for the same parameters of
the Poisson noise in Fig. 4. The magnitude of the backaction noise is smaller than the Poisson
noise by one order, as the excess energy is on the order of ∆γ/γ+ and Qjump is on the order
of ∆. The backaction noise is negative in a large range of (θm, θn). The negative backaction
noise indicates that, from Eq. (27), the energy change by the quantum jump and the excess
energy have opposite signs. This is the measurement backaction; when the qubit energy is
stored from the monitor by the detection (Qjump > 0), less energy flows out of the monitor
to the qubit in the dynamics after the detection compared with the steady-state energy flow
(Qex < 0), and vice versa.

The backaction noise has a minimum value around θm = 0 and θn = π. The excess energy
is the difference between the total energy transferred from the monitor to the qubit until the
post-selected state reaches the steady state and the steady-state energy flow during that time.
Roughly speaking, |Qex| becomes larger as J(t = 0; 0) = −(γ∆/4) sin(θm − θn) sinθn and J
are more different because, for γ ≪ γ±, the relaxation rate to the steady-state energy flow
is dominantly determined by the heat baths, and the measurement effect to the rate is small.
The oscillation of the transient energy flow due to the quantum coherence affects the excess
energy, but it reduces |Qex| because the integral of the product of a trigonometric function
and an exponential decay function becomes smaller than that without oscillation when the
oscillation frequency, ∼ ∆ is larger than the relaxation rate, ∼ γ+. At θm = 0 and θn = π, J
(> 0) takes maximum as discussed in Sec. 3 and the energy flow relaxes to the steady-state
one without the oscillation while J(t = 0;0) = 0. Then, |Qex| is maximum and Qex is negative
around θm = 0 and θn = π. Hence, from the fact that ρmmQjump is positive and its absolute
value has a maximum value at θm = 0 and θn = π, as discussed in Sec. 4.1, the backaction
noise is negative and its absolute value reaches maximum around θm = 0 and θn = π. In
contrast, when θm = θn = 0 or π, the excess energy vanishes, resulting in S1 = 0, because the
measurement commutes with the qubit Hamiltonian. In addition, the backaction noise takes 0
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Figure 6: Energy change due to the quantum jump, Qjump (solid line), and excess en-
ergy, Qex (dashed line), as a function of θm for the measurement-only case (θm = θn).
The parameters are the same as Fig. 4. For a large range of θm, Qjump and Qex have
opposite signs, but they are both negative when they are crossing 0. The inset shows
an enlarged view where both Qjump and Qex are negative near θm/π ≈ 0.39. The
difference between Qjump and Qjump +Qex/2 is not visible in this plot.

around θn/π≈ 0.4, corresponding to Qex = 0 and Qjump+Qex/2= 0, which will be discussed
below.

As mentioned above, the backaction noise has negative values for a large range of (θm,θn),
but it shows the small positive value, the order of 10−6, at θm/π ≈ 0.3− 0.5 and θn/π ≈ 0.4
near S0 = 0. It, here, violates QjumpQex < 0. This is attributed that the energy loss or gain of
the qubit due to quantum measurement can also be compensated by the heat baths during the
transient dynamics. Therefore, when focusing on the energy exchange between the monitor
and the qubit, it is possible to slightly violate QjumpQex < 0 around Qjump,Qex ≈ 0. We plot
Qjump and Qex for the measurement-only case in Fig. 6, and it is indeed observed that both
values are negative within the small range of θm/π≈ 0.381− 0.393.

Figure 5 (b) shows the backaction noise for the measurement-only case. The numerical
simulation using the stochastic master equation (11) is in good agreement with the analytical
formula (27). It crosses zero at four points. At the edges, θm = 0 and π, the measurements
commute with the qubit Hamiltonian, resulting in the Qex = 0, as discussed above. The remain-
ing two points, θm/π ≈ 0.381 and 0.393, correspond to Qex = 0 and Qjump = 0, respectively
(see Fig. 6).

4.3 Fano factor

Finally, let us compare the Poisson noise S0 with the backaction noise S1. To this end, we
introduce the “Fano” factor, F = S(0)/S0 = (S0 + S1)/S0, from the analogy of the electronic
current [31,32]. Using Eqs. (21) and (27), we obtained the Fano factor as

F ≈
�

1+
Qex

Qjump

�2

. (28)

For a large range of (θm,θn), it is less than 1, i.e., sub-Poisson fluctuation, because S1 < 0,
where the deviation from the unity is on the order of 1 − F ∼ O(γ/γ+). The sub-Poisson
statistics arise from the fact that the probability of a quantum jump depends on the qubit
state, making the quantum jumps not entirely random in time. This phenomenon is analogous
to electronic current, where electrons do not flow completely randomly due to the Pauli exclu-
sion principle and Coulomb interactions. When Qjump = 0, the Fano factor diverges because
Qjump and Qex do not become zero simultaneously, as discussed in Sec. 4.2. In the vicinity of
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Figure 7: Fano factor as a function of the measurement state θm for the measurement-
only case. The parameters are the same as Figs. 4 and 5. The solid line represents
the analytical formula (28) and plots are obtained by the numerical simulation using
the stochastic master equation (11) with 3.7 × 108 trajectories. The dashed line
represents F = 1.

Qjump = 0, since Qjump and Qex can have the same sign over a small range of (θm,θn), the Fano
factor is strongly enhanced, exceeding unity, i.e., super-Poisson fluctuation. At θm = θn = 0
and π, the fluctuation becomes the Poisson, F = 1, because the commuting measurement
does not induce the backaction noise S1 = 0.

Figure 7 shows the numerical simulation for the Fano factor using the same parameters of
the Poisson and backaction noises shown in Figs. 4 and 5 for the measurement-only case. The
analytical formula (28) is in good agreement with the numerical simulation, and it shows the
sub-Poisson fluctuation for a large range of θm. In the vicinity of Qjump = 0 at θ0/π ≈ 0.395,
the Fano factor is strongly suppressed/enhanced as θm→ θ0 ± 0 because Qjump and Qex have
the same signs for θ̃0 < θm < θ0, where Qex = 0 at θ̃0/π≈ 0.381, as discussed in Sec. 4.2.

5 Summary

We study the statistical property of energy exchange between the monitor and the dissipative
qubit under continuous measurement and feedback. The first half is the steady-state energy
flow when changing the measurement and feedback states. The energy flow can take a wider
range of values compared with the measurement-only case. When doing the measurement
to the ground state and the feedback to the excited state, energy maximally flows from the
monitor to the qubit, which exceeds the maximum value for the measurement-only case. We
also observe the qubit cooling by the measurement and the feedback, which is never seen for
the measurement-only case. We identify the boundary between the cooling and the heating is
determined by the temperature, the cooling region is extended as the temperature decreases.

The second part of this paper is devoted to the fluctuation of the energy flow by unravel-
ing the Lindblad equation, the stochastic master equation. The power spectrum is composed
of the frequency-independent and -dependent contributions, coming from the quantum jump
and the measurement backaction dynamics, called the Poisson noise and the backaction noise,
respectively, in this work. Both noises are characteristic of the continuous measurement pro-
cess, different from the standard shot noise such as in the electronic circuit. For a large range
of parameters, these spectra have the opposite sign, which can be interpreted as the mea-
surement backaction and leads to the sub-Poisson Fano factor. However, around zero energy
change by the quantum jump, these spectra have the same sign due to the dissipation to the
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heat baths, resulting in the super-Poisson Fano factor.
Our findings are helpful for the development of future applications in measurement-based

thermal machines, such as qubit cooling and quantum refrigerators, and the further under-
standing of quantum thermodynamics in quantum dissipative systems from the aspect of the
current fluctuations. Recently, thanks to the advancements in fabrication techniques for nanoscale
devices and improvements in heat measurement technologies [48,49], it is expected that the
flow of quantum heat and its fluctuations can be directly observed by monitoring the temper-
ature of the thermal bath.

The numerical results for the trajectory simulations used in Figs. 4 (b), 5 (b), and 7 are
published on Zenodo [50].
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