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Abstract

These notes account for five ninety-minute lectures given by Mylène Maïda as part of the
2024 Summer School in Les Houches. This 4-week program was entitled Large deviations
and applications. The goal of these lectures is to present a series of mathematical results
about large deviations of the particles of a Coulomb gas or related systems, such as
the eigenvalues of some random matrix ensembles. It encompasses the deviations of
the empirical measure and those of the rightmost particle (corresponding to the largest
eigenvalue).
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Introduction35

These notes account for five lectures given as part of the 2024 Summer School in Les Houches36

entitled Large deviations and applications. The goal of these lectures is to present a series of37

mathematical results that are known about large deviations of the empirical measure of the38

particles of a Coulomb gas or related systems, such as the eigenvalues of some random matrix39

ensembles.40

The lectures were mostly taught in parallel with a course of the same format presented by41

Pierpaolo Vivo (King’s College London) entitled Large deviations in random matrix theory and42

Coulomb gas systems, whose lecture notes can be found here1. We refer the interested reader43

to Vivo’s notes for a complementary point of view on some of the results.44

Among the five main courses of the program, this course was probably the most math-45

oriented. Therefore, along with the presentation of the results, we will also seize the opportu-46

nity to introduce some mathematical tools that we find useful to show (or use) large deviation47

principles (LDP).48

49

Before presenting in more details the scope of these lectures, let us provide a few general50

references.51

We start with two resources, that we find particularly accessible for beginners :52

• as a first glimpse on large deviations, we recommend the following blogpost2, which is53

the transcription of a tutorial taught by D. Chafaï at ICERM in 2018,54

• in the same summer school, an introductory course on large deviations, with a special55

focus on statistical mechanics, was given by H. Touchette. We highly recommend his56

lecture notes [1].57

Among probabilists, the following books are considered very classical:58

• the book [2] provides a very comprehensive presentation of the main tools used to es-59

tablish large deviation principles and of the most classical applications,60

• the book [3] is a classical reference dealing with random matrix theory but we advertise61

here its appendix D as a very concise summary of useful tools for large deviations,62

• the reference [4], which is also very comprehensive, is mainly based on a weak conver-63

gence approach, which, in its spirit, is more related to variational principles, that are64

natural to physicists and inspired the approach of D. García-Zelada, that we will present65

in Section 2.66

These are general references for the course but more specific thematic lists of references67

will be provided in each chapter.68

69

The structure of the present lecture notes is as follows : in Section 1 – corresponding to70

the first lecture – we will introduce one of the most studied ensembles of random matrices, the71

Gaussian Unitary Ensemble (GUE), provide an LDP for the empirical measure of its eigenvalues72

and explain how it can be exploited to recover the celebrated Wigner theorem in this particular73

case. This will mostly rely on a paper by G. Ben Arous and A. Guionnet [5]. In Section 2 –74

roughly corresponding to lectures 2 and 3 –, we advertise the work of D. García-Zelada [6],75

based on Varadhan’s approach of large deviations, that provides a unified framework for large76

1http://www.lptms.universite-paris-saclay.fr/leshouches2024/files/2024/07/Les_Houches_Lecture_Notes_
VIVO_V1.pdf

2https://djalil.chafai.net/blog/2018/03/09/tutorial-on-large-deviation-principles/
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deviations for singular Gibbs measures, encompassing usual Coulomb gases in Rd at finite or77

high temperature, but also Coulomb gases on manifolds, conditional Gibbs measures, zeroes of78

some models of random polynomials etc. Recently, following the pioneering work of Guionnet79

and Husson, spherical integrals of the form80

IN(AN , BN) :=

∫

exp (NTr(ANUBNU∗))dmN(U), (1)

where AN and BN are two diagonal matrices of size N with real entries and mN is the Haar81

measure on the orthogonal or the unitary group of size N, have been used to study the large82

deviations of the largest eigenvalue for several models of random matrices. In Section 3 –83

roughly corresponding to lectures 4 and 5 –, we provide a detailed derivation of the asymp-84

totics of spherical integrals in the case when one of the matrices, say AN , is of rank one, and85

explain how it can be used to study the deviations of the largest eigenvalue.86

87

In these notes, we try to stay as close as possible to the in-person lectures that have been88

given in Les Houches. For the sake of completeness, we have nevertheless added a few proofs89

that were not presented during the lectures: they are in general postponed to the appendices.90

Note that, although very interesting, the results on large deviations of the empirical field for91

Coulomb gases [7,8], which are related to the microscopic structure of these particle systems,92

are beyond the scope of this course and will not be included in these notes.93
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1 The Gaussian Unitary Ensemble94

The Gaussian Unitary Ensemble (GUE) is one of the most popular models of random matrices.95

In this first chapter, we study this example in full detail, through the lens of large deviation96

theory.97

1.1 Three descriptions of the GUE98

In the usual vocabulary of random matrix theory (RMT), inspired by statistical physics, an
ensemble is a probability distribution over a set of matrices. In this case, we consider the space
of Hermitian matrices of size N × N, denoted by

HN(C) := {M ∈MN(C), M∗ = M} .

The easiest way to define the GUE is by describing the joint law of the entries. Before doing so,99

we recall that if X and Y are two independent real random variables with standard Gaussian100

distribution N (0, 1), then G :=
X+iY
p

2
is said to be standard complex Gaussian and we denote101

G ∼N
C
(0, 1).102

Definition 1.1 Let N ∈ N∗ and consider independent random variables {Gi,i}Ni=1
and {Gi, j}1≤i< j≤N103

such that Gi,i ∼N (0, 1) and Gi, j ∼N
C
(0, 1). Define the following N × N Hermitian matrix :104

HN =















G1,1p
N

Gi, jp
N

. . .
G∗

i, jp
N

. . .
GN,Np

N















, so that Gi, j = G∗j ,i .

The matrix HN is said to follow the GUE distribution or equivalently to belong to the GUE. We105

denote by PGUEN
its distribution.106

One can also directly define PGUEN
as a Gaussian distribution on HN(C). The isomorphism107

HN(C) ≃ RN2 induces a Lebesgue measure on HN(C), that we denote by LebHN
. We can then108

give the following equivalent definition of the GUE:109

Proposition 1.2 There exists a normalizing constant cN such that110

dPGUEN
(H) = cN exp

�

−
N

2
Tr(H2)

�

dLebHN
(H),

where Tr is the usual trace on HN(C).111

To see the correspondence with the law of the entries, it is enough to expand the trace as112

follows: if H = (hi, j)1≤i, j≤N ,113

Tr(H2) = Tr(HH∗) =
N
∑

i=1

h2
i,i + 2

∑

1≤i< j≤N

|hi, j |2.

Now, for i < j , if we denote by xi, j = Re hi, j and yi, j = Im hi, j , the respective real and114

imaginary part of hi, j , we have115

Tr(H2) =
N
∑

i=1

h2
i,i + 2

∑

1≤i< j≤N

(x2
i, j + y2

i, j),

5
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so that, as expected, under PGUEN
, (hi,i)1≤i≤N , (xi, j)1≤i< j≤N and (yi, j)1≤i< j≤N are indepen-116

dent real Gaussian variables, with variance 1/N if i = j and 1/2N if i < j .117

118

When HN has distribution PGUEN
, it is interesting to study the law of its eigenvalues and119

eigenvectors. The following proposition gives the distribution of the eigenvalues. By a slight120

abuse of notations3, we will again denote this joint distribution by PGUEN
.121

Proposition 1.3 If HN has distribution PGUEN
, then almost surely, HN is diagonalisable with122

distinct eigenvalues, that we may enumerate in decreasing order λN
1 > · · · > λ

N
N . Then, the joint123

law of the random vector (λN
1 , · · · ,λN

N) is given by124

dPGUEN
(λ1, · · · ,λN) =

N
N2

2 1{λ1>...>λN}

(2π)N/2
∏N−1

j=1 j!

∏

i< j

(λi −λ j)
2 exp

 

−
N

2

N
∑

j=1

λ2
j

!

dλ1 · · ·dλN . (2)

This statement is well known in RMT. It is closely related to Weyl’s formula. A classical125

reference for this kind of results is the book of M.L. Mehta [9]. One can also cite [10] for126

a gentle introduction for physicists. For probabilists, a more recent standard reference is [3]127

(see in particular Theorem 2.5.2 there).128

Although we won’t focus very much on this aspect in the sequel, let us mention that it is129

also possible to describe the law of the eigenvectors under PGUEN
. The answer to this question,130

together with a third description of the law PGUEN
, is postponed to Appendix A.131

132

We now want to study the behavior of the particles (λN
1 , · · · ,λN

N) under PGUEN
. Many in-133

teresting questions can be asked about their behavior e.g. the following:134

• How does the largest eigenvalue behave ?135

• What does the global regime look like ? etc.136

The first question will be addressed in full detail for the Gaussian Orthogonal Ensemble137

(GOE), which is the real symmetric counterpart of the GUE, in the course of Pierpaolo Vivo138

and we strongly recommend his lecture notes. They can be found in the present volume or at139

the following link4. We won’t detail it in the case of the GUE, but we will come back to similar140

questions for other models in the third section of these notes (Lectures 4 and 5).141

We will rather focus on the second question. The idea is to encode the positions of all the142

particles as a whole in the following object:143

µ̂N :=
1

N

N
∑

i=1

δλN
i
.

It is called the empirical distribution of the eigenvalues of HN or spectral empirical distribution144

of HN . For each realisation HN(ω) of the random matrix HN , µ̂N(ω) is a probability measure145

which is nothing but the uniform distribution over the set of eigenvalues {λN
1 (ω), · · · ,λ

N
N(ω)}.146

Therefore, µ̂N is a random probability measure, that is a random variable with values in the set147

P(R) of probability measures on R. This random measure will be our main object of study in148

this chapter, and we want in particular to describe its typical behavior (law of large numbers),149

its large deviations etc.150

3If H is a matrix, dPGUEN (H) will refer to the law of the matrix, whereas when λ1,λN are real numbers,
dPGUEN (λ1, · · · ,λN), it will refer to the law of the eigenvalues, so that there is hopefully no ambiguity.

4http://www.lptms.universite-paris-saclay.fr/leshouches2024/files/2024/07/Les_Houches_Lecture_Notes_
VIVO_V1.pdf
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1.2 Large deviation principle for the empirical spectral distribution151

Let us first make the link between the GUE random matrix model and Coulomb gas-like particle152

systems.153

To lighten the notations, we denote the prefactor in (2) by154

CN :=
N

N2

2

(2π)N/2
∏N

j=1 j!
, (3)

so that we can now rewrite (2) as :155

dPGUEN
(λ1, . . . ,λN) = CN exp

 

−N

 

1

2

N
∑

j=1

λ2
j −

1

N

∑

i ̸= j

log |λi −λ j |

!!

dλ1 · · ·dλN .

Note that there is here a slight abuse of notation: PGUEN
as defined in (2) was a distribution156

over that set {λ1 > . . . > λN} whereas here we extend it to RN . This is balanced by an157

extra factor N! in the definition of the constant CN with respect to the normalizing constant158

appearing in (2).159

We now can see PGUEN
as the canonical Gibbs measure associated to the energy E, defined160

as follows: for any N-tuple x1, . . . , xN of real numbers,161

E(x1, ..., xN) := N

 

1

2

N
∑

j=1

x2
j −

1

N

∑

i ̸= j

log |xi − x j |

!

. (4)

In this expression,162

• the first term
1
2

∑N
j=1 x2

j
is usually interpreted as a confining external potential applied163

to each particle, that prevents them to lay too far away from the origin,164

• whereas the second term
1
N

∑

i ̸= j log |xi − x j | is usually interpreted as a repulsive two-165

body interaction.166

We commonly use the terminology one dimensional log-gas to describe such a particle sys-167

tem; it is considered a Coulomb-type particle system5. Coulomb gases will be introduced and168

discussed more thoroughly in the next chapter of these notes. We refer to the book [11] of169

P. Forrester for a very thorough presentation of theses systems, including many explicit com-170

putations.171

Before getting into the mathematical statement of an LDP for the spectral empirical mea-172

sure bµN , let us try to give some rough heuristics towards a possible rate function. Fix µ ∈ P(R),173

δ > 0 small and B(µ,δ) a ball of radius δ centered at µ for a metric on P(R) to be defined174

later. We have175

PGUEN
(bµN ∈ B(µ,δ))

= CN

∫

bµN∈B(µ,δ)
exp

�

−N2

�
∫

x2

2
dbµN(x )−

∫∫

x ̸=y

log |x − y |dbµN(x )dbµN(y)

��

dx1 · · ·dxN .

Then (if everything behaves nicely)176

−
1

N2
logPGUE(bµN ∈ B(µ,δ)) ≈ −

1

N2
logCN +

∫

x2

2
dµ(x )−

∫∫

log |x − y |dµ(x )dµ(y).

5The one-dimensional Coulomb interaction is linear whereas the two-dimensional is logarithmic. In other
words, we have here a two-dimensional Coulomb gas confined to live on the real line.

7
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The analysis of the constant CN is a simple exercise, as its expression is completely explicit.177

Namely,178

1

N2
logCN = −

1

N2

N
∑

j=1

j
∑

k=1

log
�

k

N

�

−
1

2N
log

�

2π

N

�

= −
1

N

N
∑

k=1

N − k + 1

N
log

�

k

N

�

−
1

2N
log

�

2π

N

�

−−−−→
N→∞

−
∫ 1

0

(1− x ) log xdx =
3

4
.

If, for any probability measure µ for which it is properly defined, we let179

I(µ) =

∫

x2

2
dµ(x )−

∫∫

log |x − y |dµ(x )dµ(y)−
3

4
,

then we expect that180

PGUEN
(bµN ∈ B(µ,δ)) ≃ exp

�

−N2I(µ)
�

.

Let us now go to a more precise statement of the LDP that was unveiled by G. Ben Arous181

and A. Guionnet in [5]. Mathematically speaking, a full LDP in this case will take the following182

form:183

• for any open set O ⊂ P(R), lim infN→∞
1

N2 logPGUEN
(bµN ∈ O) ≥ − infµ∈O I(µ),184

• for any closed set F ⊂ P(R), lim supN→∞
1

N2 logPGUEN
(bµN ∈ F) ≤ − infµ∈F I(µ).185

Open and closed refer to a topology that we have to define on the space of probability186

measures P(R): a common choice is the topology of weak convergence. In this topology, a187

sequence (νN)N∈N converges to ν ∈ P(R), and we denote this convergence by νN
w
−−−−→
N→∞

ν, if188

and only if189

∀ f ∈ Cb(R),

∫

R

f (x )dνN(x ) −−−−→
N→∞

∫

R

f (x )dν(x ),

where Cb(R) stands for the set of bounded and continuous functions from R to R.190

We are now ready to state the main result of this chapter.191

Theorem 1.4 [5]Under PGUEN
, the sequence of empirical spectral distributions (bµN)N∈N satisfies192

a large deviation principle at speed N2 with good rate function6 I in the space P(R) equipped193

with the topology of weak convergence, where the rate function I is defined as follows:194

I(µ) :=

¨
∫

R

x2

2 dµ(x )−
∫∫

log |x − y |dµ(x )dµ(y)− 3
4 , if

∫

x2dµ <∞,

∞, otherwise.
(5)

It is always more comfortable to work with a metric structure. Fortunately, the topology195

of weak convergence can be metrized by the bounded-Lipschitz distance defined as follows :196

for µ,ν ∈ P(R)197

dBL(µ,ν) = sup
∥ f ∥∞≤1,∥ f ∥Lip≤1

�

�

�

�

∫

f dµ−
∫

f dν

�

�

�

�

,

6We don’t want to insist too much at this stage on the notion of (good) rate function, we refer to Section 2.3 for
more details.
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with ∥ f ∥Lip ≤ 1⇔ | f (x ) − f (y)| ≤ |x − y |,∀x , y ∈ R. This means that νN
w
−−−−→
N→∞

ν if and198

only if dBL(νN ,ν) −−−−→
N→∞

0. In the following, anytime we mention a distance on P(R) it will199

be the bounded-Lipschitz distance and B(µ,δ) will refer to the ball of radius δ around µ for200

this bounded-Lipschitz distance.201

With P(R) being a metric space, it is possible to give an easier formulation of the LDP202

above. Roughly speaking, we have :203

(weak LDP on small balls + exponential tightness) implies (full LDP)204

More precisely, if we have205

1. (Weak LDP) :206

lim
δ→0

lim inf
N→∞

1

N2
logPGUEN

(bµN ∈ B(µ,δ))

= lim
δ→0

lim sup
N→∞

1

N2
logPGUEN

(bµN ∈ B(µ,δ)) =: −I(µ),

2. and (Exponential tightness) : There exists a sequence (KL)L>0 of compact subsets of207

P(R) such that208

lim sup
L→∞

lim sup
N→∞

1

N2
logPGUEN

(bµN /∈ KL) = −∞, (6)

then we have Theorem 1.4. We refer to Appendix D in [3] for the details on this criterion.209

210

The proof of the weak LDP has been sketched at the beginning of this subsection, so we now211

focus on the second point. Let us comment on the (important) notion of tightness in probability.212

A classical reference on the notions of weak convergence of measures and tightness in Polish213

spaces in the book of P. Billingsley [12]. If we have a random variable X , with values in a214

Polish space, then for any ϵ > 0, one can always find a compact set Kϵ for which215

P(X /∈ Kϵ) ≤ ϵ,

that is “almost everything happens inside a (large enough) compact set”. When we consider216

a sequence, or more generally a family, of random variables (Xi)i∈I , it is not obvious that one217

can find a fixed compact Kϵ (depending on ϵ but not on i) such that218

∀i ∈ I ,P(Xi /∈ Kϵ) ≤ ϵ.

This is not true in general7. If it holds for any ϵ, the family of random variables is said to be219

tight (equivalently, if for any i ∈ I , µi is the distribution of the random variable Xi , the family220

of probability measures (µi)i∈I is said to be tight). It means that when we deal with questions221

related to (weak) convergence, what happens outside a large compact set is not relevant.222

Here, as we are working at the level of exponentially small events, we ask for exponential223

tightness, which, in our case, is expressed by (6). Moreover, as the sequence (bµN)N≥1 that we224

are considering is a sequence of random variables with values in the set P(R), the first step is225

to describe a convenient family of compact sets in this latter space.226

7A simple illustrative example is the case when the distribution of Xn is µn = δn the Dirac mass at n. This
sequence of probability measures converges to the null measure in the topology of vague convergence (for test
functions which are continuous and compactly supported) but does not converge in the sense of weak convergence.
We observe a loss of mass due to the lack of tightness.

9
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For any L > 0, let us define227

KL :=

�

µ ∈ P(R),
∫

x2dµ(x ) ≤ L

�

.

We first justify that KL is a compact subset of P(R). Notice that for all µ ∈ KL, we have by228

Markov inequality229

µ

��

−

√

√L

ϵ
,

√

√L

ϵ

�c�

=
ϵ

L

∫

L

ϵ
1§

x /∈
�

−
Ç

L
ϵ ,
Ç

L
ϵ

�ª(x )dµ(x ) ≤
ϵ

L

∫

x2dµ(x ) ≤ ϵ,

so that the family of probability measure KL is tight, in the sense explained above8. Since230

R is a complete metric space, we deduce by Prokhorov’s theorem (see for example Theorem231

C.9 in [3]) that the closure of KL is compact in the weak topology. Moreover, KL is closed.232

Indeed, let (µN)N be a sequence in KL which converges weakly to µ then, for any M > 0,233
∫

min(x 2, M)dµ(x ) = limN→∞
∫

min(x 2, M)dµN(x ). Then by monotone convergence as M234

goes to infinity and the fact that the bound
∫

min(x2, M)dµN(x ) ≤ L is uniform in M and235

N, we get that µ ∈ KL. Therefore, KL is a closed set included in a compact and so it is itself236

compact.237

Let us now show (6). We define238

f (x , y) :=
x2

4
+

y2

4
− log |x − y |.

As, for any x , y ∈ R, log |x − y | ≤ log(|x |+ 1) + log(|y |+ 1), we have239

f (x , y) ≥
x2

8
+

y2

8
+ eC ,

for some constant eC . Note that this bound also justifies why the rate function I introduced in240

(5) is well defined.241

Moreover, using the density of PGUEN
with respect to the Lebesgue measure, we have :242

PGUEN
(bµN /∈ KL) = CN

∫

{bµN /∈KL}
exp

 

−N
1

2

N
∑

i=1

x2
i +

∑

i ̸= j

log |xi − x j |

!

dx1 . . . dxN

= CN

∫

{bµN /∈KL}
exp

�

−N2

∫∫

x ̸=y

f (x , y)dbµN(x )dbµN(y)

� N
∏

i=1

exp

�

−
x2

i

2

�

dx1 · · ·dxN

≤ CN

∫

{bµN /∈KL}
exp

�

−N2

∫∫

x ̸=y

�

x2

8
+

y2

8
+ eC

�

dbµN(x )dbµN(y)

� N
∏

i=1

exp

�

−
x2

i

2

�

dx1 · · ·dxN

≤ CN exp
�

−N2
�

N − 1

N

L

4
+

N(N − 1)
N2

eC
��

∫

{bµN /∈KL}

N
∏

i=1

exp

�

−
x2

i

2

�

dx1 · · ·dxN ,

and then taking lim sup
1

N2 log on both sides, we get :243

lim sup
N→∞

1

N2
logPGUEN

(bµN /∈ KL) ≤ lim sup
N→∞

1

N2
logCN −

L

4
+ eC ≤

3

4
−

L

4
+ eC .

8Note that there is a subtle point here: we use the fact that the family of probability measure KL is tight to show
that it is a compact subset of P(R). Then we will use KL to show that the family of random variables (bµN)N≥1 is
exponentially tight !

10
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Finally, taking L to infinity, we get the desired result.244

245

This concludes the arguments of the proof of the result of G. Ben Arous and A. Guionnet246

that we wanted to emphasize here. We refer to the original paper [5] or alternatively to Section247

2.6 of the book [3] for more details. In the framework of these notes, we will give in the next248

chapter a much more general result on singular Gibbs measures that encompasses the GUE249

model.250

1.3 Understanding the minimizer of the rate function251

In various situations, understanding the deviations of a family of random variables may be252

the best way to study also their typical behavior. In the case of GUE, this typical behavior253

was known for a long time before the large deviations were studied but we find it instructive254

to show how this particular case of Wigner’s theorem can be seen as a corollary of the large255

deviation principle we have just obtained. This subsection will be devoted to the discussion256

and the proof of the following statement and why it may be seen as a corollary of Theorem257

1.4.258

Corollary 1.5 (Wigner’s Theorem)259

Almost surely260

bµN
w
−−−−→
N→∞

µsc,

where µsc is the semi-circular distribution defined by the density :261

dµsc(t ) =
1

2π

p

4− t 21[−2,2](t )dt .

In a very general context, it is possible to deduce an almost sure convergence from a large262

deviation principle, whenever the rate has a unique minimizer. This general mechanism will be263

illustrated in our example at the end of this section. We first establish the following property:264

Proposition 1.6 µsc is the unique minimizer of I , the rate function defined in (5).265

The proof of the proposition will be in three steps: we show that any minimizer should266

satisfy the Euler-Lagrange equations, that the semi-circular distribution satisfies the Euler-267

Lagrange equations and to conclude, that the minimizer is unique.268

Each of the three steps corresponds to a lemma that we state below:269

Lemma 1.7 Any minimizer µ of the rate function I defined in (5) satisfies the following : there270

exists a constant CEL such that for any x in the support of the measure µ, we have271

x2

2
− 2

∫

log |x − y |dµ(y) = CEL,

and for Lebesgue-almost every x ∈ R,272

x2

2
− 2

∫

log |x − y |dµ(y) ≥ CEL.

These equations are called Euler-Lagrange (EL) equations. We will give below a detailed273

proof of Lemma 1.7, which, as we will see, is robust to generalisation to external potentials274

other than quadratic.275

The next lemma states that µsc does satisfy the EL-equation associated to this problem :276

11
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Lemma 1.8

x2

2
− 2

∫

log |x − y |dµsc(y) =

¨

1 for all x ∈ [−2, 2],
> 1 for all |x | > 2.

There are many ways to compute the logarithmic potential of µsc, that is the integral277
∫

log |x − y |dµsc(y). The computation of this quantity outside the support of µsc has been278

detailed in Section IV.A.1 of Vivo’s lecture notes9: using an expansion of the logarithm, the279

computation boils down to the computation of the moments of µsc, that are interesting quan-280

tities by themselves, related to Catalan numbers. From his computation, it is easy to check the281

second inequality above. For the sake of completeness, we present the details of the computa-282

tion of the logarithmic potential inside the support of the measure, using the residue theorem,283

in Appendix B.284

285

Moreover, the uniqueness of the minimizer of the rate function is ensured by the following:286

Lemma 1.9 The rate function I defined in (5) is strictly convex on P(R). It therefore admits a287

unique minimizer.288

This was not proved during the lectures but relies on an interesting Fourier representation289

of the logarithmic energy : the proof of Lemma 1.9 is postponed to Appendix C.290

291

We now go to the proof of Lemma 1.7. Let ψ ≥ 0, and φ be two bounded and compactly292

supported functions. Then define νψ,φ by293

dνψ,φ(x ) = φ(x )dµ(x ) +ψ(x )dx ,

where φ and ψ are such that νψ,φ(R) = 0, so that if µ ∈ P(R) and ϵ is sufficiently small,294

µ+ ϵνψ,φ ∈ P(R) . If µ is a minimizer of I , for any such ψ,φ we have295

I(µ) ≤ I(µ+ ενψ,φ) =

∫

x2

2
dµ+ ε

∫

x2

2
dνψ,φ

−
∫∫

log |x − y |(dµdµ+ εdµdνψ,φ + εdνψ,φdµ+ ε2dνψ,φdνψ,φ)

−
3

4
,

thus we get296

ε

∫

x2

2
dνψ,φ(x )−2ϵ

∫∫

log |x−y |dνψ,φ(x )dµ(y)−ϵ2

∫∫

log |x−y |dνψ,φ(x )dνψ,φ(y) ≥ 0,

and so by dividing by ϵ and letting ϵ go to zero we get :297

∫ �

x2

2
− 2

∫

log |x − y |dµ(y)
�

dνψ,φ(x ) ≥ 0.

By choosing ψ = 0 and ±φ, we obtain that for all φ such that
∫

φdµ = 0 :298

∫

φ(x )

�

x2

2
− 2

∫

log |x − y |dµ(y)
�

dµ(x ) = 0,

9http://www.lptms.universite-paris-saclay.fr/leshouches2024/files/2024/07/Les_Houches_Lecture_Notes_
VIVO_V1.pdf
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and therefore there exists a constant CEL such that for all x ∈ Supp(µ),299

x2

2
− 2

∫

log |x − y |dµ(y) = CEL (Lagrange multiplier).

Then, by choosing φ = −
∫

ψ(y)dy being a constant, we get, for Lebesgue-almost every x ,300

x2

2
− 2

∫

log |x − y |dµ(y) ≥ CEL.

Therefore, any minimizer µ satisfies the Euler-Lagrange equation.301

302

We are now ready to go to the proof of Corollary 1.5. Putting the three lemmas together,303

we get that µsc is indeed the unique minimizer of I .304

305

From there, one can easily deduce Wigner’s theorem, using first the upper bound of the306

large deviation principle. It indeed gives that307

∀δ > 0, lim sup
N→∞

1

N2
logPGUEN

(bµN /∈ B(µsc,δ)) ≤ − inf
µ/∈B(µsc,δ)

I(µ) =: −Iδ.

Then since K := B(µsc,δ)c ∩ {ν : I(ν) ≤ Iδ + 1} (where B(µsc,δ)c is the complement of308

B(µsc,δ)) is a compact set and I is lower semicontinous, I reaches its infimum on K . Since309

K does not contain the minimizer µsc of I , we have 0 < inf
µ∈K

I(µ) = Iδ. Therefore, we have310

for N big enough that311

PGUEN
(bµN /∈ B(µsc,δ)) ≤ exp

�

−N2 Iδ
2

�

,

and thus, since Iδ > 0, we have that PGUEN
(bµN /∈ B(µsc,δ)) is summable. By Borel-Cantelli,312

we know that for all δ, the sequence (bµN)N∈N is almost surely eventually in B(µsc,δ) and313

therefore we have that a.s. bµN
w
→ µsc as N →∞.314

1.4 Conclusion315

Before going to the general theory of the global behavior of Coulomb gases, let us summarize316

what we have learnt from the study of the specific case of the GUE model:317

• If HN is a random matrix from the GUE of size N, the distribution of its eigenvalues is a318

singular canonical Gibbs measure which forms a one-dimensional log-gas.319

• Its spectral empirical distribution is a random measure which satisfies a large deviation320

principle on the space of probability measures on R, at speed N2 with an explicit rate321

function.322

• Through the derivation of Euler-Lagrange equations, one can show that the unique min-323

imizer of this rate function is the semi-circular distribution. From there, one can use the324

large deviation upper bound for the spectral empirical distribution to get the almost sure325

weak convergence of the latter to the semi-circle distribution (Wigner’s theorem).326

13
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2 General LDP for particle systems related to Coulomb gases327

After this warmup through the example of the GUE, we now go to the main topic of the course,328

that is LDPs for Coulomb gases and related particle systems. On this question, it is fair to cite329

the work of D. Chafaï, N. Gozlan and P. A. Zitt [13], which built on arguments in the spirit330

of [5]. We have chosen in this course to emphasize the work of D. García-Zelada [6]. We first331

introduce properly the notion of Coulomb gas.332

2.1 Coulomb and Riesz gases, vocabulary333

Consider N particles (x1, · · · , xN) ∈ (Rd)N , and define the Hamiltonian of the configuration334

as follows:335

EN(x1, · · · , xN) = N
N
∑

i=1

V(xi) +
1

2

∑

i ̸= j

g (xi − x j) . (7)

The function V is usually called the external potential and g the kernel interaction. Under ap-336

propriate assumptions on V and g that we will detail later, it is possible to define the associated337

Gibbs measure, given by :338

dPN,V,β ,g (x1, · · · , xN) =
1

ZN,V,β ,g
exp (−βEN(x1, · · · , xN))dπ

⊗

N(x1, · · · , xN) , (8)

where dπ
⊗

N(x1, · · · , xN) = dπ(x1) · · ·dπ(xN), with π a reference measure, most of the time339

chosen to be the Lebesgue measure on Rd and ZN,V,β ,g is a normalizing constant such that340

PN,V,β ,g is a probability measure10.341

Coulomb gases correspond to a particular choice of the (repulsive) interaction kernel g . It342

satisfies the so-called Poisson equation∆g = −cdδ0, with cd an appropriate constant depend-343

ing on the dimension d so that its solution reads:344

g (x ) =







−|x | , for d = 1,
− log |x | , for d = 2,

1

|x |d−2 , for d ≥ 3.

Example: Similarly to what we saw in the first chapter of this course for the GUE, if one345

defines the Complex Ginibre Ensemble, as a random matrix of size N × N, with indepen-346

dent identically distributed entries Gi, j that are complex centered Gaussian with variance 1/N347

(without any symmetry assumption), then, one can check that the joint law of its eigenvalues348

is a Coulomb gas in dimension d = 2, with Coulomb kernel g (x − y) = − log |x − y | and349

quadratic external potential V(x ) = |x |2 /2.350

351

As mentioned earlier, the eigenvalues of the GUE do not form stricto sensu a Coulomb gas,352

but rather a so-called log-gas in the sense that g (x ) = − log |x | although we are in dimension353

1. This log-gas in one dimension is also commonly called a β -ensemble.354

An important family of related particle systems are Riesz gases: for d ≥ 1, g (x ) = |x |−s
355

with s > 0. We refer the reader to the survey [14] by M. Lewin.356

357

As in the first chapter, we will study the global regime of these particle systems, through
the first order asymptotics of the associated empirical measure

µ̂N :=
1

N

N
∑

i=1

δxi
.

10Appropriate assumptions on V and g ensure in particular that 0 < ZN,V,β ,g <∞.

14
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Let us now briefly mention an important topic that we will not discuss in these lectures,358

namely the microscopic structure of Coulomb gases. As we have seen in the first chapter, with359

the scaling that we have chosen (multiply each entry of the matrix by 1/
p

N, or equivalently360

put a factor of N in front of the external potential V in the definition of the Hamiltonian), the361

weak limit of the empirical measure of the eigenvalues of the GUE is compactly supported. One362

can check that, under standard assumption on V, it would be the same for the Coulomb gas363

(8), associated with the Hamiltonian (7). The heuristics is that, considering a given particle364

xi , the force NV(xi) created on it by the external potential is of the same order as the force365

felt from the repulsion
∑

j ̸=i g (xi − x j) of all the other particles, both being of order N: this366

leads to an equilibrium at a finite scale.367

The limiting measure being compact, it means that on average, each particle occupies a368

box of volume of order N−1/d . If one wants to study the microscopic structure of the Coulomb369

gas, it is therefore natural to choose a place around which there are particles, that is a point370

x0 in the interior of the support of the limiting measure and blow up the configuration of371

points around x0 at a scale where there would be in average one point per unit volume, that372

is consider the process (N1/d(xi− x0))1≤i≤N . Following the breakthrough papers by S. Serfaty373

and collaborators, there has been huge mathematical progresses in the study of the Coulomb374

gases at this new scale. One of the main features is that, similarly to what was observed for375

matrix models, the microscopic structure of Coulomb gases is much more universal than their376

global regime, in the sense that the limiting random process essentially does not depend on377

the external potential V. It does depend on β and there is an important conjecture, that at low378

temperature (that is in the regime β → ∞), there would be a crystallization phenomenon,379

the limiting process being the triangular lattice in dimension 2. We won’t treat this problem380

in these notes but the interested reader may find a lot of resources on this topic on S. Serfaty’s381

webpage11. We recommend in particular the recent survey [15].382

383

2.2 General Laplace principle for particle systems driven by a k-body interac-384

tion385

Let us now go back to our main subject and present the framework of [6], which is a very386

general model with a k-body interaction (in most physical examples, we consider pairwise387

interactions, that is k = 2). At each step, we will try to make as transparent as possible the388

correspondence with the GUE model studied in the first part of this course.389

If M is the space in which the particles live (M may be Rd , a manifold or a Polish space12)390

and P(M) the set of probability measures on M , we consider G : Mk → (−∞,∞], a sym-391

metric, lower semi-continuous and bounded below function.392

For N ≥ k, we define WN : M N → (−∞,∞] by393

WN(x1, · · · , xN) =
1

Nk

∑

{i1,··· ,ik }⊆{1,··· ,N}
#{i1,··· ,ik }=k

G(xi1 , · · · , xik
). (9)

For instance, for the GUE, we choose M = R, k = 2 and define

G(x , y) :=
x2

2
+

y2

2
− 2 log |x − y | .

11https://math.nyu.edu/~serfaty/
12A Polish space is a complete separable metric space. Working in a Polish space is a standard assumption in

probability theory.

15

https://math.nyu.edu/~serfaty/
https://math.nyu.edu/~serfaty/
https://math.nyu.edu/~serfaty/
https://math.nyu.edu/~serfaty/


SciPost Physics Lecture Notes Submission

This gives

WN(x1, · · · , xN) =
1

N2

∑

i< j

G(xi , x j) =
1

N2

 

(N − 1)
N
∑

i=1

x2
i

2
−
∑

i ̸= j

log
�

�xi − x j

�

�

!

,

which is to compare with the energy E of the configuration that has been defined in (4).394

Consider now a reference measure π and inverse temperature βN > 0. Similarly to what395

we did previously, one can define an associated Gibbs measure γN , which has the following396

density397

dγN(x1, · · · , xN) := exp(−NβN WN(x1, · · · , xN))dπ(x1) · · ·dπ(xN) . (10)

Note that at this stage, γN is not normalized, it may not be a probability measure.398

399

Again, it may be useful to compare to our example: with G(x , y) :=
x2

2 +
y2

2 −2 log |x − y | ,
βN = N and dπ(x ) = e−x2/2dx , we get that

PGUEN
= CNγN ,

where PGUEN
has been defined in (2) and CN in (3).400

We are now ready to state the main result of [6]:401

Theorem 2.1 Assume that G : Mk → (−∞,∞] is symmetric, lower semi-continuous and402

bounded below and WN and γN being defined in (9) and (10) respectively.403

Assume that βN −−−−→
N→∞

β ∈ (0,∞].404

Let W : P(M)→ (−∞,∞) be defined as

W(µ) :=
1

k!

∫

Mk

G(x1, · · · , xk)dµ(x1) · · ·dµ(xk) .

If β = ∞, assume in addition that G(x1, · · · , xk) −−−−→xi→∞
∞ (i.e. we have a confining405

potential) and that we have the following regularity assumption: for any µ ∈ P(M) such that406

W(µ) <∞, there exists a sequence of probability measures (µN)N≥1 absolutely continuous with407

respect to π such that W(µN) −−−−→
N→∞

W(µ) as N converges to∞.408

409

Then, for all f : P(M)→ R continuous and bounded, we have

1

NβN
log

∫

M N

exp

�

−NβN f

�

1

N

N
∑

k=1

δxk

��

dγN((x1, ..., xN) −−−−→
N→∞

− inf
µ∈P(M)

{ f (µ) + F(µ)} ,

where F is the free energy with parameter β :

F(µ) := W(µ) +
1

β
S(µ|π),

with S(·|π) the relative entropy (or KL divergence) :

S(µ|π) :=

¨

∫ dµ
dπ log

� dµ
dπ

�

dπ, if µ has a density with respect to π,
∞, otherwise.

From there, one can deduce automatically an LDP for (a normalized version of) γN .410

Corollary 2.2 Under the same assumption as in Theorem 2.1, if we define dPN =
1

ZN
dγN , where411

ZN = γN(M N), then under PN , µ̂N =
1
N

∑

i δxi
satisfies an LDP at speed NβN with rate function412

J(µ) = F(µ)− inf F .413
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In particular, one can recover from there the LDP in the GUE case, initially due to G. Ben

Arous and A. Guionnet. In this case, as we have k = 2, G(x , y) =
x2+y2

2 − 2 log |x − y | and
β =∞, it comes that

W(µ) = F(µ) =

∫

x2

2
dµ(x )−

∫∫

log |x − y |dµ(x )dµ(y),

and we recover the rate function I defined in (5).414

Before going into more examples and then into the proof of Theorem 2.1, it is worth415

explaining a very general mechanism, that allows to deduce an LDP such as Corollary 2.2416

from a Laplace principle as obtained in Theorem 2.1. It is an important mathematical tool in417

the theory of large deviations and we devote the next section to explaining this mechanism.418

2.3 Link between Laplace principle and LDP : the Varadhan-Bryc approach419

Let us first make a quick reminder on the Laplace method, which is very familiar to mathe-
matical physicists. The Laplace principle states that, under suitable conditions, if we let

In :=

∫

R

exp (nφ(x ))dx ,

with φ a concave function reaching its maximum at a point x0, then we should have

In ≃ exp (nφ(x0)) ,

in the sense that

lim
n→∞

1

n
log In = φ(x0),

(one can often be more precise, depending on the regularity of the function φ). In the context
of large deviations, Varadhan’s lemma can be seen as an extension of the Laplace principle: if
a sequence of probability measures {µn}n≥1 defined on a space X , satisfies an LDP at speed n
with rate function I , and we let Jn :=

∫

exp (nφ(x ))dµn(x ), then

lim
n→∞

1

n
log Jn = sup

x∈X
{φ(x )− I(x )}.

One can even give a kind of reciprocal statement to Varadhan’s lemma : if such a limit occurs420

for a rich enough family of test functions φ, then an LDP holds for the sequence {µn}n≥1. This421

reciprocal statement is known as Bryc’s lemma.422

More precisely, we will discuss the equivalence of the two statements : for {µn}n≥1 a family423

of probability measures on a Polish space X we consider424

• (LDP) The sequence {µn}n≥1 satisfies an LDP with speed n, and with a good rate func-425

tion I13.426

• (LIM) For any continuous bounded function f , the following limit exists

Λ f := lim
n→∞

1

n
log

∫

exp(n f (x ))dµn(x ).

The following proposition discusses the relationship between these two statements :427

13We recall that by definition of semi-continuity, the level sets {I ≤ C} of rate functions are closed, when in
addition these level sets are all compact then the rate function is said to be good
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Proposition 2.3428

429

1. Varadhan’s integral lemma: Suppose (LDP) holds then (LIM) is verified and

Λ f = sup
x∈X
{ f (x )− I(x )}.

2. Bryc’s inverse integral lemma: Suppose (LIM) holds and suppose in addition that the se-
quence (µn)n≥1 is exponentially tight, then (LDP) holds with rate function I defined as
follows

I(x ) = sup
f∈Cb
{ f (x )−Λ f },

where Cb is the set of continuous bounded functions.430

As emphasized above, the first statement can be seen as an infinite dimensional extension431

of Laplace method. We refer the reader to the notes of H. Touchette [1] for a more thorough432

discussion of Varadhan’s lemma in the context of statistical mechanics or to Section 4.3 of [2]433

for a complete proof.434

In the sequel, we will use more specifically the second statement, a.k.a. Bryc’s inverse435

integral lemma, whose proof we detail hereafter. Let us assume that (LIM) holds and that the436

sequence (µn)n≥1 is exponentially tight, in the sense that there exists a sequence of compact437

sets (KL)L≥0 such that438

lim sup
L→∞

lim sup
n→∞

1

n2
logP(bµn /∈ KL) = −∞.

We first show that the LDP lower bound holds with rate function I . Let O be an open set
and x ∈ O, let f be a bounded and continous function chosen such that, f (x ) = 1, 0 ≤ f ≤ 1;
and f = 0 on Oc (such a function can be shown to exist if X is a completely regular topological
space). Then define the family of functions ( fp)p≥1 by fp(y) = p( f (y)− 1), for any y ∈ X .
Thus

∫

exp
�

n fp(y)
�

dµn(y) =

∫

O

exp
�

n fp
�

dµn +

∫

Oc

exp
�

n fp
�

dµn ≤ µn(O) + e−np ,

where the inequality comes from the fact that fp ≤ 0 and so exp
�

n fp
�

≤ 1 and that fp(y) = −p

on Oc . Then, taking lim inf
1
n log(·) on both sides of the previous inequality and using that

lim inf
1

n
log(an + bn) =max

§

lim inf
1

n
log(an), lim inf

1

n
log(bn)

ª

,

we get :

lim inf
n→∞

1

n
log

∫

en fp dµn ≤max
§

lim inf
n→∞

1

n
logµn(O),−p

ª

.

Given that (LIM) holds, the left hand side is Λ fp
. In addition, we have fp(x ) = 0 so we get :

Λ fp
− fp(x ) ≤max

§

lim inf
n→∞

1

n
logµn(O),−p

ª

.

We therefore obtain, for any x ∈ O,439

−I(x ) := − sup
f∈Cb
{ f (x )−Λ f } = inf

f∈Cb
{Λ f − f (x )} ≤ Λ fp

− fp(x )

≤max
§

lim inf
n→∞

1

n
logµn(O),−p

ª

−−−−→
p→∞

lim inf
n→∞

1

n
logµn(O).
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This inequality holds for all x ∈ O, so taking sup
x∈O

on the left hand side, we get the LDP lower

bound :

− inf
x∈O

I(x ) = sup
x∈O
{−I(x )} ≤ lim inf

n→∞

1

n
logµn(O).

Let us now show the upper bound. Since we have assumed exponential tightness of
(µn)n≥1, it is sufficient to show the upper bound for compact sets. Let δ > 0, and define

Iδ(x ) :=min
§

I(x )− δ,
1

δ

ª

.

Fix a compact set K ⊂ X . By definition of I , for all x ∈ K , there exists fx ∈ Cb(X) such that
fx (x )− Λ fx

≥ I(x )− δ ≥ Iδ(x ). By continuity of fx , there exists an open set Ax containing
x , such that for all y ∈ Ax , fx (y)− fx (x ) ≥ −δ. Now, let

Λ(n)
fx

:=
1

n
log

�∫

exp (n fx (y))dµn(y)

�

,

and define the following probability measures µn, fx
with densities :

dµn, fx
(y) = exp

�

n
�

fx (y)−Λ
(n)
fx

��

dµn(y).

Since fx (y)− fx (x ) ≥ −δ for all y ∈ Ax , we have :

µn(Ax ) =

∫

Ax

exp
�

−n
�

fx (y)−Λ
(n)
fx

��

dµn, fx
(y) ≤ exp

�

−n
�

fx (x )− δ −Λ
(n)
fx

��

.

Since by (LIM), Λ(n)
fx
−−−−→
n→∞

Λ fx
and since we have chosen fx such that fx (x )−Λ fx

≥ Iδ(x ),
we get :

lim sup
n→∞

1

n
logµn(Ax ) ≤ Λ fx

− fx (x ) + δ ≤ −Iδ(x ) + δ.

By compactness of K , since
⋃

x∈X Ax covers K we can extract a finite covering K =
⋃N

i=1 Axi
,440

for some x1, ..., xN ∈ X . We therefore get :441

lim sup
n→∞

1

n
logµn(K) ≤ lim sup

n→∞

1

n
log

� N
∑

i=1

µn(Axi
)

�

= max
1≤i≤N

§

lim sup
n→∞

1

n
logµn(Axi

)
ª

≤ max
1≤i≤N

�

−Iδ(xi) + δ
	

.

Taking lim
δ→0+

on the right hand side of the inequality, we obtain :

lim sup
n→∞

1

n
logµn(K) ≤ max

1≤i≤N
{−I(xi)} ≤ − inf

x∈X
I(x ),

which is the upper bound for the LDP. Thus, I satisfies both the upper and lower bounds, so442

we have an LDP with rate function I .443

444

Applying Proposition 2.3, one can deduce Corollary 2.2 from Theorem 2.1.445

2.4 Various applications of Theorem 2.1 and Corollary 2.2446

The goal of the section is to exhibit several very interesting applications of the main results447

of [6]. We will develop some of them in details, while others will be just briefly mentioned,448

referring the reader to the original paper for more details.449
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2.4.1 Usual Coulomb and Riesz gases450

The first result we want to establish is an LDP for the Gibbs measure PN,V,β ,g as defined by451

(8), with the kernel g being a Coulomb or a Riesz kernel. On this subject, one has to mention452

the work of D. Chafaï, N. Gozlan and P. A. Zitt in [13] and the work of P. Dupuis, V. Laschos453

and K. Ramanan [16], the latter being closer in the methods of the work of D. García-Zelada.454

We explain hereafter how to recover those results from Theorem 2.1.455

Let π be a reference measure on Rd . Let V : Rd 7→ (−∞,∞] be lower semicontinuous,456

bounded below such that there exists ξ > 0 such that
∫

Rd e−ξVdπ <∞.457

Let g : Rd 7→ (−∞,∞] symmetric, lower semicontinuous such that there exists ϵ > 0458

such that (x , y) 7→ g (x − y) + ϵV(x ) + ϵV(y) is bounded below. We also assume that459

(x , y) 7→ g (x , y) + V(x ) + V(y) goes to infinity as x and y both go to infinity and that the460

regularity assumption is satisfied.461

Then, for all f : P(Rd)→ R continuous and bounded, we have462

1

N2β
log

∫

M N

exp

�

−N2β f

�

1

N

N
∑

k=1

δxk

��

dPN,V,β ,g (x1, ..., xN) (11)

−−−−→
N→∞

− inf
µ∈P(M)

{ f (µ) +W(µ)} ,

and consequently, under PN,V,β ,g , the empirical measure of the particles satisfies a large devi-463

ation principle, at speed N2, with rate function β J , given by J(µ) = W(µ)− inf W.464

465

As already mentioned above, choosing d = 1, g (x ) = −2 log |x | and V(x ) = x2/2, it466

encompasses in particular the GUE case but also applies, with appropriate choices of the po-467

tential V to any Coulomb or Riesz kernel.468

469

Let us now quickly explain how to obtain (11) and the corresponding LDP from Theorem470

2.1 and Corollary 2.2.471

As we know that
∫

Rd e−ξVdπ <∞, we may assume without loss of generality that
∫

Rd e−ξVdπ = 1. If we make the following choices: βN = Nβ , and

G(x , y) := g (x − y) +
1

N − 1

�

N −
N

βN
ξ

�

V(x ) +
1

N − 1

�

N −
N

βN
ξ

�

V(y),

with g a Coulomb or Riesz kernel and V an appropriate choice so that the assumptions above472

are satisfied14 and define that corresponding measure γN as in (10), we get473

dγN(x1, . . . , xN) = e−NβN WN d
�

e−ξVπ
�⊗N
(x1, . . . , xN)

= e−
βN
N

�
∑

i< j g (xi−x j )+
�

N− N
βN
ξ
�
∑N

i=1 V(xi)
�

d
�

e−ξVπ
�⊗N
(x1, . . . , xN)

= ZN,V,β ,g dPN,V,β ,g (x1, . . . , xN),

which corresponds to an unormalized version of Coulomb/Riesz gases.474

We now use the following decomposition:

G1(x , y) := g (x − y) + ϵV(x ) + ϵV(y),

and
G2(x , y) := (1− ϵ)V(x ) + (1− ϵ)V(y),

14Any polynomial of even degree and positive main coefficient is suitable.
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so that, with obvious notations

WN = WN,1 + aN WN,2,

with

aN :=
1

1− ϵ

�

1

N − 1

�

N −
N

βN
ξ

�

− ϵ
�

,

a sequence converging to 1 as N goes to infinity. We can then check separately that WN,1 and475

WN,2 satisfy the required assumptions.476

477

As we have shown in the first chapter with Wigner’s theorem, it is possible to characterize478

the minimizer of the rate function through Euler-Lagrange equations. The minimizer is usually479

called equilibrium measure and is compactly supported.480

481

2.4.2 High temperature Coulomb and Riesz gases482

As explained in the previous subsection, the study of PN,V,β ,g which is related to standard483

models in RMT corresponds to a choice of βN of order N, leading to an LDP at scale N2 and484

a limiting equilibrium measure with compact support. But the study of measures of the type485

P
N,V,

β
N ,g

has also been considered in the literature. In this case, the corresponding particle486

systems are for example related to the classical Toda chain [17, 18] and are often called high487

temperature β -ensembles or high temperature gases. In our framework, it corresponds to a488

choice of βN of order 1. This regime has been investigated by various authors, see e.g. [19,20].489

In this case, one can see from the definition of the function F in Theorem 2.1 that the rate490

function is a mixture of an energy term W and an entropy term S. As far as we know, the491

first appearence of an LDP for such particle systems goes back to the work of T. Bodineau and492

A. Guionnet in [21] and before the work of D. García-Zelada, general results appeared in [16].493

In the framework of [6], Laplace principle and LDP at fixed β even require less assump-494

tions. With the same decomposition as in Section 2.4.1, one can show the following495

Theorem 2.4 Let π be a reference measure on Rd . Let V : Rd 7→ (−∞,∞] lower semicontinu-496

ous, bounded below such that there exists ξ > 0 such that
∫

Rd e−ξVdπ <∞.497

Let g : Rd 7→ (−∞,∞] symmetric, lower semicontinuous such that there exists ϵ > 0 such498

that (x , y) 7→ g (x − y) + ϵV(x ) + ϵV(y) is bounded below.499

Then, if βN → β , for all f : P(Rd)→ R continuous and bounded, we have500

1

NβN
log

∫

M N

exp

�

−NβN f

�

1

N

N
∑

k=1

δxk

��

dPN,V,β ,g ((x1, ..., xN) (12)

−−−−→
N→∞

− inf
µ∈P(M)

�

f (µ) +W(µ) +
1

β
S(µ|π)

�

,

and consequently, under PN,V,β ,g , the empirical measure of the particles satisfies a large deviation501

principle, at speed N, with rate function βW + S(·|π)− inf(βW + S(·|π)).502

As we have shown in the first chapter with Wigner’s theorem, it is possible to characterize503

the minimizer of the rate function through Euler-Lagrange-like equations. The minimizer is504

usually called thermal equilibrium measure and is not compactly supported. When this mini-505

mizer is unique, it is again possible to deduce almost sure convergence of the empirical measure506

to the thermal equilibrium measure.507
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2.4.3 Conditional Gibbs measures508

In some cases, it may also be natural to consider a gas of N particles {x1, · · · , xN} where all509

but the first ℓ points are deterministic. In [6], several regimes are considered but for the sake510

of simplicity, we will stick in these notes to the case when ℓ is of order 1.511

Assume that the density of these deterministic points converges weakly to ν :

νN :=
1

N − ℓ

N
∑

i=ℓ

δxi

w
−−−−→
N→∞

ν .

Define the external potential GE generated by y on the random points (x1, · · · , xℓ) by

GE ((x1, · · · , xℓ), y) :=
ℓ
∑

i=1

G(xi , y),

and denote the average external interaction by

VN(x1, · · · , xℓ) =

∫

GE ((x1, · · · , xℓ), y)dνN(y) .

Then, consider the internal interaction

G I(x1, · · · , xℓ) =
∑

1≤i< j≤ℓ
G(xi , x j) .

Finally, define V : Mℓ→ R by

V(x1, · · · , xℓ) =

∫

M

GE ((x1, · · · , xℓ), y)dν(y).

Theorem 2.5 Assume that the interaction G is such that the following limit holds:

V(x1, · · · , xℓ) = lim
N→∞

VN(x1, · · · , xℓ)

and V is continuous bounded on Mℓ. Define the conditional measure γc
N as follows:

dγc
N(x1, · · · , xℓ) = exp

§

−βN

�

VN +
1

N
G I
�

(x1, · · · , xℓ)
ª

dπ(x1) · · ·dπ(xℓ) .

Then, under some extra technical assumptions15, for all f ∈ Cb(Mℓ), we have :512

1

βN
log

�

∫

Mℓ

exp {−βN f (x1, · · · , xℓ)}dγc
N(x1, · · · , xℓ)

�

−−−−→
N→∞

− inf { f (x1, · · · , xℓ) + V(x1, · · · , xℓ)} .

Corollary 2.6 Under the same assumptions as Theorem 2.5, the law of (x1, · · · , xℓ) under eγc
N ,513

which is the normalized version of γc
N , satisfies an LDP at speedβN with the rate function V−inf V .514

15In this paragraph, we won’t be as precise as for the previous examples and refer the reader to the original
paper.
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We want to emphasize the change in the scaling: when the deviations of the whole empir-515

ical measure occurs at speed NβN , the deviations of the law of this finite number of particles516

occur at speed βN .517

This is exactly what happens when we look at the deviations of the largest eigenvalue of
the GUE (or the rightmost particle of a gas in dimension 1). When we look at the scale e−N , all
but the first particle can be considered as frozen, deterministic, with positions such that their
limiting empirical measure is the semicircle distribution. This corresponds to taking ℓ = 1,

G(x , y) =
x2

2 − 2 log(|x − y |) and νN
w
−−−−→
N→∞

µsc. With this heuristics16, we recover the result

that the law of the largest eigenvalue λ1 for the GOE model satisfies an LDP at speed N with
rate function V − inf V, with

V(x ) =
x2

2
−
∫

log(|x − y |)dµsc(y).

More details on this derivation can be found in the work [22] or in the review paper by S. Ma-518

jumdar and G. Schehr [23], which presents a thorough study of the deviations of the top eigen-519

value at different scales such as fluctuations, large deviations and links between the different520

regimes.521

2.4.4 Further examples522

We would like to finish this list of applications of the main results of [6] by mentioning two523

other families of particle systems that can be studied in this framework. We won’t detail these524

examples but refer the interested reader to the original papers:525

• one can recover and generalize the results of R. Berman on Coulomb gases on Rieman-526

nian manifolds, see e.g. [24],527

• if we consider random polynomials on the form Pn(z) =
∑n

k=0 ak zk , where ak are528

i.i.d. N
C
(0, 1) coefficients, it is known that the zeroes form a random particle systems529

of Coulomb-type. The large deviations of their empirical measure have been explored,530

e.g. in [25] and [26]. Their results can be recovered and generalized in the framework531

of [6].532

2.5 Elements of proof of the Laplace principle533

We now end this chapter by giving some ideas of the proof of Theorem 2.1. We start by534

recalling a result on the Legendre transform of the entropy.535

Lemma 2.7 (Legendre transform of entropy) Let µ be a probability measure on a space E and
g : E → (−∞,+∞] be a measurable and bounded below function. Then,

log

�∫

e−g (x )dµ(x )

�

= − inf
τ∈P(E)

�∫

gdτ+ S(τ|µ)
�

.

Let give a quick proof of this lemma. If τ has a density with respect to µ and we denote

by f =
dτ
dµ this density, recall that

S(τ|µ) =
∫

f log( f )dµ =

∫

log( f )dτ.

16The heuristics would be a rigorous application of Theorem 2.5 if all but the largest particle would be deter-
ministic.
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Therefore,536

−
∫

gdτ− S(τ|µ) = −
∫

gdτ−
∫

log( f )dτ =

∫

log e−g dτ−
∫

log( f )dτ

=

∫

log
�

e−g/ f
�

dτ ≤ log

�∫

(e−g/ f )dτ

�

= log

�∫

e−g dµ

�

.

If τ is not absolutely continuous with respect to µ, then the inequality is trivially verified since
in this case S(τ|µ) = +∞. Now, taking sup

τ∈P(E)
on the left hand side we get

− inf
τ∈P(E)

�∫

gdτ+ S(τ|µ)
�

≤ log

�∫

e−g dµ

�

,

and this gives us one inequality.537

On the other hand, if we choose the probability measure τ such that dτ =
e−g

∫

e−g dµ
dµ, then,

one can easily check that we have equality:

−
∫

gdτ− S(τ|µ) = log e−g dµ,

so that we can conclude that the inequality above is in fact an equality.538

539

Let us now use Lemma 2.7 to show the generalized Laplace principle stated in Theorem540

2.1.541

If we apply Lemma 2.7 to E = M N , µ = π⊗N and the test function

g (x1, · · · , xN) := NβN

�

f

�

1

N

N
∑

i=1

δxi

�

+WN(x1, · · · , xN)

�

,

we get :542

1

NβN
log

�
∫

M N

exp

�

−NβN

�

f

�

1

N

N
∑

i=1

δxi

�

+WN(x1, · · · , xN)

��

dπ(x1) · · ·dπ(xN)

�

= − inf
τ∈P(M N )

¨
∫

f

�

1

N

N
∑

i=1

δxi

�

dτ(x1, · · · , xN) +

∫

WN(x1, · · · , xN)dτ+
S(τ|π⊗N)

NβN

«

.

To conclude, we need to show that the right handside converges, as N →∞ towards

− inf
µ∈P(M)

�

f (µ) +W(µ) +
S(µ|π)
β

�

.

We will only show the upper bound and refer the reader to the original paper, concerning the543

lower bound, which is more technical.544

Notice first that if we fix µ ∈ P(M) and let τN := µ⊗N ∈ P(M N), then545

lim sup
N→∞

inf
τ∈P(M N )

¨
∫

f

�

1

N

N
∑

i=1

δxi

�

dτ(x1, · · · , xN) +

∫

WN(x1, · · · , xN)dτ+
S(τ|π⊗N)

NβN

«

≤ lim sup
N→∞

�
∫

f

�

1

N

N
∑

i=1

δxi

�

dτN(x1, · · · , xN) +

∫

WN(x1, · · · , xN)dτN +
S(τN |π⊗N)

NβN

�

.
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We look at the limsup of each of the three terms. First, if (x1, · · · , xN) ∼ τN , it means that the
xi are i.i.d. and are distributed according to µ. By the law of large numbers, we have that the
law of

1
N

∑N
k=1 δxi

converges weakly to δµ and so that for any continuous bounded function
f on P(M) we have :

∫

f

�

1

N

N
∑

k=1

δxi

�

dτN −−−−→
N→∞

∫

f dδµ = f (µ) .

We now go to the second term:546

∫

WNdτN =
1

Nk

∑

{i1,··· ,ik }⊆{1,··· ,N}
#{i1,··· ,ik }=k

∫

G(xi1 , · · · , xik
)dµ⊗k(xi1 , · · · , xik

)

=
1

Nk

�

N

k

�

∫

Mk

G(x1, · · · , xk)dµ(x1) · · ·dµ(xk) −−−−→
N→∞

W(µ).

Finally, since
dµ⊗N

dπ⊗N
(x1, · · · , xN) =

N
∏

i=1

dµ

dπ
(xi),

we have S(µ⊗N |π⊗N) = NS(µ|π), so that

S(τN |π⊗N)

NβN
=

S(µ|π)
βN

−−−−→
N→∞

S(µ|π)
β

.

Putting these three elements together in the limit above, we get that for any µ ∈ P(M),547

lim sup
N→∞

inf
τ∈P(M N )

¨
∫

f

�

1

N

N
∑

i=1

δxi

�

dτ(x1, · · · , xN) +

∫

WN(x1, · · · , xN)dτ+
S(τ|π⊗N)

NβN

«

≤ f (µ) +W(µ) +
S(µ|π)
β

,

and we can take the infimum over the right handside.548

We refer the reader to [6] for the proof of the reverse inequality.549

2.6 Conclusion550

In this second chapter (corresponding to an extended version of Lectures 2 and 3), we have551

discussed a very general result developed in [6].552

• It allows to study the large deviations of the empirical measure of particle systems given553

by singular Gibbs measures, encompassing a large range of applications, in particular554

usual Coulomb gases, high temperature Coulomb gases and conditional Gibbs measures.555

• The proof of these LDPs is based on an important mathematical tool called Bryc’s inverse556

integral lemma, that can be seen as a reciprocal to Varadhan’s lemma. It allows to deduce557

LDPs from Laplace principle.558

• In this case, the Laplace principle is intimately linked to a dual representation of the559

relative entropy. It leads to a rate function that is in general a mixture of an energy term560

and a relative entropy term. In the so-called zero temperature regime, the entropy term561

disappears.562

25



SciPost Physics Lecture Notes Submission

• The typical behavior of the corresponding empirical measures can be described by a563

compactly supported equilibrium measure in the usual case (as we have seen in the first564

chapter with the semicircle distribution) and by a non-compactly supported (thermal)565

equilibrium measure in the so-called high temperature regime.566
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3 The use of spherical integrals to study LD of largest eigenvalues567

of random matrices568

In the first two chapters, we have mainly dealt with the global behavior of the particle sys-569

tems, encoded in their empirical measure. But, in many situations, it is also relevant to study570

the behavior of the extremal particles - say the rightmost particle or the largest eigenvalue.571

Recently, A. Guionnet and J. Husson [27] and then many co-authors [28–33] have used the572

so-called spherical integrals to study the large deviations of the largest eigenvalue in various573

models of random matrices. Although the corresponding systems of particles are no longer574

stricly speaking Coulomb gases, they are closely related models and we would like to present575

this ensemble of works in this last section. We think that the ubiquity of spherical integrals in576

statistical physics makes it particularly relevant for this course.577

3.1 A general overview on the models578

Let us go back to the model of the GUE, and recall that HN ∈ GUEN has been defined in (1.1)579

as follows:580

HN =















H1,1p
N

Hi, jp
N

. . .
H∗

i, jp
N

. . .
HN,Np

N















,

where Hi,i are independent and identically distributed random variables with distribution581

N
R
(0, 1) and for i ≤ j , Hi, j are independent and identically distributed random variables582

with distribution N
C
(0, 1).583

There are several very natural generalisations of this model.584

• β-ensembles. We know that the joint law of the eigenvalues of the GUEN is given by585

PGUEN
, which has been defined in (2). In the joint density, proportional to586

∏

i< j

(xi − x j)
2 exp

 

−
N

2

N
∑

j=1

x2
j

!

,

if we replace the quadratic potential by a more general potential V(x j) and/or if we587

replace the exponent 2 in the Vandermonde term by any β > 0, the corresponding588

particle system is called a β -ensemble. Large deviations for the empirical measure and589

for the rightmost particle in this framework has been extensively studied and we refer590

to Vivo’s lecture for more details. In these notes, we will focus in two other types of591

extension of the model.592

• Wigner matrices. If we keep the same structure of the entries, being i.i.d., up to sym-593

metry (the matrix has to remain Hermitian or real symmetric) but relax the Gaussianity594

assumption, we obtain a Wigner matrix.595

It is well known that, as soon as the entries Hi, j are centered and E(|Hi, j |2) = 1 for596

i ̸= j , Wigner’s theorem holds in the sense that bµN =
1
N

∑N
i=1 δλi

w
−−−−→
N→∞

µsc, the semi-597

circular distribution. If moreover we have E(H4
i, j
) < ∞, then λN

max −−−−→N→∞
λ∗ = 2,598

which is the right edge of the support of µsc. The large deviations have been investigated599

by [27–29,33].600
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• Deformed models. The GUEN distribution may also be seen as a Gaussian measure on601

the set HN(C) of Hermitian matrices of size N. A natural way to modify this measure602

is to change its mean: choose a deterministic matrix AN ∈ HN(C) and XN = AN + HN ,603

with HN ∈ GUEN . As the GUEN distribution is invariant by unitary conjugation, one can604

consider as a further generalisation a model of the form605

XN = AN +UBNU∗,

with U being distributed as the Haar measure on the orthogonal group ON or the unitary606

group UN . The convergence of the empirical spectral measure can be described by free607

probability (this point will be detailed a bit further in these notes) and the behavior of608

the largest eigenvalue has been investigated in [30–32].609

To understand the deviations of the largest eigenvalue both for Wigner matrices and de-610

formed models, we first need to investigate a common tool, which is interesting by itself, the611

spherical integrals.612

3.2 Spherical integrals613

Consider AN , BN two deterministic, real diagonal N×N matrices. Define the spherical integral614

of AN and BN as615

IN(AN , BN) :=

∫

eNTr(ANUN BNU∗N )dmN(UN),

with mN the Haar measure on the orthonormal group616

ON = {O ∈MN(R), OT O = OOT = IN},

or the unitary group617

UN = {U ∈MN(C),U
∗U = UU∗ = IN}.

We recall that the Haar measure is the unique probability measure which is invariant under618

conjugation (see Appendix A for more details). According to the context, the integral IN may619

be called Harish Chandra integral17 or Itzykson-Zuber integral or spherical integral. We will use620

this latter terminology in these notes.621

Harish Chandra in the fifties provided explicit formulas for IN(AN , BN). For example, we622

have the following formula, which holds only in the unitary case:623

IN(AN , BN) :=

 

N
∏

j=1

j!

!

det(eaibj)i,j≤N
∏

i< j(ai − a j)
∏

i< j(bi − b j)
,

where (ai)1≤i≤N and (b j)1≤ j≤N are respectively the eigenvalues of AN and BN . Unfortunately,624

this nice closed formula is not very suitable for asymptotic analysis. Nevertheless, C. Itzykson625

and J. B. Zuber in the physics literature [34] and then twenty years later A. Guionnet and626

O. Zeitouni [35] on a rigorous level provided some insights on the asymptotics of IN . Their627

result takes the following form:628

Theorem 3.1 If629

bµAN
=

1

N

N
∑

i=1

δλi(AN )
w
−−−−→
N→∞

µa and bµBN
=

1

N

N
∑

i=1

δλi(BN )
w
−−−−→
N→∞

µb,

17It is in fact a particular case of the latter.
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then there exists a functional F such that (under some additional technical assumptions), we have630

the following convergence :631

1

N2
log IN(AN , BN) −−−−→

N→∞
F(µa,µb).

One can check that when one of the limiting measures µa or µb is trivial (= δ0), the632

function F vanishes. This means that in this case, we are not considering the spherical integrals633

on the right scale. The asymptotics in the case when one of the matrices, say AN is of finite634

rank (fixed with N), has been first obtained by A. Guionnet and M. Maïda [36] in the rank635

one case and then by A. Guionnet and J. Husson [37] in the finite rank case (see also [38] for636

previous partial results). The rank one case will be particularly useful for the sequel and we637

present it hereafter in full details. For the sake of simplicity, we stick to the orthogonal case638

but the results and proofs can be easily adapted to the unitary case.639

We write AN and BN under the form:640

AN =







θ

(0)






, BN =









b1
b2

. . .
bN









.

In this case, we denote by IN(θ , BN) := IN(AN , BN). We will here restrict to the case where641

θ ≥ 0, which is useful to study the deviations of the largest eigenvalue but the very same results642

have been shown when θ ≤ 0.643

Before stating the result, let us recall the following notation. Given a probability measure644

µ on R and a point x ∈ R outside the support of µ, let645

Hµ(x ) :=

∫

R

1

x − y
dµ(y).

Depending on the context, the functional µ 7→ Hµ is known as the Hilbert - or the Stieltjes -646

transform. We have the following:647

Theorem 3.2 Assume that bµBN

w
−−−−→
N→∞

µ, where µ has a compact support. Assume also that648

λmax(BN) =max1≤i≤N bi −−−−→
N→∞

λ. Then649

lim
N→∞

1

N
log IN(θ , BN) = θ v(θ )−

1

2

∫

log(1+ 2θ v(θ )− 2θ y)dµ(y) := J(θ ,λ,µ), (13)

where650

v(θ ) =

¨

Rµ(2θ ), when 2θ ≤ Hmax

λ− 1
2θ , when 2θ > Hmax

with651

Hmax = lim
x→λ+

Hµ(x ),

and Rµ(η) is the unique solution of652

∫

R

1

Rµ(η) +
1
η − y

dµ(y) = η

such that Rµ(η) +
1
η is larger or equal to λ.653
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Note that for µ and λ given, there is a phase transition at 2θ = Hmax. For 2θ ≤ Hmax654

(subcritical case), v(θ ) and therefore J(θ ,λ,µ) is independent of λ but a dependence appears655

when 2θ > Hmax. This will play a crucial role in the tilting argument.656

We now sketch the proof of Theorem 3.2. With AN and BN chosen as above, we have657

IN(θ , BN) =

∫

eNθ
∑N

i=1 bi O2
i1dmN(O).

In the orthogonal case we are interested in, when (Oi1)Ni=1
is the first column vector of a658

matrix sampled according to the Haar measure, one can show that this vector follows the659

uniform distribution on the sphere SN−1 ⊂ RN . If G is a standard Gaussian vector of size N,660

by invariance of the standard normal distribution under orthogonal transformations,
G
∥G∥ also661

follows the uniform distribution on the sphere. Thus (Oi1)Ni=1
has the same distribution as

G
∥G∥662

and we can write :663

IN(θ , BN) = E

 

exp

 

Nθ

∑N
i=1 bi g 2

i
∑N

i=1 g 2
i

!!

, where G =





g1
...

gN



 ∼N (0, IdN).

By concentration of measure phenomenon, the event664

EN =

��

�

�

�

∥G∥2

N
− 1

�

�

�

�

≤ N−κ
�

,

where κ ∈ (0, 1/2), has very high probability for N large enough. Therefore, we have the665

following approximation:666

IN(θ , BN) = E



e
Nθ

∑

bi g2
i

∑

g2
i



 ≈ E



e
Nθ

∑

bi g2
i

∑

g2
i 1EN



 .

On the event EN , the quantity (
∑N

i=1 g 2
i
− N) is negligible with respect to N. Therefore, up to667

a factor which is negligible with respect to eN , we can write the following approximation: for668

any v ∈ R,669

IN(θ , BN) ≈ E
�

eθ
∑

bi g 2
i
−vθ

�
∑

g 2
i
−N

�

1EN

�

.

By rewritting the expectation with the density of a Gaussian vector, we get670

IN(θ , BN) ≈
eNθ v

(2π)N/2

∫

eθ
∑

bi g 2
i
−vθ

∑

g 2
i
− 1

2

∑

g 2
i 1EN

N
∏

i=1

dgi

=
eNθ v

(2π)N/2

∫

e−
1
2

∑

(1−2θ bi+2vθ )g 2
i 1EN

N
∏

i=1

dgi .

Choosing v such that 1 − 2θ bi + 2θ v > 0 for all 1 ≤ i ≤ N, we identify the exponential in671

the integral as the density of a centered normal distribution of variance
1

1−2θ bi+2vθ . We thus672

obtain673

IN(θ , BN) ≈
eNθ v

∏N
i=1

p

1− 2θ bi + 2θ v
PN,v(EN),
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with PN,v a Gaussian measure with covariance matrix Γ =







1
1−2θ b1+2θ v 0

0
. . . 0

0
1

1−2θ bN+2θ v






.674

Therefore, bounding PN,v(EN) by 1, we get :675

IN(θ , BN) ≲ eNθ v− 1
2

∑

log(1−2θ bi+2θ v),

and thus, for any v ∈ R such that 1− 2θ bi + 2θ v > 0 for all 1 ≤ i ≤ N, we have :676

1

N
log (IN(θ , BN)) ≲ θ v −

1

2N

N
∑

i=1

log(1+ 2θ v − 2θ bi) = θ v −
1

2

∫

log(1+ 2θ v − 2θ y)dbµBN
(y)

−−−−→
N→∞

θ v −
1

2

∫

log(1+ 2θ v − 2θ y)dµ(y),

which gives us an upper bound.677

We now compute the corresponding lower bound. We have seen that under PN,v , each gi678

has normal distribution with variance
1

1−2θ bi+2θ v and so679

EN,v

�

1

N

N
∑

i=1

g 2
i

�

=
1

N

N
∑

i=1

1

1− 2biθ + 2θ v
.

The equation680

1

N

N
∑

i=1

1

1− 2biθ + 2θ v
= 1 (14)

has a unique solution in v such that 1− 2biθ + 2θ v > 0 for all 1 ≤ i ≤ N, which we denote681

by vN(θ ). Thus, we get682

EN,vN (θ )

�

∥G∥2

N

�

= 1

and using Gaussian concentration again, we get that PN,vN (θ )(EN) goes to 1 as N grows to683

infinity. Thus, we get that :684

IN(θ , BN) ≈ eN
�

θ vN (θ )−
1
2

∫

log(1−2θ y+2θ vN (θ ))dbµBN (y)
�

.

If we denote by685

HN(z) := H
bµBN
(z) =

1

N

N
∑

i=1

1

z − bi
,

one can rewrite (14) as686

HN

�

vN(θ ) +
1

2θ

�

= 2θ .

One can then show that vN(θ ) converges to v(θ ), where v(θ ) = H (−1)
µ (2θ ) − 1

2θ if687

2θ ∈ Hµ([λ,+∞)) and v(θ ) = λ− 1
2θ otherwise.688

This concludes the proof of Theorem 3.2 which gives the full asymptotics of the spherical689

integral in the rank one case.690

691

The finite rank case has been treated by A. Guionnet and J. Husson [37]: if we have692

λ1 > ... > λk > λ∗ (where we denote by λ∗ the right edge of the support of µb) and693
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λi(BN) −−−−→
N→∞

λi ,∀i ∈ {1, ..., k} (where λi(BN) is the ith largest eigenvalue of BN), then694

the logarithm of the integral is additive in the sense that:695

lim
N→∞

1

N
log IN(AN , BN) = lim

N→∞

1

N
log IN(θ1, · · · ,θk , BN) = J(θ1,λ1,µ) + · · ·+ J(θk ,λk ,µ),

where J is the rank one limit appearing in Theorem 3.2.696

Before going to the statements of the main results, let us make some final remarks on the697

expression of J . If H (−1)
µ is the inverse of the function Hµ on [λ,∞) and we denote by698

Rµ(z) = H (−1)
µ (z)−

1

z

on this interval, Rµ is known by mathematicians as the R-transform of the measure µ and by699

physicists as the blue function18 (see e.g. J.P. Bouchaud’s lecture notes [39] from les Houches700

2015). This functional is very useful to describe the limiting spectrum of AN +UBNU∗ in our701

model. It is a central tool in free probability theory (see for example the book of J. Mingo702

and R. Speicher [40] for a thorough but gentle introduction to the theory). If we choose the703

sequences (AN)N≥1 and (BN)N≥1 such that bµAN

w
−−−−→
N→∞

µa and bµBN

w
−−−−→
N→∞

µb, one can show704

that705

bµAN+UBNU∗
w
−−−−→
N→∞

µS,

which is characterized by the functional equation706

RµS
(z) = Rµa

(z) + Rµb
(z).

This relation plays the role of the additivity of the logarithm of the Fourier transform for707

the usual convolution: if X and Y are independent real random variables, with respective708

distributions µX and µY and if φµ is the characteristic function of a probability meausre µ, we709

have710

log FµX+Y
= log FµX

+ log FµY
.

By analogy, µS is called the free convolution of µa and µb and is denoted by µS = µa ⊞µb.711

3.3 Statement of the results712

We will now provide a statement of the LDP for the largest eigenvalue in two different models713

that are both a generalisation of the GUE.714

Sub-Gaussian Wigner matrices Let us present hereafter a result due to N. Cook, R. Ducatez
and A. Guionnet [33]; it is the outcome of a series of works, starting from [27]. For a prob-
ability measure µ ∈ P(R), its log-Laplace transform is given by Λµ(t ) = log

∫

e t x dµ(x ). For
the standard Gaussian measure, with density :

dγ(x ) =
1
p

2π
e−x2/2dx ,

one can check that its log-Laplace transform is given by Λγ(t ) = t 2/2, for any t ∈ R. Accord-715

ingly, a measureµ is said to be sub-Gaussian if there exists K > 0 such thatΛµ(t ) ≤ K t 2,∀t ∈ R.716

It is said to be sharp sub-Gaussian if in addition K = 1/2.717

We also recall that the rate function for the largest eigenvalue λ1 of the GOE is given by :

Iγ(x ) =

� 1
2

∫ x
2

p

y2 − 4 dy, for x ≥ 2 ,
∞ , for x < 2 .

18as it is the inverse of the Green function (sic!)

32



SciPost Physics Lecture Notes Submission

Let (Xi, j)1≤i≤ j≤N be i.i.d. real centered random variables, with unit variance. A Wigner718

matrix WN is defined as follows:719

WN =
1
p

N











p
2X1,1 Xi, j

. . .

X j ,i
. . . p

2XN,N











.

We denote by µ the common distribution of the entries. The matrix WN is said to be a sub-720

Gaussian Wigner matrix if the distribution µ is sub-Gaussian. The large deviations of its largest721

eigenvalue are described by the following result:722

Theorem 3.3 For WN a sub-Gaussian Wigner matrix, the law of λ1(WN) satisfies an LDP at723

speed N, with good rate function Iµ such that724

• Iµ ≤ Iγ;725

• ∃xµ > 2 such that Iµ = Iγ on [2, xµ] and Iµ < Iγ if x > xµ;726

• xµ <∞ if and only if K > 1/2.727

One can also mention a few previous results, dealing with Wigner matrices with non Gaus-728

sian tails [41], or sparse Wigner matrices [42–44].729

Orthogonally invariant deformed random matrices We state hereafter a similar result that730

was obtained in [32]. The tilting argument is a bit easier to present in this case and this is why731

we choose to emphasize this model.732

If the distribution of O is the Haar measure on the orthogonal group19 ON and AN and BN733

are deterministic diagonal20 matrices, we define734

HN := AN + OBN O∗.

Assume that µ̂AN

w
−−−−→
N→∞

µa, µ̂BN

w
−−−−→
N→∞

µb, which are compactly supported, and assume that

λ1(AN) −−−−→
N→∞

ρa, λ1(BN) −−−−→
N→∞

ρb, which are the right edges21 of µa and µb respectively.

As we have previously mentioned, we know that

µ̂HN

w
−−−−→
N→∞

µa ⊞µb

and denote by ρ(µa⊞µb) the right edge of the support of µa⊞µb. We then have the following735

LDP:736

Theorem 3.4 With HN defined as above,the law of its largest eigenvalue λ1(HN) satisfies an LDP737

at speed N with good rate function La,b:738

La,b(x ) =

�

supθ La,b(θ , x ), if x ≥ ρ(µA ⊞µB) ,
+∞ , if x < ρ(µA ⊞µB) ,

with739

La,b(θ , x ) := J(θ , x ,µa ⊞µb)− J(θ , x ,µa)− J(θ , x ,µb). (15)

and J defined in equation (13).740

19The unitarily invariant case can be treated similarly by replacing the orthogonal group by the unitary group in
the sequel.

20AN and BN may be considered real symmetric. By invariance of the Haar measure under unitary conjugation,
one can assume without loss of generality that they are diagonal.

21More general results are given in [32].
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3.4 Main ideas of the proofs741

In this section, we provide the main ideas of the proofs of Theorems 3.3 and 3.4. As announced,742

it is based on tilting the measure thanks to spherical integrals. We start by recalling how such a743

tilting argument has been used in the much simpler context of real i.i.d. real random variables744

to prove Cramér’s theorem. We then show how it can be applied in our case for studying745

the deformed model. The sub-Gaussian Wigner case is much more involved and will only be746

sketched in the last paragraph.747

3.4.1 Tilting for Cramér748

Consider (XN)N≥1 a sequence of i.i.d. real random variables that are centered, with law µ and749

such that the log-Laplace transform satisfies Λµ(t ) <∞,∀t ∈ R.750

Cramér’s theorem states that the law of X̄N = (X1 + . . . + XN)/N satisfies an LDP with rate751

function Λ∗µ defined as Λ∗µ(x ) = supθ∈R
�

θ x −Λµ(θ )
�

, for any x ∈ R. This is a classical result752

and we refer the reader for example to [2].753

The idea of the proof goes as follows : for any x ∈ R and δ ≥ 0,754

P

��

�X̄N − x
�

� ≤ δ
�

= E

�

eNθ X̄N

eNθ X̄N
1|X̄N−x |≤δ

�

≃ e−Nθ x
E

�

eNθ X̄N 1|X̄N−x |≤δ
�

E

�

eNθ X̄N
�

︸ ︷︷ ︸

=:PθN(|X̄N−x |≤δ)

×E
�

eNθ X̄N
�

︸ ︷︷ ︸

=eNΛµ(θ )

,

where PθN is the tilted measure defined by:755

P
θ
N(A) =

E

�

eNθ X̄N 1A
�

E

�

eNθ X̄N
� .

Thus, we have:756

P

��

�X̄N − x
�

� ≤ δ
�

≃ e−N(θ x−Λµ(θ ))
P
θ
N

��

�X̄N − x
�

� ≤ δ
�

≤ e−N(θ x−Λµ(θ )),

and by optimizing over θ , we obtain P
��

�X̄N − x
�

� ≤ δ
�

≤ e−NΛ∗µ(x ), which is the upper bound757

we expect for Cramér’s theorem.758

On the other hand, to get a lower bound, we need to find θx such that Pθx
N

��

�X̄N − x
�

� ≤ δ
�

≥ 1
2 .759

Otherwise stated, under Pθx
N , x should be the typical behavior of X̄N . Now, as Pθx

N preserves760

the independence of X1, . . . , XN , by the law of large number, the typical value of X̄N under761

P
θx
N should be Eθx

N (X̄N). By differentiating Λµ, we get Λ′µ(θ ) = E
θ
N

�

X̄N
�

. This leads us to762

choose θx such that Λ′µ(θx ) = x . By the law of large numbers, for large enough N, one has763

P
θx
N

��

�X̄N − x
�

� ≤ δ
�

≥ 1
2 . In addition, since Λ′µ(θx ) = x , we get by optimizing θ x−Λµ(θ ) over764

θ that θx x −Λµ(θx ) = supθ {θ x −Λµ(θ )} = Λ∗µ(x ) so we get the lower bound and conclude765

the proof.766

3.4.2 Tilting for λ1(HN)767

We now go to the proof of Theorem 3.4, studying the deviations of λ1(HN), with

HN = AN + OBN O∗.

Mimicking the previous situation, one could try to tilt the measure directly by eNθλ1(HN ). This is768

not a reasonable strategy as we do not know how to evaluate E(eNθλ1(HN )) to start with. A bet-769

ter strategy, relying on spherical integrals, has emerged from discussions between A. Guionnet770

and M. Potters. On our model, this goes as follows.771
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If we denote by µ = µA ⊞µB and λ1 = λ1(HN), we have :772

P (|λ1 − x | ≤ δ) = E
� IN(θ , HN)

IN(θ , HN)
× 1|λ1−x |≤δ

�

≃ E
� IN(θ , HN)

IN(θ , HN)
× 1|λ1−x |≤δ × 1µ̂HN∈B(µ,N−1/4)

�

≃ exp (−NJ(θ , x ,µ))E
�

IN(θ , HN)× I|λ1−x |≤δ × 1µ̂HN∈B(µ,N−1/4)

�

.

The idea behind the first approximation is that the concentration of bµHN
around µ is much773

more robust and fast than the convergence of λ1. This is essentially because the scaling in the774

LDP for bµHN
is of order N2, whereas that of λ1 is of order N. The second approximation is775

obtained by using that
1
N log IN(θ , HN) converges to J(θ , x ,µ) whenever bµN ≃ µ and λ1 ≃ x .776

Now, if we define our tilting measure as:777

P
θ
N(A) =

E (IN(θ , HN)× 1A)
E (IN(θ , HN))

, (16)

we get :778

P(|λ1 − x | ≤ δ) (17)

≃ exp (−NJ(θ , x ,µ))×E (IN(θ , HN))× PθN
�

|λ1 − x | ≤ δ, µ̂HN
∈ B(µ, N−1/4)

�

.

To proceed with the tilting argument we used in the case of i.i.d. variables (as shown779

above), we are faced with two challenges :780

1. to get an upper bound for the LDP, we want to compute the annealed spherical integral781

E (IN(θ , HN)) ,782

2. to get a lower bound, we want to find a parameter θx such that

P
θx
N

�

|λ1 − x | ≤ δ, µ̂HN
∈ B(µ, N−1/4)

�

≥
1

2
.

Let us start by computing the annealed spherical integral. We recall that HN = AN+OBN O∗;783

if we denote by CN =

�

θ
(0)

�

and consider O and V that are independent and both Haar784

distributed on ON , then785

E (IN(θ , HN)) = EO
�

EV
�

eN Tr(CN VHN V∗)�� = EOEV
�

eN Tr(CN V(AN+OBN O∗)V∗)�

= EOEV
�

eN Tr(CN VAN V∗)eN Tr(CN (VO)BN (VO)∗)� .

Now, as V and VO are also independent and Haar distributed, we end up with786

E (IN(θ , HN)) = IN(θ , AN)IN(θ , BN). (18)

This immediately gives the following upper bound:787

P (|λ1 − x | ≤ δ) ≤ exp(−NJ(θ , x ,µ))×E(IN(θ , HN))

= exp(−NJ(θ , x ,µ))IN(θ , AN)IN(θ , BN)

≤ exp {−N [J(θ , x ,µa ⊞µb)− J(θ , x ,µa)− J(θ , x ,µb)]}

and we conclude by optimizing on θ .788

789

To get a lower bound, we want to find a parameter θx such that Pθx
N (|λ1 − x | ≤ δ) ≥ 1

2 .790

As previously, we first have to understand what is the typical value of λ1(HN) under PθN . The791
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trick is to establish a large deviation upper bound for λ1 under PθN . And to use the fact that the792

typical value under the tilted measure will be the minimizer of the large deviation upper bound793

under PθN . Using the definition of the tilted measure given in (16) and the relation obtained794

in (18), we have :795

P
θ
N (|λ1 − x | ≤ δ) ≈

1

IN(θ , AN)IN(θ , BN)
E

�

IN(θ , H)I{|λ1−x |≤δ,µ̂N≃µ}
IN(θ ′, H)

IN(θ ′, H)

�

≤
1

IN(θ , AN)IN(θ , BN)
sup

H∈EN (x )

§

I(θ , H)
I(θ ′, H)

ª

× Pθ
′

N (EN(x ))×E
�

IN(θ
′, H)

�

,

where EN(x ) = {|λ1 − x | ≤ δ} ∩ {µ̂N ≃ µ}. We can always bound Pθ
′

N (EN(x )) by 1 and by
definition of J(θ , x ,µ) and the fact that on EN(x ) we have λ1 ≃ x and bµN ≃ µ, we also get
the approximation :

sup
H∈EN (x )

§

I(θ , H)
I(θ ′, H)

ª

≃ exp
�

−N
�

J(θ , x ,µa ⊞µa)− J(θ ′, x ,µa ⊞µb)
�	

.

Otherwise stated, with La,b(θ , x ) as defined in (15), we get the following upper bound:796

lim sup
N→

1

N
logPθN (|λ1 − x | ≤ δ) ≤ −(La,b(θ , x )− inf

θ ′≥0
La,b(θ

′, x )).

A thorough study of the function La,b shows that, under our assumptions on the model,797

there exists a unique θx such that La,b(θx , x ) = infθ ′≥0 La,b(θ ′, x ) and for any y ̸= x , we798

have infθ≥0 La,b(θ , x ) < La,b(θx , y). This implies that, with this choice for θx , we have799

P
θx
N (|λ1 − x | ≤ δ) ≥ 1

2 and concludes the proof of the lower bound.800

3.4.3 Tilting for λ1(WN)801

In the case of sub-Gaussian Wigner matrices, the very same strategy is applied but the two main802

technical steps, that is the computation of the annealed spherical integral and the understand-803

ing of the typical behavior of λ1 under the tilted measures are both much more involved than804

in the previous case. We present here the arguments of [27] under the stronger assumption805

of sharp sub-Gaussianity of the entries (that is K = 1/2). As mentioned in the introduction of806

this chapter, this assumption has been progressively relaxed along a series of papers outcoming807

to [33], at the price of highly technical arguments that are out of the scope of these notes.808

In the case of sub-Gaussian Wigner matrices, the empirical spectral measure of WN concen-809

trates very quickly around the semi-circular distribution, that we denote again by µsc. There-810

fore,811

P (|λ1 − x | ≤ δ) = E
� IN(θ , WN)

IN(θ , WN)
× 1|λ1−x |≤δ

�

≃ E
� IN(θ , WN)

IN(θ , WN)
× 1|λ1−x |≤δ × 1µ̂WN∈B(µsc,N−1/4)

�

≃ exp (−NJ(θ , x ,µsc))E
�

IN(θ , WN)× 1|λ1−x |≤δ
�

.

In this case, we have to consider not only one tilted measure for each θ ≥ 0 but a whole812

family of tilted measure. More precisely, if we denote by dv the uniform measure on the unit813

sphere SN−1 ⊂ RN , we write814

P (|λ1 − x | ≤ δ) ≃ exp (−NJ(θ , x ,µsc))

∫

SN−1

E

�

eNθ 〈v,WN v〉1|λ1−x |≤δ
�

dv

≃ exp (−NJ(θ , x ,µsc))

∫

SN−1

E

�

eNθ 〈v,WN v〉�
P
(θ ,v)
N (|λ1 − x | ≤ δ)dv, (19)
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with815

P
(θ ,v)
N (A) :=

E

�

eNθ 〈v,WN v〉1A
�

E

�

eNθ 〈v,WN v〉
� .

To get an upper bound, for each θ ≥ 0 and v ∈ SN−1, we need an upper bound on the816

annealed spherical integral E
�

eNθ 〈v,WN v〉
�

, where the expectation is over the distribution of817

WN . This is provided by the following computation:818

E {exp (Nθ 〈v, WN v〉)} = E







exp



θ
p

N



2
∑

i< j

Xi j vi v j +
∑

i

Xi i v
2
i















= exp

(

∑

i< j

Λµ(2θ
p

Nvi v j) +
∑

i

Λµ(θ v2
i

p

N)

)

≤ exp

(

∑

i< j

2θ 2.Nv2
i v2

j +
∑

i

θ 2Nv4
i

)

= exp

(

Nθ 2

�

∑

i

v2
i

�2)

= exp
�

Nθ 2� , (20)

where we have used sharp sub-Gaussianity for the first inequality and the fact that v ∈ SN−1819

for the last equality.820

By using that P(θ ,v)
N (|λ1 − x | ≤ δ) ≤ 1 in (19), and using the bound on E {exp (Nθ 〈v, WN v〉)}821

found in (20) and optimizing over θ ≥ 0, one gets that822

lim sup
N→∞

1

N
log (P (|λ1 − x | ≤ δ)) ≤ − inf

θ≥0
{θ 2 − J(x ,θ ,µsc)}.

One can check that, for x ≥ 2, the infimum is reached at θx :=
1
4(x −

p
x2 − 4) and equals823

−Iγ(x ).824

Towards the lower bound, let us now try to understand the behavior of λ1 under P(θ ,v)
N .825

One can check that826

E
(θ ,v)
N ((WN)i, j) =

√

√ 1

N
Λ′µ

�

2θ
p

Nvi v j

�

.

For the lower bound, the idea is that it is possible to restrict ourselves to delocalized eigen-827

vectors v. Indeed, if the vector v is delocalized, then the product vi v j is much smaller than828

N−1/2, so that 2θ
p

Nvi v j = o(1). Now, in the vicinity of 0, we have that Λ′µ(t ) ≃ t so that829

E
(θ ,v)
N ((WN)i, j) ≃ 2θ vi v j .

More precisely, one can show that, if v is delocalized, then under P(θ ,v)
N , we have830

WN ≃ fWN + 2θ v vT,

where fWN is a Wigner matrix under P(θ ,v)
N . It means that WN is a rank one deformation of a831

Wigner matrix. Such deformed models have been extensively studied (see for example [45])832

and we know that, for θ ≥ 2, the typical value of λ1 is 2θ +
1

2θ . Therefore, to get the lower833

bound, we are lead to choose θx such that 2θx +
1

2θx
= x . Note that this coincides with the834

value of θx optimizing the upper bound. This concludes our sketch of proof of Theorem 3.3835

in the sharp sub-Gaussian case.836
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3.5 Conclusion837

In this third chapter, corresponding to an extended version of Lectures 4 and 5, we have pre-838

sented a general method, introduced in [27] and developed in a long series of papers to study839

large deviations at the edge of some random matrix models.840

• We get a large deviation principle for the largest eigenvalue for sub-Gaussian Wigner841

matrices and for a deformation of a unitarily invariant model.842

• The proof of these results uses spherical integrals, that are well known in physics and843

interesting mathematical objects by themselves. We have stated and proved in details844

their asymptotics in the case when one of the matrices is of rank one.845

• The proofs also rely on a clever use of a tilting argument, which is classical in the frame-846

work of large deviation theory and that we have also presented in the easy case of847

Cramér’s theorem.848
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A On Haar measures and the distribution of eigenvectors of a GUE849

matrix850

Let HN be a random matrix in HN(C) with distribution PGUEN
, as defined in Proposition 1.2.851

Any realisation HN(ω) is Hermitian, so the matrix UN(ω) of its eigenvectors can be chosen852

unitary: it belongs to853

UN := {U ∈MN(C),UU∗ = U∗U = IN} .

From the definition of PGUEN
, it is easy to check that if HN has distribution PGUEN

, then for854

any fixed matrix V ∈ UN , VHN V∗ has the same distribution PGUEN
. Therefore, VUN has the855

same distribution as UN . This is enough to characterize the distribution of UN .856

Indeed, we have the following:857

Proposition A.1 Let G be a compact topological group. There exists a unique probability measure858

µHaar,G that is left translation invariant i.e. µHaar,G(g · A) = µHaar,G(A), for any g ∈ G and any859

Borelian subset A ⊆ G. This measure is called the Haar measure of the group G. Note that this860

measure is also right invariant i.e. µHaar,G(A · g ) = µHaar,G(A). It is therefore also conjugation861

invariant.862

Heuristically, one can view the sampling according to the Haar measure of G as picking a863

point at random and uniformly on G.864

The group of unitary matrices UN is a compact topological group and we can thus deduce865

from the above discussion that the distribution of the matrix UN of the eigenvectors of HN is866

the Haar measure on UN .867

As a by product of the proof of the Weyl formula (2), one can also check that UN can be868

chosen independent of the eigenvalues (λN
1 , ...,λN

N). This leads to a third possible description869

of the GUE. To construct HN , pick U according to the Haar measure on the group of unitary ma-870

trices UN . Then, sample independently (λN
1 , ...,λN

N) from PGUEN
and define HN := UNΛNU∗N ,871

with ΛN the diagonal matrix with diagonal entries (λN
1 , ...,λN

N).872

B On Euler-Lagrange equations for the quadratic potential873

The object of this appendix is to give a proof of Lemma 1.8.874

For any x ∈ R, we denote by875

F(x ) :=

∫

log |x − y |dµsc(y),

the logarithmic potential of the semicircular distribution µsc. Our task is to compute this quan-876

tity in two different regimes : when x ∈ [−2, 2], that is when x belongs to the support of µsc,877

which corresponds to the first equality in Lemma 1.8 and when x /∈ [−2, 2], that is when x is878

outside the support, which corresponds to the second inequality.879

Let us start with the first case. As an intermediate step, we compute the Stietljes transform880

s(z) :=

∫

1

y − z
dµsc(y),

for any z /∈ R. By a simple change of variables y = 2 cosθ , we can rewrite881

s(z) =
1

π

∫ 2π

0

(sinθ )2

2 cosθ − z
dθ .
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If we denote by ξ = eiθ , we can write it as a contour integral882

s(z) = −
1

4iπ

∮

|ξ|=1

(ξ2 − 1)2

ξ2(ξ2 + 1− zξ)
dξ.

The poles are ξ0 = 0, ξ1 =
z+
p

z2−4
2 and ξ2 =

z−
p

z2−4
2 , where we choose the branch of the883

square root with positive imaginary part. One can check that ξ1 is outside the unit circle and884

ξ2 inside. Computing the residues, we have885

Res(ξ0) = z, Res(ξ2) = −
p

z2 − 4,

from which we get that886

s(z) =
−z +
p

z2 − 4

2
.

Then, ∀x ∈ [−2, 2],887

F ′(x ) = −PV

∫

1

x − y
dµsc(y) = − lim

ϵ→0

∫

|y−x |≥ϵ

1

x − y
dµsc(y) = −

1

2
(s(x+i0)+s(x−i0)) =

x

2
.

From there, one can deduce that888

F(x ) =
x2

4
+ C .

The constant C will be determined by the next computation.889

890

We now go to the case when x /∈ [−2, 2]. By symmetry, one can assume that x ≥ 2. From891

Vivo’s lecture notes, Section IV.A.1., we get that892

L(x ) :=
1

π

∫

p
2

−
p

2

log(x − y)
p

2− x2dx =
x2

2
−

x

2

p

x2 − 2+ log

�

x +
p

x2 − 2

2

�

−
1

2
.

By an easy change of variables, we get that893

F(x ) = L

�

x
p

2

�

+
1

2
log 2,

so that894

x2

2
− 2F(x ) =

x

2

p

x2 − 4− 2 log

�

x +
p

x2 − 4

2

�

+ 1 =

∫ x

2

Æ

y2 − 4dy + 1.

By continuity, we get that the constant in the previous computation was C = 1 and that both895

parts of the lemma hold.896

C On strict convexity of the logarithmic energy897

The object of this appendix is to prove Lemma 1.9. As for the definition of I in (5), we restrict898

ourselves to probability measures µ such that
∫

x2dµ(x ) <∞.899

The idea is that the rate function I is the difference of a linear term µ 7→
∫

x2dµ(x ) and a900

functional Σ : µ 7→
∫∫

log |x − y |dµ(x )dµ(y), which is essentially strictly concave. Following901

the proof of Lemma 2.6.2. in [3], we use a slightly different decomposition of I .902
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By using the fact that µsc satisfies the EL equations, one can rewrite903

I(µ) = −Σ(µ−µsc) +

∫ �

x2

2
− 2

∫

log |x − y |dµsc(y)− 1

�

dµ(x ).

The second term is linear in µ and we will now prove the strict concavity of µ 7→ Σ(µ−µsc).904

We choose an appropriate representation of the logarithm: from the equality905

1

z
=

1

2z

∫ ∞

0

e−
u
2 du,

which holds for any z ∈ R∗ and using the change of variables u =
z2

t , we get906

1

z
=

z

2

∫ ∞

0

e−
z2

2t
dt

t 2
.

For x ̸= y, integrating from 1 to |x − y |, we get907

log |x − y | =
∫ |x−y |

1

z

t

∫ ∞

0

e−
z2

2t
dt

t
dz =

∫ ∞

0

e−
1
2t − e−

|x−y |2
2t

2t
dt .

As µ−µsc has mass zero, the first term will cancel and we get the following Fourier repre-908

sentation909

Σ(µ−µsc) = −
∫ ∞

0

1

2t

�∫∫

e−
|x−y |2

2t d(µ−µsc)(x )d(µ−µsc)(y)

�

dt

= −
∫ ∞

0

√

√ t

2π

∫ ∞

−∞

�

�

�

�

∫

eiλx d(µ−µsc)(x )

�

�

�

�

2

e−
tλ2

2 dλ.

Now µ 7→
�

�

∫

eiλx d(µ−µsc)(x )
�

�

2
is convex so that µ 7→ Σ(µ−µsc) is concave.910

Moreover, for α ∈ [0, 1] and any probability measures µ and ν so that Σ is well defined,911

we have912

Σ(αµ+ (1−α)ν) = αΣ(µ) + (1−α)Σ(ν) + (α2 −α)Σ(µ− ν).

From the Fourier representation above, we know that Σ(µ− ν) ≥ 0 and Σ(µ− ν) = 0 if and913

only if all Fourier coefficients are zero, that is if µ = ν.914

This concludes the proof of the strict convexity.915
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