

Large deviations in Coulomb gases: a mathematical perspective

Mylène Maïda^{1*}, Antony Fahmy^{2†}, Jan-Luka Fatras^{3‡}, and Yilin Ye^{4○}

1 Univ. Lille, CNRS, Inria, UMR 8524 - Laboratoire Paul Painlevé, F-59000 Lille, France

2 The Ohio State University, Department of Physics, Columbus OH, 43210

3 Institut de Mathématiques, UMR5219, Université de Toulouse, CNRS, UPS,
F-31062 Toulouse Cedex 9, France

4 Laboratoire de Physique de la Matière Condensée (UMR 7643),

CNRS – Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France

* mylene.maida@univ-lille.fr, † fahmy.25@osu.edu, ‡ jan-luka.fatras@math.univ-toulouse.fr,
○ yilin.ye@polytechnique.edu

Abstract

These notes account for five ninety-minute lectures given by Mylène Maïda as part of the 2024 Summer School in Les Houches. This 4-week program was entitled *Large deviations and applications*. The goal of these lectures is to present a series of mathematical results about large deviations of the particles of a Coulomb gas or related systems, such as the eigenvalues of some random matrix ensembles. It encompasses the deviations of the empirical measure and those of the rightmost particle (corresponding to the largest eigenvalue).

1

2 Contents

3	1 The Gaussian Unitary Ensemble	5
4	1.1 Three descriptions of the GUE	5
5	1.2 Large deviation principle for the empirical spectral distribution	7
6	1.3 Understanding the minimizer of the rate function	11
7	1.4 Conclusion	13
8	2 General LDP for particle systems related to Coulomb gases	14
9	2.1 Coulomb and Riesz gases, vocabulary	14
10	2.2 General Laplace principle for particle systems driven by a k -body interaction	15
11	2.3 Link between Laplace principle and LDP : the Varadhan-Bryc approach	17
12	2.4 Various applications of Theorem 2.1 and Corollary 2.2	19
13	2.4.1 Usual Coulomb and Riesz gases	20
14	2.4.2 High temperature Coulomb and Riesz gases	21
15	2.4.3 Conditional Gibbs measures	22
16	2.4.4 Further examples	23
17	2.5 Elements of proof of the Laplace principle	23
18	2.6 Conclusion	25
19	3 The use of spherical integrals to study LD of largest eigenvalues of random matrices	27
20	3.1 A general overview on the models	27

22	3.2 Spherical integrals	28
23	3.3 Statement of the results	32
24	3.4 Main ideas of the proofs	34
25	3.4.1 Tilting for Cramér	34
26	3.4.2 Tilting for $\lambda_1(H_N)$	34
27	3.4.3 Tilting for $\lambda_1(W_N)$	36
28	3.5 Conclusion	38
29	A On Haar measures and the distribution of eigenvectors of a GUE matrix	39
30	B On Euler-Lagrange equations for the quadratic potential	39
31	C On strict convexity of the logarithmic energy	40
32	References	42
33		
34		

35 Introduction

36 These notes account for five lectures given as part of the 2024 Summer School in Les Houches
 37 entitled *Large deviations and applications*. The goal of these lectures is to present a series of
 38 mathematical results that are known about large deviations of the empirical measure of the
 39 particles of a Coulomb gas or related systems, such as the eigenvalues of some random matrix
 40 ensembles.

41 The lectures were mostly taught in parallel with a course of the same format presented by
 42 Pierpaolo Vivo (King's College London) entitled *Large deviations in random matrix theory and*
 43 *Coulomb gas systems*, whose lecture notes can be found here¹. We refer the interested reader
 44 to Vivo's notes for a complementary point of view on some of the results.

45 Among the five main courses of the program, this course was probably the most math-
 46 oriented. Therefore, along with the presentation of the results, we will also seize the opportu-
 47 nity to introduce some mathematical tools that we find useful to show (or use) large deviation
 48 principles (LDP).

49 Before presenting in more details the scope of these lectures, let us provide a few general
 50 references.

51 We start with two resources, that we find particularly accessible for beginners :

- 53 as a first glimpse on large deviations, we recommend the following blogpost², which is
 54 the transcription of a tutorial taught by D. Chafaï at ICERM in 2018,
- 55 in the same summer school, an introductory course on large deviations, with a special
 56 focus on statistical mechanics, was given by H. Touchette. We highly recommend his
 57 lecture notes [1].

58 Among probabilists, the following books are considered very classical:

- 59 the book [2] provides a very comprehensive presentation of the main tools used to es-
 60 tablish large deviation principles and of the most classical applications,
- 61 the book [3] is a classical reference dealing with random matrix theory but we advertise
 62 here its appendix D as a very concise summary of useful tools for large deviations,
- 63 the reference [4], which is also very comprehensive, is mainly based on a weak conver-
 64 gence approach, which, in its spirit, is more related to variational principles, that are
 65 natural to physicists and inspired the approach of D. García-Zelada, that we will present
 66 in Section 2.

67 These are general references for the course but more specific thematic lists of references
 68 will be provided in each chapter.

69 The structure of the present lecture notes is as follows : in Section 1 – corresponding to
 70 the first lecture – we will introduce one of the most studied ensembles of random matrices, the
 71 Gaussian Unitary Ensemble (GUE), provide an LDP for the empirical measure of its eigenvalues
 72 and explain how it can be exploited to recover the celebrated Wigner theorem in this particular
 73 case. This will mostly rely on a paper by G. Ben Arous and A. Guionnet [5]. In Section 2 –
 74 roughly corresponding to lectures 2 and 3 –, we advertise the work of D. García-Zelada [6],
 75 based on Varadhan's approach of large deviations, that provides a unified framework for large

¹http://www.lptms.universite-paris-saclay.fr/leshouches2024/files/2024/07/Les_Houches_Lecture_Notes_VIVO_V1.pdf

²<https://djalil.chafai.net/blog/2018/03/09/tutorial-on-large-deviation-principles/>

77 deviations for singular Gibbs measures, encompassing usual Coulomb gases in \mathbb{R}^d at finite or
 78 high temperature, but also Coulomb gases on manifolds, conditional Gibbs measures, zeroes of
 79 some models of random polynomials etc. Recently, following the pioneering work of Guionnet
 80 and Husson, spherical integrals of the form

$$I_N(A_N, B_N) := \int \exp(N \text{Tr}(A_N U B_N U^*)) \, dm_N(U), \quad (1)$$

81 where A_N and B_N are two diagonal matrices of size N with real entries and m_N is the Haar
 82 measure on the orthogonal or the unitary group of size N , have been used to study the large
 83 deviations of the largest eigenvalue for several models of random matrices. In Section 3 –
 84 roughly corresponding to lectures 4 and 5 –, we provide a detailed derivation of the asymp-
 85 totics of spherical integrals in the case when one of the matrices, say A_N , is of rank one, and
 86 explain how it can be used to study the deviations of the largest eigenvalue.

87
 88 In these notes, we try to stay as close as possible to the in-person lectures that have been
 89 given in Les Houches. For the sake of completeness, we have nevertheless added a few proofs
 90 that were not presented during the lectures: they are in general postponed to the appendices.

91 Note that, although very interesting, the results on large deviations of the empirical field for
 92 Coulomb gases [7, 8], which are related to the microscopic structure of these particle systems,
 93 are beyond the scope of this course and will not be included in these notes.

94 1 The Gaussian Unitary Ensemble

95 The *Gaussian Unitary Ensemble (GUE)* is one of the most popular models of random matrices.
 96 In this first chapter, we study this example in full detail, through the lens of large deviation
 97 theory.

98 1.1 Three descriptions of the GUE

In the usual vocabulary of random matrix theory (RMT), inspired by statistical physics, an *ensemble* is a probability distribution over a set of matrices. In this case, we consider the space of Hermitian matrices of size $N \times N$, denoted by

$$\mathcal{H}_N(\mathbb{C}) := \{M \in \mathcal{M}_N(\mathbb{C}), M^* = M\}.$$

99 The easiest way to define the GUE is by describing the joint law of the entries. Before doing so,
 100 we recall that if X and Y are two independent real random variables with standard Gaussian
 101 distribution $\mathcal{N}(0, 1)$, then $G := \frac{X+iY}{\sqrt{2}}$ is said to be *standard complex Gaussian* and we denote
 102 $G \sim \mathcal{N}_{\mathbb{C}}(0, 1)$.

103 **Definition 1.1** Let $N \in \mathbb{N}^*$ and consider independent random variables $\{G_{i,i}\}_{i=1}^N$ and $\{G_{i,j}\}_{1 \leq i < j \leq N}$
 104 such that $G_{i,i} \sim \mathcal{N}(0, 1)$ and $G_{i,j} \sim \mathcal{N}_{\mathbb{C}}(0, 1)$. Define the following $N \times N$ Hermitian matrix :

$$H_N = \begin{pmatrix} \frac{G_{1,1}}{\sqrt{N}} & \frac{G_{1,2}}{\sqrt{N}} & & \\ & \ddots & & \\ \frac{G_{2,1}}{\sqrt{N}} & & \ddots & \\ & & & \frac{G_{N,N}}{\sqrt{N}} \end{pmatrix}, \quad \text{so that } G_{i,j} = G_{j,i}^*.$$

105 The matrix H_N is said to follow the *GUE distribution* or equivalently to belong to the *GUE*. We
 106 denote by \mathbb{P}_{GUE_N} its distribution.

107 One can also directly define \mathbb{P}_{GUE_N} as a Gaussian distribution on $\mathcal{H}_N(\mathbb{C})$. The isomorphism
 108 $\mathcal{H}_N(\mathbb{C}) \simeq \mathbb{R}^{N^2}$ induces a Lebesgue measure on $\mathcal{H}_N(\mathbb{C})$, that we denote by $\text{Leb}_{\mathcal{H}_N}$. We can then
 109 give the following equivalent definition of the GUE:

110 **Proposition 1.2** There exists a normalizing constant c_N such that

$$d\mathbb{P}_{GUE_N}(H) = c_N \exp\left(-\frac{N}{2} \text{Tr}(H^2)\right) d\text{Leb}_{\mathcal{H}_N}(H),$$

111 where Tr is the usual trace on $\mathcal{H}_N(\mathbb{C})$.

112 To see the correspondence with the law of the entries, it is enough to expand the trace as
 113 follows: if $H = (h_{i,j})_{1 \leq i,j \leq N}$,

$$\text{Tr}(H^2) = \text{Tr}(HH^*) = \sum_{i=1}^N h_{i,i}^2 + 2 \sum_{1 \leq i < j \leq N} |h_{i,j}|^2.$$

114 Now, for $i < j$, if we denote by $x_{i,j} = \text{Re } h_{i,j}$ and $y_{i,j} = \text{Im } h_{i,j}$, the respective real and
 115 imaginary part of $h_{i,j}$, we have

$$\text{Tr}(H^2) = \sum_{i=1}^N h_{i,i}^2 + 2 \sum_{1 \leq i < j \leq N} (x_{i,j}^2 + y_{i,j}^2),$$

116 so that, as expected, under \mathbb{P}_{GUE_N} , $(h_{i,i})_{1 \leq i \leq N}$, $(x_{i,j})_{1 \leq i < j \leq N}$ and $(y_{i,j})_{1 \leq i < j \leq N}$ are independent real Gaussian variables, with variance $1/N$ if $i = j$ and $1/2N$ if $i < j$.

118

119 When H_N has distribution \mathbb{P}_{GUE_N} , it is interesting to study the law of its eigenvalues and
120 eigenvectors. The following proposition gives the distribution of the eigenvalues. By a slight
121 abuse of notations³, we will again denote this joint distribution by \mathbb{P}_{GUE_N} .

122 **Proposition 1.3** *If H_N has distribution \mathbb{P}_{GUE_N} , then almost surely, H_N is diagonalisable with
123 distinct eigenvalues, that we may enumerate in decreasing order $\lambda_1^N > \dots > \lambda_N^N$. Then, the joint
124 law of the random vector $(\lambda_1^N, \dots, \lambda_N^N)$ is given by*

$$d\mathbb{P}_{GUE_N}(\lambda_1, \dots, \lambda_N) = \frac{N^{\frac{N^2}{2}} \mathbf{1}_{\{\lambda_1 > \dots > \lambda_N\}}}{(2\pi)^{N/2} \prod_{j=1}^{N-1} j!} \prod_{i < j} (\lambda_i - \lambda_j)^2 \exp\left(-\frac{N}{2} \sum_{j=1}^N \lambda_j^2\right) d\lambda_1 \dots d\lambda_N. \quad (2)$$

125 This statement is well known in RMT. It is closely related to Weyl's formula. A classical
126 reference for this kind of results is the book of M.L. Mehta [9]. One can also cite [10] for
127 a gentle introduction for physicists. For probabilists, a more recent standard reference is [3]
128 (see in particular Theorem 2.5.2 there).

129 Although we won't focus very much on this aspect in the sequel, let us mention that it is
130 also possible to describe the law of the eigenvectors under \mathbb{P}_{GUE_N} . The answer to this question,
131 together with a third description of the law \mathbb{P}_{GUE_N} , is postponed to Appendix A.

132

133 We now want to study the behavior of the particles $(\lambda_1^N, \dots, \lambda_N^N)$ under \mathbb{P}_{GUE_N} . Many in-
134 teresting questions can be asked about their behavior e.g. the following:

135 • How does the largest eigenvalue behave ?
136 • What does the global regime look like ? etc.

137 The first question will be addressed in full detail for the Gaussian Orthogonal Ensemble
138 (GOE), which is the real symmetric counterpart of the GUE, in the course of Pierpaolo Vivo
139 and we strongly recommend his lecture notes. They can be found in the present volume or at
140 the following link⁴. We won't detail it in the case of the GUE, but we will come back to similar
141 questions for other models in the third section of these notes (Lectures 4 and 5).

142 We will rather focus on the second question. The idea is to encode the positions of all the
143 particles as a whole in the following object:

$$\hat{\mu}_N := \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i^N}.$$

144 It is called the *empirical distribution of the eigenvalues of H_N* or *spectral empirical distribution*
145 of H_N . For each realisation $H_N(\omega)$ of the random matrix H_N , $\hat{\mu}_N(\omega)$ is a probability measure
146 which is nothing but the uniform distribution over the set of eigenvalues $\{\lambda_1^N(\omega), \dots, \lambda_N^N(\omega)\}$.
147 Therefore, $\hat{\mu}_N$ is a *random probability measure*, that is a random variable with values in the set
148 $\mathcal{P}(\mathbb{R})$ of probability measures on \mathbb{R} . This random measure will be our main object of study in
149 this chapter, and we want in particular to describe its typical behavior (law of large numbers),
150 its large deviations etc.

³If H is a matrix, $d\mathbb{P}_{GUE_N}(H)$ will refer to the law of the matrix, whereas when λ_1, λ_N are real numbers,
 $d\mathbb{P}_{GUE_N}(\lambda_1, \dots, \lambda_N)$, it will refer to the law of the eigenvalues, so that there is hopefully no ambiguity.

⁴http://www.lptms.universite-paris-saclay.fr/leshouches2024/files/2024/07/Les_Houches_Lecture_Notes_VIVO_V1.pdf

151 **1.2 Large deviation principle for the empirical spectral distribution**

152 Let us first make the link between the GUE random matrix model and Coulomb gas-like particle
 153 systems.

154 To lighten the notations, we denote the prefactor in (2) by

$$C_N := \frac{N^{\frac{N^2}{2}}}{(2\pi)^{N/2} \prod_{j=1}^N j!}, \quad (3)$$

155 so that we can now rewrite (2) as :

$$d\mathbb{P}_{GUE_N}(\lambda_1, \dots, \lambda_N) = C_N \exp\left(-N\left(\frac{1}{2} \sum_{j=1}^N \lambda_j^2 - \frac{1}{N} \sum_{i \neq j} \log |\lambda_i - \lambda_j|\right)\right) d\lambda_1 \cdots d\lambda_N.$$

156 Note that there is here a slight abuse of notation: \mathbb{P}_{GUE_N} as defined in (2) was a distribution
 157 over that set $\{\lambda_1 > \dots > \lambda_N\}$ whereas here we extend it to \mathbb{R}^N . This is balanced by an
 158 extra factor $N!$ in the definition of the constant C_N with respect to the normalizing constant
 159 appearing in (2).

160 We now can see \mathbb{P}_{GUE_N} as the *canonical Gibbs measure* associated to the energy E , defined
 161 as follows: for any N -tuple x_1, \dots, x_N of real numbers,

$$E(x_1, \dots, x_N) := N\left(\frac{1}{2} \sum_{j=1}^N x_j^2 - \frac{1}{N} \sum_{i \neq j} \log |x_i - x_j|\right). \quad (4)$$

162 In this expression,

- 163 • the first term $\frac{1}{2} \sum_{j=1}^N x_j^2$ is usually interpreted as a confining external potential applied
 164 to each particle, that prevents them to lay too far away from the origin,
- 165 • whereas the second term $\frac{1}{N} \sum_{i \neq j} \log |x_i - x_j|$ is usually interpreted as a repulsive two-
 166 body interaction.

167 We commonly use the terminology *one dimensional log-gas* to describe such a particle sys-
 168 tem; it is considered a Coulomb-type particle system⁵. Coulomb gases will be introduced and
 169 discussed more thoroughly in the next chapter of these notes. We refer to the book [11] of
 170 P. Forrester for a very thorough presentation of these systems, including many explicit com-
 171 putations.

172 Before getting into the mathematical statement of an LDP for the spectral empirical mea-
 173 sure $\widehat{\mu}_N$, let us try to give some rough heuristics towards a possible rate function. Fix $\mu \in \mathcal{P}(\mathbb{R})$,
 174 $\delta > 0$ small and $B(\mu, \delta)$ a ball of radius δ centered at μ for a metric on $\mathcal{P}(\mathbb{R})$ to be defined
 175 later. We have

$$\begin{aligned} & \mathbb{P}_{GUE_N}(\widehat{\mu}_N \in B(\mu, \delta)) \\ &= C_N \int_{\widehat{\mu}_N \in B(\mu, \delta)} \exp\left(-N^2 \left(\int \frac{x^2}{2} d\widehat{\mu}_N(x) - \iint_{x \neq y} \log |x - y| d\widehat{\mu}_N(x) d\widehat{\mu}_N(y)\right)\right) dx_1 \cdots dx_N. \end{aligned}$$

176 Then (if everything behaves nicely)

$$-\frac{1}{N^2} \log \mathbb{P}_{GUE}(\widehat{\mu}_N \in B(\mu, \delta)) \approx -\frac{1}{N^2} \log C_N + \int \frac{x^2}{2} d\mu(x) - \iint \log |x - y| d\mu(x) d\mu(y).$$

⁵The one-dimensional Coulomb interaction is linear whereas the two-dimensional is logarithmic. In other words, we have here a two-dimensional Coulomb gas confined to live on the real line.

177 The analysis of the constant C_N is a simple exercise, as its expression is completely explicit.
 178 Namely,

$$\begin{aligned} \frac{1}{N^2} \log C_N &= -\frac{1}{N^2} \sum_{j=1}^N \sum_{k=1}^j \log \left(\frac{k}{N} \right) - \frac{1}{2N} \log \left(\frac{2\pi}{N} \right) \\ &= -\frac{1}{N} \sum_{k=1}^N \frac{N-k+1}{N} \log \left(\frac{k}{N} \right) - \frac{1}{2N} \log \left(\frac{2\pi}{N} \right) \\ &\xrightarrow[N \rightarrow \infty]{} - \int_0^1 (1-x) \log x \, dx = \frac{3}{4}. \end{aligned}$$

179 If, for any probability measure μ for which it is properly defined, we let

$$I(\mu) = \int \frac{x^2}{2} d\mu(x) - \iint \log|x-y| d\mu(x) d\mu(y) - \frac{3}{4},$$

180 then we expect that

$$\mathbb{P}_{GUE_N}(\hat{\mu}_N \in B(\mu, \delta)) \simeq \exp(-N^2 I(\mu)).$$

181 Let us now go to a more precise statement of the LDP that was unveiled by G. Ben Arous
 182 and A. Guionnet in [5]. Mathematically speaking, a full LDP in this case will take the following
 183 form:

184 • for any open set $O \subset \mathcal{P}(\mathbb{R})$, $\liminf_{N \rightarrow \infty} \frac{1}{N^2} \log \mathbb{P}_{GUE_N}(\hat{\mu}_N \in O) \geq -\inf_{\mu \in O} I(\mu)$,
 185 • for any closed set $F \subset \mathcal{P}(\mathbb{R})$, $\limsup_{N \rightarrow \infty} \frac{1}{N^2} \log \mathbb{P}_{GUE_N}(\hat{\mu}_N \in F) \leq -\inf_{\mu \in F} I(\mu)$.

186 *Open* and *closed* refer to a topology that we have to define on the space of probability
 187 measures $\mathcal{P}(\mathbb{R})$: a common choice is the topology of weak convergence. In this topology, a
 188 sequence $(\nu_N)_{N \in \mathbb{N}}$ converges to $\nu \in \mathcal{P}(\mathbb{R})$, and we denote this convergence by $\nu_N \xrightarrow[N \rightarrow \infty]{w} \nu$, if
 189 and only if

$$\forall f \in \mathcal{C}^b(\mathbb{R}), \int_{\mathbb{R}} f(x) d\nu_N(x) \xrightarrow[N \rightarrow \infty]{} \int_{\mathbb{R}} f(x) d\nu(x),$$

190 where $\mathcal{C}^b(\mathbb{R})$ stands for the set of bounded and continuous functions from \mathbb{R} to \mathbb{R} .

191 We are now ready to state the main result of this chapter.

192 **Theorem 1.4** [5] Under \mathbb{P}_{GUE_N} , the sequence of empirical spectral distributions $(\hat{\mu}_N)_{N \in \mathbb{N}}$ satisfies
 193 a large deviation principle at speed N^2 with good rate function⁶ I in the space $\mathcal{P}(\mathbb{R})$ equipped
 194 with the topology of weak convergence, where the rate function I is defined as follows:

$$I(\mu) := \begin{cases} \int_{\mathbb{R}} \frac{x^2}{2} d\mu(x) - \iint \log|x-y| d\mu(x) d\mu(y) - \frac{3}{4}, & \text{if } \int x^2 d\mu < \infty, \\ \infty, & \text{otherwise.} \end{cases} \quad (5)$$

195 It is always more comfortable to work with a metric structure. Fortunately, the topology
 196 of weak convergence can be metrized by the bounded-Lipschitz distance defined as follows :
 197 for $\mu, \nu \in \mathcal{P}(\mathbb{R})$

$$d_{BL}(\mu, \nu) = \sup_{\|f\|_{\infty} \leq 1, \|f\|_{Lip} \leq 1} \left| \int f d\mu - \int f d\nu \right|,$$

⁶We don't want to insist too much at this stage on the notion of (good) rate function, we refer to Section 2.3 for more details.

198 with $\|f\|_{\text{Lip}} \leq 1 \Leftrightarrow |f(x) - f(y)| \leq |x - y|, \forall x, y \in \mathbb{R}$. This means that $\nu_N \xrightarrow[N \rightarrow \infty]{w} \nu$ if and
 199 only if $d_{\text{BL}}(\nu_N, \nu) \xrightarrow[N \rightarrow \infty]{} 0$. In the following, anytime we mention a distance on $\mathcal{P}(\mathbb{R})$ it will
 200 be the bounded-Lipschitz distance and $B(\mu, \delta)$ will refer to the ball of radius δ around μ for
 201 this bounded-Lipschitz distance.

202 With $\mathcal{P}(\mathbb{R})$ being a metric space, it is possible to give an easier formulation of the LDP
 203 above. Roughly speaking, we have :

204 (weak LDP on small balls + exponential tightness) implies (full LDP)

205 More precisely, if we have

206 1. (Weak LDP) :

$$\begin{aligned} & \lim_{\delta \rightarrow 0} \liminf_{N \rightarrow \infty} \frac{1}{N^2} \log \mathbb{P}_{\text{GUE}_N}(\hat{\mu}_N \in B(\mu, \delta)) \\ &= \lim_{\delta \rightarrow 0} \limsup_{N \rightarrow \infty} \frac{1}{N^2} \log \mathbb{P}_{\text{GUE}_N}(\hat{\mu}_N \in B(\mu, \delta)) =: -I(\mu), \end{aligned}$$

207 2. and (Exponential tightness) : There exists a sequence $(K_L)_{L > 0}$ of compact subsets of
 208 $\mathcal{P}(\mathbb{R})$ such that

$$\limsup_{L \rightarrow \infty} \limsup_{N \rightarrow \infty} \frac{1}{N^2} \log \mathbb{P}_{\text{GUE}_N}(\hat{\mu}_N \notin K_L) = -\infty, \quad (6)$$

209 then we have Theorem 1.4. We refer to Appendix D in [3] for the details on this criterion.

210
 211 The proof of the weak LDP has been sketched at the beginning of this subsection, so we now
 212 focus on the second point. Let us comment on the (important) notion of *tightness* in probability.
 213 A classical reference on the notions of weak convergence of measures and tightness in Polish
 214 spaces in the book of P. Billingsley [12]. If we have a random variable X , with values in a
 215 Polish space, then for any $\varepsilon > 0$, one can always find a compact set \mathcal{K}_ε for which

$$\mathbb{P}(X \notin \mathcal{K}_\varepsilon) \leq \varepsilon,$$

216 that is “almost everything happens inside a (large enough) compact set”. When we consider
 217 a sequence, or more generally a family, of random variables $(X_i)_{i \in I}$, it is not obvious that one
 218 can find a fixed compact \mathcal{K}_ε (depending on ε but not on i) such that

$$\forall i \in I, \mathbb{P}(X_i \notin \mathcal{K}_\varepsilon) \leq \varepsilon.$$

219 This is not true in general⁷. If it holds for any ε , the family of random variables is said to be
 220 *tight* (equivalently, if for any $i \in I$, μ_i is the distribution of the random variable X_i , the family
 221 of probability measures $(\mu_i)_{i \in I}$ is said to be tight). It means that when we deal with questions
 222 related to (weak) convergence, what happens outside a large compact set is not relevant.

223 Here, as we are working at the level of exponentially small events, we ask for *exponential*
 224 *tightness*, which, in our case, is expressed by (6). Moreover, as the sequence $(\hat{\mu}_N)_{N \geq 1}$ that we
 225 are considering is a sequence of random variables with values in the set $\mathcal{P}(\mathbb{R})$, the first step is
 226 to describe a convenient family of compact sets in this latter space.

⁷A simple illustrative example is the case when the distribution of X_n is $\mu_n = \delta_n$ the Dirac mass at n . This sequence of probability measures converges to the null measure in the topology of vague convergence (for test functions which are continuous and compactly supported) but does not converge in the sense of weak convergence. We observe a loss of mass due to the lack of tightness.

227 For any $L > 0$, let us define

$$K_L := \left\{ \mu \in \mathcal{P}(\mathbb{R}), \int x^2 d\mu(x) \leq L \right\}.$$

228 We first justify that K_L is a compact subset of $\mathcal{P}(\mathbb{R})$. Notice that for all $\mu \in K_L$, we have by
229 Markov inequality

$$\mu\left(\left[-\sqrt{\frac{L}{\varepsilon}}, \sqrt{\frac{L}{\varepsilon}}\right]^c\right) = \frac{\varepsilon}{L} \int \frac{L}{\varepsilon} \mathbb{1}_{\{x \notin \left[-\sqrt{\frac{L}{\varepsilon}}, \sqrt{\frac{L}{\varepsilon}}\right]\}}(x) d\mu(x) \leq \frac{\varepsilon}{L} \int x^2 d\mu(x) \leq \varepsilon,$$

230 so that the family of probability measure K_L is tight, in the sense explained above⁸. Since
231 \mathbb{R} is a complete metric space, we deduce by Prokhorov's theorem (see for example Theorem
232 C.9 in [3]) that the closure of K_L is compact in the weak topology. Moreover, K_L is closed.
233 Indeed, let $(\mu_N)_N$ be a sequence in K_L which converges weakly to μ then, for any $M > 0$,
234 $\int \min(x^2, M) d\mu(x) = \lim_{N \rightarrow \infty} \int \min(x^2, M) d\mu_N(x)$. Then by monotone convergence as M
235 goes to infinity and the fact that the bound $\int \min(x^2, M) d\mu_N(x) \leq L$ is uniform in M and
236 N , we get that $\mu \in K_L$. Therefore, K_L is a closed set included in a compact and so it is itself
237 compact.

238 Let us now show (6). We define

$$f(x, y) := \frac{x^2}{4} + \frac{y^2}{4} - \log|x - y|.$$

239 As, for any $x, y \in \mathbb{R}$, $\log|x - y| \leq \log(|x| + 1) + \log(|y| + 1)$, we have

$$f(x, y) \geq \frac{x^2}{8} + \frac{y^2}{8} + \tilde{C},$$

240 for some constant \tilde{C} . Note that this bound also justifies why the rate function I introduced in
241 (5) is well defined.

242 Moreover, using the density of \mathbb{P}_{GUE_N} with respect to the Lebesgue measure, we have :

$$\begin{aligned} \mathbb{P}_{GUE_N}(\hat{\mu}_N \notin K_L) &= C_N \int_{\{\hat{\mu}_N \notin K_L\}} \exp\left(-N \frac{1}{2} \sum_{i=1}^N x_i^2 + \sum_{i \neq j} \log|x_i - x_j|\right) dx_1 \dots dx_N \\ &= C_N \int_{\{\hat{\mu}_N \notin K_L\}} \exp\left(-N^2 \iint_{x \neq y} f(x, y) d\hat{\mu}_N(x) d\hat{\mu}_N(y)\right) \prod_{i=1}^N \exp\left(-\frac{x_i^2}{2}\right) dx_1 \dots dx_N \\ &\leq C_N \int_{\{\hat{\mu}_N \notin K_L\}} \exp\left(-N^2 \iint_{x \neq y} \left(\frac{x^2}{8} + \frac{y^2}{8} + \tilde{C}\right) d\hat{\mu}_N(x) d\hat{\mu}_N(y)\right) \prod_{i=1}^N \exp\left(-\frac{x_i^2}{2}\right) dx_1 \dots dx_N \\ &\leq C_N \exp\left(-N^2 \left(\frac{N-1}{N} \frac{L}{4} + \frac{N(N-1)}{N^2} \tilde{C}\right)\right) \int_{\{\hat{\mu}_N \notin K_L\}} \prod_{i=1}^N \exp\left(-\frac{x_i^2}{2}\right) dx_1 \dots dx_N, \end{aligned}$$

243 and then taking $\limsup_{N \rightarrow \infty} \frac{1}{N^2} \log$ on both sides, we get :

$$\limsup_{N \rightarrow \infty} \frac{1}{N^2} \log \mathbb{P}_{GUE_N}(\hat{\mu}_N \notin K_L) \leq \limsup_{N \rightarrow \infty} \frac{1}{N^2} \log C_N - \frac{L}{4} + \tilde{C} \leq \frac{3}{4} - \frac{L}{4} + \tilde{C}.$$

⁸Note that there is a subtle point here: we use the fact that the family of probability measure K_L is tight to show that it is a compact subset of $\mathcal{P}(\mathbb{R})$. Then we will use K_L to show that the family of random variables $(\hat{\mu}_N)_{N \geq 1}$ is exponentially tight !

244 Finally, taking L to infinity, we get the desired result.

245

246 This concludes the arguments of the proof of the result of G. Ben Arous and A. Guionnet
 247 that we wanted to emphasize here. We refer to the original paper [5] or alternatively to Section
 248 2.6 of the book [3] for more details. In the framework of these notes, we will give in the next
 249 chapter a much more general result on singular Gibbs measures that encompasses the GUE
 250 model.

251 **1.3 Understanding the minimizer of the rate function**

252 In various situations, understanding the deviations of a family of random variables may be
 253 the best way to study also their typical behavior. In the case of GUE, this typical behavior
 254 was known for a long time before the large deviations were studied but we find it instructive
 255 to show how this particular case of Wigner's theorem can be seen as a corollary of the large
 256 deviation principle we have just obtained. This subsection will be devoted to the discussion
 257 and the proof of the following statement and why it may be seen as a corollary of Theorem
 258 [1.4](#).

259 **Corollary 1.5 (Wigner's Theorem)**

260 *Almost surely*

$$\widehat{\mu}_N \xrightarrow[N \rightarrow \infty]{w} \mu_{sc},$$

261 where μ_{sc} is the semi-circular distribution defined by the density :

$$d\mu_{sc}(t) = \frac{1}{2\pi} \sqrt{4 - t^2} \mathbf{1}_{[-2,2]}(t) dt.$$

262 In a very general context, it is possible to deduce an almost sure convergence from a large
 263 deviation principle, whenever the rate has a unique minimizer. This general mechanism will be
 264 illustrated in our example at the end of this section. We first establish the following property:

265 **Proposition 1.6** μ_{sc} is the unique minimizer of I , the rate function defined in (5).

266 The proof of the proposition will be in three steps: we show that any minimizer should
 267 satisfy the Euler-Lagrange equations, that the semi-circular distribution satisfies the Euler-
 268 Lagrange equations and to conclude, that the minimizer is unique.

269 Each of the three steps corresponds to a lemma that we state below:

270 **Lemma 1.7** Any minimizer μ of the rate function I defined in (5) satisfies the following : there
 271 exists a constant C_{EL} such that for any x in the support of the measure μ , we have

$$\frac{x^2}{2} - 2 \int \log|x - y| d\mu(y) = C_{EL},$$

272 and for Lebesgue-almost every $x \in \mathbb{R}$,

$$\frac{x^2}{2} - 2 \int \log|x - y| d\mu(y) \geq C_{EL}.$$

273 These equations are called *Euler-Lagrange (EL) equations*. We will give below a detailed
 274 proof of Lemma 1.7, which, as we will see, is robust to generalisation to external potentials
 275 other than quadratic.

276 The next lemma states that μ_{sc} does satisfy the EL-equation associated to this problem :

Lemma 1.8

$$\frac{x^2}{2} - 2 \int \log|x-y| d\mu_{sc}(y) = \begin{cases} 1 & \text{for all } x \in [-2, 2], \\ > 1 & \text{for all } |x| > 2. \end{cases}$$

277 There are many ways to compute the logarithmic potential of μ_{sc} , that is the integral
 278 $\int \log|x-y| d\mu_{sc}(y)$. The computation of this quantity outside the support of μ_{sc} has been
 279 detailed in Section IVA.1 of Vivo's lecture notes⁹: using an expansion of the logarithm, the
 280 computation boils down to the computation of the moments of μ_{sc} , that are interesting quan-
 281 tities by themselves, related to Catalan numbers. From his computation, it is easy to check the
 282 second inequality above. For the sake of completeness, we present the details of the computa-
 283 tion of the logarithmic potential inside the support of the measure, using the residue theorem,
 284 in Appendix B.

285

286 Moreover, the uniqueness of the minimizer of the rate function is ensured by the following:

287 **Lemma 1.9** *The rate function I defined in (5) is strictly convex on $\mathcal{P}(\mathbb{R})$. It therefore admits a
 288 unique minimizer.*

289 This was not proved during the lectures but relies on an interesting Fourier representation
 290 of the logarithmic energy : the proof of Lemma 1.9 is postponed to Appendix C.

291

292 We now go to the proof of Lemma 1.7. Let $\psi \geq 0$, and ϕ be two bounded and compactly
 293 supported functions. Then define $\bar{\nu}_{\psi, \phi}$ by

$$d\bar{\nu}_{\psi, \phi}(x) = \phi(x)d\mu(x) + \psi(x)dx,$$

294 where ϕ and ψ are such that $\bar{\nu}_{\psi, \phi}(\mathbb{R}) = 0$, so that if $\mu \in \mathcal{P}(\mathbb{R})$ and ϵ is sufficiently small,
 295 $\mu + \epsilon \bar{\nu}_{\psi, \phi} \in \mathcal{P}(\mathbb{R})$. If μ is a minimizer of I , for any such ψ, ϕ we have

$$\begin{aligned} I(\mu) &\leq I(\mu + \epsilon \bar{\nu}_{\psi, \phi}) = \int \frac{x^2}{2} d\mu + \epsilon \int \frac{x^2}{2} d\bar{\nu}_{\psi, \phi} \\ &\quad - \iint \log|x-y| (d\mu d\mu + \epsilon d\mu d\bar{\nu}_{\psi, \phi} + \epsilon d\bar{\nu}_{\psi, \phi} d\mu + \epsilon^2 d\bar{\nu}_{\psi, \phi} d\bar{\nu}_{\psi, \phi}) \\ &\quad - \frac{3}{4}, \end{aligned}$$

296 thus we get

$$\epsilon \int \frac{x^2}{2} d\bar{\nu}_{\psi, \phi}(x) - 2\epsilon \iint \log|x-y| d\bar{\nu}_{\psi, \phi}(x) d\mu(y) - \epsilon^2 \iint \log|x-y| d\bar{\nu}_{\psi, \phi}(x) d\bar{\nu}_{\psi, \phi}(y) \geq 0,$$

297 and so by dividing by ϵ and letting ϵ go to zero we get :

$$\int \left(\frac{x^2}{2} - 2 \int \log|x-y| d\mu(y) \right) d\bar{\nu}_{\psi, \phi}(x) \geq 0.$$

298 By choosing $\psi = 0$ and $\pm\phi$, we obtain that for all ϕ such that $\int \phi d\mu = 0$:

$$\int \phi(x) \left(\frac{x^2}{2} - 2 \int \log|x-y| d\mu(y) \right) d\mu(x) = 0,$$

⁹http://www.lptms.universite-paris-saclay.fr/leshouches2024/files/2024/07/Les_Houches_Lecture_Notes_VIVO_V1.pdf

299 and therefore there exists a constant C_{EL} such that for all $x \in \text{Supp}(\mu)$,

$$\frac{x^2}{2} - 2 \int \log|x-y| d\mu(y) = C_{EL} \text{ (Lagrange multiplier).}$$

300 Then, by choosing $\phi = -\int \psi(y) dy$ being a constant, we get, for Lebesgue-almost every x ,

$$\frac{x^2}{2} - 2 \int \log|x-y| d\mu(y) \geq C_{EL}.$$

301 Therefore, any minimizer μ satisfies the Euler-Lagrange equation.

302

303 We are now ready to go to the proof of Corollary 1.5. Putting the three lemmas together,
304 we get that μ_{sc} is indeed the unique minimizer of I .

305

306 From there, one can easily deduce Wigner's theorem, using first the upper bound of the
307 large deviation principle. It indeed gives that

$$\forall \delta > 0, \limsup_{N \rightarrow \infty} \frac{1}{N^2} \log \mathbb{P}_{GUE_N}(\widehat{\mu}_N \notin B(\mu_{sc}, \delta)) \leq - \inf_{\mu \notin B(\mu_{sc}, \delta)} I(\mu) =: -I_\delta.$$

308 Then since $K := B(\mu_{sc}, \delta)^c \cap \{\nu : I(\nu) \leq I_\delta + 1\}$ (where $B(\mu_{sc}, \delta)^c$ is the complement of
309 $B(\mu_{sc}, \delta)$) is a compact set and I is lower semicontinuous, I reaches its infimum on K . Since
310 K does not contain the minimizer μ_{sc} of I , we have $0 < \inf_{\mu \in K} I(\mu) = I_\delta$. Therefore, we have
311 for N big enough that

$$\mathbb{P}_{GUE_N}(\widehat{\mu}_N \notin B(\mu_{sc}, \delta)) \leq \exp\left(-N^2 \frac{I_\delta}{2}\right),$$

312 and thus, since $I_\delta > 0$, we have that $\mathbb{P}_{GUE_N}(\widehat{\mu}_N \notin B(\mu_{sc}, \delta))$ is summable. By Borel-Cantelli,
313 we know that for all δ , the sequence $(\widehat{\mu}_N)_{N \in \mathbb{N}}$ is almost surely eventually in $B(\mu_{sc}, \delta)$ and
314 therefore we have that a.s. $\widehat{\mu}_N \xrightarrow{w} \mu_{sc}$ as $N \rightarrow \infty$.

315 1.4 Conclusion

316 Before going to the general theory of the global behavior of Coulomb gases, let us summarize
317 what we have learnt from the study of the specific case of the GUE model:

- 318 • If H_N is a random matrix from the GUE of size N , the distribution of its eigenvalues is a
319 singular canonical Gibbs measure which forms a one-dimensional log-gas.
- 320 • Its spectral empirical distribution is a random measure which satisfies a large deviation
321 principle on the space of probability measures on \mathbb{R} , at speed N^2 with an explicit rate
322 function.
- 323 • Through the derivation of Euler-Lagrange equations, one can show that the unique min-
324 imizer of this rate function is the semi-circular distribution. From there, one can use the
325 large deviation upper bound for the spectral empirical distribution to get the almost sure
326 weak convergence of the latter to the semi-circle distribution (Wigner's theorem).

327 2 General LDP for particle systems related to Coulomb gases

328 After this warmup through the example of the GUE, we now go to the main topic of the course,
 329 that is LDPs for Coulomb gases and related particle systems. On this question, it is fair to cite
 330 the work of D. Chafaï, N. Gozlan and P. A. Zitt [13], which built on arguments in the spirit
 331 of [5]. We have chosen in this course to emphasize the work of D. García-Zelada [6]. We first
 332 introduce properly the notion of Coulomb gas.

333 2.1 Coulomb and Riesz gases, vocabulary

334 Consider N particles $(x_1, \dots, x_N) \in (\mathbb{R}^d)^N$, and define the Hamiltonian of the configuration
 335 as follows:

$$336 E_N(x_1, \dots, x_N) = N \sum_{i=1}^N V(x_i) + \frac{1}{2} \sum_{i \neq j} g(x_i - x_j). \quad (7)$$

336 The function V is usually called the *external potential* and g the *kernel interaction*. Under ap-
 337 propriate assumptions on V and g that we will detail later, it is possible to define the associated
 338 *Gibbs measure*, given by :

$$339 d\mathbb{P}_{N,V,\beta,g}(x_1, \dots, x_N) = \frac{1}{Z_{N,V,\beta,g}} \exp(-\beta E_N(x_1, \dots, x_N)) d\pi^{\otimes N}(x_1, \dots, x_N), \quad (8)$$

339 where $d\pi^{\otimes N}(x_1, \dots, x_N) = d\pi(x_1) \dots d\pi(x_N)$, with π a reference measure, most of the time
 340 chosen to be the Lebesgue measure on \mathbb{R}^d and $Z_{N,V,\beta,g}$ is a normalizing constant such that
 341 $\mathbb{P}_{N,V,\beta,g}$ is a probability measure¹⁰.

342 Coulomb gases correspond to a particular choice of the (repulsive) interaction kernel g . It
 343 satisfies the so-called Poisson equation $\Delta g = -c_d \delta_0$, with c_d an appropriate constant depend-
 344 ing on the dimension d so that its solution reads:

$$g(x) = \begin{cases} -|x|, & \text{for } d = 1, \\ -\log|x|, & \text{for } d = 2, \\ \frac{1}{|x|^{d-2}}, & \text{for } d \geq 3. \end{cases}$$

345 **Example:** Similarly to what we saw in the first chapter of this course for the GUE, if one
 346 defines the Complex Ginibre Ensemble, as a random matrix of size $N \times N$, with indepen-
 347 dent identically distributed entries $G_{i,j}$ that are complex centered Gaussian with variance $1/N$
 348 (without any symmetry assumption), then, one can check that the joint law of its eigenvalues
 349 is a Coulomb gas in dimension $d = 2$, with Coulomb kernel $g(x - y) = -\log|x - y|$ and
 350 quadratic external potential $V(x) = |x|^2/2$.

351 As mentioned earlier, the eigenvalues of the GUE do not form *stricto sensu* a Coulomb gas,
 352 but rather a so-called *log-gas* in the sense that $g(x) = -\log|x|$ although we are in dimension
 353 1. This log-gas in one dimension is also commonly called a *β -ensemble*.

355 An important family of related particle systems are *Riesz gases*: for $d \geq 1$, $g(x) = |x|^{-s}$
 356 with $s > 0$. We refer the reader to the survey [14] by M. Lewin.

357 As in the first chapter, we will study the *global regime* of these particle systems, through
 the first order asymptotics of the associated empirical measure

$$\hat{\mu}_N := \frac{1}{N} \sum_{i=1}^N \delta_{x_i}.$$

¹⁰Appropriate assumptions on V and g ensure in particular that $0 < Z_{N,V,\beta,g} < \infty$.

358 Let us now briefly mention an important topic that we will not discuss in these lectures,
 359 namely the *microscopic structure of Coulomb gases*. As we have seen in the first chapter, with
 360 the scaling that we have chosen (multiply each entry of the matrix by $1/\sqrt{N}$, or equivalently
 361 put a factor of N in front of the external potential V in the definition of the Hamiltonian), the
 362 weak limit of the empirical measure of the eigenvalues of the GUE is compactly supported. One
 363 can check that, under standard assumption on V , it would be the same for the Coulomb gas
 364 (8), associated with the Hamiltonian (7). The heuristics is that, considering a given particle
 365 x_i , the force $NV(x_i)$ created on it by the external potential is of the same order as the force
 366 felt from the repulsion $\sum_{j \neq i} g(x_i - x_j)$ of all the other particles, both being of order N : this
 367 leads to an equilibrium at a finite scale.

368 The limiting measure being compact, it means that on average, each particle occupies a
 369 box of volume of order $N^{-1/d}$. If one wants to study the microscopic structure of the Coulomb
 370 gas, it is therefore natural to choose a place around which there are particles, that is a point
 371 x_0 in the interior of the support of the limiting measure and blow up the configuration of
 372 points around x_0 at a scale where there would be in average one point per unit volume, that
 373 is consider the process $(N^{1/d}(x_i - x_0))_{1 \leq i \leq N}$. Following the breakthrough papers by S. Serfaty
 374 and collaborators, there has been huge mathematical progresses in the study of the Coulomb
 375 gases at this new scale. One of the main features is that, similarly to what was observed for
 376 matrix models, the microscopic structure of Coulomb gases is much more universal than their
 377 global regime, in the sense that the limiting random process essentially does not depend on
 378 the external potential V . It does depend on β and there is an important conjecture, that at low
 379 temperature (that is in the regime $\beta \rightarrow \infty$), there would be a *crystallization* phenomenon,
 380 the limiting process being the triangular lattice in dimension 2. We won't treat this problem
 381 in these notes but the interested reader may find a lot of resources on this topic on [S. Serfaty's](#)
 382 [webpage¹¹](#). We recommend in particular the recent survey [15].

383

384 2.2 General Laplace principle for particle systems driven by a k -body interaction

386 Let us now go back to our main subject and present the framework of [6], which is a very
 387 general model with a k -body interaction (in most physical examples, we consider pairwise
 388 interactions, that is $k = 2$). At each step, we will try to make as transparent as possible the
 389 correspondence with the GUE model studied in the first part of this course.

390 If M is the space in which the particles live (M may be \mathbb{R}^d , a manifold or a Polish space¹²)
 391 and $\mathcal{P}(M)$ the set of probability measures on M , we consider $G : M^k \rightarrow (-\infty, \infty]$, a sym-
 392 metric, lower semi-continuous and bounded below function.

393 For $N \geq k$, we define $W_N : M^N \rightarrow (-\infty, \infty]$ by

$$W_N(x_1, \dots, x_N) = \frac{1}{N^k} \sum_{\substack{\{i_1, \dots, i_k\} \subseteq \{1, \dots, N\} \\ \#\{i_1, \dots, i_k\} = k}} G(x_{i_1}, \dots, x_{i_k}). \quad (9)$$

For instance, for the GUE, we choose $M = \mathbb{R}$, $k = 2$ and define

$$G(x, y) := \frac{x^2}{2} + \frac{y^2}{2} - 2 \log |x - y|.$$

¹¹<https://math.nyu.edu/~serfaty/>

¹²A Polish space is a complete separable metric space. Working in a Polish space is a standard assumption in probability theory.

This gives

$$W_N(x_1, \dots, x_N) = \frac{1}{N^2} \sum_{i < j} G(x_i, x_j) = \frac{1}{N^2} \left((N-1) \sum_{i=1}^N \frac{x_i^2}{2} - \sum_{i \neq j} \log |x_i - x_j| \right),$$

394 which is to compare with the energy E of the configuration that has been defined in (4).

395 Consider now a reference measure π and inverse temperature $\beta_N > 0$. Similarly to what
396 we did previously, one can define an associated Gibbs measure γ_N , which has the following
397 density

$$d\gamma_N(x_1, \dots, x_N) := \exp(-N\beta_N W_N(x_1, \dots, x_N)) d\pi(x_1) \cdots d\pi(x_N). \quad (10)$$

398 Note that at this stage, γ_N is not normalized, it may not be a probability measure.

399 Again, it may be useful to compare to our example: with $G(x, y) := \frac{x^2}{2} + \frac{y^2}{2} - 2 \log |x - y|$,
 $\beta_N = N$ and $d\pi(x) = e^{-x^2/2} dx$, we get that

$$\mathbb{P}_{\text{GUE}_N} = C_N \gamma_N,$$

400 where $\mathbb{P}_{\text{GUE}_N}$ has been defined in (2) and C_N in (3).

401 We are now ready to state the main result of [6]:

402 **Theorem 2.1** Assume that $G : M^k \rightarrow (-\infty, \infty]$ is symmetric, lower semi-continuous and
403 bounded below and W_N and γ_N being defined in (9) and (10) respectively.

404 Assume that $\beta_N \xrightarrow[N \rightarrow \infty]{} \beta \in (0, \infty]$.

Let $W : \mathcal{P}(M) \rightarrow (-\infty, \infty)$ be defined as

$$W(\mu) := \frac{1}{k!} \int_{M^k} G(x_1, \dots, x_k) d\mu(x_1) \cdots d\mu(x_k).$$

405 If $\beta = \infty$, assume in addition that $G(x_1, \dots, x_k) \xrightarrow[x_i \rightarrow \infty]{} \infty$ (i.e. we have a confining
406 potential) and that we have the following regularity assumption: for any $\mu \in \mathcal{P}(M)$ such that
407 $W(\mu) < \infty$, there exists a sequence of probability measures $(\mu_N)_{N \geq 1}$ absolutely continuous with
408 respect to π such that $W(\mu_N) \xrightarrow[N \rightarrow \infty]{} W(\mu)$ as N converges to ∞ .

409 Then, for all $f : \mathcal{P}(M) \rightarrow \mathbb{R}$ continuous and bounded, we have

$$\frac{1}{N\beta_N} \log \int_{M^N} \exp \left(-N\beta_N f \left(\frac{1}{N} \sum_{k=1}^N \delta_{x_k} \right) \right) d\gamma_N((x_1, \dots, x_N)) \xrightarrow[N \rightarrow \infty]{} - \inf_{\mu \in \mathcal{P}(M)} \{f(\mu) + F(\mu)\},$$

where F is the free energy with parameter β :

$$F(\mu) := W(\mu) + \frac{1}{\beta} S(\mu|\pi),$$

with $S(\cdot|\pi)$ the relative entropy (or KL divergence) :

$$S(\mu|\pi) := \begin{cases} \int \frac{d\mu}{d\pi} \log \left(\frac{d\mu}{d\pi} \right) d\pi, & \text{if } \mu \text{ has a density with respect to } \pi, \\ \infty, & \text{otherwise.} \end{cases}$$

410 From there, one can deduce automatically an LDP for (a normalized version of) γ_N .

411 **Corollary 2.2** Under the same assumption as in Theorem 2.1, if we define $dP_N = \frac{1}{Z_N} d\gamma_N$, where
412 $Z_N = \gamma_N(M^N)$, then under P_N , $\hat{\mu}_N = \frac{1}{N} \sum_i \delta_{x_i}$ satisfies an LDP at speed $N\beta_N$ with rate function
413 $J(\mu) = F(\mu) - \inf F$.

In particular, one can recover from there the LDP in the GUE case, initially due to G. Ben Arous and A. Guionnet. In this case, as we have $k = 2$, $G(x, y) = \frac{x^2+y^2}{2} - 2 \log|x - y|$ and $\beta = \infty$, it comes that

$$W(\mu) = F(\mu) = \int \frac{x^2}{2} d\mu(x) - \iint \log|x - y| d\mu(x) d\mu(y),$$

⁴¹⁴ and we recover the rate function I defined in (5).

⁴¹⁵ Before going into more examples and then into the proof of Theorem 2.1, it is worth
⁴¹⁶ explaining a very general mechanism, that allows to deduce an LDP such as Corollary 2.2
⁴¹⁷ from a Laplace principle as obtained in Theorem 2.1. It is an important mathematical tool in
⁴¹⁸ the theory of large deviations and we devote the next section to explaining this mechanism.

⁴¹⁹ 2.3 Link between Laplace principle and LDP : the Varadhan-Bryc approach

Let us first make a quick reminder on the Laplace method, which is very familiar to mathematical physicists. The *Laplace principle* states that, under suitable conditions, if we let

$$I_n := \int_{\mathbb{R}} \exp(n\phi(x)) dx,$$

with ϕ a concave function reaching its maximum at a point x_0 , then we should have

$$I_n \simeq \exp(n\phi(x_0)),$$

in the sense that

$$\lim_{n \rightarrow \infty} \frac{1}{n} \log I_n = \phi(x_0),$$

(one can often be more precise, depending on the regularity of the function ϕ). In the context of large deviations, *Varadhan's lemma* can be seen as an extension of the Laplace principle: if a sequence of probability measures $\{\mu_n\}_{n \geq 1}$ defined on a space X , satisfies an LDP at speed n with rate function I , and we let $J_n := \int \exp(n\phi(x)) d\mu_n(x)$, then

$$\lim_{n \rightarrow \infty} \frac{1}{n} \log J_n = \sup_{x \in X} \{\phi(x) - I(x)\}.$$

⁴²⁰ One can even give a kind of reciprocal statement to Varadhan's lemma : if such a limit occurs
⁴²¹ for a rich enough family of test functions ϕ , then an LDP holds for the sequence $\{\mu_n\}_{n \geq 1}$. This
⁴²² reciprocal statement is known as *Bryc's lemma*.

⁴²³ More precisely, we will discuss the equivalence of the two statements : for $\{\mu_n\}_{n \geq 1}$ a family
⁴²⁴ of probability measures on a Polish space X we consider

- ⁴²⁵ • (LDP) The sequence $\{\mu_n\}_{n \geq 1}$ satisfies an LDP with speed n , and with a good rate func-
⁴²⁶ tion I^{13} .
- (LIM) For any continuous bounded function f , the following limit exists

$$\Lambda_f := \lim_{n \rightarrow \infty} \frac{1}{n} \log \int \exp(nf(x)) d\mu_n(x).$$

⁴²⁷ The following proposition discusses the relationship between these two statements :

¹³We recall that by definition of semi-continuity, the level sets $\{I \leq C\}$ of rate functions are closed, when in addition these level sets are all compact then the rate function is said to be good

428 **Proposition 2.3**

429

1. Varadhan's integral lemma: Suppose (LDP) holds then (LIM) is verified and

$$\Lambda_f = \sup_{x \in X} \{f(x) - I(x)\}.$$

2. Bryc's inverse integral lemma: Suppose (LIM) holds and suppose in addition that the sequence $(\mu_n)_{n \geq 1}$ is exponentially tight, then (LDP) holds with rate function I defined as follows

$$I(x) = \sup_{f \in \mathcal{C}^b} \{f(x) - \Lambda_f\},$$

430 where \mathcal{C}^b is the set of continuous bounded functions.

431 As emphasized above, the first statement can be seen as an infinite dimensional extension
 432 of Laplace method. We refer the reader to the notes of H. Touchette [1] for a more thorough
 433 discussion of Varadhan's lemma in the context of statistical mechanics or to Section 4.3 of [2]
 434 for a complete proof.

435 In the sequel, we will use more specifically the second statement, a.k.a. Bryc's inverse
 436 integral lemma, whose proof we detail hereafter. Let us assume that (LIM) holds and that the
 437 sequence $(\mu_n)_{n \geq 1}$ is exponentially tight, in the sense that there exists a sequence of compact
 438 sets $(K_L)_{L \geq 0}$ such that

$$\limsup_{L \rightarrow \infty} \limsup_{n \rightarrow \infty} \frac{1}{n^2} \log \mathbb{P}(\hat{\mu}_n \notin K_L) = -\infty.$$

We first show that the LDP lower bound holds with rate function I . Let O be an open set and $x \in O$, let f be a bounded and continuous function chosen such that, $f(x) = 1$, $0 \leq f \leq 1$; and $f = 0$ on O^c (such a function can be shown to exist if X is a completely regular topological space). Then define the family of functions $(f_p)_{p \geq 1}$ by $f_p(y) = p(f(y) - 1)$, for any $y \in X$. Thus

$$\int \exp(n f_p(y)) d\mu_n(y) = \int_O \exp(n f_p) d\mu_n + \int_{O^c} \exp(n f_p) d\mu_n \leq \mu_n(O) + e^{-np},$$

where the inequality comes from the fact that $f_p \leq 0$ and so $\exp(n f_p) \leq 1$ and that $f_p(y) = -p$ on O^c . Then, taking $\liminf \frac{1}{n} \log(\cdot)$ on both sides of the previous inequality and using that

$$\liminf \frac{1}{n} \log(a_n + b_n) = \max \left\{ \liminf \frac{1}{n} \log(a_n), \liminf \frac{1}{n} \log(b_n) \right\},$$

we get :

$$\liminf_{n \rightarrow \infty} \frac{1}{n} \log \int e^{n f_p} d\mu_n \leq \max \left\{ \liminf_{n \rightarrow \infty} \frac{1}{n} \log \mu_n(O), -p \right\}.$$

Given that (LIM) holds, the left hand side is Λ_{f_p} . In addition, we have $f_p(x) = 0$ so we get :

$$\Lambda_{f_p} - f_p(x) \leq \max \left\{ \liminf_{n \rightarrow \infty} \frac{1}{n} \log \mu_n(O), -p \right\}.$$

439 We therefore obtain, for any $x \in O$,

$$\begin{aligned} -I(x) &:= -\sup_{f \in \mathcal{C}^b} \{f(x) - \Lambda_f\} = \inf_{f \in \mathcal{C}^b} \{\Lambda_f - f(x)\} \leq \Lambda_{f_p} - f_p(x) \\ &\leq \max \left\{ \liminf_{n \rightarrow \infty} \frac{1}{n} \log \mu_n(O), -p \right\} \xrightarrow{p \rightarrow \infty} \liminf_{n \rightarrow \infty} \frac{1}{n} \log \mu_n(O). \end{aligned}$$

This inequality holds for all $x \in O$, so taking $\sup_{x \in O}$ on the left hand side, we get the LDP lower bound :

$$-\inf_{x \in O} I(x) = \sup_{x \in O} \{-I(x)\} \leq \liminf_{n \rightarrow \infty} \frac{1}{n} \log \mu_n(O).$$

Let us now show the upper bound. Since we have assumed exponential tightness of $(\mu_n)_{n \geq 1}$, it is sufficient to show the upper bound for compact sets. Let $\delta > 0$, and define

$$I^\delta(x) := \min \left\{ I(x) - \delta, \frac{1}{\delta} \right\}.$$

Fix a compact set $K \subset X$. By definition of I , for all $x \in K$, there exists $f_x \in \mathcal{C}^b(X)$ such that $f_x(x) - \Lambda_{f_x} \geq I(x) - \delta \geq I^\delta(x)$. By continuity of f_x , there exists an open set A_x containing x , such that for all $y \in A_x$, $f_x(y) - f_x(x) \geq -\delta$. Now, let

$$\Lambda_{f_x}^{(n)} := \frac{1}{n} \log \left(\int \exp(n f_x(y)) d\mu_n(y) \right),$$

and define the following probability measures μ_{n,f_x} with densities :

$$d\mu_{n,f_x}(y) = \exp \left[n \left(f_x(y) - \Lambda_{f_x}^{(n)} \right) \right] d\mu_n(y).$$

Since $f_x(y) - f_x(x) \geq -\delta$ for all $y \in A_x$, we have :

$$\mu_n(A_x) = \int_{A_x} \exp \left(-n \left(f_x(y) - \Lambda_{f_x}^{(n)} \right) \right) d\mu_{n,f_x}(y) \leq \exp \left[-n \left(f_x(x) - \delta - \Lambda_{f_x}^{(n)} \right) \right].$$

Since by (LIM), $\Lambda_{f_x}^{(n)} \xrightarrow{n \rightarrow \infty} \Lambda_{f_x}$ and since we have chosen f_x such that $f_x(x) - \Lambda_{f_x} \geq I^\delta(x)$, we get :

$$\limsup_{n \rightarrow \infty} \frac{1}{n} \log \mu_n(A_x) \leq \Lambda_{f_x} - f_x(x) + \delta \leq -I^\delta(x) + \delta.$$

440 By compactness of K , since $\bigcup_{x \in K} A_x$ covers K we can extract a finite covering $K = \bigcup_{i=1}^N A_{x_i}$,
441 for some $x_1, \dots, x_N \in X$. We therefore get :

$$\begin{aligned} \limsup_{n \rightarrow \infty} \frac{1}{n} \log \mu_n(K) &\leq \limsup_{n \rightarrow \infty} \frac{1}{n} \log \left(\sum_{i=1}^N \mu_n(A_{x_i}) \right) \\ &= \max_{1 \leq i \leq N} \left\{ \limsup_{n \rightarrow \infty} \frac{1}{n} \log \mu_n(A_{x_i}) \right\} \leq \max_{1 \leq i \leq N} \{-I^\delta(x_i) + \delta\}. \end{aligned}$$

Taking $\lim_{\delta \rightarrow 0^+}$ on the right hand side of the inequality, we obtain :

$$\limsup_{n \rightarrow \infty} \frac{1}{n} \log \mu_n(K) \leq \max_{1 \leq i \leq N} \{-I(x_i)\} \leq -\inf_{x \in K} I(x),$$

442 which is the upper bound for the LDP. Thus, I satisfies both the upper and lower bounds, so
443 we have an LDP with rate function I .

444

445 Applying Proposition 2.3, one can deduce Corollary 2.2 from Theorem 2.1.

446 2.4 Various applications of Theorem 2.1 and Corollary 2.2

447 The goal of the section is to exhibit several very interesting applications of the main results
448 of [6]. We will develop some of them in details, while others will be just briefly mentioned,
449 referring the reader to the original paper for more details.

450 **2.4.1 Usual Coulomb and Riesz gases**

451 The first result we want to establish is an LDP for the Gibbs measure $\mathbb{P}_{N,V,\beta,g}$ as defined by
 452 (8), with the kernel g being a Coulomb or a Riesz kernel. On this subject, one has to mention
 453 the work of D. Chafaï, N. Gozlan and P. A. Zitt in [13] and the work of P. Dupuis, V. Laschos
 454 and K. Ramanan [16], the latter being closer in the methods of the work of D. García-Zelada.
 455 We explain hereafter how to recover those results from Theorem 2.1.

456 Let π be a reference measure on \mathbb{R}^d . Let $V : \mathbb{R}^d \rightarrow (-\infty, \infty]$ be lower semicontinuous,
 457 bounded below such that there exists $\xi > 0$ such that $\int_{\mathbb{R}^d} e^{-\xi V} d\pi < \infty$.

458 Let $g : \mathbb{R}^d \rightarrow (-\infty, \infty]$ symmetric, lower semicontinuous such that there exists $\varepsilon > 0$
 459 such that $(x, y) \mapsto g(x - y) + \varepsilon V(x) + \varepsilon V(y)$ is bounded below. We also assume that
 460 $(x, y) \mapsto g(x, y) + V(x) + V(y)$ goes to infinity as x and y both go to infinity and that the
 461 regularity assumption is satisfied.

462 Then, for all $f : \mathcal{P}(\mathbb{R}^d) \rightarrow \mathbb{R}$ continuous and bounded, we have

$$\frac{1}{N^2 \beta} \log \int_{M^N} \exp \left(-N^2 \beta f \left(\frac{1}{N} \sum_{k=1}^N \delta_{x_k} \right) \right) d\mathbb{P}_{N,V,\beta,g}(x_1, \dots, x_N) \xrightarrow[N \rightarrow \infty]{} - \inf_{\mu \in \mathcal{P}(M)} \{f(\mu) + W(\mu)\}, \quad (11)$$

463 and consequently, under $\mathbb{P}_{N,V,\beta,g}$, the empirical measure of the particles satisfies a large devi-
 464 ation principle, at speed N^2 , with rate function βJ , given by $J(\mu) = W(\mu) - \inf W$.

465 As already mentioned above, choosing $d = 1$, $g(x) = -2 \log|x|$ and $V(x) = x^2/2$, it
 466 encompasses in particular the GUE case but also applies, with appropriate choices of the po-
 467 tential V to any Coulomb or Riesz kernel.

469
 470 Let us now quickly explain how to obtain (11) and the corresponding LDP from Theorem
 471 2.1 and Corollary 2.2.

472 As we know that $\int_{\mathbb{R}^d} e^{-\xi V} d\pi < \infty$, we may assume without loss of generality that
 $\int_{\mathbb{R}^d} e^{-\xi V} d\pi = 1$. If we make the following choices: $\beta_N = N\beta$, and

$$G(x, y) := g(x - y) + \frac{1}{N-1} \left(N - \frac{N}{\beta_N} \xi \right) V(x) + \frac{1}{N-1} \left(N - \frac{N}{\beta_N} \xi \right) V(y),$$

473 with g a Coulomb or Riesz kernel and V an appropriate choice so that the assumptions above
 are satisfied¹⁴ and define that corresponding measure γ_N as in (10), we get

$$\begin{aligned} d\gamma_N(x_1, \dots, x_N) &= e^{-N\beta_N W_N} d(e^{-\xi V} \pi)^{\otimes N}(x_1, \dots, x_N) \\ &= e^{-\frac{\beta_N}{N} \left(\sum_{i < j} g(x_i - x_j) + \left(N - \frac{N}{\beta_N} \xi \right) \sum_{i=1}^N V(x_i) \right)} d(e^{-\xi V} \pi)^{\otimes N}(x_1, \dots, x_N) \\ &= Z_{N,V,\beta,g} d\mathbb{P}_{N,V,\beta,g}(x_1, \dots, x_N), \end{aligned}$$

474 which corresponds to an unnormalized version of Coulomb/Riesz gases.

We now use the following decomposition:

$$G_1(x, y) := g(x - y) + \varepsilon V(x) + \varepsilon V(y),$$

and

$$G_2(x, y) := (1 - \varepsilon)V(x) + (1 - \varepsilon)V(y),$$

¹⁴Any polynomial of even degree and positive main coefficient is suitable.

so that, with obvious notations

$$W_N = W_{N,1} + a_N W_{N,2},$$

with

$$a_N := \frac{1}{1-\varepsilon} \left(\frac{1}{N-1} \left(N - \frac{N}{\beta_N} \xi \right) - \varepsilon \right),$$

475 a sequence converging to 1 as N goes to infinity. We can then check separately that $W_{N,1}$ and
 476 $W_{N,2}$ satisfy the required assumptions.

477

478 As we have shown in the first chapter with Wigner's theorem, it is possible to characterize
 479 the minimizer of the rate function through Euler-Lagrange equations. The minimizer is usually
 480 called *equilibrium measure* and is compactly supported.

481

482 2.4.2 High temperature Coulomb and Riesz gases

483 As explained in the previous subsection, the study of $\mathbb{P}_{N,V,\beta,g}$ which is related to standard
 484 models in RMT corresponds to a choice of β_N of order N , leading to an LDP at scale N^2 and
 485 a limiting equilibrium measure with compact support. But the study of measures of the type
 486 $\mathbb{P}_{N,V,\frac{\beta}{N},g}$ has also been considered in the literature. In this case, the corresponding particle
 487 systems are for example related to the classical Toda chain [17, 18] and are often called *high*
 488 *temperature β -ensembles* or *high temperature gases*. In our framework, it corresponds to a
 489 choice of β_N of order 1. This regime has been investigated by various authors, see e.g. [19, 20].

490 In this case, one can see from the definition of the function F in Theorem 2.1 that the rate
 491 function is a mixture of an energy term W and an entropy term S . As far as we know, the
 492 first appearance of an LDP for such particle systems goes back to the work of T. Bodineau and
 493 A. Guionnet in [21] and before the work of D. García-Zelada, general results appeared in [16].

494 In the framework of [6], Laplace principle and LDP at fixed β even require less assumptions.
 495 With the same decomposition as in Section 2.4.1, one can show the following

496 **Theorem 2.4** Let π be a reference measure on \mathbb{R}^d . Let $V : \mathbb{R}^d \rightarrow (-\infty, \infty]$ lower semicontinuous,
 497 bounded below such that there exists $\xi > 0$ such that $\int_{\mathbb{R}^d} e^{-\xi V} d\pi < \infty$.

498 Let $g : \mathbb{R}^d \rightarrow (-\infty, \infty]$ symmetric, lower semicontinuous such that there exists $\varepsilon > 0$ such
 499 that $(x, y) \mapsto g(x - y) + \varepsilon V(x) + \varepsilon V(y)$ is bounded below.

500 Then, if $\beta_N \rightarrow \beta$, for all $f : \mathcal{P}(\mathbb{R}^d) \rightarrow \mathbb{R}$ continuous and bounded, we have

$$\frac{1}{N\beta_N} \log \int_{M^N} \exp \left(-N\beta_N f \left(\frac{1}{N} \sum_{k=1}^N \delta_{x_k} \right) \right) d\mathbb{P}_{N,V,\beta,g}((x_1, \dots, x_N)) \xrightarrow[N \rightarrow \infty]{} - \inf_{\mu \in \mathcal{P}(M)} \left\{ f(\mu) + W(\mu) + \frac{1}{\beta} S(\mu|\pi) \right\}, \quad (12)$$

501 and consequently, under $\mathbb{P}_{N,V,\beta,g}$, the empirical measure of the particles satisfies a large deviation
 502 principle, at speed N , with rate function $\beta W + S(\cdot|\pi) - \inf(\beta W + S(\cdot|\pi))$.

503 As we have shown in the first chapter with Wigner's theorem, it is possible to characterize
 504 the minimizer of the rate function through Euler-Lagrange-like equations. The minimizer is
 505 usually called *thermal equilibrium measure* and is not compactly supported. When this mini-
 506 mizer is unique, it is again possible to deduce almost sure convergence of the empirical measure
 507 to the thermal equilibrium measure.

508 **2.4.3 Conditional Gibbs measures**

509 In some cases, it may also be natural to consider a gas of N particles $\{x_1, \dots, x_N\}$ where all
 510 but the first ℓ points are deterministic. In [6], several regimes are considered but for the sake
 511 of simplicity, we will stick in these notes to the case when ℓ is of order 1.

Assume that the density of these deterministic points converges weakly to ν :

$$\nu_N := \frac{1}{N-\ell} \sum_{i=\ell}^N \delta_{x_i} \xrightarrow[N \rightarrow \infty]{w} \nu.$$

Define the external potential G^E generated by y on the random points (x_1, \dots, x_ℓ) by

$$G^E((x_1, \dots, x_\ell), y) := \sum_{i=1}^{\ell} G(x_i, y),$$

and denote the average external interaction by

$$V_N(x_1, \dots, x_\ell) = \int G^E((x_1, \dots, x_\ell), y) d\nu_N(y).$$

Then, consider the internal interaction

$$G^I(x_1, \dots, x_\ell) = \sum_{1 \leq i < j \leq \ell} G(x_i, x_j).$$

Finally, define $V : M^\ell \rightarrow \mathbb{R}$ by

$$V(x_1, \dots, x_\ell) = \int_M G^E((x_1, \dots, x_\ell), y) d\nu(y).$$

Theorem 2.5 *Assume that the interaction G is such that the following limit holds:*

$$V(x_1, \dots, x_\ell) = \lim_{N \rightarrow \infty} V_N(x_1, \dots, x_\ell)$$

and V is continuous bounded on M^ℓ . Define the conditional measure γ_N^c as follows:

$$d\gamma_N^c(x_1, \dots, x_\ell) = \exp \left\{ -\beta_N \left(V_N + \frac{1}{N} G^I \right) (x_1, \dots, x_\ell) \right\} d\pi(x_1) \cdots d\pi(x_\ell).$$

512 Then, under some extra technical assumptions¹⁵, for all $f \in \mathcal{C}^b(M^\ell)$, we have :

$$\begin{aligned} \frac{1}{\beta_N} \log \left(\int_{M^\ell} \exp \{ -\beta_N f(x_1, \dots, x_\ell) \} d\gamma_N^c(x_1, \dots, x_\ell) \right) \\ \xrightarrow[N \rightarrow \infty]{} -\inf \{ f(x_1, \dots, x_\ell) + V(x_1, \dots, x_\ell) \}. \end{aligned}$$

513 **Corollary 2.6** *Under the same assumptions as Theorem 2.5, the law of (x_1, \dots, x_ℓ) under $\tilde{\gamma}_N^c$,
 514 which is the normalized version of γ_N^c , satisfies an LDP at speed β_N with the rate function $V - \inf V$.*

¹⁵In this paragraph, we won't be as precise as for the previous examples and refer the reader to the original paper.

515 We want to emphasize the change in the scaling: when the deviations of the whole empirical
 516 measure occurs at speed $N\beta_N$, the deviations of the law of this finite number of particles
 517 occur at speed β_N .

This is exactly what happens when we look at the deviations of the largest eigenvalue of the GUE (or the rightmost particle of a gas in dimension 1). When we look at the scale e^{-N} , all but the first particle can be considered as *frozen*, deterministic, with positions such that their limiting empirical measure is the semicircle distribution. This corresponds to taking $\ell = 1$, $G(x, y) = \frac{x^2}{2} - 2\log(|x - y|)$ and $\nu_N \xrightarrow[N \rightarrow \infty]{w} \mu_{sc}$. With this heuristics¹⁶, we recover the result that the law of the largest eigenvalue λ_1 for the GOE model satisfies an LDP at speed N with rate function $V - \inf V$, with

$$V(x) = \frac{x^2}{2} - \int \log(|x - y|) d\mu_{sc}(y).$$

518 More details on this derivation can be found in the work [22] or in the review paper by S. Majumdar and G. Schehr [23], which presents a thorough study of the deviations of the top eigenvalue at different scales such as fluctuations, large deviations and links between the different regimes.

522 2.4.4 Further examples

523 We would like to finish this list of applications of the main results of [6] by mentioning two
 524 other families of particle systems that can be studied in this framework. We won't detail these
 525 examples but refer the interested reader to the original papers:

- 526 527 • one can recover and generalize the results of R. Berman on Coulomb gases on Riemannian manifolds, see e.g. [24],
- 528 529 • if we consider random polynomials on the form $P_n(z) = \sum_{k=0}^n a_k z^k$, where a_k are i.i.d. $\mathcal{N}_{\mathbb{C}}(0, 1)$ coefficients, it is known that the zeroes form a random particle systems of Coulomb-type. The large deviations of their empirical measure have been explored, e.g. in [25] and [26]. Their results can be recovered and generalized in the framework of [6].

533 2.5 Elements of proof of the Laplace principle

534 We now end this chapter by giving some ideas of the proof of Theorem 2.1. We start by
 535 recalling a result on the Legendre transform of the entropy.

Lemma 2.7 (Legendre transform of entropy) *Let μ be a probability measure on a space E and $g : E \rightarrow (-\infty, +\infty]$ be a measurable and bounded below function. Then,*

$$\log \left(\int e^{-g(x)} d\mu(x) \right) = - \inf_{\tau \in \mathcal{P}(E)} \left\{ \int g d\tau + S(\tau | \mu) \right\}.$$

Let give a quick proof of this lemma. If τ has a density with respect to μ and we denote by $f = \frac{d\tau}{d\mu}$ this density, recall that

$$S(\tau | \mu) = \int f \log(f) d\mu = \int \log(f) d\tau.$$

¹⁶The heuristics would be a rigorous application of Theorem 2.5 if all but the largest particle would be deterministic.

536 Therefore,

$$\begin{aligned} - \int g d\tau - S(\tau|\mu) &= - \int g d\tau - \int \log(f) d\tau = \int \log e^{-g} d\tau - \int \log(f) d\tau \\ &= \int \log(e^{-g}/f) d\tau \leq \log \left(\int (e^{-g}/f) d\tau \right) = \log \left(\int e^{-g} d\mu \right). \end{aligned}$$

If τ is not absolutely continuous with respect to μ , then the inequality is trivially verified since in this case $S(\tau|\mu) = +\infty$. Now, taking $\sup_{\tau \in \mathcal{P}(E)}$ on the left hand side we get

$$- \inf_{\tau \in \mathcal{P}(E)} \left\{ \int g d\tau + S(\tau|\mu) \right\} \leq \log \left(\int e^{-g} d\mu \right),$$

537 and this gives us one inequality.

On the other hand, if we choose the probability measure τ such that $d\tau = \frac{e^{-g}}{\int e^{-g} d\mu} d\mu$, then, one can easily check that we have equality:

$$- \int g d\tau - S(\tau|\mu) = \log e^{-g} d\mu,$$

538 so that we can conclude that the inequality above is in fact an equality.

539

540 Let us now use Lemma 2.7 to show the generalized Laplace principle stated in Theorem
541 2.1.

If we apply Lemma 2.7 to $E = M^N$, $\mu = \pi^{\otimes N}$ and the test function

$$g(x_1, \dots, x_N) := N\beta_N \left[f\left(\frac{1}{N} \sum_{i=1}^N \delta_{x_i}\right) + W_N(x_1, \dots, x_N) \right],$$

542 we get :

$$\begin{aligned} & \frac{1}{N\beta_N} \log \left(\int_{M^N} \exp \left(-N\beta_N \left[f\left(\frac{1}{N} \sum_{i=1}^N \delta_{x_i}\right) + W_N(x_1, \dots, x_N) \right] \right) d\pi(x_1) \dots d\pi(x_N) \right) \\ &= - \inf_{\tau \in \mathcal{P}(M^N)} \left\{ \int f\left(\frac{1}{N} \sum_{i=1}^N \delta_{x_i}\right) d\tau(x_1, \dots, x_N) + \int W_N(x_1, \dots, x_N) d\tau + \frac{S(\tau|\pi^{\otimes N})}{N\beta_N} \right\}. \end{aligned}$$

To conclude, we need to show that the right handside converges, as $N \rightarrow \infty$ towards

$$- \inf_{\mu \in \mathcal{P}(M)} \left\{ f(\mu) + W(\mu) + \frac{S(\mu|\pi)}{\beta} \right\}.$$

543 We will only show the upper bound and refer the reader to the original paper, concerning the
544 lower bound, which is more technical.

545 Notice first that if we fix $\mu \in \mathcal{P}(M)$ and let $\tau_N := \mu^{\otimes N} \in \mathcal{P}(M^N)$, then

$$\begin{aligned} & \limsup_{N \rightarrow \infty} \inf_{\tau \in \mathcal{P}(M^N)} \left\{ \int f\left(\frac{1}{N} \sum_{i=1}^N \delta_{x_i}\right) d\tau(x_1, \dots, x_N) + \int W_N(x_1, \dots, x_N) d\tau + \frac{S(\tau|\pi^{\otimes N})}{N\beta_N} \right\} \\ & \leq \limsup_{N \rightarrow \infty} \left(\int f\left(\frac{1}{N} \sum_{i=1}^N \delta_{x_i}\right) d\tau_N(x_1, \dots, x_N) + \int W_N(x_1, \dots, x_N) d\tau_N + \frac{S(\tau_N|\pi^{\otimes N})}{N\beta_N} \right). \end{aligned}$$

We look at the limsup of each of the three terms. First, if $(x_1, \dots, x_N) \sim \tau_N$, it means that the x_i are i.i.d. and are distributed according to μ . By the law of large numbers, we have that the law of $\frac{1}{N} \sum_{k=1}^N \delta_{x_i}$ converges weakly to δ_μ and so that for any continuous bounded function f on $\mathcal{P}(M)$ we have :

$$\int f \left(\frac{1}{N} \sum_{k=1}^N \delta_{x_i} \right) d\tau_N \xrightarrow[N \rightarrow \infty]{} \int f d\delta_\mu = f(\mu).$$

546 We now go to the second term:

$$\begin{aligned} \int W_N d\tau_N &= \frac{1}{N^k} \sum_{\substack{\{i_1, \dots, i_k\} \subseteq \{1, \dots, N\} \\ \#\{i_1, \dots, i_k\} = k}} \int G(x_{i_1}, \dots, x_{i_k}) d\mu^{\otimes k}(x_{i_1}, \dots, x_{i_k}) \\ &= \frac{1}{N^k} \binom{N}{k} \int_{M^k} G(x_1, \dots, x_k) d\mu(x_1) \dots d\mu(x_k) \xrightarrow[N \rightarrow \infty]{} W(\mu). \end{aligned}$$

Finally, since

$$\frac{d\mu^{\otimes N}}{d\pi^{\otimes N}}(x_1, \dots, x_N) = \prod_{i=1}^N \frac{d\mu}{d\pi}(x_i),$$

we have $S(\mu^{\otimes N} | \pi^{\otimes N}) = N S(\mu | \pi)$, so that

$$\frac{S(\tau_N | \pi^{\otimes N})}{N \beta_N} = \frac{S(\mu | \pi)}{\beta_N} \xrightarrow[N \rightarrow \infty]{} \frac{S(\mu | \pi)}{\beta}.$$

547 Putting these three elements together in the limit above, we get that for any $\mu \in \mathcal{P}(M)$,

$$\begin{aligned} \limsup_{N \rightarrow \infty} \inf_{\tau \in \mathcal{P}(M^N)} \left\{ \int f \left(\frac{1}{N} \sum_{i=1}^N \delta_{x_i} \right) d\tau(x_1, \dots, x_N) + \int W_N(x_1, \dots, x_N) d\tau + \frac{S(\tau | \pi^{\otimes N})}{N \beta_N} \right\} \\ \leq f(\mu) + W(\mu) + \frac{S(\mu | \pi)}{\beta}, \end{aligned}$$

548 and we can take the infimum over the right handside.

549 We refer the reader to [6] for the proof of the reverse inequality.

550 2.6 Conclusion

551 In this second chapter (corresponding to an extended version of Lectures 2 and 3), we have
552 discussed a very general result developed in [6].

- 553 • It allows to study the large deviations of the empirical measure of particle systems given
554 by singular Gibbs measures, encompassing a large range of applications, in particular
555 usual Coulomb gases, high temperature Coulomb gases and conditional Gibbs measures.
- 556 • The proof of these LDPs is based on an important mathematical tool called Bryc's inverse
557 integral lemma, that can be seen as a reciprocal to Varadhan's lemma. It allows to deduce
558 LDPs from Laplace principle.
- 559 • In this case, the Laplace principle is intimately linked to a dual representation of the
560 relative entropy. It leads to a rate function that is in general a mixture of an energy term
561 and a relative entropy term. In the so-called *zero temperature regime*, the entropy term
562 disappears.

563 • The typical behavior of the corresponding empirical measures can be described by a
564 compactly supported equilibrium measure in the usual case (as we have seen in the first
565 chapter with the semicircle distribution) and by a non-compactly supported (thermal)
566 equilibrium measure in the so-called *high temperature regime*.

567 **3 The use of spherical integrals to study LD of largest eigenvalues
568 of random matrices**

569 In the first two chapters, we have mainly dealt with the global behavior of the particle sys-
570 tems, encoded in their empirical measure. But, in many situations, it is also relevant to study
571 the behavior of the extremal particles - say the rightmost particle or the largest eigenvalue.
572 Recently, A. Guionnet and J. Husson [27] and then many co-authors [28–33] have used the
573 so-called spherical integrals to study the large deviations of the largest eigenvalue in various
574 models of random matrices. Although the corresponding systems of particles are no longer
575 strictly speaking Coulomb gases, they are closely related models and we would like to present
576 this ensemble of works in this last section. We think that the ubiquity of spherical integrals in
577 statistical physics makes it particularly relevant for this course.

578 **3.1 A general overview on the models**

579 Let us go back to the model of the GUE, and recall that $H_N \in \text{GUE}_N$ has been defined in (1.1)
580 as follows:

$$H_N = \begin{pmatrix} \frac{H_{1,1}}{\sqrt{N}} & & \frac{H_{i,j}}{\sqrt{N}} & & \\ & \ddots & & & \\ \frac{H_{i,j}^*}{\sqrt{N}} & & \ddots & & \\ & & & & \frac{H_{N,N}}{\sqrt{N}} \end{pmatrix},$$

581 where $H_{i,i}$ are independent and identically distributed random variables with distribution
582 $\mathcal{N}_{\mathbb{R}}(0, 1)$ and for $i \leq j$, $H_{i,j}$ are independent and identically distributed random variables
583 with distribution $\mathcal{N}_{\mathbb{C}}(0, 1)$.

584 There are several very natural generalisations of this model.

585 • **β -ensembles.** We know that the joint law of the eigenvalues of the GUE_N is given by
586 $\mathbb{P}_{\text{GUE}_N}$, which has been defined in (2). In the joint density, proportional to

$$\prod_{i < j} (x_i - x_j)^2 \exp\left(-\frac{N}{2} \sum_{j=1}^N x_j^2\right),$$

587 if we replace the quadratic potential by a more general potential $V(x_j)$ and/or if we
588 replace the exponent 2 in the Vandermonde term by any $\beta > 0$, the corresponding
589 particle system is called a β -ensemble. Large deviations for the empirical measure and
590 for the rightmost particle in this framework has been extensively studied and we refer
591 to Vivo's lecture for more details. In these notes, we will focus in two other types of
592 extension of the model.

593 • **Wigner matrices.** If we keep the same structure of the entries, being i.i.d., up to sym-
594 metry (the matrix has to remain Hermitian or real symmetric) but relax the Gaussianity
595 assumption, we obtain a Wigner matrix.

596 It is well known that, as soon as the entries $H_{i,j}$ are centered and $\mathbb{E}(|H_{i,j}|^2) = 1$ for
597 $i \neq j$, Wigner's theorem holds in the sense that $\widehat{\mu}_N = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i} \xrightarrow[N \rightarrow \infty]{w} \mu_{\text{sc}}$, the semi-
598 circular distribution. If moreover we have $\mathbb{E}(H_{i,j}^4) < \infty$, then $\lambda_{\max}^N \xrightarrow[N \rightarrow \infty]{} \lambda^* = 2$,
599 which is the right edge of the support of μ_{sc} . The large deviations have been investigated
600 by [27–29, 33].

601 • **Deformed models.** The \mathbf{GUE}_N distribution may also be seen as a Gaussian measure on
 602 the set $\mathcal{H}_N(\mathbb{C})$ of Hermitian matrices of size N . A natural way to modify this measure
 603 is to change its mean: choose a deterministic matrix $A_N \in \mathcal{H}_N(\mathbb{C})$ and $X_N = A_N + H_N$,
 604 with $H_N \in \mathbf{GUE}_N$. As the \mathbf{GUE}_N distribution is invariant by unitary conjugation, one can
 605 consider as a further generalisation a model of the form

$$X_N = A_N + U B_N U^*,$$

606 with U being distributed as the Haar measure on the orthogonal group \mathcal{O}_N or the unitary
 607 group \mathcal{U}_N . The convergence of the empirical spectral measure can be described by free
 608 probability (this point will be detailed a bit further in these notes) and the behavior of
 609 the largest eigenvalue has been investigated in [30–32].

610 To understand the deviations of the largest eigenvalue both for Wigner matrices and de-
 611 formed models, we first need to investigate a common tool, which is interesting by itself, the
 612 *spherical integrals*.

613 3.2 Spherical integrals

614 Consider A_N, B_N two deterministic, real diagonal $N \times N$ matrices. Define the spherical integral
 615 of A_N and B_N as

$$I_N(A_N, B_N) := \int e^{N \text{Tr}(A_N U_N B_N U_N^*)} d\mathbf{m}_N(U_N),$$

616 with \mathbf{m}_N the Haar measure on the orthonormal group

$$\mathcal{O}_N = \{O \in \mathcal{M}_N(\mathbb{R}), O^T O = O O^T = I_N\},$$

617 or the unitary group

$$\mathcal{U}_N = \{U \in \mathcal{M}_N(\mathbb{C}), U^* U = U U^* = I_N\}.$$

618 We recall that the Haar measure is the unique probability measure which is invariant under
 619 conjugation (see Appendix A for more details). According to the context, the integral I_N may
 620 be called *Harish Chandra integral*¹⁷ or *Itzykson-Zuber integral* or *spherical integral*. We will use
 621 this latter terminology in these notes.

622 Harish Chandra in the fifties provided explicit formulas for $I_N(A_N, B_N)$. For example, we
 623 have the following formula, which holds only in the unitary case:

$$I_N(A_N, B_N) := \left(\prod_{j=1}^N j! \right) \frac{\det(e^{a_i b_j})_{i,j \leq N}}{\prod_{i < j} (a_i - a_j) \prod_{i < j} (b_i - b_j)},$$

624 where $(a_i)_{1 \leq i \leq N}$ and $(b_j)_{1 \leq j \leq N}$ are respectively the eigenvalues of A_N and B_N . Unfortunately,
 625 this nice closed formula is not very suitable for asymptotic analysis. Nevertheless, C. Itzykson
 626 and J. B. Zuber in the physics literature [34] and then twenty years later A. Guionnet and
 627 O. Zeitouni [35] on a rigorous level provided some insights on the asymptotics of I_N . Their
 628 result takes the following form:

629 **Theorem 3.1** *If*

$$\widehat{\mu}_{A_N} = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i(A_N)} \xrightarrow[N \rightarrow \infty]{w} \mu_a \text{ and } \widehat{\mu}_{B_N} = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i(B_N)} \xrightarrow[N \rightarrow \infty]{w} \mu_b,$$

¹⁷It is in fact a particular case of the latter.

630 then there exists a functional F such that (under some additional technical assumptions), we have
 631 the following convergence :

$$\frac{1}{N^2} \log I_N(A_N, B_N) \xrightarrow[N \rightarrow \infty]{w} F(\mu_a, \mu_b).$$

632 One can check that when one of the limiting measures μ_a or μ_b is trivial ($= \delta_0$), the
 633 function F vanishes. This means that in this case, we are not considering the spherical integrals
 634 on the right scale. The asymptotics in the case when one of the matrices, say A_N is of finite
 635 rank (fixed with N), has been first obtained by A. Guionnet and M. Maïda [36] in the rank
 636 one case and then by A. Guionnet and J. Husson [37] in the finite rank case (see also [38] for
 637 previous partial results). The rank one case will be particularly useful for the sequel and we
 638 present it hereafter in full details. For the sake of simplicity, we stick to the orthogonal case
 639 but the results and proofs can be easily adapted to the unitary case.

640 We write A_N and B_N under the form:

$$A_N = \begin{pmatrix} \theta & & \\ & \ddots & \\ & & (0) \end{pmatrix}, \quad B_N = \begin{pmatrix} b_1 & & & \\ & b_2 & & \\ & & \ddots & \\ & & & b_N \end{pmatrix}.$$

641 In this case, we denote by $I_N(\theta, B_N) := I_N(A_N, B_N)$. We will here restrict to the case where
 642 $\theta \geq 0$, which is useful to study the deviations of the largest eigenvalue but the very same results
 643 have been shown when $\theta \leq 0$.

644 Before stating the result, let us recall the following notation. Given a probability measure
 645 μ on \mathbb{R} and a point $x \in \mathbb{R}$ outside the support of μ , let

$$H_\mu(x) := \int_{\mathbb{R}} \frac{1}{x-y} d\mu(y).$$

646 Depending on the context, the functional $\mu \mapsto H_\mu$ is known as the Hilbert - or the Stieltjes -
 647 transform. We have the following:

648 **Theorem 3.2** Assume that $\widehat{\mu}_{B_N} \xrightarrow[N \rightarrow \infty]{w} \mu$, where μ has a compact support. Assume also that
 649 $\lambda_{\max}(B_N) = \max_{1 \leq i \leq N} b_i \xrightarrow[N \rightarrow \infty]{w} \lambda$. Then

$$\lim_{N \rightarrow \infty} \frac{1}{N} \log I_N(\theta, B_N) = \theta v(\theta) - \frac{1}{2} \int \log(1 + 2\theta v(\theta) - 2\theta y) d\mu(y) := J(\theta, \lambda, \mu), \quad (13)$$

650 where

$$v(\theta) = \begin{cases} R_\mu(2\theta), & \text{when } 2\theta \leq H_{\max} \\ \lambda - \frac{1}{2\theta}, & \text{when } 2\theta > H_{\max} \end{cases}$$

651 with

$$H_{\max} = \lim_{x \rightarrow \lambda^+} H_\mu(x),$$

652 and $R_\mu(\eta)$ is the unique solution of

$$\int_{\mathbb{R}} \frac{1}{R_\mu(\eta) + \frac{1}{\eta} - y} d\mu(y) = \eta$$

653 such that $R_\mu(\eta) + \frac{1}{\eta}$ is larger or equal to λ .

654 Note that for μ and λ given, there is a phase transition at $2\theta = H_{\max}$. For $2\theta \leq H_{\max}$
 655 (subcritical case), $v(\theta)$ and therefore $J(\theta, \lambda, \mu)$ is independent of λ but a dependence appears
 656 when $2\theta > H_{\max}$. This will play a crucial role in the tilting argument.

657 We now sketch the proof of Theorem 3.2. With A_N and B_N chosen as above, we have

$$I_N(\theta, B_N) = \int e^{N\theta \sum_{i=1}^N b_i O_{i1}^2} dm_N(O).$$

658 In the orthogonal case we are interested in, when $(O_{i1})_{i=1}^N$ is the first column vector of a
 659 matrix sampled according to the Haar measure, one can show that this vector follows the
 660 uniform distribution on the sphere $\mathbb{S}^{N-1} \subset \mathbb{R}^N$. If G is a standard Gaussian vector of size N ,
 661 by invariance of the standard normal distribution under orthogonal transformations, $\frac{G}{\|G\|}$ also
 662 follows the uniform distribution on the sphere. Thus $(O_{i1})_{i=1}^N$ has the same distribution as $\frac{G}{\|G\|}$
 663 and we can write :

$$I_N(\theta, B_N) = \mathbb{E} \left(\exp \left(N\theta \frac{\sum_{i=1}^N b_i g_i^2}{\sum_{i=1}^N g_i^2} \right) \right), \quad \text{where } G = \begin{pmatrix} g_1 \\ \vdots \\ g_N \end{pmatrix} \sim \mathcal{N}(\mathbf{0}, \text{Id}_N).$$

664 By concentration of measure phenomenon, the event

$$\mathcal{E}_N = \left\{ \left| \frac{\|G\|^2}{N} - 1 \right| \leq N^{-\kappa} \right\},$$

665 where $\kappa \in (0, 1/2)$, has very high probability for N large enough. Therefore, we have the
 666 following approximation:

$$I_N(\theta, B_N) = \mathbb{E} \left(e^{N\theta \frac{\sum b_i g_i^2}{\sum g_i^2}} \right) \approx \mathbb{E} \left(e^{N\theta \frac{\sum b_i g_i^2}{\sum g_i^2}} \mathbf{1}_{\mathcal{E}_N} \right).$$

667 On the event \mathcal{E}_N , the quantity $(\sum_{i=1}^N g_i^2 - N)$ is negligible with respect to N . Therefore, up to
 668 a factor which is negligible with respect to e^N , we can write the following approximation: for
 669 any $v \in \mathbb{R}$,

$$I_N(\theta, B_N) \approx \mathbb{E} \left(e^{\theta \sum b_i g_i^2 - v \theta (\sum g_i^2 - N)} \mathbf{1}_{\mathcal{E}_N} \right).$$

670 By rewriting the expectation with the density of a Gaussian vector, we get

$$\begin{aligned} I_N(\theta, B_N) &\approx \frac{e^{N\theta v}}{(2\pi)^{N/2}} \int e^{\theta \sum b_i g_i^2 - v \theta \sum g_i^2 - \frac{1}{2} \sum g_i^2} \mathbf{1}_{\mathcal{E}_N} \prod_{i=1}^N dg_i \\ &= \frac{e^{N\theta v}}{(2\pi)^{N/2}} \int e^{-\frac{1}{2} \sum (1 - 2\theta b_i + 2v\theta) g_i^2} \mathbf{1}_{\mathcal{E}_N} \prod_{i=1}^N dg_i. \end{aligned}$$

671 Choosing v such that $1 - 2\theta b_i + 2v\theta > 0$ for all $1 \leq i \leq N$, we identify the exponential in
 672 the integral as the density of a centered normal distribution of variance $\frac{1}{1 - 2\theta b_i + 2v\theta}$. We thus
 673 obtain

$$I_N(\theta, B_N) \approx \frac{e^{N\theta v}}{\prod_{i=1}^N \sqrt{1 - 2\theta b_i + 2v\theta}} \mathbb{P}_{N,v}(\mathcal{E}_N),$$

674 with $\mathbb{P}_{N,\nu}$ a Gaussian measure with covariance matrix $\Gamma = \begin{pmatrix} \frac{1}{1-2\theta b_1+2\theta\nu} & 0 & & \\ 0 & \ddots & & 0 \\ & 0 & \frac{1}{1-2\theta b_N+2\theta\nu} \end{pmatrix}$.

675 Therefore, bounding $\mathbb{P}_{N,\nu}(\mathcal{E}_N)$ by 1, we get :

$$I_N(\theta, B_N) \lesssim e^{N\theta\nu - \frac{1}{2}\sum \log(1-2\theta b_i+2\theta\nu)},$$

676 and thus, for any $\nu \in \mathbb{R}$ such that $1-2\theta b_i+2\theta\nu > 0$ for all $1 \leq i \leq N$, we have :

$$\begin{aligned} \frac{1}{N} \log(I_N(\theta, B_N)) &\lesssim \theta\nu - \frac{1}{2N} \sum_{i=1}^N \log(1+2\theta\nu-2\theta b_i) = \theta\nu - \frac{1}{2} \int \log(1+2\theta\nu-2\theta y) d\hat{\mu}_{B_N}(y) \\ &\xrightarrow[N \rightarrow \infty]{} \theta\nu - \frac{1}{2} \int \log(1+2\theta\nu-2\theta y) d\mu(y), \end{aligned}$$

677 which gives us an upper bound.

678 We now compute the corresponding lower bound. We have seen that under $\mathbb{P}_{N,\nu}$, each g_i
679 has normal distribution with variance $\frac{1}{1-2\theta b_i+2\theta\nu}$ and so

$$\mathbb{E}_{N,\nu} \left(\frac{1}{N} \sum_{i=1}^N g_i^2 \right) = \frac{1}{N} \sum_{i=1}^N \frac{1}{1-2b_i\theta+2\theta\nu}.$$

680 The equation

$$\frac{1}{N} \sum_{i=1}^N \frac{1}{1-2b_i\theta+2\theta\nu} = 1 \tag{14}$$

681 has a unique solution in ν such that $1-2b_i\theta+2\theta\nu > 0$ for all $1 \leq i \leq N$, which we denote
682 by $\nu_N(\theta)$. Thus, we get

$$\mathbb{E}_{N,\nu_N(\theta)} \left(\frac{\|G\|^2}{N} \right) = 1$$

683 and using Gaussian concentration again, we get that $\mathbb{P}_{N,\nu_N(\theta)}(\mathcal{E}_N)$ goes to 1 as N grows to
684 infinity. Thus, we get that :

$$I_N(\theta, B_N) \approx e^{N(\theta\nu_N(\theta) - \frac{1}{2} \int \log(1-2\theta y+2\theta\nu_N(\theta)) d\hat{\mu}_{B_N}(y))}.$$

685 If we denote by

$$H_N(z) := H_{\hat{\mu}_{B_N}}(z) = \frac{1}{N} \sum_{i=1}^N \frac{1}{z-b_i},$$

686 one can rewrite (14) as

$$H_N \left(\nu_N(\theta) + \frac{1}{2\theta} \right) = 2\theta.$$

687 One can then show that $\nu_N(\theta)$ converges to $\nu(\theta)$, where $\nu(\theta) = H_\mu^{(-1)}(2\theta) - \frac{1}{2\theta}$ if
688 $2\theta \in H_\mu([\lambda, +\infty))$ and $\nu(\theta) = \lambda - \frac{1}{2\theta}$ otherwise.

689 This concludes the proof of Theorem 3.2 which gives the full asymptotics of the spherical
690 integral in the rank one case.

691

692 The finite rank case has been treated by A. Guionnet and J. Husson [37]: if we have
693 $\lambda_1 > \dots > \lambda_k > \lambda^*$ (where we denote by λ^* the right edge of the support of μ_b) and

694 $\lambda_i(B_N) \xrightarrow[N \rightarrow \infty]{} \lambda_i, \forall i \in \{1, \dots, k\}$ (where $\lambda_i(B_N)$ is the i th largest eigenvalue of B_N), then
 695 the logarithm of the integral is additive in the sense that:

$$\lim_{N \rightarrow \infty} \frac{1}{N} \log I_N(A_N, B_N) = \lim_{N \rightarrow \infty} \frac{1}{N} \log I_N(\theta_1, \dots, \theta_k, B_N) = J(\theta_1, \lambda_1, \mu) + \dots + J(\theta_k, \lambda_k, \mu),$$

696 where J is the rank one limit appearing in Theorem 3.2.

697 Before going to the statements of the main results, let us make some final remarks on the
 698 expression of J . If $H_\mu^{(-1)}$ is the inverse of the function H_μ on $[\lambda, \infty)$ and we denote by

$$R_\mu(z) = H_\mu^{(-1)}(z) - \frac{1}{z}$$

699 on this interval, R_μ is known by mathematicians as the R -transform of the measure μ and by
 700 physicists as the *blue function*¹⁸ (see e.g. J.P. Bouchaud's lecture notes [39] from les Houches
 701 2015). This functional is very useful to describe the limiting spectrum of $A_N + UB_NU^*$ in our
 702 model. It is a central tool in free probability theory (see for example the book of J. Mingo
 703 and R. Speicher [40] for a thorough but gentle introduction to the theory). If we choose the
 704 sequences $(A_N)_{N \geq 1}$ and $(B_N)_{N \geq 1}$ such that $\widehat{\mu}_{A_N} \xrightarrow[N \rightarrow \infty]{w} \mu_a$ and $\widehat{\mu}_{B_N} \xrightarrow[N \rightarrow \infty]{w} \mu_b$, one can show
 705 that

$$\widehat{\mu}_{A_N + UB_NU^*} \xrightarrow[N \rightarrow \infty]{w} \mu_s,$$

706 which is characterized by the functional equation

$$R_{\mu_s}(z) = R_{\mu_a}(z) + R_{\mu_b}(z).$$

707 This relation plays the role of the additivity of the logarithm of the Fourier transform for
 708 the usual convolution: if X and Y are independent real random variables, with respective
 709 distributions μ_X and μ_Y and if ϕ_μ is the characteristic function of a probability measure μ , we
 710 have

$$\log F_{\mu_{X+Y}} = \log F_{\mu_X} + \log F_{\mu_Y}.$$

711 By analogy, μ_s is called the *free convolution* of μ_a and μ_b and is denoted by $\mu_s = \mu_a \boxplus \mu_b$.

712 3.3 Statement of the results

713 We will now provide a statement of the LDP for the largest eigenvalue in two different models
 714 that are both a generalisation of the GUE.

Sub-Gaussian Wigner matrices Let us present hereafter a result due to N. Cook, R. Ducatez and A. Guionnet [33]; it is the outcome of a series of works, starting from [27]. For a probability measure $\mu \in \mathcal{P}(\mathbb{R})$, its log-Laplace transform is given by $\Lambda_\mu(t) = \log \int e^{tx} d\mu(x)$. For the standard Gaussian measure, with density :

$$d\gamma(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx,$$

715 one can check that its log-Laplace transform is given by $\Lambda_\gamma(t) = t^2/2$, for any $t \in \mathbb{R}$. Accordingly, a measure μ is said to be *sub-Gaussian* if there exists $K > 0$ such that $\Lambda_\mu(t) \leq Kt^2, \forall t \in \mathbb{R}$.
 717 It is said to be *sharp sub-Gaussian* if in addition $K = 1/2$.

We also recall that the rate function for the largest eigenvalue λ_1 of the GOE is given by :

$$I^r(x) = \begin{cases} \frac{1}{2} \int_2^x \sqrt{y^2 - 4} dy, & \text{for } x \geq 2, \\ \infty, & \text{for } x < 2. \end{cases}$$

¹⁸as it is the inverse of the Green function (sic!)

718 Let $(X_{i,j})_{1 \leq i \leq j \leq N}$ be i.i.d. real centered random variables, with unit variance. A *Wigner*
 719 *matrix* W_N is defined as follows:

$$W_N = \frac{1}{\sqrt{N}} \begin{pmatrix} \sqrt{2}X_{1,1} & X_{i,j} & & \\ & \ddots & & \\ & & \ddots & \\ X_{j,i} & & & \sqrt{2}X_{N,N} \end{pmatrix}.$$

720 We denote by μ the common distribution of the entries. The matrix W_N is said to be a *sub-*
 721 *Gaussian Wigner matrix* if the distribution μ is sub-Gaussian. The large deviations of its largest
 722 eigenvalue are described by the following result:

723 **Theorem 3.3** *For W_N a sub-Gaussian Wigner matrix, the law of $\lambda_1(W_N)$ satisfies an LDP at*
 724 *speed N , with good rate function I^μ such that*

- 725 • $I^\mu \leq I^r$;
- 726 • $\exists x_\mu > 2$ such that $I^\mu = I^r$ on $[2, x_\mu]$ and $I^\mu < I^r$ if $x > x_\mu$;
- 727 • $x_\mu < \infty$ if and only if $K > 1/2$.

728 One can also mention a few previous results, dealing with Wigner matrices with non Gaussian tails [41], or sparse Wigner matrices [42–44].

730 **Orthogonally invariant deformed random matrices** We state hereafter a similar result that
 731 was obtained in [32]. The tilting argument is a bit easier to present in this case and this is why
 732 we choose to emphasize this model.

733 If the distribution of O is the Haar measure on the orthogonal group¹⁹ \mathcal{O}_N and A_N and B_N
 734 are deterministic diagonal²⁰ matrices, we define

$$H_N := A_N + O B_N O^*.$$

Assume that $\hat{\mu}_{A_N} \xrightarrow[N \rightarrow \infty]{w} \mu_a$, $\hat{\mu}_{B_N} \xrightarrow[N \rightarrow \infty]{w} \mu_b$, which are compactly supported, and assume that
 $\lambda_1(A_N) \xrightarrow[N \rightarrow \infty]{} \rho_a$, $\lambda_1(B_N) \xrightarrow[N \rightarrow \infty]{} \rho_b$, which are the right edges²¹ of μ_a and μ_b respectively.
 As we have previously mentioned, we know that

$$\hat{\mu}_{H_N} \xrightarrow[N \rightarrow \infty]{w} \mu_a \boxplus \mu_b$$

735 and denote by $\rho(\mu_a \boxplus \mu_b)$ the right edge of the support of $\mu_a \boxplus \mu_b$. We then have the following
 736 LDP:

737 **Theorem 3.4** *With H_N defined as above, the law of its largest eigenvalue $\lambda_1(H_N)$ satisfies an LDP*
 738 *at speed N with good rate function $L_{a,b}$:*

$$L_{a,b}(x) = \begin{cases} \sup_\theta L_{a,b}(\theta, x), & \text{if } x \geq \rho(\mu_a \boxplus \mu_b), \\ +\infty, & \text{if } x < \rho(\mu_a \boxplus \mu_b), \end{cases}$$

739 with

$$L_{a,b}(\theta, x) := J(\theta, x, \mu_a \boxplus \mu_b) - J(\theta, x, \mu_a) - J(\theta, x, \mu_b). \quad (15)$$

740 and J defined in equation (13).

¹⁹The unitarily invariant case can be treated similarly by replacing the orthogonal group by the unitary group in the sequel.

²⁰ A_N and B_N may be considered real symmetric. By invariance of the Haar measure under unitary conjugation, one can assume without loss of generality that they are diagonal.

²¹More general results are given in [32].

741 **3.4 Main ideas of the proofs**

742 In this section, we provide the main ideas of the proofs of Theorems 3.3 and 3.4. As announced,
 743 it is based on tilting the measure thanks to spherical integrals. We start by recalling how such a
 744 tilting argument has been used in the much simpler context of real i.i.d. real random variables
 745 to prove Cramér's theorem. We then show how it can be applied in our case for studying
 746 the deformed model. The sub-Gaussian Wigner case is much more involved and will only be
 747 sketched in the last paragraph.

748 **3.4.1 Tilting for Cramér**

749 Consider $(X_N)_{N \geq 1}$ a sequence of i.i.d. real random variables that are centered, with law μ and
 750 such that the log-Laplace transform satisfies $\Lambda_\mu(t) < \infty, \forall t \in \mathbb{R}$.
 751 Cramér's theorem states that the law of $\bar{X}_N = (X_1 + \dots + X_N)/N$ satisfies an LDP with rate
 752 function Λ_μ^* defined as $\Lambda_\mu^*(x) = \sup_{\theta \in \mathbb{R}} (\theta x - \Lambda_\mu(\theta))$, for any $x \in \mathbb{R}$. This is a classical result
 753 and we refer the reader for example to [2].

754 The idea of the proof goes as follows : for any $x \in \mathbb{R}$ and $\delta \geq 0$,

$$\mathbb{P}(|\bar{X}_N - x| \leq \delta) = \mathbb{E} \left(\frac{e^{N\theta \bar{X}_N}}{e^{N\theta \bar{X}_N}} \mathbf{1}_{|\bar{X}_N - x| \leq \delta} \right) \simeq e^{-N\theta x} \underbrace{\frac{\mathbb{E}(e^{N\theta \bar{X}_N} \mathbf{1}_{|\bar{X}_N - x| \leq \delta})}{\mathbb{E}(e^{N\theta \bar{X}_N})}}_{=: \mathbb{P}_N^\theta(|\bar{X}_N - x| \leq \delta)} \times \underbrace{\mathbb{E}(e^{N\theta \bar{X}_N})}_{= e^{N\Lambda_\mu(\theta)}},$$

755 where \mathbb{P}_N^θ is the tilted measure defined by:

$$\mathbb{P}_N^\theta(A) = \frac{\mathbb{E}(e^{N\theta \bar{X}_N} \mathbf{1}_A)}{\mathbb{E}(e^{N\theta \bar{X}_N})}.$$

756 Thus, we have:

$$\mathbb{P}(|\bar{X}_N - x| \leq \delta) \simeq e^{-N(\theta x - \Lambda_\mu(\theta))} \mathbb{P}_N^\theta(|\bar{X}_N - x| \leq \delta) \leq e^{-N(\theta x - \Lambda_\mu(\theta))},$$

757 and by optimizing over θ , we obtain $\mathbb{P}(|\bar{X}_N - x| \leq \delta) \leq e^{-N\Lambda_\mu^*(x)}$, which is the upper bound
 758 we expect for Cramér's theorem.

759 On the other hand, to get a lower bound, we need to find θ_x such that $\mathbb{P}_N^{\theta_x}(|\bar{X}_N - x| \leq \delta) \geq \frac{1}{2}$.
 760 Otherwise stated, under $\mathbb{P}_N^{\theta_x}$, x should be the typical behavior of \bar{X}_N . Now, as $\mathbb{P}_N^{\theta_x}$ preserves
 761 the independence of X_1, \dots, X_N , by the law of large number, the typical value of \bar{X}_N under
 762 $\mathbb{P}_N^{\theta_x}$ should be $\mathbb{E}_N^{\theta_x}(\bar{X}_N)$. By differentiating Λ_μ , we get $\Lambda'_\mu(\theta) = \mathbb{E}_N^\theta(\bar{X}_N)$. This leads us to
 763 choose θ_x such that $\Lambda'_\mu(\theta_x) = x$. By the law of large numbers, for large enough N , one has
 764 $\mathbb{P}_N^{\theta_x}(|\bar{X}_N - x| \leq \delta) \geq \frac{1}{2}$. In addition, since $\Lambda'_\mu(\theta_x) = x$, we get by optimizing $\theta x - \Lambda_\mu(\theta)$ over
 765 θ that $\theta_x x - \Lambda_\mu(\theta_x) = \sup_\theta \{\theta x - \Lambda_\mu(\theta)\} = \Lambda_\mu^*(x)$ so we get the lower bound and conclude
 766 the proof.

767 **3.4.2 Tilting for $\lambda_1(H_N)$**

We now go to the proof of Theorem 3.4, studying the deviations of $\lambda_1(H_N)$, with

$$H_N = A_N + O B_N O^*.$$

768 Mimicking the previous situation, one could try to tilt the measure directly by $e^{N\theta \lambda_1(H_N)}$. This is
 769 not a reasonable strategy as we do not know how to evaluate $\mathbb{E}(e^{N\theta \lambda_1(H_N)})$ to start with. A bet-
 770 ter strategy, relying on spherical integrals, has emerged from discussions between A. Guionnet
 771 and M. Potters. On our model, this goes as follows.

772 If we denote by $\mu = \mu_A \boxplus \mu_B$ and $\lambda_1 = \lambda_1(H_N)$, we have :

$$\begin{aligned} \mathbb{P}(|\lambda_1 - x| \leq \delta) &= \mathbb{E} \left(\frac{I_N(\theta, H_N)}{I_N(\theta, H_N)} \times 1_{|\lambda_1 - x| \leq \delta} \right) \simeq \mathbb{E} \left(\frac{I_N(\theta, H_N)}{I_N(\theta, H_N)} \times 1_{|\lambda_1 - x| \leq \delta} \times 1_{\hat{\mu}_{H_N} \in B(\mu, N^{-1/4})} \right) \\ &\simeq \exp(-NJ(\theta, x, \mu)) \mathbb{E} \left[I_N(\theta, H_N) \times \mathbb{I}_{|\lambda_1 - x| \leq \delta} \times 1_{\hat{\mu}_{H_N} \in B(\mu, N^{-1/4})} \right]. \end{aligned}$$

773 The idea behind the first approximation is that the concentration of $\hat{\mu}_{H_N}$ around μ is much
 774 more robust and fast than the convergence of λ_1 . This is essentially because the scaling in the
 775 LDP for $\hat{\mu}_{H_N}$ is of order N^2 , whereas that of λ_1 is of order N . The second approximation is
 776 obtained by using that $\frac{1}{N} \log I_N(\theta, H_N)$ converges to $J(\theta, x, \mu)$ whenever $\hat{\mu}_N \simeq \mu$ and $\lambda_1 \simeq x$.
 777 Now, if we define our tilting measure as:

$$\mathbb{P}_N^\theta(A) = \frac{\mathbb{E}(I_N(\theta, H_N) \times 1_A)}{\mathbb{E}(I_N(\theta, H_N))}, \quad (16)$$

778 we get :

$$\begin{aligned} \mathbb{P}(|\lambda_1 - x| \leq \delta) & \quad (17) \\ &\simeq \exp(-NJ(\theta, x, \mu)) \times \mathbb{E}(I_N(\theta, H_N)) \times \mathbb{P}_N^\theta(|\lambda_1 - x| \leq \delta, \hat{\mu}_{H_N} \in B(\mu, N^{-1/4})). \end{aligned}$$

779 To proceed with the tilting argument we used in the case of i.i.d. variables (as shown
 780 above), we are faced with two challenges :

781 1. to get an upper bound for the LDP, we want to compute the annealed spherical integral
 782 $\mathbb{E}(I_N(\theta, H_N))$,
 783 2. to get a lower bound, we want to find a parameter θ_x such that

$$\mathbb{P}_N^{\theta_x}(|\lambda_1 - x| \leq \delta, \hat{\mu}_{H_N} \in B(\mu, N^{-1/4})) \geq \frac{1}{2}.$$

783 Let us start by computing the annealed spherical integral. We recall that $H_N = A_N + \mathbf{O}B_N\mathbf{O}^*$;
 784 if we denote by $C_N = \begin{pmatrix} \theta & \\ & (0) \end{pmatrix}$ and consider \mathbf{O} and \mathbf{V} that are independent and both Haar
 785 distributed on \mathcal{O}_N , then

$$\begin{aligned} \mathbb{E}(I_N(\theta, H_N)) &= \mathbb{E}_\mathbf{O} \left[\mathbb{E}_\mathbf{V} \left(e^{N \operatorname{Tr}(C_N V H_N V^*)} \right) \right] = \mathbb{E}_\mathbf{O} \mathbb{E}_\mathbf{V} \left(e^{N \operatorname{Tr}(C_N V (A_N + \mathbf{O}B_N\mathbf{O}^*) V^*)} \right) \\ &= \mathbb{E}_\mathbf{O} \mathbb{E}_\mathbf{V} \left(e^{N \operatorname{Tr}(C_N V A_N V^*)} e^{N \operatorname{Tr}(C_N (V\mathbf{O}) B_N (V\mathbf{O})^*)} \right). \end{aligned}$$

786 Now, as \mathbf{V} and $V\mathbf{O}$ are also independent and Haar distributed, we end up with

$$\mathbb{E}(I_N(\theta, H_N)) = I_N(\theta, A_N) I_N(\theta, B_N). \quad (18)$$

787 This immediately gives the following upper bound:

$$\begin{aligned} \mathbb{P}(|\lambda_1 - x| \leq \delta) &\leq \exp(-NJ(\theta, x, \mu)) \times \mathbb{E}(I_N(\theta, H_N)) \\ &= \exp(-NJ(\theta, x, \mu)) I_N(\theta, A_N) I_N(\theta, B_N) \\ &\leq \exp \{-N[J(\theta, x, \mu_a \boxplus \mu_b) - J(\theta, x, \mu_a) - J(\theta, x, \mu_b)]\} \end{aligned}$$

788 and we conclude by optimizing on θ .

789 To get a lower bound, we want to find a parameter θ_x such that $\mathbb{P}_N^{\theta_x}(|\lambda_1 - x| \leq \delta) \geq \frac{1}{2}$.
 790 As previously, we first have to understand what is the typical value of $\lambda_1(H_N)$ under \mathbb{P}_N^θ . The

trick is to establish a large deviation upper bound for λ_1 under \mathbb{P}_N^θ . And to use the fact that the typical value under the tilted measure will be the minimizer of the large deviation upper bound under \mathbb{P}_N^θ . Using the definition of the tilted measure given in (16) and the relation obtained in (18), we have :

$$\begin{aligned}\mathbb{P}_N^\theta(|\lambda_1 - x| \leq \delta) &\approx \frac{1}{I_N(\theta, A_N) I_N(\theta, B_N)} \mathbb{E} \left[I_N(\theta, H) \mathbb{1}_{\{|\lambda_1 - x| \leq \delta, \hat{\mu}_N \simeq \mu\}} \frac{I_N(\theta', H)}{I_N(\theta', H)} \right] \\ &\leq \frac{1}{I_N(\theta, A_N) I_N(\theta, B_N)} \sup_{H \in \mathcal{E}_N(x)} \left\{ \frac{I(\theta, H)}{I(\theta', H)} \right\} \times P_N^{\theta'}(\mathcal{E}_N(x)) \times \mathbb{E}(I_N(\theta', H)),\end{aligned}$$

where $\mathcal{E}_N(x) = \{|\lambda_1 - x| \leq \delta\} \cap \{\hat{\mu}_N \simeq \mu\}$. We can always bound $P_N^{\theta'}(\mathcal{E}_N(x))$ by 1 and by definition of $J(\theta, x, \mu)$ and the fact that on $\mathcal{E}_N(x)$ we have $\lambda_1 \simeq x$ and $\hat{\mu}_N \simeq \mu$, we also get the approximation :

$$\sup_{H \in \mathcal{E}_N(x)} \left\{ \frac{I(\theta, H)}{I(\theta', H)} \right\} \simeq \exp \left\{ -N [J(\theta, x, \mu_a \boxplus \mu_a) - J(\theta', x, \mu_a \boxplus \mu_b)] \right\}.$$

Otherwise stated, with $L_{a,b}(\theta, x)$ as defined in (15), we get the following upper bound:

$$\limsup_{N \rightarrow \infty} \frac{1}{N} \log \mathbb{P}_N^\theta(|\lambda_1 - x| \leq \delta) \leq -(L_{a,b}(\theta, x) - \inf_{\theta' \geq 0} L_{a,b}(\theta', x)).$$

A thorough study of the function $L_{a,b}$ shows that, under our assumptions on the model, there exists a unique θ_x such that $L_{a,b}(\theta_x, x) = \inf_{\theta' \geq 0} L_{a,b}(\theta', x)$ and for any $y \neq x$, we have $\inf_{\theta' \geq 0} L_{a,b}(\theta', x) < L_{a,b}(\theta_x, y)$. This implies that, with this choice for θ_x , we have $\mathbb{P}_N^{\theta_x}(|\lambda_1 - x| \leq \delta) \geq \frac{1}{2}$ and concludes the proof of the lower bound.

3.4.3 Tilting for $\lambda_1(W_N)$

In the case of sub-Gaussian Wigner matrices, the very same strategy is applied but the two main technical steps, that is the computation of the annealed spherical integral and the understanding of the typical behavior of λ_1 under the tilted measures are both much more involved than in the previous case. We present here the arguments of [27] under the stronger assumption of sharp sub-Gaussianity of the entries (that is $K = 1/2$). As mentioned in the introduction of this chapter, this assumption has been progressively relaxed along a series of papers outcoming to [33], at the price of highly technical arguments that are out of the scope of these notes.

In the case of sub-Gaussian Wigner matrices, the empirical spectral measure of W_N concentrates very quickly around the semi-circular distribution, that we denote again by μ_{sc} . Therefore,

$$\begin{aligned}\mathbb{P}(|\lambda_1 - x| \leq \delta) &= \mathbb{E} \left(\frac{I_N(\theta, W_N)}{I_N(\theta, W_N)} \times \mathbb{1}_{|\lambda_1 - x| \leq \delta} \right) \simeq \mathbb{E} \left(\frac{I_N(\theta, W_N)}{I_N(\theta, W_N)} \times \mathbb{1}_{|\lambda_1 - x| \leq \delta} \times \mathbb{1}_{\hat{\mu}_{W_N} \in B(\mu_{sc}, N^{-1/4})} \right) \\ &\simeq \exp(-NJ(\theta, x, \mu_{sc})) \mathbb{E} [I_N(\theta, W_N) \times \mathbb{1}_{|\lambda_1 - x| \leq \delta}].\end{aligned}$$

In this case, we have to consider not only one tilted measure for each $\theta \geq 0$ but a whole family of tilted measure. More precisely, if we denote by $d\nu$ the uniform measure on the unit sphere $\mathbb{S}^{N-1} \subset \mathbb{R}^N$, we write

$$\begin{aligned}\mathbb{P}(|\lambda_1 - x| \leq \delta) &\simeq \exp(-NJ(\theta, x, \mu_{sc})) \int_{\mathbb{S}^{N-1}} \mathbb{E} (e^{N\theta \langle \nu, W_N \nu \rangle} \mathbb{1}_{|\lambda_1 - x| \leq \delta}) d\nu \\ &\simeq \exp(-NJ(\theta, x, \mu_{sc})) \int_{\mathbb{S}^{N-1}} \mathbb{E} (e^{N\theta \langle \nu, W_N \nu \rangle}) \mathbb{P}_N^{(\theta, \nu)}(|\lambda_1 - x| \leq \delta) d\nu, \quad (19)\end{aligned}$$

815 with

$$\mathbb{P}_N^{(\theta, \nu)}(A) := \frac{\mathbb{E}(e^{N\theta\langle \nu, W_N \nu \rangle} \mathbf{1}_A)}{\mathbb{E}(e^{N\theta\langle \nu, W_N \nu \rangle})}.$$

816 To get an upper bound, for each $\theta \geq 0$ and $\nu \in \mathbb{S}^{N-1}$, we need an upper bound on the
 817 annealed spherical integral $\mathbb{E}(e^{N\theta\langle \nu, W_N \nu \rangle})$, where the expectation is over the distribution of
 818 W_N . This is provided by the following computation:

$$\begin{aligned} \mathbb{E}\{\exp(N\theta\langle \nu, W_N \nu \rangle)\} &= \mathbb{E}\left\{\exp\left(\theta\sqrt{N}\left[2\sum_{i < j} X_{ij} \nu_i \nu_j + \sum_i X_{ii} \nu_i^2\right]\right)\right\} \\ &= \exp\left\{\sum_{i < j} \Lambda_\mu(2\theta\sqrt{N}\nu_i \nu_j) + \sum_i \Lambda_\mu(\theta\nu_i^2\sqrt{N})\right\} \\ &\leq \exp\left\{\sum_{i < j} 2\theta^2 \cdot N \nu_i^2 \nu_j^2 + \sum_i \theta^2 N \nu_i^4\right\} \\ &= \exp\left\{N\theta^2 \left(\sum_i \nu_i^2\right)^2\right\} = \exp(N\theta^2), \end{aligned} \quad (20)$$

819 where we have used sharp sub-Gaussianity for the first inequality and the fact that $\nu \in \mathbb{S}^{N-1}$
 820 for the last equality.

821 By using that $\mathbb{P}_N^{(\theta, \nu)}(|\lambda_1 - x| \leq \delta) \leq 1$ in (19), and using the bound on $\mathbb{E}\{\exp(N\theta\langle \nu, W_N \nu \rangle)\}$
 822 found in (20) and optimizing over $\theta \geq 0$, one gets that

$$\limsup_{N \rightarrow \infty} \frac{1}{N} \log(\mathbb{P}(|\lambda_1 - x| \leq \delta)) \leq -\inf_{\theta \geq 0} \{\theta^2 - J(x, \theta, \mu_{\text{sc}})\}.$$

823 One can check that, for $x \geq 2$, the infimum is reached at $\theta_x := \frac{1}{4}(x - \sqrt{x^2 - 4})$ and equals
 824 $-I'(x)$.

825 Towards the lower bound, let us now try to understand the behavior of λ_1 under $\mathbb{P}_N^{(\theta, \nu)}$.
 826 One can check that

$$\mathbb{E}_N^{(\theta, \nu)}((W_N)_{i,j}) = \sqrt{\frac{1}{N}} \Lambda'_\mu(2\theta\sqrt{N}\nu_i \nu_j).$$

827 For the lower bound, the idea is that it is possible to restrict ourselves to delocalized eigen-
 828 vectors ν . Indeed, if the vector ν is delocalized, then the product $\nu_i \nu_j$ is much smaller than
 829 $N^{-1/2}$, so that $2\theta\sqrt{N}\nu_i \nu_j = o(1)$. Now, in the vicinity of 0, we have that $\Lambda'_\mu(t) \simeq t$ so that

$$\mathbb{E}_N^{(\theta, \nu)}((W_N)_{i,j}) \simeq 2\theta \nu_i \nu_j.$$

830 More precisely, one can show that, if ν is delocalized, then under $\mathbb{P}_N^{(\theta, \nu)}$, we have

$$W_N \simeq \widetilde{W}_N + 2\theta \nu \nu^T,$$

831 where \widetilde{W}_N is a Wigner matrix under $\mathbb{P}_N^{(\theta, \nu)}$. It means that W_N is a rank one deformation of a
 832 Wigner matrix. Such deformed models have been extensively studied (see for example [45])
 833 and we know that, for $\theta \geq 2$, the typical value of λ_1 is $2\theta + \frac{1}{2\theta}$. Therefore, to get the lower
 834 bound, we are lead to choose θ_x such that $2\theta_x + \frac{1}{2\theta_x} = x$. Note that this coincides with the
 835 value of θ_x optimizing the upper bound. This concludes our sketch of proof of Theorem 3.3
 836 in the sharp sub-Gaussian case.

837 **3.5 Conclusion**

838 In this third chapter, corresponding to an extended version of Lectures 4 and 5, we have pre-
839 sented a general method, introduced in [27] and developed in a long series of papers to study
840 large deviations at the edge of some random matrix models.

841 • We get a large deviation principle for the largest eigenvalue for sub-Gaussian Wigner
842 matrices and for a deformation of a unitarily invariant model.

843 • The proof of these results uses spherical integrals, that are well known in physics and
844 interesting mathematical objects by themselves. We have stated and proved in details
845 their asymptotics in the case when one of the matrices is of rank one.

846 • The proofs also rely on a clever use of a tilting argument, which is classical in the frame-
847 work of large deviation theory and that we have also presented in the easy case of
848 Cramér's theorem.

849 A On Haar measures and the distribution of eigenvectors of a GUE 850 matrix

851 Let H_N be a random matrix in $\mathcal{H}_N(\mathbb{C})$ with distribution \mathbb{P}_{GUE_N} , as defined in Proposition 1.2.
852 Any realisation $H_N(\omega)$ is Hermitian, so the matrix $U_N(\omega)$ of its eigenvectors can be chosen
853 unitary: it belongs to

$$\mathcal{U}_N := \{U \in \mathcal{M}_N(\mathbb{C}), UU^* = U^*U = I_N\}.$$

854 From the definition of \mathbb{P}_{GUE_N} , it is easy to check that if H_N has distribution \mathbb{P}_{GUE_N} , then for
855 any fixed matrix $V \in \mathcal{U}_N$, VH_NV^* has the same distribution \mathbb{P}_{GUE_N} . Therefore, VU_N has the
856 same distribution as U_N . This is enough to characterize the distribution of U_N .

857 Indeed, we have the following:

858 **Proposition A.1** *Let G be a compact topological group. There exists a unique probability measure
859 $\mu_{Haar,G}$ that is left translation invariant i.e. $\mu_{Haar,G}(g \cdot A) = \mu_{Haar,G}(A)$, for any $g \in G$ and any
860 Borelian subset $A \subseteq G$. This measure is called the Haar measure of the group G . Note that this
861 measure is also right invariant i.e. $\mu_{Haar,G}(A \cdot g) = \mu_{Haar,G}(A)$. It is therefore also conjugation
862 invariant.*

863 Heuristically, one can view the sampling according to the Haar measure of G as picking a
864 point at random and uniformly on G .

865 The group of unitary matrices \mathcal{U}_N is a compact topological group and we can thus deduce
866 from the above discussion that the distribution of the matrix U_N of the eigenvectors of H_N is
867 the Haar measure on \mathcal{U}_N .

868 As a by product of the proof of the Weyl formula (2), one can also check that U_N can be
869 chosen independent of the eigenvalues $(\lambda_1^N, \dots, \lambda_N^N)$. This leads to a third possible description
870 of the GUE. To construct H_N , pick U according to the Haar measure on the group of unitary ma-
871 trices \mathcal{U}_N . Then, sample independently $(\lambda_1^N, \dots, \lambda_N^N)$ from \mathbb{P}_{GUE_N} and define $H_N := U_N \Lambda_N U_N^*$,
872 with Λ_N the diagonal matrix with diagonal entries $(\lambda_1^N, \dots, \lambda_N^N)$.

873 B On Euler-Lagrange equations for the quadratic potential

874 The object of this appendix is to give a proof of Lemma 1.8.

875 For any $x \in \mathbb{R}$, we denote by

$$F(x) := \int \log|x - y| d\mu_{sc}(y),$$

876 the logarithmic potential of the semicircular distribution μ_{sc} . Our task is to compute this quan-
877 tity in two different regimes : when $x \in [-2, 2]$, that is when x belongs to the support of μ_{sc} ,
878 which corresponds to the first equality in Lemma 1.8 and when $x \notin [-2, 2]$, that is when x is
879 outside the support, which corresponds to the second inequality.

880 Let us start with the first case. As an intermediate step, we compute the Stieltjes transform

$$s(z) := \int \frac{1}{y - z} d\mu_{sc}(y),$$

881 for any $z \notin \mathbb{R}$. By a simple change of variables $y = 2 \cos \theta$, we can rewrite

$$s(z) = \frac{1}{\pi} \int_0^{2\pi} \frac{(\sin \theta)^2}{2 \cos \theta - z} d\theta.$$

882 If we denote by $\xi = e^{i\theta}$, we can write it as a contour integral

$$s(z) = -\frac{1}{4i\pi} \oint_{|\xi|=1} \frac{(\xi^2 - 1)^2}{\xi^2(\xi^2 + 1 - z\xi)} d\xi.$$

883 The poles are $\xi_0 = 0$, $\xi_1 = \frac{z+\sqrt{z^2-4}}{2}$ and $\xi_2 = \frac{z-\sqrt{z^2-4}}{2}$, where we choose the branch of the
884 square root with positive imaginary part. One can check that ξ_1 is outside the unit circle and
885 ξ_2 inside. Computing the residues, we have

$$\text{Res}(\xi_0) = z, \quad \text{Res}(\xi_2) = -\sqrt{z^2 - 4},$$

886 from which we get that

$$s(z) = \frac{-z + \sqrt{z^2 - 4}}{2}.$$

887 Then, $\forall x \in [-2, 2]$,

$$F'(x) = -\text{PV} \int \frac{1}{x-y} d\mu_{\text{sc}}(y) = -\lim_{\varepsilon \rightarrow 0} \int_{|y-x| \geq \varepsilon} \frac{1}{x-y} d\mu_{\text{sc}}(y) = -\frac{1}{2}(s(x+i0) + s(x-i0)) = \frac{x}{2}.$$

888 From there, one can deduce that

$$F(x) = \frac{x^2}{4} + C.$$

889 The constant C will be determined by the next computation.

890

891 We now go to the case when $x \notin [-2, 2]$. By symmetry, one can assume that $x \geq 2$. From
892 Vivo's lecture notes, Section IV.A.1., we get that

$$L(x) := \frac{1}{\pi} \int_{-\sqrt{2}}^{\sqrt{2}} \log(x-y) \sqrt{2-x^2} dy = \frac{x^2}{2} - \frac{x}{2} \sqrt{x^2-2} + \log\left(\frac{x+\sqrt{x^2-2}}{2}\right) - \frac{1}{2}.$$

893 By an easy change of variables, we get that

$$F(x) = L\left(\frac{x}{\sqrt{2}}\right) + \frac{1}{2} \log 2,$$

894 so that

$$\frac{x^2}{2} - 2F(x) = \frac{x}{2} \sqrt{x^2-4} - 2 \log\left(\frac{x+\sqrt{x^2-4}}{2}\right) + 1 = \int_2^x \sqrt{y^2-4} dy + 1.$$

895 By continuity, we get that the constant in the previous computation was $C = 1$ and that both
896 parts of the lemma hold.

897 C On strict convexity of the logarithmic energy

898 The object of this appendix is to prove Lemma 1.9. As for the definition of I in (5), we restrict
899 ourselves to probability measures μ such that $\int x^2 d\mu(x) < \infty$.

900 The idea is that the rate function I is the difference of a linear term $\mu \mapsto \int x^2 d\mu(x)$ and a
901 functional $\Sigma : \mu \mapsto \iint \log|x-y| d\mu(x) d\mu(y)$, which is essentially strictly concave. Following
902 the proof of Lemma 2.6.2. in [3], we use a slightly different decomposition of I .

903 By using the fact that μ_{sc} satisfies the EL equations, one can rewrite

$$I(\mu) = -\Sigma(\mu - \mu_{sc}) + \int \left(\frac{x^2}{2} - 2 \int \log|x-y| d\mu_{sc}(y) - 1 \right) d\mu(x).$$

904 The second term is linear in μ and we will now prove the strict concavity of $\mu \mapsto \Sigma(\mu - \mu_{sc})$.

905 We choose an appropriate representation of the logarithm: from the equality

$$\frac{1}{z} = \frac{1}{2z} \int_0^\infty e^{-\frac{u}{2}} du,$$

906 which holds for any $z \in \mathbb{R}^*$ and using the change of variables $u = \frac{z^2}{t}$, we get

$$\frac{1}{z} = \frac{z}{2} \int_0^\infty e^{-\frac{z^2}{2t}} \frac{dt}{t^2}.$$

907 For $x \neq y$, integrating from 1 to $|x-y|$, we get

$$\log|x-y| = \int_1^{|x-y|} \frac{z}{t} \int_0^\infty e^{-\frac{z^2}{2t}} \frac{dt}{t} dz = \int_0^\infty \frac{e^{-\frac{1}{2t}} - e^{-\frac{|x-y|^2}{2t}}}{2t} dt.$$

908 As $\mu - \mu_{sc}$ has mass zero, the first term will cancel and we get the following Fourier representation

$$\begin{aligned} \Sigma(\mu - \mu_{sc}) &= - \int_0^\infty \frac{1}{2t} \left(\iint e^{-\frac{|x-y|^2}{2t}} d(\mu - \mu_{sc})(x) d(\mu - \mu_{sc})(y) \right) dt \\ &= - \int_0^\infty \sqrt{\frac{t}{2\pi}} \int_{-\infty}^\infty \left| \int e^{i\lambda x} d(\mu - \mu_{sc})(x) \right|^2 e^{-\frac{t\lambda^2}{2}} d\lambda. \end{aligned}$$

910 Now $\mu \mapsto \left| \int e^{i\lambda x} d(\mu - \mu_{sc})(x) \right|^2$ is convex so that $\mu \mapsto \Sigma(\mu - \mu_{sc})$ is concave.

911 Moreover, for $\alpha \in [0, 1]$ and any probability measures μ and ν so that Σ is well defined, we have

$$\Sigma(\alpha\mu + (1-\alpha)\nu) = \alpha\Sigma(\mu) + (1-\alpha)\Sigma(\nu) + (\alpha^2 - \alpha)\Sigma(\mu - \nu).$$

913 From the Fourier representation above, we know that $\Sigma(\mu - \nu) \geq 0$ and $\Sigma(\mu - \nu) = 0$ if and only if all Fourier coefficients are zero, that is if $\mu = \nu$.

915 This concludes the proof of the strict convexity.

916 **Acknowledgements** We warmly acknowledge the organizers of Les Houches 2024 summer school, and especially Grégoire Schehr. We also thank Raphaël Ducatez for sharing part of his notes taken during the lectures and for fruitful discussions.

919 **Funding information** JLF acknowledges ANR project ESQuisses, grant number ANR-20-CE47-0014-01 and ANR project Quantum Trajectories, grant number ANR-20-CE40-0024-01. MM acknowledges the support of Labex CEMPI, grant number ANR-1-LABX-0007-01, of the RT Mathématiques et Physique, funded by CNRS Mathématiques and by CNRS Physique and of the CDP C2EMPI, together with the French State under the France-2030 programme, the University of Lille, the Initiative of Excellence of the University of Lille, the European Metropolis of Lille for their funding and support of the R-CDP-24-004-C2EMPI project.

926 **References**

927 [1] H. Touchette, *The large deviation approach to statistical mechanics*, Phys. Rep. **478**(1-3),
928 1 (2009), doi:[10.1016/j.physrep.2009.05.002](https://doi.org/10.1016/j.physrep.2009.05.002).

929 [2] A. Dembo and O. Zeitouni, *Large deviations techniques and applications*, vol. 38 of *Stochastic*
930 *Modelling and Applied Probability*, Springer-Verlag, Berlin, ISBN 978-3-642-03310-0,
931 doi:[10.1007/978-3-642-03311-7](https://doi.org/10.1007/978-3-642-03311-7), Corrected reprint of the second (1998) edition (2010).

932 [3] G. W. Anderson, A. Guionnet and O. Zeitouni, *An introduction to random matrices*, vol.
933 118 of *Cambridge Studies in Advanced Mathematics*, Cambridge University Press, Cam-
934 bridge, ISBN 978-0-521-19452-5 (2010).

935 [4] P. Dupuis and R. S. Ellis, *A weak convergence approach to the theory of large deviations*, Wiley
936 Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons, Inc.,
937 New York, ISBN 0-471-07672-4, doi:[10.1002/9781118165904](https://doi.org/10.1002/9781118165904), A Wiley-Interscience
938 Publication (1997).

939 [5] G. Ben Arous and A. Guionnet, *Large deviations for Wigner's law and Voiculescu's*
940 *non-commutative entropy*, Probab. Theory Related Fields **108**(4), 517 (1997),
941 doi:[10.1007/s004400050119](https://doi.org/10.1007/s004400050119).

942 [6] D. García-Zelada, *A large deviation principle for empirical measures on Polish spaces:*
943 *application to singular Gibbs measures on manifolds*, Ann. Inst. Henri Poincaré Probab.
944 Stat. **55**(3), 1377 (2019), doi:[10.1214/18-aihp922](https://doi.org/10.1214/18-aihp922).

945 [7] T. Leblé and S. Serfaty, *Large deviation principle for empirical fields of log and Riesz gases*,
946 Invent. Math. **210**(3), 645 (2017), doi:[10.1007/s00222-017-0738-0](https://doi.org/10.1007/s00222-017-0738-0).

947 [8] T. Leblé, S. Serfaty and O. Zeitouni, *Large deviations for the two-dimensional two-*
948 *component plasma*, Comm. Math. Phys. **350**(1), 301 (2017), doi:[10.1007/s00220-016-2735-3](https://doi.org/10.1007/s00220-016-2735-3).

950 [9] M. L. Mehta, *Random matrices*, vol. 142 of *Pure and Applied Mathematics (Amsterdam)*,
951 Elsevier/Academic Press, Amsterdam, third edn., ISBN 0-12-088409-7 (2004).

952 [10] G. Livan, M. Novaes and P. Vivo, *Introduction to random matrices*, vol. 26 of *SpringerBriefs*
953 *in Mathematical Physics*, Springer, Cham, ISBN 978-3-319-70883-6; 978-3-319-70885-0,
954 doi:[10.1007/978-3-319-70885-0](https://doi.org/10.1007/978-3-319-70885-0), Theory and practice (2018).

955 [11] P. J. Forrester, *Log-gases and random matrices*, vol. 34 of *London Mathematical Society*
956 *Monographs Series*, Princeton University Press, Princeton, NJ, ISBN 978-0-691-12829-0,
957 doi:[10.1515/9781400835416](https://doi.org/10.1515/9781400835416) (2010).

958 [12] P. Billingsley, *Convergence of probability measures*, Wiley Series in Probability and Statistics:
959 Probability and Statistics. John Wiley & Sons, Inc., New York, second edn., ISBN
960 0-471-19745-9, doi:[10.1002/9780470316962](https://doi.org/10.1002/9780470316962), A Wiley-Interscience Publication (1999).

961 [13] D. Chafaï, N. Gozlan and P.-A. Zitt, *First-order global asymptotics for confined particles*
962 *with singular pair repulsion*, Ann. Appl. Probab. **24**(6), 2371 (2014), doi:[10.1214/13-AAP980](https://doi.org/10.1214/13-AAP980).

964 [14] M. Lewin, *Coulomb and Riesz gases: the known and the unknown*, J. Math. Phys. **63**(6),
965 Paper No. 061101, 77 (2022), doi:[10.1063/5.0086835](https://doi.org/10.1063/5.0086835).

966 [15] S. Serfaty, *Lectures on Coulomb and Riesz gases* (2024), [arXiv:2407.21194](https://arxiv.org/abs/2407.21194).

967 [16] P. Dupuis, V. Laschos and K. Ramanan, *Large deviations for configurations generated by*
968 *Gibbs distributions with energy functionals consisting of singular interaction and weakly*
969 *confining potentials*, Electron. J. Probab. **25**, Paper No. 46, 41 (2020), doi:[10.1214/20-ejp449](https://doi.org/10.1214/20-ejp449).

971 [17] A. Guionnet and R. Memin, *Large deviations for Gibbs ensembles of the classical Toda*
972 *chain*, Electron. J. Probab. **27**, Paper No. 46, 29 (2022), doi:[10.1214/22-ejp771](https://doi.org/10.1214/22-ejp771).

973 [18] H. Spohn, *Collision rate ansatz for the classical Toda lattice*, Phys. Rev. E **101**(6),
974 060103(R), 4 (2020), doi:[10.1007/s10955-019-02320-5](https://doi.org/10.1007/s10955-019-02320-5).

975 [19] R. Allez, J.-P. Bouchaud and A. Guionnet, *Invariant beta ensembles and the gauss-wigner*
976 *crossover*, Physical review letters **109**(9), 094102 (2012).

977 [20] R. Allez, J.-P. Bouchaud, S. N. Majumdar and P. Vivo, *Invariant β -Wishart ensembles,*
978 *crossover densities and asymptotic corrections to the Marčenko-Pastur law*, J. Phys. A **46**(1),
979 015001, 22 (2013), doi:[10.1088/1751-8113/46/1/015001](https://doi.org/10.1088/1751-8113/46/1/015001).

980 [21] T. Bodineau and A. Guionnet, *About the stationary states of vortex systems*, Ann. Inst. H.
981 Poincaré Probab. Statist. **35**(2), 205 (1999), doi:[10.1016/S0246-0203\(99\)80011-9](https://doi.org/10.1016/S0246-0203(99)80011-9).

982 [22] S. N. Majumdar and M. Vergassola, *Large deviations of the maximum eigenvalue for*
983 *wishart and gaussian random matrices*, Physical review letters **102**(6), 060601 (2009).

984 [23] S. N. Majumdar and G. Schehr, *Top eigenvalue of a random matrix: large deviations and*
985 *third order phase transition*, Journal of statistical mechanics **2014**(1), P01012 (2014).

986 [24] R. J. Berman, *Determinantal point processes and fermions on complex manifolds: large*
987 *deviations and bosonization*, Comm. Math. Phys. **327**(1), 1 (2014), doi:[10.1007/s00220-014-1891-6](https://doi.org/10.1007/s00220-014-1891-6).

989 [25] O. Zeitouni and S. Zelditch, *Large deviations of empirical measures of zeros of random*
990 *polynomials*, Int. Math. Res. Not. IMRN (20), 3935 (2010), doi:[10.1093/imrn/rnp233](https://doi.org/10.1093/imrn/rnp233).

991 [26] R. Butez, *Large deviations for the empirical measure of random polynomials: revisit*
992 *of the Zeitouni-Zelditch theorem*, Electron. J. Probab. **21**, Paper No. 73, 37 (2016),
993 doi:[10.1214/16-EJP5](https://doi.org/10.1214/16-EJP5).

994 [27] A. Guionnet and J. Husson, *Large deviations for the largest eigenvalue of Rademacher*
995 *matrices*, Ann. Probab. **48**(3), 1436 (2020), doi:[10.1214/19-AOP1398](https://doi.org/10.1214/19-AOP1398).

996 [28] J. Husson, *Large deviations for the largest eigenvalue of matrices with variance profiles*,
997 Electron. J. Probab. **27**, Paper No. 74, 44 (2022), doi:[10.1214/22-ejp793](https://doi.org/10.1214/22-ejp793).

998 [29] F. Augeri, A. Guionnet and J. Husson, *Large deviations for the largest eigenvalue of sub-*
999 *Gaussian matrices*, Comm. Math. Phys. **383**(2), 997 (2021), doi:[10.1007/s00220-021-04027-9](https://doi.org/10.1007/s00220-021-04027-9).

1001 [30] B. McKenna, *Large deviations for extreme eigenvalues of deformed Wigner random matrices*,
1002 Electron. J. Probab. **26**, Paper No. 34, 37 (2021), doi:[10.1214/20-EJP571](https://doi.org/10.1214/20-EJP571).

1003 [31] G. Biroli and A. Guionnet, *Large deviations for the largest eigenvalues and eigenvectors*
1004 *of spiked Gaussian random matrices*, Electron. Commun. Probab. **25**, Paper No. 70, 13
1005 (2020), doi:[10.3390/mca25010013](https://doi.org/10.3390/mca25010013).

1006 [32] A. Guionnet and M. Maïda, *Large deviations for the largest eigenvalue of the sum of two*
1007 *random matrices*, Electron. J. Probab. **25**, Paper No. 14, 24 (2020), doi:[10.1214/19-ejp405](https://doi.org/10.1214/19-ejp405).

1009 [33] N. A. Cook, R. Ducez and A. Guionnet, *Full large deviation principles for the largest*
1010 *eigenvalue of sub-Gaussian wigner matrices* (2023), [arXiv:2302.14823](https://arxiv.org/abs/2302.14823).

1011 [34] C. Itzykson and J. B. Zuber, *The planar approximation. II*, J. Math. Phys. **21**(3), 411
1012 (1980), doi:[10.1063/1.524438](https://doi.org/10.1063/1.524438).

1013 [35] A. Guionnet and O. Zeitouni, *Large deviations asymptotics for spherical integrals*, J. Funct.
1014 Anal. **188**(2), 461 (2002), doi:[10.1006/jfan.2001.3833](https://doi.org/10.1006/jfan.2001.3833).

1015 [36] A. Guionnet and M. Maïda, *A Fourier view on the R -transform and related asymptotics of*
1016 *spherical integrals*, J. Funct. Anal. **222**(2), 435 (2005), doi:[10.1016/j.jfa.2004.09.015](https://doi.org/10.1016/j.jfa.2004.09.015).

1017 [37] A. Guionnet and J. Husson, *Asymptotics of k dimensional spherical integrals and applica-*
1018 *tions*, ALEA Lat. Am. J. Probab. Math. Stat. **19**(1), 769 (2022), doi:[10.30757/alea.v19-30](https://doi.org/10.30757/alea.v19-30).

1020 [38] B. Collins and P. Śniady, *New scaling of Itzykson-Zuber integrals*, Ann. Inst. H. Poincaré
1021 Probab. Statist. **43**(2), 139 (2007), doi:[10.1016/j.anihpb.2005.12.003](https://doi.org/10.1016/j.anihpb.2005.12.003).

1022 [39] G. Schehr, A. Altland, Y. Fyodorov, N. O'Connell and L. Cugliandolo, *Stochastic processes*
1023 *and random matrices: Lecture notes of the Les Houches summer school*, vol. 104, Oxford
1024 University Press, ISBN 9780198797319, doi:[10.1093/oso/9780198797319](https://doi.org/10.1093/oso/9780198797319) (2018).

1025 [40] J. A. Mingo and R. Speicher, *Free Probability and Random Matrices*, Fields Institute
1026 Monographs. Springer, New York, NY, ISBN 978-1-4939-6941-8 (2017).

1027 [41] F. Augeri, *Large deviations principle for the largest eigenvalue of Wigner matrices without*
1028 *Gaussian tails*, Electron. J. Probab. **21**, Paper No. 32, 49 (2016), doi:[10.1214/16-EJP4146](https://doi.org/10.1214/16-EJP4146).

1030 [42] S. Ganguly and K. Nam, *Large deviations for the largest eigenvalue of gaussian networks*
1031 *with constant average degree*, Probability theory and related fields **184**(3-4), 613 (2022).

1032 [43] S. Ganguly, E. Hiesmayr and K. Nam, *Spectral large deviations of sparse random matrices*,
1033 *Journal of the London Mathematical Society* **110**(1) (2024).

1034 [44] F. Augeri and A. Basak, *Large deviations of the largest eigenvalue of supercritical sparse*
1035 *Wigner matrices* (2023), [arXiv:2304.13364](https://arxiv.org/abs/2304.13364).

1036 [45] M. Capitaine and C. Donati-Martin, *Spectrum of deformed random matrices and free prob-*
1037 *ability*, In *Advanced topics in random matrices*, vol. 53 of *Panor. Synthèses*, pp. 151–190.
1038 Soc. Math. France, Paris, ISBN 978-2-85629-850-3 (2017).