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Abstract

These notes account for five ninety-minute lectures given by Mylene Maida as part of the
2024 Summer School in Les Houches. This 4-week program was entitled Large deviations
and applications. The goal of these lectures is to present a series of mathematical results
about large deviations of the particles of a Coulomb gas or related systems, such as
the eigenvalues of some random matrix ensembles. It encompasses the deviations of
the empirical measure and those of the rightmost particle (corresponding to the largest

eigenvalue).
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Introduction

These notes account for five lectures given as part of the 2024 Summer School in Les Houches
entitled Large deviations and applications. The goal of these lectures is to present a series of
mathematical results that are known about large deviations of the empirical measure of the
particles of a Coulomb gas or related systems, such as the eigenvalues of some random matrix
ensembles.

The lectures were mostly taught in parallel with a course of the same format presented by
Pierpaolo Vivo (King’s College London) entitled Large deviations in random matrix theory and
Coulomb gas systems, whose lecture notes can be found here!. We refer the interested reader
to Vivo’s notes for a complementary point of view on some of the results.

Among the five main courses of the program, this course was probably the most math-
oriented. Therefore, along with the presentation of the results, we will also seize the opportu-
nity to introduce some mathematical tools that we find useful to show (or use) large deviation
principles (LDP).

Before presenting in more details the scope of these lectures, let us provide a few general
references.
We start with two resources, that we find particularly accessible for beginners :

* as a first glimpse on large deviations, we recommend the following blogpost?, which is
the transcription of a tutorial taught by D. Chafai at ICERM in 2018,

* in the same summer school, an introductory course on large deviations, with a special
focus on statistical mechanics, was given by H. Touchette. We highly recommend his
lecture notes [1].

Among probabilists, the following books are considered very classical:

* the book [2] provides a very comprehensive presentation of the main tools used to es-
tablish large deviation principles and of the most classical applications,

* the book [3] is a classical reference dealing with random matrix theory but we advertise
here its appendix D as a very concise summary of useful tools for large deviations,

* the reference [4], which is also very comprehensive, is mainly based on a weak conver-
gence approach, which, in its spirit, is more related to variational principles, that are
natural to physicists and inspired the approach of D. Garcia-Zelada, that we will present
in Section 2.

These are general references for the course but more specific thematic lists of references
will be provided in each chapter.

The structure of the present lecture notes is as follows : in Section 1 — corresponding to
the first lecture — we will introduce one of the most studied ensembles of random matrices, the
Gaussian Unitary Ensemble (GUE), provide an LDP for the empirical measure of its eigenvalues
and explain how it can be exploited to recover the celebrated Wigner theorem in this particular
case. This will mostly rely on a paper by G. Ben Arous and A. Guionnet [5]. In Section 2 —
roughly corresponding to lectures 2 and 3 —, we advertise the work of D. Garcia-Zelada [6],
based on Varadhan’s approach of large deviations, that provides a unified framework for large

thttp: //www.lptms.universite- paris-saclay.fr/leshouches2024/files/2024 /07 /Les_Houches_Lecture Notes_
VIVO_V1.pdf
2https://djalil.chafai.net/blog/2018/03/09/tutorial-on-large-deviation-principles/


http://www.lptms.universite-paris-saclay.fr/leshouches2024/files/2024/07/Les_Houches_Lecture_Notes_VIVO_V1.pdf
http://www.lptms.universite-paris-saclay.fr/leshouches2024/files/2024/07/Les_Houches_Lecture_Notes_VIVO_V1.pdf
https://djalil.chafai.net/blog/2018/03/09/tutorial-on-large-deviation-principles/
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deviations for singular Gibbs measures, encompassing usual Coulomb gases in R4 at finite or
high temperature, but also Coulomb gases on manifolds, conditional Gibbs measures, zeroes of
some models of random polynomials etc. Recently, following the pioneering work of Guionnet
and Husson, spherical integrals of the form

In(An,By) := J exp (NTr(AyUBNU™))dmy(U), D

where Ay and By are two diagonal matrices of size N with real entries and m; is the Haar
measure on the orthogonal or the unitary group of size N, have been used to study the large
deviations of the largest eigenvalue for several models of random matrices. In Section 3 —
roughly corresponding to lectures 4 and 5 —, we provide a detailed derivation of the asymp-
totics of spherical integrals in the case when one of the matrices, say Ay, is of rank one, and
explain how it can be used to study the deviations of the largest eigenvalue.

In these notes, we try to stay as close as possible to the in-person lectures that have been
given in Les Houches. For the sake of completeness, we have nevertheless added a few proofs
that were not presented during the lectures: they are in general postponed to the appendices.

Note that, although very interesting, the results on large deviations of the empirical field for
Coulomb gases [7,8], which are related to the microscopic structure of these particle systems,
are beyond the scope of this course and will not be included in these notes.
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o« 1 The Gaussian Unitary Ensemble

os The Gaussian Unitary Ensemble (GUE) is one of the most popular models of random matrices.
o6 In this first chapter, we study this example in full detail, through the lens of large deviation
o7 theory.

s 1.1 Three descriptions of the GUE

In the usual vocabulary of random matrix theory (RMT), inspired by statistical physics, an
ensemble is a probability distribution over a set of matrices. In this case, we consider the space
of Hermitian matrices of size N x N, denoted by

HN(C) = {M (S MN(C),M* = M} .

oo The easiest way to define the GUE is by describing the joint law of the entries. Before doing so,
100 we recall that if X and Y are two independent real random variables with standard Gaussian

. XHY ., .
101 distribution A/(0, 1), then G := 2 is said to be standard complex Gaussian and we denote

V2
102 G~ Ng(0,1).

103 Definition 1.1 Let N € N* and consider independent random variables {G,-,i}?’: ,and {Gi,jhi<i<j<n
w4  such that G; ; ~ N'(0,1) and G; j ~ N¢(0, 1). Define the following N x N Hermitian matrix :

Gu Gy
JN VN
Hy = G;*j . , so that Gi,j = G;':i'
VN
Gn N
VN

10s The matrix Hy is said to follow the GUE distribution or equivalently to belong to the GUE. We
106 denote by Pgyg, its distribution.

107 One can also directly define Pgyg, as a Gaussian distribution on #Hy(C). The isomorphism

108 Hy(C) ~ RN induces a Lebesgue measure on Hy(C), that we denote by Leb,,, . We can then
100 give the following equivalent definition of the GUE:

110 Proposition 1.2 There exists a normalizing constant cy such that

N
dPgyr, (H) = cy exp (—ETr(Hz)) dLeby,, (H),
11 where Tr is the usual trace on Hy(C).

112 To see the correspondence with the law of the entries, it is enough to expand the trace as
13 follows: if H = (hi,j)lsi,jSN’

N
Tr(H2) = Tr(HH*) = Zhii +2 > |hyl*

i=1 1<i<j<N

114 Now, for i < j, if we denote by x; ; = Reh; ; and y; ; = Imh
115 imaginary part of h; ;, we have

i,j» the respective real and

’j’

N
2y _ 2 2 2
Tr(H?) = lehl.,i +2 > G +yE),
1=

1<i<j<N
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so that, as expected, under Pgyg,, (hi,i)1<i<n, (Xi,j)1<i<j<n and (¥;,j)1<i<j<n are indepen-
dent real Gaussian variables, with variance 1/N if i = j and 1/2N ifi < j.

When Hy has distribution Pgyg,, it is interesting to study the law of its eigenvalues and
eigenvectors. The following proposition gives the distribution of the eigenvalues. By a slight
abuse of notations®, we will again denote this joint distribution by Pgyg, -

Proposition 1.3 If Hy has distribution Pgyg,, then almost surely, Hy is diagonalisable with
distinct eigenvalues, that we may enumerate in decreasing order l’lv >0 > l%. Then, the joint

law of the random vector (lllv JETE }L%) is given by
N2

N7~ {l >..>Ayv}
dPgyg, (A1, AN) = - =

2 2
o[- J|]:[(/1 —2;)%exp ——Zz dA,---dAy. (2)
j=1 1<J

This statement is well known in RMT. It is closely related to Weyl’s formula. A classical
reference for this kind of results is the book of M.L. Mehta [9]. One can also cite [10] for
a gentle introduction for physicists. For probabilists, a more recent standard reference is [3]
(see in particular Theorem 2.5.2 there).

Although we won'’t focus very much on this aspect in the sequel, let us mention that it is
also possible to describe the law of the eigenvectors under Pgyg, . The answer to this question,
together with a third description of the law Pgyg,, is postponed to Appendix A.

We now want to study the behavior of the particles (lllv JEETIN A%) under Pgyg, . Many in-
teresting questions can be asked about their behavior e.g. the following:

* How does the largest eigenvalue behave ?
* What does the global regime look like ? etc.

The first question will be addressed in full detail for the Gaussian Orthogonal Ensemble
(GOE), which is the real symmetric counterpart of the GUE, in the course of Pierpaolo Vivo
and we strongly recommend his lecture notes. They can be found in the present volume or at
the following link*. We won’t detail it in the case of the GUE, but we will come back to similar
questions for other models in the third section of these notes (Lectures 4 and 5).

We will rather focus on the second question. The idea is to encode the positions of all the
particles as a whole in the following object:

1 &
=— ) 0,n.

It is called the empirical distribution of the eigenvalues of Hy or spectral empirical distribution
of Hy. For each realisation Hy(w) of the random matrix Hy, (i () is a probability measure
which is nothing but the uniform distribution over the set of eigenvalues {AY (@), -+ , A} (@)}.
Therefore, (i is a random probability measure, that is a random variable with values in the set
P(R) of probability measures on R. This random measure will be our main object of study in
this chapter, and we want in particular to describe its typical behavior (law of large numbers),
its large deviations etc.

3If H is a matrix, dPgyg, (H) will refer to the law of the matrix, whereas when 2,, Ay are real numbers,
dPgyg, (A1, , Ay), it will refer to the law of the eigenvalues, so that there is hopefully no ambiguity.

“http:/ /www.lptms.universite-paris-saclay.fr/leshouches2024 /files/2024 /07 /Les_Houches_Lecture_Notes_
VIVO_V1.pdf


http://www.lptms.universite-paris-saclay.fr/leshouches2024/files/2024/07/Les_Houches_Lecture_Notes_VIVO_V1.pdf
http://www.lptms.universite-paris-saclay.fr/leshouches2024/files/2024/07/Les_Houches_Lecture_Notes_VIVO_V1.pdf
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1.2 Large deviation principle for the empirical spectral distribution

Let us first make the link between the GUE random matrix model and Coulomb gas-like particle
systems.
To lighten the notations, we denote the prefactor in (2) by

N2

N=
N = )
@2mN/2TT5, 5!

C 3)

so that we can now rewrite (2) as :

N
dPgyg, (A1,---, Ay) = Cy exp (—N (% Zk}? —%Zloglli —xj|)) dA,---dAy.
j=1 i#j

Note that there is here a slight abuse of notation: Pgypg, as defined in (2) was a distribution
over that set {A; > ... > Ay} whereas here we extend it to RN. This is balanced by an
extra factor N! in the definition of the constant Cy with respect to the normalizing constant
appearing in (2).

We now can see Pgyg,, as the canonical Gibbs measure associated to the energy E, defined
as follows: for any N-tuple x4, ...,xy of real numbers,

N
1, 1
E(Xl, coey XN) =N (Ejzilxj — ﬁ l;] loglx,- —le) . 4

In this expression,

* the first term 5 2?’:1 X ]2 is usually interpreted as a confining external potential applied
to each particle, that prevents them to lay too far away from the origin,

1 . . .
* whereas the second term 2# y log |x; —x;| is usually interpreted as a repulsive two-
body interaction.

We commonly use the terminology one dimensional log-gas to describe such a particle sys-
tem; it is considered a Coulomb-type particle system®. Coulomb gases will be introduced and
discussed more thoroughly in the next chapter of these notes. We refer to the book [11] of
P, Forrester for a very thorough presentation of theses systems, including many explicit com-
putations.

Before getting into the mathematical statement of an LDP for the spectral empirical mea-
sure Uy, let us try to give some rough heuristics towards a possible rate function. Fix u € P(R),
6 > 0 small and B(u, 6) a ball of radius 6 centered at u for a metric on P(R) to be defined
later. We have

Pgug, (Un € B(u, 6))

x2 ~ ~
= CNf exp (_Nz (f ?d.UJN(X) - Jf log |x —}’|dMN(x)dMN(}’))) dxy---dxy.
Oy €B(u,6) x#y

Then (if everything behaves nicely)

1 _ 1 x2
Nz log Peyr(Un € B(w, 0)) ~ Nz logCy + f 7du(x) - ” log |x — y|du(x)duly).

5The one-dimensional Coulomb interaction is linear whereas the two-dimensional is logarithmic. In other
words, we have here a two-dimensional Coulomb gas confined to live on the real line.
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The analysis of the constant Cy is a simple exercise, as its expression is completely explicit.
Namely,

N Jj
1 1 k 1 27
e toro ==z 2321108 (iy ) - 5108 ()

3
m— (1—X)10ngX—Z.

If, for any probability measure u for which it is properly defined, we let

x2 3
I(u)=f?du(x)—ff loglx—yldu(x)du(y)—z,

then we expect that
Pgug, (Un € B(u, 0)) =~ exp(—NZI(u)).

Let us now go to a more precise statement of the LDP that was unveiled by G. Ben Arous
and A. Guionnet in [5]. Mathematically speaking, a full LDP in this case will take the following
form:

* for any open set O C P(R), liminfy_, o % log Py, (Uy € 0) = —infy,co I(w),
* for any closed set F C P(R), limsupy_, % log Py, (Uy € F) < —infy,ep I(W).

Open and closed refer to a topology that we have to define on the space of probability
measures P(R): a common choice is the topology of weak convergence. In this topology, a

. w .
sequence (vy)yen converges to ¥ € P(R), and we denote this convergence by vy o if
— 00

and only if
Vf eC’(R), f Flx)dry(x) —— f Fx)dr(x),
R R

where CP(R) stands for the set of bounded and continuous functions from R to R.
We are now ready to state the main result of this chapter.

Theorem 1.4 [5]Under Pgyg,,, the sequence of empirical spectral distributions (i ) e satisfies
a large deviation principle at speed N2 with good rate function® I in the space P(R) equipped

with the topology of weak convergence, where the rate function I is defined as follows:
2 3 .
1) = | Jr TE) = [ loglx —yldu(x)du) -3, ¥ [x*du<eo, o

oo, otherwise.

It is always more comfortable to work with a metric structure. Fortunately, the topology
of weak convergence can be metrized by the bounded-Lipschitz distance defined as follows :

for u, v € P(R)
deM—deV

6We don’t want to insist too much at this stage on the notion of (good) rate function, we refer to Section 2.3 for
more details.

dp (W, v) = sup
Iflloe <LIIfllLip=<1

b
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with ||fllp £ 1 [f(x)—f(¥)| < |x —yl|,Vx,y € R. This means that vy NL> v if and
— 00

only if dg; (vy, ¥) o 0. In the following, anytime we mention a distance on P(R) it will
— 00

be the bounded-Lipschitz distance and B(u, 6) will refer to the ball of radius 6 around w for
this bounded-Lipschitz distance.

With P(R) being a metric space, it is possible to give an easier formulation of the LDP
above. Roughly speaking, we have :

(weak LDP on small balls + exponential tightness) implies (full LDP)
More precisely, if we have

1. (Weak LDP) :

lmz) lim 1nf— log]P’GUEN (Ui € B(u, 6))

= lim lim sup log Poury (U € B(u, 6)) =: —I(w),

6—-0 N-ooo

2. and (Exponential tightness) : There exists a sequence (Kj);-o of compact subsets of
P(R) such that

limsuplimsup — loglP’GUEN (fiy ¢ K1) =—00, (6)

L—oo N—-oo
then we have Theorem 1.4. We refer to Appendix D in [3] for the details on this criterion.

The proof of the weak LDP has been sketched at the beginning of this subsection, so we now
focus on the second point. Let us comment on the (important) notion of tightness in probability.
A classical reference on the notions of weak convergence of measures and tightness in Polish
spaces in the book of P Billingsley [12]. If we have a random variable X, with values in a
Polish space, then for any £ > 0, one can always find a compact set K, for which

PX ¢ Ke)<e¢,

that is “almost everything happens inside a (large enough) compact set”. When we consider
a sequence, or more generally a family, of random variables (X;);¢s, it is not obvious that one
can find a fixed compact K, (depending on & but not on i) such that

Viel,P(X; ¢ K,) < «.

This is not true in general’. If it holds for any ¢, the family of random variables is said to be
tight (equivalently, if for any i € I, u; is the distribution of the random variable X;, the family
of probability measures (u;);<s is said to be tight). It means that when we deal with questions
related to (weak) convergence, what happens outside a large compact set is not relevant.

Here, as we are working at the level of exponentially small events, we ask for exponential
tightness, which, in our case, is expressed by (6). Moreover, as the sequence (ty)y>1 that we
are considering is a sequence of random variables with values in the set P(R), the first step is
to describe a convenient family of compact sets in this latter space.

7A simple illustrative example is the case when the distribution of X, is u, = &, the Dirac mass at n. This
sequence of probability measures converges to the null measure in the topology of vague convergence (for test
functions which are continuous and compactly supported) but does not converge in the sense of weak convergence.
We observe a loss of mass due to the lack of tightness.
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For any L > 0, let us define

K; := {,ue P(R),szd,u(x) < L} .

We first justify that K; is a compact subset of P(R). Notice that for all u € K;, we have by
Markov inequality

([T )= g e o <

so that the family of probability measure K; is tight, in the sense explained above®. Since
R is a complete metric space, we deduce by Prokhorov’s theorem (see for example Theorem
C.9 in [3]) that the closure of K; is compact in the weak topology. Moreover, K, is closed.
Indeed, let (uy)y be a sequence in K; which converges weakly to w then, for any M > 0,
f min(x2, M)du(x) = limy_, oo f min(x2, M)duy(x). Then by monotone convergence as M
goes to infinity and the fact that the bound fmin(xz,M )duy(x) < L is uniform in M and
N, we get that u € K;. Therefore, K; is a closed set included in a compact and so it is itself
compact.
Let us now show (6). We define

2 y2
flx,y):= —+T—log|x vl

As, for any x,y € R, log|x —y| < log(|x| + 1) + log(]y| + 1), we have

x2 y?
x,y)=2—+—+C,
f(x,y) s T8

for some constant C. Note that this bound also justifies why the rate function I introduced in
(5) is well defined.
Moreover, using the density of Pgyg, with respect to the Lebesgue measure, we have :

]PGUEN(.aN¢KL)=CNJ exp (_N Zx +210g|x1_x1|)dxl dxy
OnEKL}

{o i=1 i£j

N x2
=Cy J exp (_Nz f f(x,y)dilN(x)dilN(y)) l_[ exp(—?l)dx1 ceedxy
{ON¢KL} x#y

i=1

A N x2
SCNJ exp | —N? J] (—+—+C)dﬁ,N(x)d‘aN(y) nexp LI PSR
o 8 8 1 D)
{on €KL} x#y 1!
2
1

N—1L N(N—1)-~ N x;
SCNexp(—Nz( TR (N2 )c))f nexp(—?)dxl...dxlv,
{A .

UnEKL} i=1

and then taking lim sup % log on both sides, we get :

L 3 L ~
hmsup—log]P’GUEN(uN ¢ K;)< llmsup—logCN— —+C<=—=+C.
N—oo N—oo 4 4 4

8Note that there is a subtle point here: we use the fact that the family of probability measure K; is tight to show
that it is a compact subset of P(R). Then we will use K to show that the family of random variables (fiy)y>1 is
exponentially tight !

10
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Finally, taking L to infinity, we get the desired result.

This concludes the arguments of the proof of the result of G. Ben Arous and A. Guionnet
that we wanted to emphasize here. We refer to the original paper [5] or alternatively to Section
2.6 of the book [3] for more details. In the framework of these notes, we will give in the next
chapter a much more general result on singular Gibbs measures that encompasses the GUE
model.

1.3 Understanding the minimizer of the rate function

In various situations, understanding the deviations of a family of random variables may be
the best way to study also their typical behavior. In the case of GUE, this typical behavior
was known for a long time before the large deviations were studied but we find it instructive
to show how this particular case of Wigner’s theorem can be seen as a corollary of the large
deviation principle we have just obtained. This subsection will be devoted to the discussion
and the proof of the following statement and why it may be seen as a corollary of Theorem
1.4.

Corollary 1.5 (Wigner’s Theorem)

Almost surely
P w
Uy — Mo
N—oo

where Uy is the semi-circular distribution defined by the density :
1
d”sa(t) = 2_ v4— tzl[_z,z](t)dt .
T

In a very general context, it is possible to deduce an almost sure convergence from a large
deviation principle, whenever the rate has a unique minimizer. This general mechanism will be
illustrated in our example at the end of this section. We first establish the following property:

Proposition 1.6 u, is the unique minimiger of I, the rate function defined in (5).

The proof of the proposition will be in three steps: we show that any minimizer should
satisfy the Euler-Lagrange equations, that the semi-circular distribution satisfies the Euler-
Lagrange equations and to conclude, that the minimizer is unique.

Each of the three steps corresponds to a lemma that we state below:

Lemma 1.7 Any minimizer w of the rate function I defined in (5) satisfies the following : there
exists a constant Cgy, such that for any x in the support of the measure u, we have

x2
?—ZJ log|x —y|dw(y) = Cgy,

and for Lebesgue-almost every x € R,

%2
?—ZJ log|x —yldu(y) = Cgy.-

These equations are called Euler-Lagrange (EL) equations. We will give below a detailed
proof of Lemma 1.7, which, as we will see, is robust to generalisation to external potentials
other than quadratic.

The next lemma states that u. does satisfy the EL-equation associated to this problem :

11
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Lemma 1.8

2

x 1 orall x € [—2,2],
;—ZJ log|x —y | (y) = { S

>1 fordll|x|>2.

There are many ways to compute the logarithmic potential of u., that is the integral
f log|x — y|du.(y). The computation of this quantity outside the support of u,. has been
detailed in Section IVA.1 of Vivo’s lecture notes®: using an expansion of the logarithm, the
computation boils down to the computation of the moments of ., that are interesting quan-
tities by themselves, related to Catalan numbers. From his computation, it is easy to check the
second inequality above. For the sake of completeness, we present the details of the computa-
tion of the logarithmic potential inside the support of the measure, using the residue theorem,
in Appendix B.

Moreover, the uniqueness of the minimizer of the rate function is ensured by the following:

Lemma 1.9 The rate function I defined in (5) is strictly convex on P(R). It therefore admits a
unique minimizer.

This was not proved during the lectures but relies on an interesting Fourier representation
of the logarithmic energy : the proof of Lemma 1.9 is postponed to Appendix C.

We now go to the proof of Lemma 1.7. Let ) > 0, and ¢ be two bounded and compactly
supported functions. Then define vy, 4 by

¥y () = ¢ (x)du(x) +p(x)dx,

where ¢ and v are such that vy 4(R) = 0, so that if u € P(R) and ¢ is sufficiently small,
w+ vy 6 € P(R) . If wis a minimizer of I, for any such 4, ¢ we have

_ x2 x2 _
I(w) S I(u+€evy 4) = J ?duﬁ eJ 7d”¢,¢

- Jf log|x —y|(dudu+ edud vy, 4 + edvy, odu+ eszM, dvy )
3

b

4

thus we get

x? _ — — —
ef ?de’,i,(x)—ze JJ‘ log |x—y|dy, ¢ (x)dly)—e> Jf log |x—y|dvy, 4 (x)dvy ¢(y) = 0,

and so by dividing by ¢ and letting £ go to zero we get :

2
f (X? —ZJ log|x —y|d‘u(y)) d;w,d)(x) > 0.

By choosing 9 = 0 and +¢, we obtain that for all ¢ such that f ¢du=0:

2
J $(x) ("7 —2f log |x —yldu(y)) du(x) =0,

“http://www.lptms.universite-paris-saclay.fr/leshouches2024/files/2024 /07 /Les_Houches_Lecture_Notes_
VIVO_V1.pdf
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and therefore there exists a constant Cg; such that for all x € Supp(w),

2
x? — ZJ log|x —y|du(y) = Cg;, (Lagrange multiplier).

Then, by choosing ¢ =— f 1 (y)dy being a constant, we get, for Lebesgue-almost every x,

x2
?—ZJ log|x —y|dw(y) = Cgy.

Therefore, any minimizer w satisfies the Euler-Lagrange equation.

We are now ready to go to the proof of Corollary 1.5. Putting the three lemmas together,
we get that u. is indeed the unique minimizer of I.

From there, one can easily deduce Wigner’s theorem, using first the upper bound of the
large deviation principle. It indeed gives that

1
0 >0, limsup — logP Uy € B(Use, 6)) <— inf  I(u) =:—I;.
v im sup - 108 Pour, (Uy ¢ Bk, 0)) < — | inf 1() 5

Then since K := B(us.,6) N {v : I(v) < I + 1} (where B(u,.,6)¢ is the complement of

B(uc,0)) is a compact set and I is lower semicontinous, I reaches its infimum on K. Since

K does not contain the minimizer u,. of I, we have 0 < inIf< I(u) = I5. Therefore, we have
ue

for N big enough that

_ Is
Pgug, (Un € B(Use,0)) < exp (—sz) ,

and thus, since I5 > 0, we have that Pgyg, (Uy ¢ B(Us, 0)) is summable. By Borel-Cantelli,
we know that for all &, the sequence (Uy)yen is almost surely eventually in B(u, 6) and
therefore we have that a.s. Uy A Usc as N — o0,

1.4 Conclusion

Before going to the general theory of the global behavior of Coulomb gases, let us summarize
what we have learnt from the study of the specific case of the GUE model:

* If Hy is a random matrix from the GUE of size N, the distribution of its eigenvalues is a
singular canonical Gibbs measure which forms a one-dimensional log-gas.

* Its spectral empirical distribution is a random measure which satisfies a large deviation
principle on the space of probability measures on R, at speed N2 with an explicit rate
function.

* Through the derivation of Euler-Lagrange equations, one can show that the unique min-
imizer of this rate function is the semi-circular distribution. From there, one can use the
large deviation upper bound for the spectral empirical distribution to get the almost sure
weak convergence of the latter to the semi-circle distribution (Wigner’s theorem).

13
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2 General LDP for particle systems related to Coulomb gases

After this warmup through the example of the GUE, we now go to the main topic of the course,
that is LDPs for Coulomb gases and related particle systems. On this question, it is fair to cite
the work of D. Chafai, N. Gozlan and P A. Zitt [13], which built on arguments in the spirit
of [5]. We have chosen in this course to emphasize the work of D. Garcia-Zelada [6]. We first
introduce properly the notion of Coulomb gas.

2.1 Coulomb and Riesz gases, vocabulary

Consider N particles (xq,--,xy) € (R?)V, and define the Hamiltonian of the configuration
as follows:

N
1
En(x1,-+-,xy)=N V(x;)+— X;i—Xi). 7
NG, xw) le(l) zgjjg(l ) )
The function V is usually called the external potential and g the kernel interaction. Under ap-
propriate assumptions on V and g that we will detail later, it is possible to define the associated
Gibbs measure, given by :

exp (—BEy(x1,++,xx))dn®N (x1,--,xy),  (8)

dPy yp.¢(x1,*, xN) =

N,V,5.8
where da®N(xq,-++ ,xy) = dn(x;)---dn(xy), with 7 a reference measure, most of the time
chosen to be the Lebesgue measure on R? and Zy v,p,¢ is a normalizing constant such that
Pn,v,p,¢ is a probability measure'©.

Coulomb gases correspond to a particular choice of the (repulsive) interaction kernel g. It

satisfies the so-called Poisson equation Ag = —c40,, with ¢4 an appropriate constant depend-
ing on the dimension d so that its solution reads:
—|x], ford =1,
— ] —log|x|, ford =2,
g(x)={ ~loslx|
W, ford = 3.

Example: Similarly to what we saw in the first chapter of this course for the GUE, if one
defines the Complex Ginibre Ensemble, as a random matrix of size N x N, with indepen-
dent identically distributed entries G; ; that are complex centered Gaussian with variance 1/N
(without any symmetry assumption), then, one can check that the joint law of its eigenvalues
is a Coulomb gas in dimension d = 2, with Coulomb kernel g(x —y) = —log|x —y| and
quadratic external potential V(x) = |x|? /2.

As mentioned earlier, the eigenvalues of the GUE do not form stricto sensu a Coulomb gas,
but rather a so-called log-gas in the sense that g(x) = —log|x| although we are in dimension
1. This log-gas in one dimension is also commonly called a f-ensemble.

An important family of related particle systems are Riesz gases: ford > 1, g(x) = |x|™°
with s > 0. We refer the reader to the survey [14] by M. Lewin.

As in the first chapter, we will study the global regime of these particle systems, through
the first order asymptotics of the associated empirical measure

1 N
Uy 1= — Oy. .
Un NFZI X

1 Appropriate assumptions on V and g ensure in particular that 0 < Zy v, < 0.
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Let us now briefly mention an important topic that we will not discuss in these lectures,
namely the microscopic structure of Coulomb gases. As we have seen in the first chapter, with
the scaling that we have chosen (multiply each entry of the matrix by 1/+/N, or equivalently
put a factor of N in front of the external potential V in the definition of the Hamiltonian), the
weak limit of the empirical measure of the eigenvalues of the GUE is compactly supported. One
can check that, under standard assumption on V, it would be the same for the Coulomb gas
(8), associated with the Hamiltonian (7). The heuristics is that, considering a given particle
x;, the force NV(x;) created on it by the external potential is of the same order as the force
felt from the repulsion Y, i g (x; —x;) of all the other particles, both being of order N: this
leads to an equilibrium at a finite scale.

The limiting measure being compact, it means that on average, each particle occupies a
box of volume of order N=1/4_ If one wants to study the microscopic structure of the Coulomb
gas, it is therefore natural to choose a place around which there are particles, that is a point
Xx¢ in the interior of the support of the limiting measure and blow up the configuration of
points around x at a scale where there would be in average one point per unit volume, that
is consider the process (N1/4(x; —x¢))1<i<n- Following the breakthrough papers by S. Serfaty
and collaborators, there has been huge mathematical progresses in the study of the Coulomb
gases at this new scale. One of the main features is that, similarly to what was observed for
matrix models, the microscopic structure of Coulomb gases is much more universal than their
global regime, in the sense that the limiting random process essentially does not depend on
the external potential V. It does depend on f and there is an important conjecture, that at low
temperature (that is in the regime f§ — o0), there would be a crystallization phenomenon,
the limiting process being the triangular lattice in dimension 2. We won’t treat this problem
in these notes but the interested reader may find a lot of resources on this topic on S. Serfaty’s
webpage!!l. We recommend in particular the recent survey [15].

2.2 General Laplace principle for particle systems driven by a k-body interac-
tion

Let us now go back to our main subject and present the framework of [6], which is a very
general model with a k-body interaction (in most physical examples, we consider pairwise
interactions, that is k = 2). At each step, we will try to make as transparent as possible the
correspondence with the GUE model studied in the first part of this course.

If M is the space in which the particles live (M may be R?, a manifold or a Polish space!2)
and P(M) the set of probability measures on M, we consider G : Mk — (—o0, 00], a sym-
metric, lower semi-continuous and bounded below function.

For N > k, we define Wy : MY — (—o00, 00] by

Z G(xil;“' ink)' (9)

{i1,~ig {1, ,N}
#{i1, ik t=k

WN(xly'“ ’XN) = m
For instance, for the GUE, we choose M = R, k = 2 and define

x2 2
G(x,y):= ?+y?—210g|x—y|.

https://math.nyu.edu/~serfaty/
12A Polish space is a complete separable metric space. Working in a Polish space is a standard assumption in
probability theory.
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This gives

N x2
WaGr, ) =~ 16 1)) = — ((N—l)z?'—zlog|xi_xj|),

i<j i=1 i#j

which is to compare with the energy E of the configuration that has been defined in (4).
Consider now a reference measure 7t and inverse temperature 35 > 0. Similarly to what
we did previously, one can define an associated Gibbs measure 7, which has the following
density
dyn(xy,--+,xy) := exp(—Nfy Wy (xy, -, xx))d7(x1) - - dr(xy) - (10)

Note that at this stage, 7y is not normalized, it may not be a probability measure.

2 2
Again, it may be useful to compare to our example: with G(x,y) := % + %—2 log|x —y]|,
By = N and dn(x) = e~**/2dx, we get that

Pcugy, = CnTN>

where Pgyg, has been defined in (2) and Cy in (3).
We are now ready to state the main result of [6]:

Theorem 2.1 Assume that G : Mk — (—o0, 00] is symmetric, lower semi-continuous and
bounded below and Wy and 7y being defined in (9) and (10) respectively.
Assume that Py o p €(0,00]
—00

Let W : P(M) — (—o0, 00) be defined as

W(w := %f Gxy,+ 5 xp)dulxg) - - dualxge) -
+ J Mk

If p = oo, assume in addition that G(xq,++* ,Xj) — ® (i.e. we have a confining
Xi—

potential) and that we have the following regularity assumption: for any w € P(M) such that
W(u) < 0o, there exists a sequence of probability measures (Uy)n>1 absolutely continuous with
respect to 7 such that W (uy) o W () as N converges to oo.

— 00

Then, for all f : P(M) — R continuous and bounded, we have

1 1 )
Npy logJMN exp (—NﬂNf (N kz=l 5xk)) dyn((x1,..., xn) m —“Elpn(gw) {f(w) + F(wW},

where F is the free energy with parameter f :
1
F(u) :=W(u) + ES(.UM),

with S(+|r) the relative entropy (or KL divergence) :

f g—:: log (g—’;) drn, if whas a density with respect to m,

o, otherwise.

S(um) = {
From there, one can deduce automatically an LDP for (a normalized version of) 7y.

Corollary 2.2 Under the same assumption as in Theorem 2.1, if we define dPy = %d’)’N, where

Zy = yn(MN), then under Py, fyy = % >0 x; satisfies an LDP at speed N By with rate function
J(u) = F(u)—infF.
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In particular, one can recover from there the LDP in the GUE case, initially due to G. Ben
2 2
Arous and A. Guionnet. In this case, as we have k = 2, G(x,y) = X ;y —2log|x —y| and

B = o0, it comes that

2
W(w) = F(u) = f x?du(x)— f f log [x — y| du(x )du(y),

and we recover the rate function I defined in (5).

Before going into more examples and then into the proof of Theorem 2.1, it is worth
explaining a very general mechanism, that allows to deduce an LDP such as Corollary 2.2
from a Laplace principle as obtained in Theorem 2.1. It is an important mathematical tool in
the theory of large deviations and we devote the next section to explaining this mechanism.

2.3 Link between Laplace principle and LDP : the Varadhan-Bryc approach

Let us first make a quick reminder on the Laplace method, which is very familiar to mathe-
matical physicists. The Laplace principle states that, under suitable conditions, if we let

I, !=f exp (n¢(x))dx,
R

with ¢ a concave function reaching its maximum at a point xq, then we should have

I, ~ exp (n¢(xo)),
in the sense that 1
lim - log I, = ¢(xo),

(one can often be more precise, depending on the regularity of the function ¢). In the context
of large deviations, Varadhan’s lemma can be seen as an extension of the Laplace principle: if
a sequence of probability measures {u, },>1 defined on a space X, satisfies an LDP at speed n
with rate function I, and we let J,, := f exp (n¢(x))du,(x), then

1
lim —logJ, = sup{¢(x)—1I(x)}.
n—oon xex

One can even give a kind of reciprocal statement to Varadhan’s lemma : if such a limit occurs
for a rich enough family of test functions ¢, then an LDP holds for the sequence {u, },>1. This
reciprocal statement is known as Bryc’s lemma.

More precisely, we will discuss the equivalence of the two statements : for {uy, },,>1 a family
of probability measures on a Polish space X we consider

* (LDP) The sequence {u, },>1 satisfies an LDP with speed n, and with a good rate func-
tion I'3.

* (LIM) For any continuous bounded function f, the following limit exists
L1
Af:= lim —log | exp(nf(x))du,(x).
n—oo n

The following proposition discusses the relationship between these two statements :

13We recall that by definition of semi-continuity, the level sets {I < C} of rate functions are closed, when in
addition these level sets are all compact then the rate function is said to be good
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Proposition 2.3

1. Varadhan’s integral lemma: Suppose (LDP) holds then (LIM) is verified and

Ag = sup{f(x)—I(x)}.
x€X

2. Bryc’s inverse integral lemma: Suppose (LIM) holds and suppose in addition that the se-
quence (U, )n>1 is exponentially tight, then (LDP) holds with rate function I defined as
follows

I(x) = sup{f(x)—Ar},
fech

where CP is the set of continuous bounded functions.

As emphasized above, the first statement can be seen as an infinite dimensional extension
of Laplace method. We refer the reader to the notes of H. Touchette [1] for a more thorough
discussion of Varadhan’s lemma in the context of statistical mechanics or to Section 4.3 of [2]
for a complete proof.

In the sequel, we will use more specifically the second statement, a.k.a. Bryc’s inverse
integral lemma, whose proof we detail hereafter. Let us assume that (LIM) holds and that the
sequence (U, ),>1 is exponentially tight, in the sense that there exists a sequence of compact
sets (K )r>o such that

1
lim sup lim sup — log P(i,, ¢ K;) = —o0.
L—oo n—oo N2

We first show that the LDP lower bound holds with rate function I. Let O be an open set
and x € 0, let f be a bounded and continous function chosen such that, f(x)=1,0< f < 1;
and f = 0 on O¢ (such a function can be shown to exist if X is a completely regular topological
space). Then define the family of functions (f,),>1 by fp(¥) = p(f(y)—1), for any y € X.
Thus

f exp(nf,(¥))du,(y) = f

exp(nfp)duﬂ + J exp(nfp)duﬂ < u,(0)+e™P,
)

Oc¢
where the inequality comes from the fact that f,, < 0 and so exp (n fp) < landthat f,(y) =—p

on O¢. Then, taking liminf % log(+) on both sides of the previous inequality and using that

1 1 1
liminf — log(a, + b,,) = max {lim inf — log(a, ), liminf — log(bn)} R
n n n
we get :

n—oo n

1 1
liminf — logf e du, < max {lilmcigf— log u,(0), —p} .
—0o0 n

Given that (LIM) holds, the left hand side is A £ In addition, we have f, (x) =0 so we get :

.
Ag, —fp(x) < maX{lggégf; logun(O),—p} .
We therefore obtain, for any x € O,

—I(x) :=—sup{f(x)—Ag} = inf {Af— f(x)} < Af, —fp(x)
fecy fect

1 1
< max {liminf— log u, (0), —p} —— liminf — log u,, (O).
n—oo pn n—oo n

p—oo
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This inequality holds for all x € O, so taking sup on the left hand side, we get the LDP lower
x€0

bound :
1nf I(x) =sup{—I(x)} < 11m1nf— log u,(0).

x€0

Let us now show the upper bound. Since we have assumed exponential tightness of
(U))n>1, it is sufficient to show the upper bound for compact sets. Let 6 > 0, and define

°(x):= min{I(x)—6,%} .

Fix a compact set K C X. By definition of I, for all x € K, there exists f, € C?(X) such that
filx)—Afg 2 1(x)—06 21 %(x). By continuity of f,, there exists an open set A, containing
x, such that for ally € A,, f,,(y) — fi(x) = —6. Now, let

AL = —log( f exp (nfe(y)) dun(y)),
and define the following probability measures u, s with densities :

dttn 7, () = exp [ (£:0) = AD) | dpw ().

Since f,(y)— fi(x) =—6 forall y € A,,, we have :

n(Ay) = f exp (—n (£ () =A%) dutn 1, (1) < exp[—n ()= 5 —AP)].

X

Since by (LIM), A;n) — A¢_ and since we have chosen f, such that f,(x)—As =1 o(x),
x n—
we get :

llmsup—logun(A )< Af — —f(x)+6 <—I%°(x)+6.

n—oo

. .- . N
By compactness of K, since UxexAx covers K we can extract a finite covering K = Ui=1 Ay,
for some xq, ..., xy € X. We therefore get :

lim sup - log,un(K) < 11m sup - log (Z Un (A, ))

n—o00
i=1

= max {llmsup—logun(A )} < max {—I (x; )+5}.

1<i<N n—oo
Taking 51in01+ on the right hand side of the inequality, we obtain :

hmsup—logun(K) < max {—I(x )} < —1an(x)

n—oo

which is the upper bound for the LDP Thus, I satisfies both the upper and lower bounds, so
we have an LDP with rate function I.

Applying Proposition 2.3, one can deduce Corollary 2.2 from Theorem 2.1.

2.4 Various applications of Theorem 2.1 and Corollary 2.2

The goal of the section is to exhibit several very interesting applications of the main results
of [6]. We will develop some of them in details, while others will be just briefly mentioned,
referring the reader to the original paper for more details.
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2.4.1 Usual Coulomb and Riesz gases

The first result we want to establish is an LDP for the Gibbs measure Py y 5 , as defined by
(8), with the kernel g being a Coulomb or a Riesz kernel. On this subject, one has to mention
the work of D. Chafai, N. Gozlan and P A. Zitt in [13] and the work of P Dupuis, V. Laschos
and K. Ramanan [16], the latter being closer in the methods of the work of D. Garcia-Zelada.
We explain hereafter how to recover those results from Theorem 2.1.

Let 7t be a reference measure on R4. Let V : R? — (—o0, 0o] be lower semicontinuous,
bounded below such that there exists £ > 0 such that fRd e~ sVdn < oo.

Let g : R? — (—o0, 00] symmetric, lower semicontinuous such that there exists £ > 0
such that (x,y) — g(x —y) + eV(x) + €V(y) is bounded below. We also assume that
(x,¥) — g(x,¥) + V(x) + V(y) goes to infinity as x and y both go to infinity and that the
regularity assumption is satisfied.

Then, for all f : P(R?) — R continuous and bounded, we have

1 ) 1<
N2p log JMN exp ( N°B f (N kg; 5xk))dPN,V,p,g (21, s Xp) an

T a0+ W),

and consequently, under Py v 5 ¢, the empirical measure of the particles satisfies a large devi-
ation principle, at speed N2, with rate function pJ, given by J(u) = W(u) —inf W.

As already mentioned above, choosing d = 1, g(x) = —2log|x| and V(x) = x2/2, it
encompasses in particular the GUE case but also applies, with appropriate choices of the po-
tential V to any Coulomb or Riesz kernel.

Let us now quickly explain how to obtain (11) and the corresponding LDP from Theorem
2.1 and Corollary 2.2.
As we know that fRd e~5Vdn < 0o, we may assume without loss of generality that

f Rd e %Vdn = 1. If we make the following choices: fy = N, and

(v=2te v+ 15 (w—ate v,

with g a Coulomb or Riesz kernel and V an appropriate choice so that the assumptions above
are satisfied'* and define that corresponding measure 7y as in (10), we get

G(x,y):=gx—y)+

N-1 N-—-1

dyn(xq,...,xy) = e VhvWng (e_gvn)QN (x1,...,xn)
— e_pTN(Eiq’ g(xi_xj)"'(N_%g) Z{V:1 V(Xi))d (e—gVﬂ:)®N (xl’ ey xN)

=Znyp,edPnyp,e (X155 XN),

which corresponds to an unormalized version of Coulomb/Riesz gases.
We now use the following decomposition:

Gi(x,y):=g(x—y)+eV(x)+eV(y),

and
Ga(x,y) :=(1—¢£)V(x)+(1—¢)V(y),

4Any polynomial of even degree and positive main coefficient is suitable.
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so that, with obvious notations

Wy =Wy 1+ayWy o,

1 1 N
wim i (7 (v-78) )
e\ N—1 ﬂN

a sequence converging to 1 as N goes to infinity. We can then check separately that Wy ; and
Wy 2 satisfy the required assumptions.

with

As we have shown in the first chapter with Wigner’s theorem, it is possible to characterize
the minimizer of the rate function through Euler-Lagrange equations. The minimizer is usually
called equilibrium measure and is compactly supported.

2.4.2 High temperature Coulomb and Riesz gases

As explained in the previous subsection, the study of Py yp , which is related to standard
models in RMT corresponds to a choice of By of order N, leading to an LDP at scale N2 and
a limiting equilibrium measure with compact support. But the study of measures of the type

]P’N’V’ bo has also been considered in the literature. In this case, the corresponding particle
systems are for example related to the classical Toda chain [17,18] and are often called high
temperature f3-ensembles or high temperature gases. In our framework, it corresponds to a
choice of By of order 1. This regime has been investigated by various authors, see e.g. [19,20].

In this case, one can see from the definition of the function F in Theorem 2.1 that the rate
function is a mixture of an energy term W and an entropy term S. As far as we know, the
first appearence of an LDP for such particle systems goes back to the work of T. Bodineau and
A. Guionnet in [21] and before the work of D. Garcia-Zelada, general results appeared in [16].

In the framework of [6], Laplace principle and LDP at fixed p even require less assump-

tions. With the same decomposition as in Section 2.4.1, one can show the following

Theorem 2.4 Let 7 be a reference measure on R4, Let V : R4 — (—o0, 00] lower semicontinu-
ous, bounded below such that there exists & > 0 such that f]Rd e$Vdn < oo.

Let g : R4 — (—00, 00 ] symmetric, lower semicontinuous such that there exists £ > 0 such
that (x,y) — g(x —y)+ eV(x) + eV(y) is bounded below.

Then, if By — B, for all f : P(RY) — R continuous and bounded, we have

1 1<
NPy log JMN exp (_NﬁNf (N 1§1 6xk))dPN,V,[3,g((xl’ ey XN) (12)

g {f(u) W) + %S(mm} ,

N—oco  ueP(M)

and consequently, under Py v p o, the empirical measure of the particles satisfies a large deviation
principle, at speed N, with rate function pW + S(:|n) —inf(f W + S(¢|7)).

As we have shown in the first chapter with Wigner’s theorem, it is possible to characterize
the minimizer of the rate function through Euler-Lagrange-like equations. The minimizer is
usually called thermal equilibrium measure and is not compactly supported. When this mini-
mizer is unique, it is again possible to deduce almost sure convergence of the empirical measure
to the thermal equilibrium measure.
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2.4.3 Conditional Gibbs measures

In some cases, it may also be natural to consider a gas of N particles {xq,--,xy} where all
but the first £ points are deterministic. In [6], several regimes are considered but for the sake
of simplicity, we will stick in these notes to the case when £ is of order 1.

Assume that the density of these deterministic points converges weakly to v :

Define the external potential GE generated by y on the random points (xq,-- ,X,) by

/4
GE ((xls tt :xf)sy) = ZG(xi’y)s
i=1
and denote the average external interaction by

VN(xl,“' Jxl) = f GE ((X1,"' fo),y)va(y)'
Then, consider the internal interaction

G (x1, o ox) = D, Glxi,x;).

1<i<j<t

Finally, define V : M¢ — R by

V(xl,”' :xl) =f GE ((xI’“' ,xe),}’)dV(J/)-
M

Theorem 2.5 Assume that the interaction G is such that the following limit holds:

V(xl,--- ’x[) =NILIEO VN(XIJ'“ 7xf)

and V is continuous bounded on M¥. Define the conditional measure Ty as follows:

dr (x1, -+, x() = exp {—ﬁN (VN + %G’)(xl,--- ,xe)} dr(xy)-- - dn(xe).

Then, under some extra technical assumptions'>, for all f € Cb(M?*), we have :

ﬁilog( f exp {—Bu f(x1,++ , x)}dr (s, -, xp)
M¢

N
————»N —inf{f(xy, - ,xp)+ V(xq,-+-,x0)}.
— 00

Corollary 2.6 Under the same assumptions as Theorem 2.5, the law of (x1,--+,x,) under 74,
which is the normalized version of 7y, satisfies an LDP at speed 3y with the rate function V—infV.

15In this paragraph, we won’t be as precise as for the previous examples and refer the reader to the original
paper.
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We want to emphasize the change in the scaling: when the deviations of the whole empir-
ical measure occurs at speed N By, the deviations of the law of this finite number of particles
occur at speed By.

This is exactly what happens when we look at the deviations of the largest eigenvalue of
the GUE (or the rightmost particle of a gas in dimension 1). When we look at the scale eV, all
but the first particle can be considered as frozen, deterministic, with positions such that their
limiting empirical measure is the semicircle distribution. This corresponds to taking £ = 1,

2
G(x,y)= % —2log(]x —y|) and vy ?v—v—» Us.. With this heuristics'®, we recover the result
— 00

that the law of the largest eigenvalue A, for the GOE model satisfies an LDP at speed N with
rate function V —infV, with

x2
Ve =— —f log(|x —y[)dusc(y).

More details on this derivation can be found in the work [22] or in the review paper by S. Ma-
jumdar and G. Schehr [23], which presents a thorough study of the deviations of the top eigen-
value at different scales such as fluctuations, large deviations and links between the different
regimes.

2.4.4 Further examples

We would like to finish this list of applications of the main results of [6] by mentioning two
other families of particle systems that can be studied in this framework. We won’t detail these
examples but refer the interested reader to the original papers:

* one can recover and generalize the results of R. Berman on Coulomb gases on Rieman-
nian manifolds, see e.g. [24],

* if we consider random polynomials on the form P,(z) = EZ=0 a;z*, where a; are
i.i.d. Ng(0, 1) coefficients, it is known that the zeroes form a random particle systems
of Coulomb-type. The large deviations of their empirical measure have been explored,
e.g. in [25] and [26]. Their results can be recovered and generalized in the framework
of [6].

2.5 Elements of proof of the Laplace principle

We now end this chapter by giving some ideas of the proof of Theorem 2.1. We start by
recalling a result on the Legendre transform of the entropy.

Lemma 2.7 (Legendre transform of entropy) Let w be a probability measure on a space E and
g : E — (—o0,+00] be a measurable and bounded below function. Then,

log(f e_g(x)du(x)) =— inf {fgdr+$(*c|,u)} .
T€P(E)

Let give a quick proof of this lemma. If 7 has a density with respect to u and we denote
dz . .
by f = an this density, recall that

S(zlw) =ff log(f)du= J log(f)d=z.

16The heuristics would be a rigorous application of Theorem 2.5 if all but the largest particle would be deter-
ministic.
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s36 Therefore,

— J gdz—S(7|w) = —f gdr —J log(f)dr = f loge™#dz —J log(f)d~

= J log(e™®/f)dr < log U(e—g / f)dfc) =log U e_gdu).

If 7 is not absolutely continuous with respect to u, then the inequality is trivially verified since

in this case S(7|u) = +00. Now, taking sup on the left hand side we get
T€P(E)

— inf dt +S <1 ~2du|,
Telg(E){fg T (ﬂ:lu)}_Og(Je u)

537 and this gives us one inequality.

On the other hand, if we choose the probability measure 7 such that dz = f:‘;:dudm then,
one can easily check that we have equality:
—f gdt —S(7|u) =loge¥du,

s3s  so that we can conclude that the inequality above is in fact an equality.
539
540 Let us now use Lemma 2.7 to show the generalized Laplace principle stated in Theorem
541 2.1,

If we apply Lemma 2.7 to E = MV, u= n®" and the test function

1 &
X1, ,Xy) =N — > .0, | +Wy(x1,,xn) |
g(x; N) ﬁN[f(N§ xl) n (x4 N)]

542 we get :

N
N;N log UMN exp (—NﬂN lf (% ; 5xi) + Wy (xq, - ,xN)D dm(xq)--- dn(xN))

N
i ! S(z|n®N)
=_T€11)I(115N){Jf(ﬁéaxi)df(xl’.“ ’xN)+J WN(xly"' ;xN)dT + N—ﬁN .

To conclude, we need to show that the right handside converges, as N — oo towards

S(mn)}
5 [

_uei%‘(fw) {f(u) +W(w +

sa3  We will only show the upper bound and refer the reader to the original paper, concerning the
s44 lower bound, which is more technical.
545 Notice first that if we fix uw € P(M) and let 7y := u®N € P(MY), then

li inf f ! E : o d I;(x ) W (x )d T 1 ( l )
lmsu ln — ) , ) ’x , e e e ’x —————————
N_,oop T€P(MN) N =1 xi ! N N N NﬁN

N N
slimsup(ff(%z:&ci)dw(m,-.. ,xN)+f Wy(xq, -, xy)dTy + %I;:))

N=eo i=1
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We look at the limsup of each of the three terms. First, if (x1,:-+,xy) ~ Ty, it means that the
x; are i.i.d. and are distributed according to u. By the law of large numbers, we have that the

law of %21121:1 0y, converges weakly to 6, and so that for any continuous bounded function
f on P(M) we have :

1 N
J-f(ﬁkzﬂ(?xi)dﬁv%—w* ffdaff(u).

sa6  We now go to the second term:

1
f Wydty = — Z JG(xi1,°" ,Xik)dM®k(xi1,"° ,Xi,)

Nk {i1, g }S{1,,N}
#{i1, i )=k
1 (N
=— G(xq, -, xp )dilxq) - - - dlxg ) —— W(w).
Finally, since
dusN Nodu
Loy o) =[] 6,

i=1
we have S(u8N|n®N) = NS(u|r), so that

S(Ty|m®N) _ S(ulw) S(ul )
Nfn By N-eo B

s47  Putting these three elements together in the limit above, we get that for any u € P(M),

1< S(z|n®N)
li inf —2:5. dr(xq, -+, xy)+ | Wylxy, -+, xy)ds + ——
lzlelsolipre}’?MN){ff(Ni=l x,) 7(x; xy) f N (1 xy)dT Npn }

S(uim)
ﬁ 2

< f(W)+w(u)+

s48  and we can take the infimum over the right handside.
549 We refer the reader to [6] for the proof of the reverse inequality.
sso 2.6 Conclusion

ss1  In this second chapter (corresponding to an extended version of Lectures 2 and 3), we have
ss2  discussed a very general result developed in [6].

553 * It allows to study the large deviations of the empirical measure of particle systems given
554 by singular Gibbs measures, encompassing a large range of applications, in particular
555 usual Coulomb gases, high temperature Coulomb gases and conditional Gibbs measures.
556 * The proof of these LDPs is based on an important mathematical tool called Bryc’s inverse
557 integral lemma, that can be seen as a reciprocal to Varadhan’s lemma. It allows to deduce
558 LDPs from Laplace principle.

559 * In this case, the Laplace principle is intimately linked to a dual representation of the
560 relative entropy. It leads to a rate function that is in general a mixture of an energy term
561 and a relative entropy term. In the so-called zero temperature regime, the entropy term
562 disappears.
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563 * The typical behavior of the corresponding empirical measures can be described by a
564 compactly supported equilibrium measure in the usual case (as we have seen in the first
565 chapter with the semicircle distribution) and by a non-compactly supported (thermal)
566 equilibrium measure in the so-called high temperature regime.
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3 The use of spherical integrals to study LD of largest eigenvalues
of random matrices

In the first two chapters, we have mainly dealt with the global behavior of the particle sys-
tems, encoded in their empirical measure. But, in many situations, it is also relevant to study
the behavior of the extremal particles - say the rightmost particle or the largest eigenvalue.
Recently, A. Guionnet and J. Husson [27] and then many co-authors [28-33] have used the
so-called spherical integrals to study the large deviations of the largest eigenvalue in various
models of random matrices. Although the corresponding systems of particles are no longer
stricly speaking Coulomb gases, they are closely related models and we would like to present
this ensemble of works in this last section. We think that the ubiquity of spherical integrals in
statistical physics makes it particularly relevant for this course.

3.1 A general overview on the models

Let us go back to the model of the GUE, and recall that Hy € GUEy has been defined in (1.1)
as follows:

Hy H;j
VN VN
Hy =| u* )
ij
VN
Hy n
VN

where H;; are independent and identically distributed random variables with distribution
Ng(0,1) and for i < j, H; ; are independent and identically distributed random variables
with distribution N¢(0, 1).

There are several very natural generalisations of this model.

* p-ensembles. We know that the joint law of the eigenvalues of the GUEy is given by
PgyE, > which has been defined in (2). In the joint density, proportional to

l_[(xi _xj)2 exp (—g ﬁ: XJZ) >

i<j j=1

if we replace the quadratic potential by a more general potential V(x;) and/or if we
replace the exponent 2 in the Vandermonde term by any f# > O, the corresponding
particle system is called a 3-ensemble. Large deviations for the empirical measure and
for the rightmost particle in this framework has been extensively studied and we refer
to Vivo’s lecture for more details. In these notes, we will focus in two other types of
extension of the model.

* Wigner matrices. If we keep the same structure of the entries, being i.i.d., up to sym-
metry (the matrix has to remain Hermitian or real symmetric) but relax the Gaussianity
assumption, we obtain a Wigner matrix.

It is well known that, as soon as the entries H; j are centered and E(|H; j|*) = 1 for

. . . . o~ 1 w .
i # j, Wigner’s theorem holds in the sense that Uiy = 5 Z?’Zl 0y, oo Moo the semi-
— 00

N

> A% —
max }’_2’

N—oo
which is the right edge of the support of .. The large deviations have been investigated

by [27-29,33].

circular distribution. If moreover we have E(Hi4j) < oo, then A
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* Deformed models. The GUEy distribution may also be seen as a Gaussian measure on
the set Hy(C) of Hermitian matrices of size N. A natural way to modify this measure
is to change its mean: choose a deterministic matrix Ay € Hy(C) and Xy = Ay + Hy;,
with Hy € GUEy. As the GUE, distribution is invariant by unitary conjugation, one can
consider as a further generalisation a model of the form

XN =AN + UBNU*,

with U being distributed as the Haar measure on the orthogonal group Oy or the unitary
group Uy. The convergence of the empirical spectral measure can be described by free
probability (this point will be detailed a bit further in these notes) and the behavior of
the largest eigenvalue has been investigated in [30-32].

To understand the deviations of the largest eigenvalue both for Wigner matrices and de-
formed models, we first need to investigate a common tool, which is interesting by itself, the
spherical integrals.

3.2 Spherical integrals

Consider Ay, By two deterministic, real diagonal N x N matrices. Define the spherical integral
of Ay and By as

In(An,By) := f eNTANUNBN U dm  (Uy),
with my the Haar measure on the orthonormal group
Oy ={0 € My(R),0T0 =00" =1y},

or the unitary group
Uy ={U € My(C),U*U =UU" = Iy}.

We recall that the Haar measure is the unique probability measure which is invariant under
conjugation (see Appendix A for more details). According to the context, the integral Iy may
be called Harish Chandra integral'’ or Itzykson-Zuber integral or spherical integral. We will use
this latter terminology in these notes.

Harish Chandra in the fifties provided explicit formulas for Iy(Ay, By). For example, we
have the following formula, which holds only in the unitary case:

ﬁ ) det(e®™);j<n
J: >
=1 ITi<j(ai —a))[1i<;(bi = b))

Jj=

In(An,By) := (

where (a;)1<i<y and (bj)1<j<n are respectively the eigenvalues of Ay and By. Unfortunately,
this nice closed formula is not very suitable for asymptotic analysis. Nevertheless, C. Itzykson
and J. B. Zuber in the physics literature [34] and then twenty years later A. Guionnet and
O. Zeitouni [35] on a rigorous level provided some insights on the asymptotics of I. Their
result takes the following form:

Theorem 3.1 If

N N

~ 1 w ~ 1 w

Uay = EZEMI-(AN) oo Ma and U, = NZIJ 02:(By) 3o Mb>
1= 1=

171t is in fact a particular case of the latter.
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then there exists a functional F such that (under some additional technical assumptions), we have
the following convergence :

1
m logIn(Ay,By) m F(ug, Up).

One can check that when one of the limiting measures u, or u is trivial (= d8¢), the
function F vanishes. This means that in this case, we are not considering the spherical integrals
on the right scale. The asymptotics in the case when one of the matrices, say Ay is of finite
rank (fixed with N), has been first obtained by A. Guionnet and M. Maida [36] in the rank
one case and then by A. Guionnet and J. Husson [37] in the finite rank case (see also [38] for
previous partial results). The rank one case will be particularly useful for the sequel and we
present it hereafter in full details. For the sake of simplicity, we stick to the orthogonal case
but the results and proofs can be easily adapted to the unitary case.

We write Ay and By under the form:

0 b,
b,y

AN= BN=

o]
by
In this case, we denote by Iy (0, By) := In(Ax, By). We will here restrict to the case where
0 > 0, which is useful to study the deviations of the largest eigenvalue but the very same results
have been shown when 6 < 0.
Before stating the result, let us recall the following notation. Given a probability measure
won R and a point x € R outside the support of u, let

Hy(x):= f Ldpt(y).
RXTY

Depending on the context, the functional u— H,, is known as the Hilbert - or the Stieltjes -
transform. We have the following:

Theorem 3.2 Assume that g, NL> W, where u has a compact support. Assume also that
— 00

Amax(By) = maxy<ij<y b —— A. Then
- N—oo

1 1
Nlim NlogIN(B,BN) =0v(0)— > J log(1+20v(0)—20y)duw(y) :=J(0,A, ), (13)

where
v(6) = {RM(ZO), when 20 < Hp .«

1
A—355, when 20 > Hpay

with
Hpax = xlir?+ Hu(x )s

and Ry(m) is the unique solution of

f —————du(y) =7
RR;,L(”)"' ﬁ_y

such that R,(n) + % is larger or equal to A.
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Note that for w and A given, there is a phase transition at 20 = H,,,. For 20 < H ..
(subcritical case), v(0) and therefore J(8, A, w) is independent of A but a dependence appears
when 20 > H,,,,. This will play a crucial role in the tilting argument.

We now sketch the proof of Theorem 3.2. With Ay and By chosen as above, we have

In(0,By) = f VO T 1% dm y(0).

In the orthogonal case we are interested in, when (O,—l)?’:1 is the first column vector of a
matrix sampled according to the Haar measure, one can show that this vector follows the
uniform distribution on the sphere SN=! c RN, If G is a standard Gaussian vector of size N,

. . o . G
by invariance of the standard normal distribution under orthogonal transformations, el also

follows the uniform distribution on the sphere. Thus (Oil)é\’: , has the same distribution as el
and we can write :

EI'V—I big.z &1
Iy(6,By)=E (exp (NG %)) , whereG=| : | ~N(0,Idy).

2
ZiZI gi gN

By concentration of measure phenomenon, the event

5N={ sN—"},

where k € (0,1/2), has very high probability for N large enough. Therefore, we have the
following approximation:

IGII>

—1

.o2 02
Nozb‘g;' Nozb‘gz"
In(0,By)=E|e 2% |~Ele 2% 1g

On the event &£y, the quantity (2?’21 gi2 — N) is negligible with respect to N. Therefore, up to
a factor which is negligible with respect to eV, we can write the following approximation: for
any v €R,

g2 2_
Iv(0,By) ~ E (e"z”lgf vo(Ze; N)].gN) .
By rewritting the expectation with the density of a Gaussian vector, we get

NOv

N

~ —e 9Zbigi2—vezg,~2—lzgiz .

Iy(0,By) ~ (2m)N/2 f e 2 1g, l_!dgz
1=

NOv N
e _L —20b;
Je ¢! 20b1+2v0)gi215N l_ldgi'

(2m)N/2 i1

Choosing v such that 1 —20b; +20v > 0 for all 1 < i < N, we identify the exponential in
the integral as the density of a centered normal distribution of variance We thus

obtain

1-20b;+2v0°

eNOv

IN(0,By) = Py, (En),
1Y, v/1—20b;+20v
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1
1-26 b] +260v 0

74 with Py, a Gaussian measure with covariance matrix I' = 0 0

1
0  T=6p,720v

ers Therefore, bounding Py , () by 1, we get :
Iy(0,By) S eN0v—3 Zlog(1-20b:+26v)

676 and thus, for any v € R such that 1—20b; +20v >0 forall 1 <i < N, we have :

N
1 1 1 ~
Nlog(IN(O,BN)) SOv— N ,-ZEI log(1+20v —26b;)=0v— > J log(1+20v —20y)dug, (v)

N—-oo

1

677 which gives us an upper bound.
678 We now compute the corresponding lower bound. We have seen that under Py ,,, each g;

670 has normal distribution with variance and so

1
1-20b,+20v

N
1
Eny | — ), 87
N’V(N;:gl) ;1 2b0+20v

680 The equation

lﬁ: ! =1 (14)
N &41-2b;0 +20v

681 has a unique solution in v such that 1—2b;0 +20v > 0 for all 1 <i < N, which we denote

682 by vy(0). Thus, we get
o (lePY
N,VN(G) N -

es3 and using Gaussian concentration again, we get that Py, (9)(Ex) goes to 1 as N grows to
684 infinity. Thus, we get that :

Iy(0,By) ~ eN(ovN(a)—; f10g(1—29y+20vN(0))dﬁBN(y)).

685 If we denote by
N

1 1
Hy(2) :=Hy z=—E—,
N( ) p,BN( ) Ni=lz_bi
686 one can rewrite (14) as

Hy (VN(O) + %) =20.

687 One can then show that vy(6) converges to v(0), where v(0) = H( 1)(20) — 3¢ if
ess 20 € H,([A,+00)) and v(0) =21 — % otherwise.
689 This concludes the proof of Theorem 3.2 which gives the full asymptotics of the spherical

690 integral in the rank one case.

691

692 The finite rank case has been treated by A. Guionnet and J. Husson [37]: if we have
603 A7 > ... > A > A* (where we denote by A* the right edge of the support of u;) and
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604 A;(By) o Ai, Vi € {1,...,k} (where A4;(By) is the ith largest eigenvalue of By), then

695 the logarithm of the integral is additive in the sense that:

1 1
lim _logIN(ANJBN)= lim _logIN(OI:“'Jek)BN)=J(61’2’lsul)+"'+J(9k52'kuu’):

696 where J is the rank one limit appearing in Theorem 3.2.
697 Before going to the statements of the main results, let us make some final remarks on the

608 expression of J. If H ‘(L_l) is the inverse of the function H,, on [, 00) and we denote by
Ru(2) = HS V() — -
u(z)=H, (= .

600 on this interval, R,, is known by mathematicians as the R-transform of the measure u and by
700 physicists as the blue function'® (see e.g. J.R Bouchaud’s lecture notes [39] from les Houches
701 2015). This functional is very useful to describe the limiting spectrum of Ay + UByU* in our
702 model. It is a central tool in free probability theory (see for example the book of J. Mingo
703 and R. Speicher [40] for a thorough but gentle introduction to the theory). If we choose the
704 sequences (Ay)y>1 and (By)yx>1 such that p, SELAEN Uq and g, ., Up, one can show
705 that N N

~ w
YAy +UBNU* _—’N_’oo Us,

706 which is characterized by the functional equation

R, (2) =R, (2) + Ry, (2).

7oz This relation plays the role of the additivity of the logarithm of the Fourier transform for
708 the usual convolution: if X and Y are independent real random variables, with respective
700 distributions uy and uy and if ¢, is the characteristic function of a probability meausre u, we
710 have

logF,,

X+Y

=logF,, +1logF,,
711 By analogy, ug is called the free convolution of u, and u and is denoted by ug = u, B .

712 3.3 Statement of the results

713 We will now provide a statement of the LDP for the largest eigenvalue in two different models
714 that are both a generalisation of the GUE.

Sub-Gaussian Wigner matrices Let us present hereafter a result due to N. Cook, R. Ducatez
and A. Guionnet [33]; it is the outcome of a series of works, starting from [27]. For a prob-
ability measure u € P(R), its log-Laplace transform is given by A,(t) = logf et*du(x). For
the standard Gaussian measure, with density :

dy(x) = e_xz/zdx,

2n
715 one can check that its log-Laplace transform is given by A,(t) = t2/2, for any t € R. Accord-
716 ingly, a measure wis said to be sub-Gaussian if there exists K > 0 such that A, (t) < Kt2, Yt €R.
717 It is said to be sharp sub-Gaussian if in addition K = 1/2.
We also recall that the rate function for the largest eigenvalue A; of the GOE is given by :

1 rx
IT(x)={ Efz vy2—4dy, forx =2,
wﬁ

forx <2.

1835 it is the inverse of the Green function (sic!)
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Let (X;j)i<i<j<n be i.i.d. real centered random variables, with unit variance. A Wigner
matrix Wy is defined as follows:

"/EXI,I Xi,j
. .
Wy =—
IN| X

V2Xy n

We denote by w the common distribution of the entries. The matrix Wy is said to be a sub-
Gaussian Wigner matrix if the distribution wis sub-Gaussian. The large deviations of its largest
eigenvalue are described by the following result:

Theorem 3.3 For Wy a sub-Gaussian Wigner matrix, the law of A,(Wy) satisfies an LDP at
speed N, with good rate function I™ such that

. IMSIY’
* 3x,,> 2 such that I" =17 on [2,x,] and I* < I if x > x;
* x,, <ooifandonlyif K> 1/2.

One can also mention a few previous results, dealing with Wigner matrices with non Gaus-
sian tails [41], or sparse Wigner matrices [42-44].

Orthogonally invariant deformed random matrices We state hereafter a similar result that
was obtained in [32]. The tilting argument is a bit easier to present in this case and this is why
we choose to emphasize this model.

If the distribution of O is the Haar measure on the orthogonal group'® Oy and Ay and By
are deterministic diagonal®® matrices, we define

HN = AN + OBNO*

Assume that iy, NL> Ua, D5, NL> Uy, which are compactly supported, and assume that
— 00 — 00
A1(ApN) ~—= Pa A1(By) ~—= Pbs which are the right edges®! of u, and w, respectively.
— 00 — 00
As we have previously mentioned, we know that

N w
MHN?:;:.UuEMb

and denote by p (u, B uy) the right edge of the support of u, B uy,. We then have the following
LDP:

Theorem 3.4 With Hy defined as above,the law of its largest eigenvalue A,(Hy) satisfies an LDP
at speed N with good rate function Lg p:

Lyp(x) = Supg La,b(osx)’ ifx = p(us B ug),
“b 0o, if x < p(ua B up),

with
La,b(eyx) = 'I(e’x:.u’a H ‘Uzb)—J(e,x, .u’a)_J(eax: ‘U,b). (15)
and J defined in equation (13).

19The unitarily invariant case can be treated similarly by replacing the orthogonal group by the unitary group in
the sequel.

204, and By may be considered real symmetric. By invariance of the Haar measure under unitary conjugation,
one can assume without loss of generality that they are diagonal.

2IMore general results are given in [32].
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a1 3.4 Main ideas of the proofs

722 In this section, we provide the main ideas of the proofs of Theorems 3.3 and 3.4. As announced,
743 it is based on tilting the measure thanks to spherical integrals. We start by recalling how such a
7a4 tilting argument has been used in the much simpler context of real i.i.d. real random variables
745 to prove Cramér’s theorem. We then show how it can be applied in our case for studying
726 the deformed model. The sub-Gaussian Wigner case is much more involved and will only be
7a7  sketched in the last paragraph.

728 3.4.1 Tilting for Cramér

740 Consider (Xy)ny>1 a sequence of i.i.d. real random variables that are centered, with law pand
750 such that the log-Laplace transform satisfies A,(t) < 00, Vt € R.

751 Cramér’s theorem states that the law of Xy = (X7 + ... + Xy)/N satisfies an LDP with rate
752 function Ay, defined as A;(x) = SUPper (Bx —Ay(0 )) , for any x € R. This is a classical result
753 and we refer the reader for example to [2].

754 The idea of the proof goes as follows : for any x € R and 6 > 0,
e NOX
} eNOXy Ele™ 115, —x|<5 o
P(lXN—xl SB):]E( NOX 1|XN—x|<5)ze_Nex ( ( NL}:) | ) x]E(eNBXN),
€ N - E(e N S
- —eNAu(0)

! (|Z—x|<5)
755 Where ]P’g, is the tilted measure defined by:
po )= 1)

756 Thus, we have:
]p(lgN _xl < 5) ~ e—N(Bx—ApL(@))]P)g’ (|XN_"| < 5) < e—N(Ox—A,L(O)),

757 and by optimizing over 6, we obtain P (lX’ N —x| <o ) < e which is the upper bound
758 we expect for Cramér’s theorem.

Xy—x|<6)> 5.
760 Otherwise stated, under ]P’I%C, x should be the typical behavior of Xy. Now, as ]P’I%‘ preserves
761 the independence of X;,...,Xy, by the law of large number, the typical value of X, under
762 P should be ]Ef:f (Xn). By differentiating A, we get A,(0) = ]Ez (Xy). This leads us to

N
763 choose 6, such that A;L(Bx) = x. By the law of large numbers, for large enough N, one has

759 On the other hand, to get a lower bound, we need to find 6, such that ]P’:" (

764 ]P’g;‘ (lX’N — x| < 6) > % In addition, since A:L(Bx) = x, we get by optimizing 6 x —A,(0) over
765 0 that 0, x —A,(0,) =supy{0x —A,(0)} = A;(x) so we get the lower bound and conclude
766 the proof.
767 3.4.2 Tilting for A, (Hy)
We now go to the proof of Theorem 3.4, studying the deviations of A;(Hy), with
HN =AN + OBNO*.

768 Mimicking the previous situation, one could try to tilt the measure directly by eN®41(Hv) This is
760 ToOt a reasonable strategy as we do not know how to evaluate E(eN941(Hx)) to start with. A bet-
770 ter strategy, relying on spherical integrals, has emerged from discussions between A. Guionnet
771 and M. Potters. On our model, this goes as follows.
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If we denote by u= u, B ug and A; = A;(Hy), we have :

In(0,Hy) In(0,Hy)
— X1 <5 | 2 E| ———=
IN(O’HN) IN(O’HN)
~exp(—NJ(0,x,u))E [IN(O:HN) X I3, —x|<5 X 1ﬂHNeB(y,N—1/4)] .

P(|A,—x|<0)= E( X 13, —x|<5 X 1aHNeB(y,N—1/4))

The idea behind the first approximation is that the concentration of fig, around w is much

more robust and fast than the convergence of A;. This is essentially because the scaling in the

LDP for [y, is of order N2, whereas that of A, is of order N. The second approximation is
. . 1 ~

obtained by using that 5 log Iy (0, Hy) converges to J(0, x, u) whenever Uy ~ nand A, ~ x.
Now, if we define our tilting measure as:

E(Iy(0,Hy) % 14)

) (16)
E(In(0,Hy))

P?(A) =
we get :
P(|JA; —x| < 0) a7
= exp (—NJ(0,x, ) x E (In(0, Hy)) x Py, (141 — x| < &, fuz, € B(u, N~/%)).

To proceed with the tilting argument we used in the case of i.i.d. variables (as shown
above), we are faced with two challenges :

1. to get an upper bound for the LDB we want to compute the annealed spherical integral
]E(IN(OJHN))’

2. to get a lower bound, we want to find a parameter 6, such that

0, A —
Py (121 —x| < 8, b, € B(u, N7/4)) 2

N | =

Let us start by computing the annealed spherical integral. We recall that Hy = Ay+0ByO*;
0
if we denote by Cy = ( (0) ) and consider O and V that are independent and both Haar

distributed on Oy, then

E(Iy(6,Hy)) = Eo [EV (eNTr(CNVHNV*))] =EoEy (eNTr(CNV(AN+OBNO*)V*))
=EoEy (eNTr(CNVANV*)eNTr(CN(VO)BN(Vo)*)) .

Now, as V and VO are also independent and Haar distributed, we end up with
E(In(0,Hy)) = In(6,AN)IN(6, By). (18)
This immediately gives the following upper bound:

P(|21—x| < 6) < exp(—NJ(0,x,u)) x E(Ix(6, Hy))
= exp(—NJ(H,x, M))IN(G’AN)IN(O’BN)
< exp {_N [J(o,x,.uu E,Lbb)—.](o,x, ‘u'a)_J(e’x’ .u‘b)]}

and we conclude by optimizing on 6.

To get a lower bound, we want to find a parameter 8, such that ]P’f:;‘ (JA,—x|<06) > %
As previously, we first have to understand what is the typical value of A,(Hy) under ]P’z. The
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792 trick is to establish a large deviation upper bound for A; under ]P’Z. And to use the fact that the
703 typical value under the tilted measure will be the minimizer of the large deviation upper bound
704 under PI";. Using the definition of the tilted measure given in (16) and the relation obtained
795 in (18), we have :

1
E|In(0, H); —xi<5 foe
In(0,AN)IN(60,By) [ n( ) {1A1—x <6, 0y ~u}
! {I(e,H)
< sup { ——=
IN(O)AN)IN(O,BN) HegN(x) I(BI,H)

In(6’,H)
In(67,H)

P? (1A, —x| < 6) ~

} x PY (Ey(x)) X E(Iy(67, H)),

where Ex(x) = {|A; —x| < 6} N {{iy =~ wu}. We can always bound ]P’g; (En(x)) by 1 and by
definition of J(8,x,u) and the fact that on Ey(x) we have A; ~ x and Uy >~ u, we also get
the approximation :

(1.1

1(9,,H)} ~ exp {—N [J(0,x, ta B o) —J (0", %, ta B tp) ]} -

sup
HGEN(X)

796 Otherwise stated, with Ly ;(0,x) as defined in (15), we get the following upper bound:

. 1 0 . ’
— —x|<8)<— — .
llnlflviupN logPy (I1A; — x| < 6) < —(La,p(0,x) alg%La,b(e ,x))
797 A thorough study of the function L, j; shows that, under our assumptions on the model,
798 there exists a unique 6, such that L, ,(0y,x) = infg,50 L, (07, x) and for any y # x, we
799 have infg>oLyp(0,x) < Lqp(6y,y). This implies that, with this choice for 6,, we have

800 ]P’I%‘ (A, —x|<0) = % and concludes the proof of the lower bound.

sor  3.4.3 Tilting for A;(Wy)

so2 In the case of sub-Gaussian Wigner matrices, the very same strategy is applied but the two main
so3 technical steps, that is the computation of the annealed spherical integral and the understand-
sos ing of the typical behavior of A; under the tilted measures are both much more involved than
gos in the previous case. We present here the arguments of [27] under the stronger assumption
sos of sharp sub-Gaussianity of the entries (that is K = 1/2). As mentioned in the introduction of
so7 this chapter, this assumption has been progressively relaxed along a series of papers outcoming
sos to [33], at the price of highly technical arguments that are out of the scope of these notes.

809 In the case of sub-Gaussian Wigner matrices, the empirical spectral measure of Wy concen-
s10 trates very quickly around the semi-circular distribution, that we denote again by u.. There-
s11 fore,

In(6,Wy) In(6,Wy)
P4, —x| < 5) =E(u y 1|,Ll_x,35) ~ (u

IN(B’WN) IN(OJWN)
~ exp (—NJ(0,x, u ) E[Iy(0, Wy) x 12, —x|<5] -

X 1j2,—x|<5 % ]'ﬁWNEB(.Usc,N_IM))

812 In this case, we have to consider not only one tilted measure for each § > 0 but a whole
s13 family of tilted measure. More precisely, if we denote by dv the uniform measure on the unit
g1 sphere SN=1 c RN, we write

P(|A;—x| < 8) ~exp(—NJ(0,x,u.)) | E(eN0"wy, | o5)dv
SN—1
~ exp (—NJ(0, x, Us.)) E (N0 PO (12, —x| < §)dv, (19)

SN—1
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with

E (eNO(v,WNv) 1A)

(0,v)
P A):= .
N ( ) IE(eNe(V,WNV))

To get an upper bound, for each 6 > 0 and v € S¥~!, we need an upper bound on the
annealed spherical integral ]E(eN "(V’WN")) , Where the expectation is over the distribution of
Wy . This is provided by the following computation:

E{exp(NO(v,Wyv))} =E{ exp 0vN ZZXijv,-vj+2Xiivi2

i<j i

= exp {Z A(20 VNv;v)) +ZAM(0vi2 x/ﬁ)}

i<j i

< exp {Z 2(92.Nvl.2vj2 +Z OZNV?}

i<j i
2
=exp{N92(Zvi2) } =exp(N92), (20)

where we have used sharp sub-Gaussianity for the first inequality and the fact that v € SN—1
for the last equality.

By using that PI(VG’V) (JA; —x| £ 6) £ 1in (19), and using the bound on E {exp (N6 (v, Wyv))}
found in (20) and optimizing over 6 > 0, one gets that

1
li —log(P(JA; —x| < 8)) < —inf{02%— 0 )
imsup og(P(|A; —x[<0)) < 51;0{ J(x,0,us)}

N—oo

One can check that, for x > 2, the infimum is reached at 0, := %(x — ¥x2—4) and equals
—I7(x).
Towards the lower bound, let us now try to understand the behavior of A; under ]P’g\?’v).

One can check that
1
EP(Wa)i) = \ NA:L(ZO VNvv;).

For the lower bound, the idea is that it is possible to restrict ourselves to delocalized eigen-
vectors v. Indeed, if the vector v is delocalized, then the product v;v; is much smaller than

N~12, 50 that 26 ¥/ Nv;v; = 0(1). Now, in the vicinity of 0, we have that Ay (t) =~ t so that

0,
EE\, V)((WN)i,j) ~20v;v;.

)

More precisely, one can show that, if v is delocalized, then under ]P’g?’v , we have

Wy ~ Wy +20vvT,

where Wy is a Wigner matrix under ]P’x)’v). It means that Wy is a rank one deformation of a
Wigner matrix. Such deformed models have been extensively studied (see for example [45])

and we know that, for 8 > 2, the typical value of A is 20 + %. Therefore, to get the lower

bound, we are lead to choose 0, such that 20, + % = x. Note that this coincides with the
value of 6, optimizing the upper bound. This concludes our sketch of proof of Theorem 3.3
in the sharp sub-Gaussian case.
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sz 3.5 Conclusion

s3s In this third chapter, corresponding to an extended version of Lectures 4 and 5, we have pre-
s30 sented a general method, introduced in [27] and developed in a long series of papers to study
sso large deviations at the edge of some random matrix models.

841 * We get a large deviation principle for the largest eigenvalue for sub-Gaussian Wigner
842 matrices and for a deformation of a unitarily invariant model.

843 * The proof of these results uses spherical integrals, that are well known in physics and
844 interesting mathematical objects by themselves. We have stated and proved in details
845 their asymptotics in the case when one of the matrices is of rank one.

846 * The proofs also rely on a clever use of a tilting argument, which is classical in the frame-
847 work of large deviation theory and that we have also presented in the easy case of
848 Cramér’s theorem.
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A On Haar measures and the distribution of eigenvectors of a GUE
matrix

Let Hy be a random matrix in Hy(C) with distribution Pgyg, , as defined in Proposition 1.2.
Any realisation Hy(w) is Hermitian, so the matrix Uy(ew) of its eigenvectors can be chosen
unitary: it belongs to

Uy := {U € My(C), UU* = U*U = Iy}.

From the definition of Pgyg,, it is easy to check that if Hy has distribution Pgyg, , then for
any fixed matrix V € Uy, VHyV* has the same distribution Pgypg, . Therefore, VUy has the
same distribution as Uy. This is enough to characterize the distribution of Uy.

Indeed, we have the following:

Proposition A.1 Let G be a compact topological group. There exists a unique probability measure
Usaar, that is left translation invariant i.e. Ugaqar,c(8 +A) = Upaar,c(A), for any g € G and any
Borelian subset A € G. This measure is called the Haar measure of the group G. Note that this
measure is also right invariant i.e. Ugqar,g(A -+ &) = Upaar,c(A). It is therefore also conjugation
invariant.

Heuristically, one can view the sampling according to the Haar measure of G as picking a
point at random and uniformly on G.

The group of unitary matrices Uy is a compact topological group and we can thus deduce
from the above discussion that the distribution of the matrix Uy of the eigenvectors of Hy is
the Haar measure on Uy.

As a by product of the proof of the Weyl formula (2), one can also check that Uy can be
chosen independent of the eigenvalues (A’lv R l%). This leads to a third possible description
of the GUE. To construct Hy, pick U according to the Haar measure on the group of unitary ma-
trices Uy . Then, sample independently (l’lv 5 oees l%) from Pgyg, and define Hy := UyAnUy,
with Ay the diagonal matrix with diagonal entries (A}, ..., AY).

B On Euler-Lagrange equations for the quadratic potential

The object of this appendix is to give a proof of Lemma 1.8.
For any x € R, we denote by

F(x):= f log [x — y|dus (),

the logarithmic potential of the semicircular distribution ug.. Our task is to compute this quan-
tity in two different regimes : when x € [—2, 2], that is when x belongs to the support of .,
which corresponds to the first equality in Lemma 1.8 and when x ¢ [—2, 2], that is when x is
outside the support, which corresponds to the second inequality.

Let us start with the first case. As an intermediate step, we compute the Stietljes transform

s(z) = f 1 auo),
y—2

for any z ¢ R. By a simple change of variables y = 2 cos 8, we can rewrite

27 .
SW:lf CLLD S
0

T 2cosf —g
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If we denote by £ = e??, we can write it as a contour integral

1 (52—1)2

S(Z) =— 2(£2 dg
4im |€|=1§ (§2+1—2¢&)
The poles are §g =0, &§; = s 22 - and &, = = zz 2_4, where we choose the branch of the

square root with positive imaginary part. One can check that &, is outside the unit circle and
&, inside. Computing the residues, we have

Res(§p) =2, Res(§y)=—v3z2—4,

from which we get that
x4 /T4

s(g)= 5

Then, Yx € [—2,2],

/ 1 . 1 1 . . X
F'(x)=—PV | —du,(y) =—lim —du(y) =——(s(x+i0)+s(x—i0)) = —
xX—y £20 J1y—x|ze X — 2 2

From there, one can deduce that
2

X
F(x)=—+C.
(x) 2

The constant C will be determined by the next computation.

We now go to the case when x ¢ [—2, 2]. By symmetry, one can assume that x > 2. From
Vivo’s lecture notes, Section IVA.1., we get that

V2
1 2 =5 .
L(x)==—J log(x—y)«/z—xz’dx=x——fm“og(x+— Vx)__.
T J-v2 2 2 2 >

By an easy change of variables, we get that
1
F(x)=L (i) + —log2,
J2 2
so that

2 + /—2_4 x
%—2F(x)=EVx2—4—210g(%)+1=J‘ Vy2—4dy + 1.
2

By continuity, we get that the constant in the previous computation was C = 1 and that both
parts of the lemma hold.

C On strict convexity of the logarithmic energy

The object of this appendix is to prove Lemma 1.9. As for the definition of I in (5), we restrict
ourselves to probability measures w such that f x2du(x) < oo.

The idea is that the rate function I is the difference of a linear term u — f x2dw(x) and a
functional ¥ : u— f f log [x —y|du(x)du(y), which is essentially strictly concave. Following
the proof of Lemma 2.6.2. in [3], we use a slightly different decomposition of I.
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By using the fact that . satisfies the EL equations, one can rewrite

2

I(w) = —Z(u— ) + J (x? - 2J log|x —y|dus(y) — 1) dulx).

The second term is linear in w and we will now prove the strict concavity of u— Z(— ).
We choose an appropriate representation of the logarithm: from the equality

1 1 (% _u
-=— e 2du,
z 2z ),

2
which holds for any 2 € R* and using the change of variables u = ZT, we get

For x # y, integrating from 1 to [x —y|, we get

— lx—y[?
ol P4 * _2dt *° e_z_lt —e~ 2¥
log|x —y| = s e T —dz = - — " at.
1 t Jo t 0 2t

As u— . has mass zero, the first term will cancel and we get the following Fourier repre-
sentation

zi ( J f e d(u— ) () d(u— usc)(y)) dt
0 t

=—J \‘ i J ’ J e d(p— pse)(x)
0 —00

Now u+— U el d(u— usc)(x)l2 is convex so that u— X(u— ) is concave.
Moreover, for @ € [0,1] and any probability measures w and v so that ¥ is well defined,
we have

B(u— Use) = —J

2 2
_B2
e 2z dA.

S(au+ (1—a)y) = aX(w) + (1 — a)2(») + (a® — a)=(u— »).

From the Fourier representation above, we know that %(u— ) = 0 and X(u— ») = 0 if and
only if all Fourier coefficients are zero, that is if = ».
This concludes the proof of the strict convexity.
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