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Abstract. The Onsager algebra, invented to solve the two-dimensional Ising model, can be used to
construct conserved charges for a family of integrable N -state chiral clock models. We show how it
naturally gives rise to a “pivot” procedure for this family of chiral Hamiltonians. These Hamiltonians
have an anti-unitary CPT symmetry that when combined with the usual ZN clock symmetry gives
a non-abelian dihedral symmetry group D2N . We show that this symmetry gives rise to symmetry-
protected topological (SPT) order in this family for all even N , and representation-SPT (RSPT) physics
for all odd N . The simplest such example is a next-nearest-neighbour chain generalising the spin-1/2
cluster model, an SPT phase of matter. We derive a matrix-product state representation of its fixed-
point ground state along with the ensuing entanglement spectrum and symmetry fractionalisation. We
analyse a rich phase diagram combining this model with the Onsager-integrable chiral Potts chain, and
find trivial, symmetry-breaking and (R)SPT orders, as well as extended gapless regions. For odd N ,
the phase transitions are “unnecessarily” critical from the SPT point of view.
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1. Introduction

The interplay of symmetries, topology and entanglement results in a zoo of interesting topological
phases of quantum matter [1, 2]. A particularly useful technique is to map a lattice model with well-
understood physics to one with a non-trivial order. Kramers-Wannier (KW) duality [3], for example,
relates models belonging to the trivial phase to those with spontaneously broken symmetries. In the
setting of symmetry-protected topological (SPT) phases of matter, an analogous role is played by the
so-called SPT entangler [4–8]. It is a finite-depth unitary operator that transforms trivial models into
non-trivial SPTs characterised by unbroken symmetries and distinguished from the trivial phase by
robust boundary modes and topological response to gauge fields.

E-mail addresses: nick.jones@maths.ox.ac.uk, abhishodh.prakash@physics.ox.ac.uk,
paul.fendley@physics.ox.ac.uk.
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The pivot procedure [7, 9] provides a systematic way of constructing such SPT entanglers. Pivot
Hamiltonians generate SPT entanglers upon exponentiation, and themselves have long-range order.
Adding them to trivial and SPT Hamiltonians1 produces a rich phase diagram. Analysing this structure
allows a deeper understanding of how various quantum orders are intertwined in the phase diagrams of
lattice models. The key example of [7,9] starts with the transverse-field Ising chain (i.e. a qubit chain)
and yields the cluster model Hamiltonian [14] describing a non-trivial SPT phase [15].

We show how the pivot procedure in this case follows directly from the Onsager algebra, introduced
by Onsager to compute the free energy of the 2D classical Ising model [16] and the spectrum of the
corresponding quantum chain. This infinite-dimensional Lie algebra is constructed by splitting the
transverse-field Ising Hamiltonian into two pieces A0 and A1, the former coupling to the transverse
field and the latter the nearest-neighbour interaction. As we explain below, the other generators
are found by taking repeated commutators with these two [17, 18], and imposing the Dolan-Grady
relations [19].

The Onsager algebra is all that is needed to implement this pivot procedure. Any pair of Hamilto-
nians generating an Onsager algebra will satisfy the same pivot relations, and resulting Hamiltonians
are given by the same simple closed-form expressions in terms of the Onsager generators. The ex-
plicit expressions of the Hamiltonians in terms of the the usual qudit operators may be rather nasty,
but combining the pivot procedure with the Onsager algebra allows us to derive important physical
properties in a simple and systematic fashion. Whether the starting Hamiltonian is of pivot type in
the sense of Ref. [7] depends on whether the procedure results in an SPT model for an appropriate
symmetry group.

A beautiful presentation of the Onsager algebra is provided by a set of ZN -invariant clock chains
[17,20,21]. Namely, the “superintegrable chiral Potts” chain [22] also can be split into two pieces that
generate the identical algebra. For N > 2 the algebra is not sufficient to solve the model, but it can
be used to construct a sequence of commuting charges. These charges indicate the chain with periodic
boundary conditions is integrable.

In this paper, we exploit the connection between pivoting and the Onsager algebra to apply the
pivot procedure to this family of Onsager-integrable clock Hamiltonians. The resulting Hamiltonians
are related by both pivoting and Kramers-Wannier duality, as illustrated in Fig. 1. We show that
the global symmetry for a given N is the dihedral group D2N , arising from the ZN clock symmetry
along with an anti-unitary CPT symmetry. One key consequence of the pivot procedure is that non-

KW

A1 PivotA0 Pivot

• • • • •
A0 A2A1A−1 A3

Figure 1. Web of maps generated by pivoting and Kramers-Wannier duality in the Onsager-
integrable chiral-clock family.

trivial models (for example with symmetry fractionalisation) can arise by unitarily transforming from
models with easy-to-understand behaviour. For example, taking A0 to be the Hamiltonian yields a
trivial paramagnet, while taking A1 induces spontaneous symmetry breaking. The Hamiltonian A2 is

1A Hamiltonian belonging to the trivial phase has a unique ground state that can be smoothly connected to a product
state without breaking symmetry. Hamiltonians belonging to non-trivial SPT phases have unique ground states in the
absence of boundaries but cannot be adiabatically connected to a product state along a symmetric path. Note that we
consider the zero temperature phase diagram and so classifying gapped ‘parent’ Hamiltonians and their ground states is
equivalent [10]. Key notions are reviewed in [2, 5, 11–13].
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generated by pivoting A0 with A1. For N = 2 these correspond to the familiar Ising paramagnet and
ferromagnet respectively. while A2 is the cluster Hamiltonian with SPT order (see Eq. (6) below).

One of the main results of this paper is a demonstration that for any even N , A2 describes an SPT
phase. For odd N , it describes a “representation SPT” (RSPT) [23], similar to what occurs in even-spin
Haldane phases [24]. RSPTs do not enjoy the same topological protection as SPTs, but nevertheless
have some similar phenomenology [25].

Both SPT and RSPT phases exhibit symmetry fractionalisation, but only for the former are the
representations projective. The dominant Schmidt eigenvalues for both form a doublet, but only for
the former do all eigenvalues pair. Thus the SPT at even N disappears only when parameters are tuned
through a bulk phase transition. For odd N , however, the RSPT can disappear [25] at a boundary
transition or at an “unnecessary” bulk transition [26–32]. (For our purposes, we say that a ground
state is an RSPT when the dominant Schmidt eigenvalues have a degeneracy due to a non-trivial
linear irreducible representation of the non-abelian symmetry.) Connecting the various Hamiltonians
yields interesting phase diagrams. We find (R)SPT phases and extended gapless phases as well as more
conventional disordered and spontaneous symmetry broken phases. The interpolation H = A1+λA0 is
the familiar transverse-field Ising model for N = 2 and corresponds to the “superintegrable chiral Potts”
chain for N ≥ 3 [20, 33]. The latter, at least for N = 3, contains extended gapless phases [34, 35].
Hamiltonians that connect A0, A1, A2 exhibit an even richer phase diagram, for example including
symmetry-enriched critical points for N = 2 [6, 36]. Another result of ours is to show that for N = 3

and N = 4 this model hosts a variety of strongly correlated gapped and gapless states. For any linear
combination of the Ak, the model is presumably integrable, as it possesses an infinite set of local and
mutually-commuting charges [21]. However, utilising integrability in chiral clock models requires a
rather intricate analysis, and we defer it to a separate paper [37].

The paper is organised as follows. In Section 2, we introduce both the pivot procedure and the
Onsager algebra, and show that implementing the former follows directly from building Hamiltonians
from the generators of the latter. In Section 3 we introduce the chiral-clock family of Hamiltonians
and its Onsager-algebra structure. We find its symmetries and ground states, in particular the matrix-
product state ground state for A2. In Section 4 we show that SPT and RSPT phases occur at even
and odd N respectively, all exhibiting symmetry fractionalisation. In Section 5 we discuss the phase
diagram of the combined Hamiltonian αA0 + βA1 + γA2, illuminating how the distinct phases fit
together. Finally, we detail some natural questions for future work.

2. Pivoting with Onsager

2.1. What Onsager did. Onsager’s solution of the two-dimensional classical Ising model with pe-
riodic boundary conditions [16] is a tour de force. He computed the full spectrum of the transfer
matrix, and hence the exact partition function. Taking a strongly anisotropic limit then yields the
exact spectrum of the corresponding quantum Hamiltonian of the transverse-field Ising chain.

The core of Onsager’s result comes from understanding the algebra obeyed by the generators of the
Hamiltonian and transfer matrix. These generators are written in terms of Pauli matrices acting on
the usual Hilbert space of L two-state systems, i.e. (C2)⊗L. The two basic generators are

A0 = −
L∑

j=1

σxj , A1 = −
L∑

j=1

σzjσ
z
j+1 , (1)

where in the latter σzL+1 ≡ σz1 . The transverse-field Ising Hamiltonian with periodic boundary condi-
tions is then simply HI = A0 + λA1.

Other generators of the Onsager algebra are found by taking commutators of the basic two, subject
to two key identities. Onsager showed by explicit computation that[

A1,
[
A1, [A1, A0]

]]
= 16[A1, A0],

[
A0,

[
A0, [A0, A1]

]]
= 16[A0, A1]. (2)

Imposing these identities, now known as the Dolan-Grady conditions, results in an infinite-dimensional
Lie algebra, canonically represented by a set of generators {Al, Gm

∣∣l,m ∈ Z}, with G−k = −Gk and
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G0 = 0. The next two generators are defined by

G1 =
1
4

[
A1, A0

]
, A2 = A0 − 1

2

[
A1, G1

]
(3)

so that the first Dolan-Grady condition can be written as
[
A1, A2

]
=
[
A0, A1

]
. With A0 and A1

defined by (1), A2 =
∑

j σ
z
j−1σ

x
j σ

z
j+1 results. (Here and henceforth all sums over j run from 1 to L.)

Proceeding in this fashion, Onsager defined and found explicit expressions for all the generators, and
showed that they satisfy[

Al, Am

]
= 4Gl−m ,

[
Gl, Am

]
= 2Al+m − 2Am−l ,

[
Gl, Gm

]
= 0 . (4)

A quicker way of establishing (4) for A0 and A1 from (1) is by rewriting them in terms of Majorana-
fermion bilinears by using the Jordan-Wigner transformation. A commutator of fermion bilinears
always yields a bilinear, so all the Onsager generators in this representation can be written as fermion
bilinears. Explicit expressions and other useful details may be found in e.g. [38].

The exact spectrum of HI follows from the Onsager algebra (4) because of a crucial simplification
of the presentation (1). As there are only L(2L − 1) possible fermion bilinears on L sites, there can
be at most 2L− 1 distinct generators of (4) (by construction all generators are translation invariant).
Indeed, Al+L = ±Al and Gl+L = ±Gl, where the sign can be found in [16] (or working out the explicit
fermion-bilinear expressions). To find the spectrum, one then can reduce the spectrum of HI to a sum
by taking the Fourier transformation of the Onsager generators.

Such a simplification does not occur in the chiral-clock presentations of the Onsager algebra that we
study. As we describe below, however, the Onsager algebra provides a systematic way of constructing
pivot Hamiltonians, making it useful in any presentation.

2.2. The Ising pivot. The pivot procedure provides a method for generating SPT phases via unitary
transformations [7, 9]. One starts with a Hamiltonian H0 with a trivial (product state) ground state
and then searches for a local “pivot” Hamiltonian Hpivot that yields an SPT Hamiltonian via

HSPT = U(π)H0U(π)† , U(θ) = exp(−iθHpivot) . (5)

The simplest example comes from the Ising Hamiltonian (1). Taking H0 = A0 from there gives a trivial
paramagnetic phase with a unique ground state. Defining Hpivot = A1/4 from (1) then gives

HSPT = e−iπA1/4A0 e
iπA1/4 =

∑
j

σzj−1σ
x
j σ

z
j+1 = A2 . (6)

All three of these Hamiltonians have a Z2 × ZT
2 symmetry, generated by the spin-flip

∏
j σ

x
j , and

complex conjugation in the Z-diagonal basis. This symmetry protects the SPT order (see Section 4.1
for details).

The Hamiltonian −HSPT is the canonical cluster model [14], and both ±HSPT exhibit SPT order.
(The sign can be toggled by conjugating by

∏
k σ

x
4kσ

x
4k+1 [7].) Stated differently, exp(−iπA1/4) is the

cluster SPT entangler2. Since the ground state of A0 is a product state and the terms in A1 are all
mutually commuting, the ground state of A2 can be written as a matrix-product state (MPS) with
bond dimension two. Continuing in this fashion allows us to generate an infinite family called the
(generalised) cluster models [5,44–49]. For example, pivoting HSPT with H0 gives another (SPT) spin
chain with Hamiltonian

∑
j σ

y
j−1σ

x
j σ

y
j+1. Since A0 and A1 from (1) can be written in terms of fermion

bilinears, all Hamiltonians generated in this fashion are written as bilinears. They all can thus be
easily solved via standard techniques.

In general, the pivot procedure [7] works as follows. The starting point is a Hamiltonian H0 with
symmetry group G, and a product state for its unique ground state. Considering the one-parameter
deformation H(θ) = e−iθHpivotH0e

iθHpivot , we require that H(2π) = H(0), and that H(π) is a non-
trivial SPT phase protected by the group G. This means that, for U(θ) = exp(−iθHpivot), U(2π) is a

2The fact that the ground state of the cluster model can be generated via a finite-time evolution generated by Ising-like
Hamiltonians is well known from the study of measurement-based quantum computing (MBQC) [39]. In this context
the cluster state, as well as other SPT ground states, serves as a good resource state [40–43].
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symmetry of H0, while U(π) acts as an SPT entangler. In our analysis below we broaden this picture
to include multiple generalisations of the Ising pivot including where U(π) is not an SPT.

2.3. Pivoting with Onsager. Here we show that constructing pivots of this type does not require
the explicit representation (1), but only the Onsager algebra. Given any lattice Hamiltonian realisa-
tion of A0 and A1 satisfying the Dolan-Grady relations, we show how pivoting generates a family of
Hamiltonians with a simple closed form in terms of the Onsager generators. We here prove this fact,
and in the rest of the paper exploit it.

The connection between the two procedures is rather direct. Indeed, when A0 and A1 are defined
by (1), A2 from the Onsager definition (3) is equal to HSPT from (6). The latter equation thus implies
that A2 can be found by pivoting with A1/4, i.e.

A2 = e−iπA1/4A0 e
iπA1/4 . (7)

This relation follows directly from the Onsager algebra, and is a particular case of the general identity
(see [17, 50] for related results)

e−iαAm Al e
iαAm = cos2(2α)Al + sin2(2α)A2m−l + i sin(4α)Gl−m. (8)

To prove (8), we first use the Onsager algebra to generalise the Dolan-Grady relations to[[
[Al, Am], Am

]
, Am

]
= 4
[[
Gl−m, Am

]
, Am

]
= 8
[
Al −A2m−l, Am

]
= 32Gl−m = 16

[
Al, Am

]
. (9)

Using the standard identity [51]

e−BCeB =
∞∑
p=0

1

p!

[[
[C,B], B

]
, . . . B

]
︸ ︷︷ ︸

p−fold

(10)

with (9) yields

e−iαAmAle
iαAm = Al +

[
Al, Am

] ∞∑
n=1

(iα)2n−1

(2n− 1)!
16n−1 +

[[
Al, Am

]
, Am

] ∞∑
n=1

(iα)2n

(2n)!
16n−1.

The two sums are i sin(4α)/4 and − sin2(2α)/8 respectively, and using (4) to rewrite the remaining
commutators yields (8).

The identity (8) yields a sequence of exact pivot relations, with no further computations necessary.
Defining Um(θ) = e−iθAm/4 yields

Um(π)Al Um(π)† = A2m−l , Um(2π)Al Um(2π)† = Al. (11)

All Al thus can be generated by a sequence of pivots with A0 and A1:

Al+2 = U1(π)U0(π)Al U0(π)
†U1(π)

† , A−l = U0(π)Al U0(π)
† . (12)

The Al thus fall into an even and an odd family, unitarily equivalent to A0 and A1 respectively. The
two families are themselves related by a duality An → A1−n that preserves the algebra (in the chiral
clock family this is a KW duality [52], see Fig. 1). Moreover, any unitary symmetry commuting with
A0 and A1 commutes with all the Al. The same holds for anti-unitary symmetries, because using
Um(−π) in Eq. (11) yields the same action on the Al.

This construction immediately gives us information about the phase structure. Suppose that A0 is a
representative of the trivial phase. Then A2k necessarily has a unique ground state for all k, i.e., there
is no symmetry breaking in the ground state. If A2k is a non-trivial SPT for some value of k, Eq. (11)
tells us immediately that Ak/4 is a pivot Hamilton giving the SPT entangler for this model. Moreover,
the pivot Hamiltonian itself generates a symmetry of the ‘halfway point’ between the starting model
and the pivoted model: [

Al, Al−m +Al+m

]
= 4G−m + 4Gm = 0. (13)

In our examples, all Al have integer eigenvalues and so generate a U(1) symmetry.
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3. The integrable chiral clock chains

In this section we give a set of chiral Hamiltonians satisfying the Onsager algebra, and explore
their basic properties using pivoting. We exploit the fact that the Onsager algebra automatically
follows from any A0 and A1 obeying Dolan-Grady conditions; the remainder of the relations are simply
definitions and consistency conditions [17–20]. Thus any Hamiltonian built from Onsager-algebra
generators Al possesses an elegant pivot structure, i.e. any model obeying (2) automatically satisfies
(11). We emphasise that although the chains are integrable, they are not free-fermionic.

3.1. Onsager and the integrable chiral clock models. We study Hamiltonians generated by two
pieces of the “superintegrable chiral Potts” Hamiltonian chain [17, 18, 20, 21]. These pieces satisfy
the Dolan-Grady relations and hence generate the Onsager algebra. We call this set of chains the
Onsager-integrable chiral-clock family.3 The Hilbert space is a chain of N -state quantum systems, i.e.(
CN
)⊗L, acted on by “shift” and “clock” operators generalising Pauli matrices. Each such operator

Xj , Zj acts non-trivially on a single site j of the chain, and they obey XjZk = ωδjkZkXj , along with
(Xj)

N = (Zj)
N = 1. In the Z-diagonal basis they act on the jth site as

Xj =
N−1∑
aj=0

|aj − 1⟩ ⟨aj | Zj =
N−1∑
aj=0

ωaj |aj⟩ ⟨aj | (14)

while leaving other sites unchanged. We have defined ω = e2πi/N and identify basis states modulo N ,
i.e. |a⟩ ≡ |a mod N⟩. For N = 2 they reduce to the corresponding Pauli operators σxj , σ

z
j .

We build our Hamiltonians from the operators

h2j−1 = Xj , h2j = Z−1
j Zj+1 (15)

where the site-index j on the right-hand-side is, as always, defined mod L. These operators obey
ωhkhk+1 = hk+1hk and commute otherwise. The Onsager generators are then

A0 = − 4

N

∑
j

N−1∑
m=1

αm

(
h2j−1

)m
, A1 = − 4

N

∑
j

N−1∑
m=1

αm

(
h2j
)m

, αm =
1

1− ωm
. (16)

For N = 2 these reduce to (1). This presentation is “self-dual” in that A0 and A1 are related by
Kramers-Wannier duality. This duality here shifts all hk → hk+1 and so exchanges A0 and A1. Since
the algebra of the hm is invariant under this shift, one Dolan-Grady condition implies the other. The
“superintegrable chiral Potts” Hamiltonian is H(λ) = A1 + λA0; it is an anisotropic limit of the 2D
classical “chiral Potts” model [17, 22,53,54].

The operators from (16) satisfy the Dolan-Grady conditions (2) and hence generate the full Onsager
algebra (4) for any N [20]. We review this calculation in Appendix A. Closed-form expressions for
the generators in general, however, are not known, as the explicit expressions get rather nasty beyond
the first few. Expressions for A−1 can be found in [21, 38]. The expression for A2 is found by using
duality from A−1, pivoting using (7), or simply working out the commutators from the definition (3).
We present the calculations in Appendix A; see also [17]. The nicest way to write the result is as

A2 = − 4

N

∑
j

N−1∑
m=1

αmS
(m)
j−1,jX

m
j S

(m)
j,j+1 ,

S
(m)
j−1,j = 1− 2m

N
− 2

N

N−1∑
m′=1

αm′(1− ωmm′
)Z−m′

j−1 Z
m′
j .

(17)

A key feature of this form is that S(m)
j−1,j has eigenvalues ±1. Thus despite its complicated-looking

definition, in the Z-basis this operator is diagonal with entries ±1. The expression for A−1 is found
simply by writing these expressions in terms of the hk and then shifting hk → hk+1.

3We call them “clock” instead of “Potts” chains because the latter typically have SN symmetry that ours do not
possess. We use “Onsager-integrable” instead of “superintegrable” as the former is more specific.
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The Onsager relations mean that any linear combination of the Al possesses an infinite sequence of
local and mutually commuting charges [21], i.e.

H ≡
b∑

k=a

tkAk , Qm ≡
b∑

k=a

tk(Am+k +A−m+k) =⇒
[
H, Qm

]
= 0 . (18)

The existence of this sequence implies that any such model is integrable. These conserved charges
do not exhaust the symmetries of H. A U(1)-invariant Hamiltonian that commutes with all the
Onsager generators was discussed in depth in [38]. Thus H commutes with this Hamiltonian, meaning
the latter can be thought of as an additional conserved charge. Another symmetry is the dihedral
symmetry discussed next.

3.2. Dihedral symmetry. The appearance of a larger non-abelian symmetry group in chiral clock
models is known; see e.g. [35, 55–58]. We describe its most general form here. The generators of the
Hamiltonians are all invariant under the ZN symmetry generated by

r =
∏
j

Xj =⇒ hkr = rhk . (19)

Less obviously, the symmetry extends to the dihedral group D2N , whose generators obey

D2N
∼= ⟨r, s|rN = s2 = 1, srs = r−1⟩. (20)

The second generator s implements CPT symmetry here. We define P to be spatial inversion, exchang-
ing site j with L+ 1− j. (The particular choice of fixed site or bond is arbitrary in a translationally
invariant system.) Charge conjugation C is defined so that CXjC

† = X†
j and CZjC

† = Z†
j for all j.

In the Z-diagonal basis it is

C =
∏
j

Cj , where Cj =

N−1∑
a=0

|aj⟩ ⟨N − aj | . (21)

Time reversal is implemented by an anti-unitary operator K that we define as complex conjugation in
the Z-basis. It is simple to check that s = CPK is a symmetry of all our chiral-clock Hamiltonians:

sA0s = A0 , sA1s = A1 =⇒ sAls = Al . (22)

The dihedral symmetry will prove crucial in our analysis of the phases of these Hamiltonians.

3.3. Maps amongst the family. One key observation in Ref. [7] is that the pivoting relation in
the cluster models gives us a large number of mappings between models. Since we showed that the
unitary transformations (11) follow solely from the Onsager algebra, pivoting with Am thus unitarily
transforms any Al → A2m−l. Hence, visualising the space of models {Ak} as points on a line, pivoting
with Am corresponds to reflection around each point m. Combining two pivots as in e.g. (12) gives a
unitary transformation that shifts the index Al → Al+2, as illustrated in Fig. 1.

As indicated above, Kramers-Wannier duality maps A0 → A1 and vice versa. The Onsager algebra
then requires that sending A0 → A1 maps An → A1−n. In Fig. 1, this map corresponds to reflection
about the bond between A0 and A1. Some care must be taken: Kramers-Wannier duality is not
invertible, and so is not a one-to-one map. Indeed, we show explicitly below that the ground state of
A1 (and hence all Al for odd l) is N -fold degenerate, while the ground state of A0 is unique.

Other operators allow us to relate different models. The anti-unitary operator V =
(∏

j Zj

)
K obeys

V2 = (−1)L , VA2k+1 = A2k+1V , VA2k = −A2kV . (23)

There is a unitary operator with the same commutation/anticommutation property [35]. When
L= 0modN the unitary operator W = P

∏
j X

j
j obeys [35]

W2 = 1 , WA2k+1 = −A2k+1W , WA2k = A2kW . (24)
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Combining the two shows that the spectrum of any linear combination of the Al is symmetric about
zero when L is a multiple of N . Moreover, the spectrum of H =

∑
l tlAl is invariant under sending all

t2k → −t2k.

3.4. Ground states. Thanks to the Onsager algebra and the pivot relations, determining the ground
state(s) of any Hamiltonian Al is straightforward.

Although they look rather complicated in their definition, the operators A0 and A1 individually take
on a simple form in the right basis [17,20]. The eigenvectors of Xj are∣∣∣v(n)j

〉
=

1√
N

N−1∑
aj=0

ω−naj |aj⟩ =⇒ Xj

∣∣∣v(n)j

〉
= ω−n

∣∣∣v(n)j

〉
, (25)

so the eigenvectors of A0 are simply product states

A0

∏
j

∣∣∣v(nj)
j

〉
= E0

(
{nj}

)∏
j

∣∣∣v(nj)
j

〉
, where E0

(
{nj}

)
= − 4

N

L∑
j=1

N−1∑
m=1

αmω
−mnj (26)

for any choice of the nj = 0 . . . N − 1. The eigenvalues simplify using the trigonometric identity
N−1∑
m=1

αmω
−mn =

(N − 1)

2
− n , 0 ≤ n ≤ N − 1, (27)

so that

E0

(
{nj}

)
= −2L

N − 1

N
+

4

N

∑
j

nj . (28)

Hence the unique ground state of A0 has all nj = 0, yielding a trivial paramagnet. Worth noting is
that the full spectrum is invariant under E0 → −E0, and that all eigenvalues are integers up to the
shift and the overall factor of 4/N .

Any basis state in the Z-diagonal basis is an eigenstate of A1. Denoting the eigenvalue of Zj on
each site as ωaj , using (27) gives the eigenvalue of A1 to be

E1 = −2L
N − 1

N
+

4

N

∑
j

((
aj − aj+1

)
modN

)
. (29)

We emphasise that each term in this sum is taken mod N , as a consequence of the restriction in (27).
The energy E1 from (29) is invariant under shifting all aj → (aj +m)modN for any m, so each level
is N -fold degenerate. The N ground states of A1 are therefore given by setting aj = a for all j. These
ferromagnetic ground states spontaneously break the ZN symmetry r.

The operators Al for even and odd l are unitarily equivalent to A0 and A1 respectively, as follows
from the pivot relation (12). Thus Al has a unique ground state for l even, while for odd l it has an
N -fold ground-state degeneracy. Moreover, since U0 is a product of on-site unitary operators, it can
be thought of as a matrix-product unitary operator (MPU) of bond-dimension zero. For the operator
U1, we exploit the fact that A1 is a sum of commuting terms. Then U1(π) = exp(−iπA1/4) can be
written as a product of two-site unitaries as

U1(π) =
∏
j

Uj,j+1, Uj,j+1 ≡ exp

(
i
π

N

N−1∑
m=1

1

1− ωm
Z−m
j Zm

j+1

)
. (30)

As illustrated in Fig. 2, we can rewrite this product as an MPU of bond-dimension N . Thus the ground
states of A2k and A2k+1 can each be written as an MPS of bond dimension upper bounded by Nk.

The N -channel MPS for the ground state of A2 can be put in an elegant form. Using a bit of Fourier
transformation along with (27) shows that the MPU tensor acts on the X-basis eigenstates (25) as

Uj,j+1

∣∣∣v(s)j v
(t)
j+1

〉
=

1

N

N−1∑
r=0

λr

∣∣∣v(s+r)
j v

(t−r)
j+1

〉
, λr =

ωr/2

sin(π(r + 1
2)/N)

. (31)
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. . .
U

U

U

U

U

. . . = . . .

U

U

U
. . . = . . . U U U . . .

Figure 2. Graphical representations of U1(π) as products Uj,j+1 from (30). The left-hand
picture is a depth-two local unitary circuit, the middle a staircase circuit. The latter can be
interpreted as an MPU with bond-dimension N (right).

The ground state of A2 is thus

|ψ2⟩ = UL1 · · ·U23U12

∣∣∣v(0)1 v
(0)
2 · · · v(0)L

〉
= N−L

∑
n1,...,nL

 L∏
j=1

λnj

∣∣∣v(n1−nL)
1 v

(n2−n1)
2 v

(n3−n2)
3 · · · v(nL−nL−1)

L

〉

= N−3L/2
∑

a1,...,aL

∑
n1,...,nL

 L∏
j=1

λnjω
aj(nj−1−nj)

 |a1 · · · aL⟩

(32)

where all sums run from 0 to N− 1. Converting the sums over the {nj} into matrix products yields

|ψ2⟩ =
∑

a1,...,aL

tr
(
Aa1 · · · AaL

)
|a1 · · · aL⟩ , An,n′

a =
λn′

N
√
N
ωa(n−n′) . (33)

It is straightforward to obtain the entanglement spectrum from this expression, as we discuss in the
next section.

4. SPTs and RSPTs in the chiral-clock family

SPT phases are guaranteed to be stable only to perturbations preserving the protecting symmetries.
One thus expects there to be a (non-symmetric) finite-depth local unitary transformation from a
ground state with SPT order into a trivial product state [59]. The inverse of such a transformation is
an SPT entangler [4–8, 60]. SPTs in clock models outside of the chiral family we consider have been
studied previously [61,62], and are interesting because of their relation to deconfined quantum critical
points [32, 63–65]. For a general review of SPT physics and for further references, see, for example,
Refs. [2, 5, 11–13].

In Section 3.4 we showed how the ground state of A2 indeed takes the form of a finite-depth local
unitary transformation applied to a trivial state. Since we know that this state has SPT order for
N = 2, at least for the symmetry group Z2 × ZT

2 as reviewed in Section 4.1, it is natural to hope that
this property holds for all N . The situation, however, is subtler. An SPT with a protecting symmetry
group G = G0 or G = G0 ⋊ ZCPT

2 , where G0 acts on-site, can occur when the group cohomology
H2(G,U(1)) is non-trivial [10, 13, 59]. Concretely, this corresponds to the classification of non-trivial
projective representations of the symmetry group on the bond indices of an MPS representation of
the ground state. The appearance of a non-trivial projective representation corresponds to a non-
trivial SPT order. We showed in Section 3.2 that G = D2N = ZN ⋊ ZCPT

2 for our models. Since
H2(D2N , U(1)) = Z2 for N even and is otherwise trivial [66], we have the possibility of an SPT
protected by this symmetry group only for even N .

In this section, we probe deeper by analysing the properties of the MPS ground state (33) of A2.
In particular, we compute its entanglement spectrum and symmetry fractionalisation. We show that
for even N we indeed have SPT order for our D2N symmetry group. For odd N we find that we
cannot have SPT order for any protecting symmetry group. However, the ground state has behaviour
reminiscent of an SPT, but without being as robust. Such phases were dubbed RSPTs in a closely
related context [23], and we discuss how they arise here. For conceptual orientation we will first analyse
the cluster model, i.e., the case where N = 2.
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4.1. SPT order in the ground state of A2 for N =2 and symmetry fractionalisation. Pro-
jective symmetry fractionalisation in the ground state is characteristic of SPT order. Symmetry frac-
tionalisation is particularly clear in the MPS picture: if two sets of matrices Aa and Ba represent the
same state, then Aa = eiφMBaM

−1 for some phase φ and invertible matrix M on the bonds [67].
For an SPT with a unitary on-site symmetry group G that preserves the ground state, applying a
symmetry to the physical index gives us an equivalent state, and the corresponding M are unitary and
form a projective representation of G [68]. The cohomology class of the representation classifies the
SPT order [10,13,24,59,66].

Recall the cluster model Hamiltonian A2 =
∑

j σ
z
j−1σ

x
j σ

z
j+1 from (6). Along with the Z2 symmetry

generated by
∏

j Xj and the ZCPT
2 symmetry, this model has a ZT

2 time-reversal symmetry generated
by K, complex conjugation in the Z basis. It is well known (see e.g. [7]) that the symmetry Z2 × ZT

2

protects SPT order in this model, as we show now via non-trivial symmetry fractionalisation4 of this
abelian group.

Specialising Eq. (33) to N = 2 we have that the ground state MPS of the cluster chain has tensor

An,n′
a ∝ (−1)a(n−n′)in

′
. (34)

Let us renormalise A to make this relation an equality. Consider the action of the on-site symmetry∏
j σ

x
j ; then, at a fixed site, the tensor after the symmetry action, B is given by

Bn,n′
a =

∑
a′

σxaa′An,n′

a′ = (−1)(1−a)(n−n′)in
′
=
∑
m,m′

σznmAm,m′
a σzm′n′ . (35)

Suppressing bond indices we write
∑

a′ σ
x
a,a′Aa′ = σzAaσ

z, and we say the on-site symmetry σx has
fractionalised as σz on the bonds.

Time-reversal acts on the MPS tensor by conjugation [69], and so we have

Bn,n′
a = An,n′

a = (−1)a(n−n′)(−i)n′
= −i

∑
m,m′

σxnmAm,m′
a σxm′n′ . (36)

We then see that since σx and σz do not commute (and no multiplication of these generators by
complex phases will change this), we have a projective representation of Z2 × ZT

2 on the bonds. This
projective representation cannot change without either breaking this symmetry, or tuning through a
phase transition.

Below we make the corresponding analysis for our D2N symmetry group for all N . For N = 2 this
reduces to Z2 ×ZCPT

2 and it is worth noting that this group differs from both the unitary Z2 ×Z2 and
the anti-unitary Z2 × ZT

2 symmetries that typically protect the SPT order of the cluster model [7].

4.2. No SPT for A2 with odd N . The distinction between odd and even N is apparent in the
entanglement spectrum of |ψ2⟩. Using λn = ωn/2|λn| we write the matrix elements of Aj from (33) as

An,n′
a = Γn,n′

j Λn′ , Γn,n′
a ≡ N− 1

2 ωa(n−n′)ωn′/2 , Λn′ = N−1 |λn′ |. (37)

This MPS is in canonical form [69, 70] because the transfer matrix Tn,p;n′,p′ =
∑

aA
n,n′
a A p,p′

a has
dominant right (left) eigenvector δn′,p′ (Λ2

nδn,p) with eigenvalue 1. The entanglement spectrum for a
bipartition of an open chain is then {Λ2

n}, where

Λ−1
n = N sin

(
(2n+ 1)π

2N

)
n = 0, 1, . . . N − 1. (38)

A necessary but not sufficient condition for SPT order is an exact degeneracy in the entanglement
spectrum [24, 71, 72]. Since the argument of the sine in (38) is symmetric about π/2, there is indeed
a two-fold degeneracy throughout the spectrum for N even. We show in Section 4.3 that this exact
degeneracy is a consequence of a projective representation of D2N , implying SPT order.

4Note that for groups with a ZT
2 anti-unitary time-reversal, the SPT classification is a twisted group cohomology.

However, for our purposes we simply want to show the cluster state has a non-trivial projective representation of the
group on the bond space; for further details see Ref. [13].
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For N odd, however, the single non-degenerate Schmidt value Λ(N−1)/2 = N−1 means that there is
no non-trivial projective representation in the ground state of A2. This observation is consistent with
the lack of D2N = ZN ⋊ ZCPT

2 SPT order for N odd [66]. Moreover, it implies a stronger statement:
for N odd, A2 cannot describe a non-trivial SPT phase, even if we have missed some symmetries.
However, as only the lowest Schmidt value for N odd is non-degenerate, we expect that some of the
physics is independent of N .

4.3. Symmetry fractionalisation. We will now show how the D2N symmetry fractionalises for all
N , resulting in a non-trivial projective representation for even N .

Having given a simple example of symmetry fractionalisation in Section 4.1, we now introduce
notation for the general case. Suppose we have a symmetry group G where each element acts as an
on-site unitary u(g) as well as possibly implementing either time-reversal or spatial-inversion. One
then can implement these elements on the MPS in terms of matrices U(g) for g ∈ G that satisfy [69]

U(g)Λ = ΛU(g) ,

N−1∑
b=0

u(g)a,b Γ̃b = eiφ(g)U(g) Γa U(g)† , (39)

where Γ and Λ are the canonical decomposition of the MPS, and Γ̃ = Γ for on-site global symmetries.
When g implements lattice inversion, we have Γ̃ = ΓT , while for the anti-unitary time-reversal Γ̃ = Γ.
Thus for our combined CPT symmetry, Γ̃ = Γ†.

The non-trivial symmetry fractionalisation for the ground state A2 with even N follows from the
Z2 × ZCPT

2 subgroup of our D2N symmetry. The Z2 symmetry from XN/2 acting on a given site is
implemented by matrices on the adjacent bonds by

N−1∑
b=0

X
N/2
a,b Γb = ZN/2 Γa Z

N/2 , (40)

where the Xa,b are the matrix elements of the operator X. For the ZCPT
2 symmetry,

N−1∑
b=0

Cab

(
Γb

)†
= e−2iφ

(
eiφ

√
ZV
)
Γj

(
e−iφV

√
Z

†)
(41)

where Cab are the matrix elements of the single-site charge-conjugation operator given in (21), and

√
Z =

N−1∑
j=0

ωj/2 |j⟩ ⟨j| , V = V † =
N−1∑
j=0

|j⟩ ⟨N − 1− j| , eiφ = ω−N−1
4 , (42)

where the bras and kets here are for the bond states. Note that this choice of V commutes with the Λ

matrix, and for both generators we have used the freedom to fix the phases to make U(g)2 = 1. (The
overall phase e−2iφ does not enter into the representation matrices.)

Just as in the cluster model example, the non-trivial projective representation of Z2 × ZCPT
2 on the

bonds follows since the representation of these two generators does not commute:(
eiφ

√
ZV
)
ZN/2 = −ZN/2

(
eiφ

√
ZV
)
. (43)

The two-dimensional irreducible projective representations of the symmetry group on the bonds re-
quires the observed two-fold degeneracy in the entanglement spectrum. These properties are stable
away from the fixed point, and cannot change without a bulk phase transition. Since this SPT or-
der is protected by a subgroup Z2 × ZCPT

2 ≤ D2N , the SPT phase of A2 remains stable under any
perturbations preserving the subgroup, even if they break the full D2N .

Despite not having SPT order, we still have symmetry fractionalisation in the ground state of A2

for odd N . Our analysis of the ZCPT
2 generator in Eq. (41) applies for odd N . For all N , the full ZN

symmetry is implemented by
N−1∑
b=0

Xa,b Γb = Z†ΓaZ, (44)
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generalising (40). For N = 2p+1 this action gives p irreducible two-dimensional linear representations
of DN , each of which acts on the basis {|b⟩ , |N − 1− b}⟩ as

r =

 ωb 0

0 ωN−1−b

 s =

 0 eiφω
N−1−b

2

eiφω
b
2 0

 (45)

for b = 0, . . . , p− 1. A single one-dimensional representation acts on |p⟩ as r = ωp and s = eiφωp/2.
The singlet occurs for the space with the smallest Schmidt value. All of the others, including the

dominant ones, form two-dimensional irreducible representations of the non-abelian D2N symmetry
group. This dimension of course cannot change continuously, so for small enough symmetry-preserving
perturbations it cannot change without the system undergoing some sort of transition. This property
therefore implies local stability of the phase. A phase with such behavior was dubbed a “representation
SPT” (RSPT) [23]. Similar physics appears in other settings, including AKLT chains with even spin
[73], quotient symmetry-protected topological order [6] and boundary-obstructed topological phases
[74]. A transition out of an SPT phase must be a bulk one, as the representations are projective.
The protection for the RSPT, however, is not as strong. A sufficiently large perturbation can change
the dimension of the dominant Schmidt value without encountering a bulk phase transition, as shown
in [25] for the model of [23].

Thus for odd N the ground state of A2 can be deformed to that of A0 without encountering a
bulk phase transition or breaking the D2N symmetry, as one expects in the absence of non-trivial
SPT order. Before this transition, however, the phase exhibits SPT-like physical properties such as
symmetry fractionalisation.

4.4. String order. String order parameters can be used to identify an SPT phase without explicitly
calculating the symmetry fractionalisation considered above [69]. Indeed, we will use them to this
effect in Section 5.3. In this section we identify the relevant string order parameter for the symetry
group D2N = ZN ⋊ ZCPT

2 .
As above, there is a key distinction between even and odd N . Namely, the ZN symmetry of the

chiral-clock family possesses a Z2 subgroup for even N . We then can define a Z2 string operator using
the “disorder” operator

µk =
k−1∏
j=1

X
N/2
j ,

(
µk
)2

= 1, (46)

familiar from the Ising chain [75]. The limiting two-point function limM,L→∞⟨µkµk+M ⟩ has a non-zero
value only in the trivial phase. More generally we can dress µk with a local end-point operator Ok

(which is supported on some finite region to the right of site k − 1). The key idea is that we will see
long-range order in ⟨µ1O1 µkOk⟩ only when Ok has symmetry properties that are consistent with the
SPT phase [69]. This notion can be generalised also to critical points and gapless phases [6, 60,76],

In our particular D2N setting, endpoint operators should have simple properties under conjugation
by the CPT symmetry defined in Section 3.2. This symmetry is unusual since it combines an on-site
unitary (charge conjugation), parity symmetry and anti-unitary time reversal. The ensuing compli-
cations require us to generalise the approach of [69] to such symmetries. In Appendix B we do so.
Namely, we consider two-site hermitian endpoint operators Ok,k+1 satisfying

CPKOk,k+1CPK = scOk̂,k̂+1X
N/2

k̂
X

N/2

k̂+1
sc = ±1 . (47)

There are two unusual aspects of this definition of the “charge” sc, both due to applying the parity
transformation P . First, the transformed operator is supported on the sites k̂, k̂ + 1, where k̂ is
determined by which points are chosen to remain fixed under spatial inversion. Second, the charge is
defined relative to multiplying by X

N/2

k̂
X

N/2

k̂+1
. The reason is that P inverts the string µk as well as

the end-point operator, and the former needs to be multiplied by the global Z2 = µL to return it to
a left-pointing string. Since we consider operators µkOk, the extra factors can be absorbed into the
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end-point operator by multiplying it by XN/2

k̂
X

N/2

k̂+1
. An MPS-based derivation allowing for a general

end-point operator supported on more than two sites is given in Appendix B.
The charge sc of the end-point of a string with long-range order reveals the SPT phase. In particular,

for an end-point with sc = −1, the asymptotic two-point function for µkOk,k+1 is finite only in the
SPT phase. (Recall there is only one non-trivial SPT phase for our symmetry group.) On the other
hand, long-range order with sc = 1 corresponds to the trivial phase.

The pivot procedure allows to find an end-point operator with sc = −1 easily. Pivoting by the SPT
entangler gives

U1(π)X
N/2
k U1(π) =

(
N−1∑
m=1

1− (−1)m

1− ωm
Z−m
k−1Z

m
k

)
X

N/2
k

(
N−1∑
m=1

1− (−1)m

1− ωm
Z−m
k Zm

k+1

)
(48)

where the dressing term squares to one (see Appendix A). The string therefore pivots to

µkµk+M →
(

N−1∑
m=1

1− (−1)m

1− ωm
Z−m
k−1Z

m
k

)
µkµk+M

(
N−1∑
m=1

1− (−1)m

1− ωm
Z−m
k+M−1Z

m
k+M

)
. (49)

The end-point operators and the string overlap, and absorbing the ends of the former into the latter
gives

Ok,k+1 = iX
N/2
k

(
N−1∑
m=1

1− (−1)m

1− ωm
Z−m
k Zm

k+1

)
=⇒ µkµk+M → µkOk−1,k µk+M−1Ok+M−1,k+M .

(50)

The factor of i ensures Ok,k+1 is Hermitian and that it transforms under CPT as in (47) with sc = −1.
For N = 2 it reduces to iσxkσ

z
kσ

z
k+1 = σykσ

z
k+1, the usual cluster-state end-point operator [46].

The ground state of A0 is a product state and hence obviously in a trivial phase. Indeed, the disorder
operator itself has long-range order:〈

v
(0)
1 v

(0)
2 · · · v(0)L

∣∣∣µk µk+M

∣∣∣v(0)1 v
(0)
2 · · · v(0)L

〉
= 1 . (51)

We then exploit µk+1 = µkX
N/2
k and note that XN/2

k transforms under CPT as in (47) with sc = 1.
Thus our approach reproduces the trivality of the ground state of A0.

Pivoting using (32) and (49) we then see immediately that (51) requires

⟨ψ2| Ok−1,k µk+1 µk+M−1Ok+M−1,k+M |ψ2⟩ = 1 . (52)

The ground state of A2 therefore has long-range order for a string operator with end-point operator
that obeys (47) with sc = −1. We conclude that A2 is in a non-trivial SPT phase, distinct from A0,
protected by Z2 × ZCPT

2 ≤ D2N for all even values of N . We thus recover the result found using
symmetry fractionalisation in the preceding Section 4.3. The approach here emphasises the role of the
Z2 symmetry present only at even N . Moreover, computing the string order via the operators in (52)
provides a useful diagnostic tool for detecting a non-trivial phase away from the special points with an
exact MPS ground state.

While the choice of end-point operator in Eq. (50) appears naturally by applying the SPT entangler
to the disorder operator, there exist simpler end-point operators with the correct charge that may be
useful in some situations:

O′
k,k+1 =

{
iX2n−1

k Z2n−1
k Z2n−1

k+1 N = 4n− 2

iX2k
k

(
Z−1
k Zk+1 + ZkZ

−1
k+1

)
N = 4n

. (53)

5. How the phases fit together

We have discussed in depth the three Hamiltonians A0, A1 and A2 for the chiral-clock family. They
respectively have no order, spontaneous symmetry breaking, and (R)SPT order. To probe the physics
further, we combine them and analyse the Hamiltonian

H(α, β, γ) = αA0 + βA1 + γA2. (54)
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The Hamiltonian H(α, β, γ) is integrable, as noted above in (18). However, deriving properties for
N > 2 is rather difficult not only because of the interactions, but also due to the presence of level-
crossing transitions in the ground state [35]. Nonetheless along certain lines we utilise and obtain
analytic results. We also utilise density matrix renormalisation group (DMRG) [77, 78] numerics to
understand the phase diagram for N = 3 and N = 4. We find that all these orderings extend away
from these special solvable points, occupying regions of the phase diagram. For N = 2, the transitions
between phases are direct, but for larger N intermediate gapless regions typically appear.

5.1. Special lines. Three special lines of couplings give useful insight into the phase diagram.

5.1.1. The Onsager-integrable chiral Potts line. The line A1+λA0 is the canonical Onsager-integrable
chiral Potts chain. Much is known from extensive work some decades ago [17,20,22,34,35,53,54,79,80],
but many puzzles remain. The main difficulty is that the lack of a U(1) symmetry makes a traditional
Bethe-ansatz analysis impractical. The ground-state phase diagram for N = 3 was analysed carefully
in [35,79,81]. Along with the symmetry-breaking phase at λ = 0 and trivial phase for large λ, for λ > 0

there are two intermediate gapless phases for λc < λ < 1 and 1 < λ < 1/λc, where λc ≃ 0.901 [35]. More
recently, DMRG calculations at λ = 1 [82] found oscillations in the scaling of entanglement entropy for
open boundaries. This behaviour is consistent with previous results for Lifshitz transitions [83]. The
case of λ < 0 is equivalent, as follows from the results of Section 3.3 .

Moreover, considering the energy of unit-charge excitations, long-range spin order occurs for all
λ < 1 [35], including the intermediate gapless phase λc < λ < 1. We have not been able to observe
the latter feature in our numerical studies below, and think that this long-range order in the gapless
region is worth a deeper investigation. This intermediate region is further studied in Ref. [84], where
scaling exponents for the order parameter are found; note that this gapless region is not described by
a conformal field theory as the left- and right-moving excitations have different velocities [34, 84, 85].
These results can be summarised in the phase diagram

λ
−1
×

−λ−1
c

×
−λc
×

1
×

λ−1
cλc
××•

A1

ferromagnetic order
disorder disorder

. (55)

For N > 3 we are not aware of similar results for the phase diagram, although there are general
formulae for structure of the spectrum [17, 21, 79, 80] and both numerical and analytic studies of the
spectrum for small system sizes [35,80]. For general N the ground state in the zero-momentum sector
has a transition at λ = 1 [80,85]. This is not necessarily the ground state of the Hamiltonian because
there may be a level crossing to a different momentum sector. In such a case, translation symmetry
breaking [86] and/or an intermediate gapless phase or phases must occur. Our numerical studies
described below in Section 5.3 indicate a similar structure for N = 4, including a first-order transition
into an intermediate gapless phase.

A remarkable formula for the symmetry-breaking order parameter in the ferromagnetic phase was
conjectured in [80] and proved (subject to certain analyticity assumptions) in [87,88]. It is

lim
M,L→∞

〈
Z−k
1 Zk

M

〉
= (1− λ2)

k(N−k)

N2 |λ| < λ0, (56)

where λ0 indicates the first ground state phase transition we encounter beyond λ = 0 (moreover, for
N = 3 we have a non-zero expectation for all |λ| < 1, based on the analysis of Ref. [35]). Duality yields

lim
M,L→∞

〈
M∏
j=1

Xk
j

〉
= (1− λ−2)

k(N−k)

N2 |λ| > λ−1
0 . (57)

The (trivial) string-order parameter thus takes the N -independent value

lim
M,L→∞

〈
µ1µM

〉
= (1− λ−2)

1
4 |λ| > λ−1

0 . (58)
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5.1.2. The line A1+λA2. Pivoting the preceding Hamiltonian with U1(π) means that the Hamiltonian
A1+λA2 is unitarily equivalent. The transitions must therefore occur at the same values of λc. However,
the physical interpretation of the phases is rather different. We saw already that A2 possesses (R)SPT
order. Transforming the trivial string order from (58) immediately shows the SPT order exists away
from A2. Namely, using (49) yields exact topological string order at even N :

lim
M,L→∞

⟨µ1O1,2 µMOM,M+1⟩ = (1− λ−2)
1
4 |λ| > λ−1

0 . (59)

The SPT order therefore persists at least until λ = λ−1
c (as it must on general stability grounds), and

likely all the way until λ = 1, as summarized in the diagram

λ
−1
×

−λ−1
c

×
−λc
×

1
×

λ−1
cλc
××•

A1

ferromagnetic order
(R)SPT (R)SPT

. (60)

Subtleties with SPT physics arise in gapless models [6], but resolving them requires a deeper under-
standing of the nature of the gapless phase realised here. Moreover, we cannot prove that the RSPT
phase at odd N persists, even in the gapped region, but we expect that the dominant Schmidt value
remains doubly degenerate throughout. Below we give numerics in support of this contention.

5.1.3. The U(1) line and the exact ferromagnetic ground state. Setting α = γ in (54) yields a rather
special line of Hamiltonians. Namely, it follows immediately from (4) that A1 commutes with A0+A2:[

A1, αA0 + βA1 + αA2

]
= 0 . (61)

Since NA1 has integer eigenvalues, it generates a U(1) symmetry along this line. An explicit expression
for the KW dual Hamiltonian in terms of the usual SU(2) operators S±, Sz can be found in [38].

This U(1) symmetry allows the coordinate Bethe ansatz to be used, as described in depth in [38] for
a closely related U(1)-invariant model. Acting with the Onsager generators turns out to correspond
to adding or removing “exact strings” within the Bethe ansatz. A conjecture was made there that the
ground state of the model A1+A−1 (the dual of A0+A2) is comprised solely of such exact strings. Our
detailed calculations show however that this property holds true only for L ≤ 12. Thus the analysis,
while tractable, is still rather difficult. We defer a full accounting to a separate paper [37].

However, the U(1) symmetry does result in an exact ground state over a range of α/β when α = γ.
When H = A1, the N ground states are given by all spins equal in the Z-basis, as shown in (29).
Each such state is annihilated by A0 + A2. Moving away from A1 by allowing α = γ ̸= 0, the
different ground states do not mix in perturbation theory until order L, and the exact ferromagnetic
ground states persist until the α = γ is of order β. For N = 2, this transition occurs exactly at
α = γ = β/2. This value is recovered by a simple first-order perturbation theory in the one-particle
sector [89], giving a transition at α/β = γ/β = sin(π/N)/2. For N = 3, 4, and for α = γ = 1/2, this
predicts β ≃ 1.15, 1.41 respectively. These values are consistent with the numerics in Fig. 4, though
the transition appears to occur for a larger value of β in the N = 4 case.

5.2. Phase diagram for N = 2. We first consider the full phase diagram in the N = 2 free-fermion
case, where it is known exactly. This case is KW dual to the usual quantum XY model [90], and so
phase transitions occur at the same places. The results are displayed in Fig. 3(a), with the trivial,
SPT and ferromagnetic phases readily apparent.

The line from Section 5.1.1 with γ= 0 corresponds at N = 2 to the usual transverse-field Ising model,
while pivoting with A1 yields the line with α = 0 described in (5.1.2). Onsager’s results show that these
models have Ising critical points at α = β and γ = β respectively. The latter criticality is enriched by
Z2 ×ZCPT

2 [6], as confirmed by our analysis of the string order in Section 4.4 for all even N . Since the
disorder operator has charge sc = 1 and sc = −1 under CPT for trivial and SPT phases respectively,
the corresponding critical points are labelled Ising±.
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Ising+

c = 1

Ising−

×

×z = 2

A0
×
A2

×A1

Trivial SPT

FM

(a) N = 2

×
A0

×
A2

×A1

Trivial RSPT

FM

Gapless

(b) N = 3

■

×
A0

×
A2

×A1

Trivial SPT

FM

Gapless

Gapless

(c) N = 4

Figure 3. Schematic phase diagrams for N = 2, 3, 4 for the Hamiltonian H(α, β, γ) param-
eterised as α + β + γ = 1. FM indicates the ferromagnetic phase. The N = 2 phase diagram
is known exactly and features direct transitions. An exact MPS ground state occurs on the
dotted line. For N = 3, 4 the transitions typically spread out into gapless regions. Within the
achieved numerical resolution, we cannot ascertain whether we have a narrow gapless region or
a direct transition between the trivial and SPT phases for a certain range along the α = γ line
for N = 4 (indicated by ■). The grey dotted lines are discussed in Section 5.1.

The transition between the trivial and SPT phases along the β = 0 line occurs at the U(1) invariant
value α = γ for N = 2. Its continuum limit is described by a single free-boson field theory, a conformal
field theory with central charge c= 1. The type of criticality is invariant (and the c = 1 remains at
the free-fermion radius) up to the multicritical point at α = γ = β/2. The multicritical point has
dynamical critical exponent z = 2, and the charge of the disorder operator changes sign along the Ising
CFT line here. This point also has an exact MPS ground state, as does the model along the dotted
line [91–94] with couplings α = (1 − λ)2, β = 2λ(1 − λ), γ = λ2. This line is dual to the disorder line
in the XY model [95–97].

5.3. Phase diagram for N = 3, 4. To determine the full phase diagrams H(α, β, γ) for N = 3, 4, we
need to distinguish the three phases: trivial, symmetry breaking and (R)SPT dominated by A0, A1, A2

respectively. Here we use the density matrix renormalization group (DMRG) [98] to go beyond the
above analytic results. All following numerical calculations were performed using the ITensor li-
brary [77, 78] for finite systems with open boundary conditions. We summarise our results in Fig. 3,
showing that the critical lines seen in the N = 2 case broaden out to gapless regions. A key result is
that the RSPT order at N = 3 remains throughout a region.

We use a variety of probes to determine the phase diagrams. For example, we give results from
entanglement entropy in Fig. 4. The probes are:

5.3.1. Local and string order parameters: A non-vanishing value two-point correlation function

OZ =
∣∣∣〈ZjZ

−1
k

〉∣∣∣ (62)

at large |j − k| indicates ferromagnetic order. As seen in Fig. 5(b) and (d), such order occurs at large
β where A1 dominates the Hamiltonian.

The string operators discussed in Section 4.4 provide a convenient way to distinguish the SPT phase
and trivial phases at even N . The trivial phase at even N is detected by the two-point function of
disorder operators, namely

S0 = |⟨µjµk⟩|. (63)

The SPT phase, on the other hand, is detected by pivoting Eq. (63) using the SPT entangler as
discussed in Section 4.4. For N = 4, we show in Appendix B.2, that the relevant string order (50)
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takes on the form

S1 =

∣∣∣∣〈 i
2

(
S−1,−1 − S1,1

)
+ S−1,1

〉∣∣∣∣ , Sa,b ≡ Za
j−1Z

−a
j µjµk+1Z

b
kZ

−b
k+1 (64)

Non-vanishing values of these two-point functions Equations (63) and (64) for large values of |j−k| are
good order parameters for the trivial and SPT phases respectively. We plot these values in Fig. 5(c,d)
for j = L/4 and k = 3L/4, indicating the presence of these phases when A0 and A2 respectively
dominate.

5.3.2. Entanglement spectrum. The bipartite entanglement spectrum of the ground states provides a
useful probe for detecting the SPT and RSPT phases. The values are Λ2

α, where the Λα are the usual
Schmidt coefficients of the ground state [24, 69, 71]. The entanglement spectrum of SPT phases is
characterized by the presence of robust degeneracies for all Λα and the total absence of non-degenerate
values, shown in Fig. 6(b). The trivial and RSPT phases contain non-degenerate entanglement levels
along with degenerate ones. These two phases are distinguished by the nature of the dominant Schmidt
value. In the trivial phase it is unique, whereas in the RSPT phase it is degenerate, as shown in
Fig. 6(a). These results confirm the stability of our analytic results in Section 4.2 away from the fixed
point model A2 for both even and odd N . By tracking the gap ∆Λ = Λ2

1 − Λ2
2 between the leading

entanglement values, we can distinguish the trivial from the RSPT. As apparent in Fig. 5, ∆Λ vanishes
for the former but not the latter.

In a general context, the entanglement spectrum is known to be an indirect probe of the edge modes
in a topological phase [99]. Similarly, the degeneracy of the largest entanglement levels in the RSPT
is expected to result in parametrically stable edge modes, despite lacking in topological protection [23,
25, 30, 31]. A simple pivoting calculation reveals that the fixed-point A2 with open boundaries has
N2 ground states. However, the relation between entanglement spectrum and edge modes is known
to break down when parity symmetry is involved [73], and indeed one can find symmetric boundary
terms that gap out these edge modes for any non-zero coupling. Thus, the entanglement spectrum is
the most relevant probe of the (R)SPT physics.

5.3.3. Entanglement entropy. The von Neumann entanglement entropy provides a good way to distin-
guish the gapless phases from the gapped ones. It is defined as

S(lA) = tr(ρA log ρA) , (65)

where ρA is the reduced density matrix with support on the Hilbert space A, taken to be a contiguous
interval length l on the chain. For ground states of one-dimensional gapped phases, S(l) ∼ const, an

(a) N = 3 (b) N = 4

Figure 4. The effective central charge c for H(α, β, γ) with α = 1 − γ for (a) N = 3 and
L= 100, (b) N = 4 and L= 40. The value is extracted by fitting the entanglement entropy
to the CFT formula Eq. (66). A zero value indicates an area-law ground state. Values of c
at the boundary of the gapless region are not meaningful. A unitary transformation relates
Hamiltonians with γ and 1− γ, and so the data for N = 4 for γ > 0.5 is that for γ ≤ 0.5.
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(a) (b)

(c) (d)

Figure 5. DMRG calculations for the N = 3 (a,b) and N = 4 (c,d) versions of the Hamil-
tonian (54) with α = 1 − γ and with system sizes L = 200 and L = 100 respectively. OZ is
the local order parameter shown in Eq. (62), S0 and S1 are the trivial and non-trivial string
order parameters defined in Eqs. (63) and (64) respectively, while c comes from fitting the
entanglement entropy to Eq. (66). The Schmidt value Λα comes from the mid-chain bipartite
Schmidt decomposition of the ground state, and the difference between the largest two values
∆Λ = Λ2

1 − Λ2
2. Dotted lines connecting data points are provided as a guide to the eye.

(a) (b)

Figure 6. The entanglement spectrum for the ground state of (54) with α = 1 − γ and
system size L = 200. All levels are doubly degenerate in the SPT phase, while both degenerate
and non-degenerate values occur in the RSPT and trivial phases. The latter two phases are
distinguished by the dominant entanglement level, which is unique for the trivial phase but
degenerate for the RSPT.

area law. Critical gapless phases that are described by a 1+1-dimensional conformal field theory obey
a universal form [100] of entanglement scaling in the large-L limit. For a finite system of size L with
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open boundary conditions,

S(l) =
c

6
log

(
L

π
sin

(
πl

L

))
+ const , (66)

where c is the central charge that characterizes the CFT. Entanglement entropy obeying the form
Eq. (66) thus indicates gapless behaviour, with c ̸= 0 providing a measure of entanglement.

As seen in Fig. 5, this fit can be used effectively to distinguish the gapless phases from the surrounding
gapped ones. We apply this procedure to locate the gapless regions in Figs. 3 and 4. We find that
the data fits well to Eq. (66) with c= 1, as shown in Fig. 7, suggesting that the gapless states are
described by a compact boson CFT or its orbifold [101]. However, as shown in Fig. 7(b), we observe
oscillations in certain ranges of parameter values. As discussed in Section 5.1.1, these are also consistent
with Lifshitz transitions [83] and have been observed in numerical investigations of similar models [82].
Similar results are seen for the gapless states appearing in the phase diagram of the N = 4 Hamiltonian.
The precise nature of the gapless states appearing in our phase diagrams is an interesting question,
which we leave for upcoming work.

(a) (b)

Figure 7. Von Neumann entanglement entropy computed for representative gapless ground
states of the N = 3 Hamiltonian (54) with α = 1 − γ and system size L = 200, (datapoints)
compared with the best fit to the CFT formula Eq. (66). Both have a best fit of c ≈ 1 (solid
line), with oscillations observed for some parameters (b) but absent for others (a).

6. Outlook

In this paper we showed how the Onsager algebra naturally gives rise to a pivot procedure useful
for constructing SPT phases. We applied this result to a family of N -state chiral clock Hamiltonians
constructed with this algebra. We found an SPT phase for even N and an RSPT phase for odd N ,
protected by the dihedral group D2N comprised of the clock and CPT symmetries.

We analysed in depth the Hamiltonian A2, the N -state analog of the cluster-model SPT. We found
an analytic expression for the entanglement spectrum in its MPS ground state, and showed it has
dominant, degenerate Schmidt values in the entanglement spectrum. For even N , the ground state has
non-trivial SPT order characterised by a projective representation of D2N on the bond Hilbert space.
We showed that this SPT phase can be detected by a string order parameter with an end-point charged
under ZCPT

2 . For odd N , however, every Schmidt value of the ground state of A2 is degenerate apart
from the smallest one. This entanglement spectrum is inconsistent with any projective representation
on the bonds, and thus corresponds to a trivial SPT phase (for any protecting symmetry group).
However, the system has dominant degenerate Schmidt values corresponding to higher-dimensional
irreducible representations of D2N and we conclude that A2 represents an RSPT phase for D2N .

The phase diagram interpolating between A0, A1 and A2 is rich, and based on analytic and numerical
results we conjectured its form for N =3, 4. For even N the three fixed-point Hamiltonians represent
distinct phases of matter, and thus are separated by bulk transitions. We demonstrated that the
RSPT phase in the case N = 3 does extend away from the fixed-point A2 by numerically calculating
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the entanglement gap using DMRG [77, 78]. We moreover see a critical phase separating this RSPT
from the trivial phase, which is “unnecessary” from the SPT point of view [28–32].

A key topic for future work is to better understand the phase diagrams outlined in Section 5.3. Partic-
ularly interesting would be substructure within the gapless regions, and possible symmetry enrichment.
Indeed, our numerical investigations leave open the possibility that the N = 4 phase diagram contains
two separate gapless regions meeting at a direct transition between the trivial and SPT phases [31,76].
In a companion work, we consider the U(1) invariant line A0 + A2 + hA1, along with the KW dual
A1 +A−1 + hA0 (where the U(1) symmetry is on-site); note that this line includes the possible direct
transition. This symmetry lends itself to a coordinate Bethe Ansatz approach. We have left the wider
phase diagram for the chiral clock family H =

∑
tαAα unexplored. While there is only one non-trivial

SPT phase for our symmetry group, we may see combined symmetry-breaking and SPT physics in the
higher Hamiltonians [5]. Identifying the gapless regions in this larger phase diagram would also be
interesting.

Our results are not restricted to the Onsager-integrable chiral-clock family we have studied. The
D2N symmetry identified here occurs in more general chiral clock models. The ZCPT

2 symmetry takes,
for example, γXn → γX†

n. It follows that any hermitian H =
∑

j

∑N−1
m=1

(
γmh

m
2j−1 + δmh

m
2j

)
has this

symmetry, along with the standard clock symmetry. Hence, the SPT phase (and possibly the RSPT
phase) will extend into the wider phase diagram of the chiral clock models [82].

A natural next step is to look for SPT physics and interesting phase diagrams in other families of
spin chains that generate an Onsager algebra, such as those in Refs. [102–104]. Further examples can be
found in the setting of generalised Onsager algebras; there we have multiple generators each satisfying
a mutual Dolan-Grady relation [105,106]. A fundamentally different model to those considered in this
paper is the “free fermions in disguise” Hamiltonian [107], which can be written as a sum of terms
satisfying a generalised Onsager algebra [106]. It would be most interesting to uncover a new family
in this class.

One final outstanding question is to find which subspace of the phase diagram has an exact MPS
ground state, generalising the line in Fig. 3(a). The solution to this problem for N = 2 utilises imag-
inary time evolution with fixed-point Hamiltonians [93], and the Onsager algebra may allow for a
generalisation of this approach.

Acknowledgements We are grateful to Murray Batchelor, Yuchi He, Barry McCoy, Max McGinley,
Yuan Miao and Ryan Thorngren for helpful discussions and correspondence. We also thank Ruben
Verresen and Nathanan Tantivasadakarn for sharing their insights and their related results [25]. This
work was supported by the European Research Council under the European Union Horizon 2020
Research and Innovation Programme, Grant Agreement No. 804213- TMCS (A.P), and by EPSRC
grant EP/S020527/1 (P.F.). Preliminary work was completed while N.G.J. held a Heilbronn Research
Fellowship at the Mathematical Institute, University of Oxford.

Appendix A. Derivation of the Hamiltonian A2

In this appendix we derive the closed-form expression for A2 given in the main text (17). There are
two paths one can take

A2 = U1A0U
†
1 and A2 = A0 +

1

8

[
A1, [A0, A1]

]
. (A1)

We give both the pivot and commutator approaches for the Kramers-Wannier dual operator A−1, and
then connect the two to reach our preferred representation for A2.

A.1. Pivoting A1 with A0 to find A−1. We first use the pivot procedure to findA−1 = U0(π)A1U0(π)
†.

We can write U0(π) as a product of single-site terms, so that its action on the single-site operator Z is

Ẑ = ei
π
N

∑N−1
m=1 αmXm

Z e−i π
N

∑N−1
m=1 αmXm

. (A2)
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In the X basis, X =
∑

a ω
−a
∣∣v(a)〉 〈v(a)∣∣ and Z =

∑
a

∣∣v(a−1)
〉 〈
v(a)

∣∣, so

Ẑ =
N−1∑
a=0

ei
π
N

∑N−1
m=1(αmω−m(a−1)−αmω−ma)

∣∣∣v(a−1)
〉〈

v(a)
∣∣∣

= ei
π
N

N−1∑
a=0

(−1)δa,0
∣∣∣v(a−1)

〉〈
v(a)

∣∣∣ = eiπ/NZΦ̂(0),

(A3)

where

Φ̂
(r)
j ≡

∑
a

(−1)δr−a,0

∣∣∣v(a)j

〉〈
v
(a)
j

∣∣∣ , Φ̂
(r)
j Zj = ZjΦ̂

(r+1)
j . (A4)

Obviously,
(
Φ̂
(r)
j

)2
= 1 so that

U0(π)Z
k
j U0(π)

† = ωk/2Zk
j

k−1∏
r=0

Φ̂
(r)
j , (A5)

A−1 = U0(π)A1U0(π)
† = − 4

N

L∑
j=1

N−1∑
m=1

αm

(
m−1∏
r=0

Φ̂
(r)
j

)
Z−m
j Zm

j+1

(
m−1∏
r=0

Φ̂
(r)
j+1

)
. (A6)

A.2. Pivoting A0 with A1 to find A2. One can find A2 by exchanging A0 and A1 in the preceding
pivot, as follows from (11). The calculation then proceeds identically if one utilises the operators hk
from (15). One then finds

A2 = − 4

N

L∑
j=1

N−1∑
m=1

αm

(
m−1∏
r=0

Φ
(r)
j−1,j

)
Xm

j

(
m−1∏
r=0

Φ
(r)
j,j+1

)
. (A7)

where

Φ
(r)
j,j+1 =

∑
a1,a2

(−1)δa2−a1+r,0 |a1⟩j ⟨a1|j |a2⟩j+1 ⟨a2|j+1 . (A8)

We show in Appendix A.4 how to rewrite this product of signs in terms of Zj operators.
A byproduct of this calculation is that U1(π)XjU1(π)

† = Φ
(0)
j−1,jXjΦ

(0)
j,j+1. Since X acts as a shift in

the Z-basis, we have

Φ
(r)
j,j+1Xj = XjΦ

(r+1)
j,j+1 , Φ

(r)
j,j+1Xj+1 = Xj+1Φ

(r−1)
j,j+1 , (A9)

yielding (48) and the resulting transformed string operator.

A.3. Commutator calculation. In this section we derive a closed-form expression for A−1 using
commutation relations directly.

Using the definitions of A0 and A1 from (15,16) gives

[
A0, A1

]
=

(
4

N

)2 L∑
j=1

N−1∑
a,â=1

αaαâ (1− ωaâ)
(
ha2j−1h

â
2j − hâ2jh

a
2j+1

)
. (A10)

A useful identity proved below is
N−1∑
a,b=1

αa,âαb,âh
a+b
2j−1 = â(N − â) + (N − 2â)

N−1∑
s=1

αs,âh
s
2j−1, (A11)

where we define αa,â = αa(1− ωaâ) . Commuting A0 with (A10) and using this identity yields[
A0,

[
A0, A1

]]
=−

(
4

N

)3 L∑
j=1

(
− 2

N−1∑
a,â,b=1

αa,âαâαb,â h
a
2j−1h

â
2jh

b
2j+1

+
N−1∑
a,â=1

αa,âαâ (N − 2â)
(
ha2j−1h

â
2j + hâ2jh

a
2j+1

)
+ 2

N−1∑
â=1

â(N − â)αâh
â
2j

)
. (A12)
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The Onsager algebra requires

A−1 = A1 −
1

8

[
A0,

[
A0, A1

]]
, (A13)

so that

A−1 = − 4

N3

L∑
j=1

(
4

N−1∑
a,â,b=1

αaαâαb (1− ωaâ)(1− ωbâ)ha2j−1h
â
2jh

b
2j+1

− 2

N−1∑
a,â=1

αaαâ (N − 2â)(1− ωaâ)

(
ha2j−1h

â
2j + hâ2jh

a
2j+1

)
+

N−1∑
â=1

(N − 2â)2αâh
â
2j

)

= − 4

N

∑
j

N−1∑
â=1

αâ

(
1− 2â

N
− 2

N

N−1∑
a=1

αa,âh
a
2j−1

)
hâ2j

(
1− 2â

N
− 2

N

N−1∑
b=1

αb,âh
b
2j+1

)
(A14)

Finally, note that taking (A12) and doing another commutator gives the Dolan-Grady relation:[
A0,

[
A0, [A0, A1]

]]
=

(
4

N

)4 (
2â(N − â) + (N − 2â)2 + 2â(N − â)

)
×

L∑
j=1

N−1∑
a,â=1

αa,âαâ

(
ha2j−1h

â
2j − hâ2jh

a
2j+1

)
= 16

[
A0, A1

]
. (A15)

A.3.1. Proof of (A11). Consider the following action:
N−1∑
a,b=0

ωkaωlbXa+b
∣∣∣v(j)〉 =

N−1∑
a,b=0

ωka+lb−ja−jb
∣∣∣v(j)〉 = N2δk,jδl,j

∣∣∣v(j)〉 . (A16)

Using geometric series and the vanishing of the previous double sum for k ̸= l yields
N−1∑
a,b=1

αa,âαb,âX
a+b =

â−1∑
k,l=0

N−1∑
a,b=1

ωka+lbXa+b =
â−1∑
k,l=0

N−1∑
a,b=0

ωka+lbXa+b − 2â
N−1∑
a=1

â−1∑
k=0

ωkaXa − â2

= â(N − â) + (N − 2â)

N−1∑
a=1

â−1∑
k=0

ωkaXa. (A17)

A.4. Connecting the two approaches. In this section we show that the formula for A−1 written
in terms of Φ̂n is the same as the expression (A14). In particular, we show:(

m−1∏
r=0

Φ̂
(r)
j

)
= Ŝ

(m)
j ≡ 1− 2m

N
− 2

N

N−1∑
m′=1

1

1− ωm′ (1− ωmm′
)Xm′

j . (A18)

First, notice that the identity (A11) yields(
S
(m)
j

)2
=
(
Ŝ
(m)
j

)2
= 1 (A19)

for any m, j. Thus the dressing terms are operators squaring to a constant. Indeed,(
1− 2

N

N−1∑
m′=0

ω(r−a)m′

)∣∣∣v(a)j

〉
= (1− 2δr−a,0)

∣∣∣v(a)j

〉
= (−1)δr−a,0

∣∣∣v(a)j

〉
= Φ̂

(r)
j

∣∣∣v(a)j

〉
. (A20)

Using the geometric series
∑m−1

r=0 ωrm′
= 1−ωmm′

1−ωm′ yields

Ŝ
(m)
j

∣∣∣v(a)j

〉
=

(
1−

m−1∑
r=0

2

N

N−1∑
m′=0

ωrm′
Xm′

n

)∣∣∣v(a)j

〉
=

(
1− 2

m−1∑
r=0

δr−a,0

)∣∣∣v(a)j

〉
. (A21)

Comparing with (A20) and noting that m < N yields (A18). One can also derive the right-hand-side
of (A18) from the left-hand-side by taking products of (A20) for different values of r and using (A16).
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Analogous identities hold with the replacement Xn → Z−1
n Zn+1; the latter gives a sign, but one

that depends on the difference of the states on the two sites as in (A8). In particular,
m−1∏
r=0

Φ
(r)
j−1,j = S

(m)
j−1,j ≡

(
1− 2m

N
− 2

N

N−1∑
m′=1

αm′
(
1− ωmm′)

Z−m′

j−1 Z
m′
j

)
, (A22)

leading to (17).

Appendix B. String order and parity transformations
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Figure 8. Graphical identities for an MPS tensor with Z2×Z2 symmetry generated by
∏

k uk
and

∏
k vk: (a) the transfer matrix in canonical form (b) symmetry fractionalisation of u (c)

symmetry fractionalisation of v. Recall that on the bonds [U,Λ] = [V,Λ] = 0.
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Figure 9. Graphical proof, following [69], that long-range string order with a charged end-
point is non-vanishing only in the SPT phase for Z2 × Z2 symmetry. In the text we generalise
this to the Z2 × ZCPT

2 case. The • indicate the symmetry u, and the ⋆ indicate the symmetry
v (in the appropriate representation for either physical or bond indices). (a) The string order
written as a tensor contraction using the MPS ground state, we apply Fig. 8(a) to simplify
this to two local tensor contractions (the equality holds up to exponentially small corrections
in the string length). Using Fig. 8(b) these terms are identical. (b) Analysing the local tensor
contraction using the charge of the end-point vOv = scO and the SPT phase V UV = srU . If
the signs do not match then the string-order must vanish.

In this appendix we will show, following Ref. [69], that the charge of endpoints of string operators
with long-range order reveals the SPT order for a Z2 × ZCPT

2 symmetry. The usual arguments are
modified due to the ZCPT

2 acting non-trivially on the lattice (through the parity transformation). In
Figs. 8 and 9 we review the usual argument for the Z2 × Z2 case graphically. Our analysis follows
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similar steps, but we use tensor notation to make the index transposition explicit. In this appendix we
allow a more general representation of Z2 × ZCPT

2 than needed for the models in the main text. For
technical reasons, we also assume translation invariance.

First, let us define a symmetry flux for the Z2 symmetry
∏

j uj by

Σn =
∏
j≤n

ujOn+1,...,n+k , (B1)

where we require that the end-point O is hermitian, and note that u2n = 1 =⇒ u†n = un. The
end-point is required to be hermitian so that there is no remaining phase freedom that would leave
the charge under the anti-unitary CPT symmetry ill-defined [6]. The symmetry flux for a particular
ground state is the half-infinite symmetry string with end-point such that the two-point function has
the slowest possible decay—for gapped phases of matter this is the case with long-range order.

For an end-point operator O supported on k sites, we require that Ou⊗k = u⊗kO(this is the case in
the main text, with k = 2). Note that this commutativity is equivalent to Σn being neutral under the
Z2 symmetry. Moreover, this is equivalent to Ou⊗k being hermitian, implying that the string-order
Σ1Σn is hermitian.

We are interested in end-point operators with a charge under the other symmetry ZCPT
2 , where the

charge is relative to multiplication by u⊗k. That is,

CPK O CPK = scu
⊗kO ≡ scÕ sc = ±1 , (B2)

where we define Õ = u⊗kO for convenience. As in the main text, we note that the parity symmetry
P will translate the support of the operator in general. We suppose C =

∏
j Cj is a product of an

on-site unitary involution that is real in the Z-basis5. This operation corresponds to applying the
symmetry and then multiplying the inverted (B1) by the Z2 symmetry

∏
j uj so that we can compare

the end-point of the same half-infinite string. This multiplication by u⊗k also arises naturally in the
MPS formalism, as we demonstrate in the proof below.

The string order is the two-point correlator of the (hermitian) symmetry flux (B1)

⟨Σ1ΣM ⟩ = ⟨Õ1,2,...,k

 M∏
j=k+1

uj

OM+1,...,M+k⟩. (B3)

Let sc be the charge of the end-point and let sr be the invariant charge of the projective representation
of Z2 × ZCPT

2 on the virtual degrees of freedom (UV = srV U). Assuming a symmetric ground state,
we have the selection rule:

lim
M,L→∞

⟨Σ1ΣM ⟩ = x2 for x ∈ R

and x = scsrx. (B4)

This means that the long-range string order is non-vanishing only if sc = sr, giving us a method of
detecting the SPT phase with a lattice observable.

B.1. Proof of string order selection rule. We derive (B4) using the MPS formalism; using the
area law for ground states of gapped local Hamiltonians in 1D to justify using these results more
generally [13,108]. The outline of the proof is roughly given in Fig. 9; the complication is the inclusion
of the time-reversal and parity transformations. Together, these act on the MPS tensors to take
Γ → Γ†, allowing us to use the symmetry fractionalisation of C as in Fig. 9(b). Our argument uses
translation-invariance, and we will use this translation symmetry when we act with the P symmetry
on the local tensor contraction (denoted x below)—in particular, we will choose P to invert about the
central bond (or site) of the support of Õ.

5Without loss of generality we can take our inversion P to be real. We expect a similar argument to go through if we
consider the more general case CPK O CPK = ±Õ, since the Z2 implies (CP)† = CP. Moreover, an analogous charge
and selection rule applies in the case where we have a ZP

2 or ZCP
2 symmetry that includes a parity transformation but

does not include time-reversal.
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Take a (translation-invariant) MPS representation of the ground state, with tensors Aj in canonical
form. We can write the correlator in terms of the generalised transfer matrix EX =

∑N−1
j,j′=0Xj′jAj⊗A†

j′

(with the natural generalisation to operators supported on multiple sites). We then have

⟨Σ1ΣM ⟩ = tr
(
EL−M−k

I EÕE
M−k
u EO

)
, (B5)

which can be simplified (up to exponentially small corrections) for large chain length, L, and large
string length, M , as

⟨Σ1ΣM ⟩ ≃
〈
Λ2
∣∣∣EÕ

∣∣∣U〉︸ ︷︷ ︸
x

〈
Λ2U

∣∣EO

∣∣∣I〉︸ ︷︷ ︸
y

. (B6)

This follows from the implicit assumption that the unique dominant eigenvalue of EI is equal to one,
and that

∑
j′ ujj′Aj′ fractionalises to UAjU on the bonds (we can fix the phase so that U = U † since

we have a representation of Z2). This can be seen graphically for k = 2 in Fig. 9(a).
The non-vanishing of the string order means that neither of the two factors in (B6) vanishes. We

will show first that these factors are both equal to the same real number. That is, x = y ∈ R (the
equality is straightforward to see graphically, as in Fig. 9(a)). We then show that a charged endpoint
will cause x to vanish unless there is a non-trivial projective representation of Z2×ZCPT

2 on the bonds.
This is in line with the string order for an on-site Z2 × Z2 symmetry [69].

Define the matrix M̃γδ =
[〈
Λ2
∣∣EÕ

]γδ then

M̃γδ =
∑

Λ2
αAαβ1

j1
Aαβ′

1

j′1

(
k−2∏
m=1

Aβmβm+1

jm+1
Aβ′

mβ′
m+1

j′m+1

)
Aβkγ

jk
Aβkδ

j′k
Õ

j1...jk,j
′
1...j

′
k

(B7)

(where we sum over all indices except γ and δ). Then x =
〈
Λ2
∣∣EÕ

∣∣U 〉 = tr(M̃U). Now, we have that
x = ⟨Λ2|EÕ |U ⟩ = tr(M̃ †U). Using that Õ = Õ† we have that that M̃ † = M̃ and so x ∈ R. We also
have from symmetry fractionalisation that

∑
β A

αβ
j Uβγ =

∑
β,j̃ uj,j̃U

αβAβγ

j̃
. We can then move the U

to the left, at each step applying u to the physical index. This gives us that x = tr(M̃U) = tr(M)

where Mγδ =
[〈
Λ2U

∣∣EO
]γδ; i.e.

Mγδ =
∑

Λ2
αU

αα′Aα′β1
j1

Aαβ′
1

j′1

(
k−2∏
m=1

Aβmβm+1

jm+1
Aβ′

mβ′
m+1

j′m+1

)
Aβkγ

jk
Aβkδ

j′k
Oj1...jk,j

′
1...j

′
k
. (B8)

We recognise the trace of M as y, and hence both factors in (B6) are equal to x ∈ R.
The symmetry fractionalisation of ZCPT

2 is
N−1∑
j′=0

Cj,j′ (Γ
α,β
j′ )† = V Γα,β

j V, (B9)

where we decompose Aα,β
j = Γα,β

j Λβ . Again, since C2 = I we can fix the phase so that V = V †. Just
as in the on-site Z2 ×Z2 case, UV = srV U is a gauge invariant phase that determines the SPT order.

Now, using x = x = tr(M) and U = U † we have

x =
∑

Λ2
αU

α′αAα′β1

j1 Aαβ′
1

j′1

(
k−2∏
m=1

Aβmβm+1

jm+1
Aβ′

mβ′
m+1

j′m+1

)
Aβkγ

jk
Aβkγ

j′k
Oj1...jk,j

′
1...j

′
k
. (B10)

Inserting I = P2 on the physical indices we have:

x =
∑

A†αβ1

j1 AT αβ′
1

j′1

(
k−2∏
m=1

A†βmβm+1

jm+1
AT β′

mβ′
m+1

j′m+1

)
A†βkγ

jk
AT βkγ

′

j′k
Uγγ′

Λ2
γ (POP)j1...jk,j′1...j′k

. (B11)

Finally inserting I = C2 gives

x =
∑

Λ2
αAαβ1

j1
Aαβ′

1

j′1

(
k−2∏
m=1

Aβmβm+1

jm+1
Aβ′

mβ′
m+1

j′m+1

)
Aβkγ

jk
Aβkγ

′

j′k
(V UV )γγ

′
(CPOPC)j1...jk,j′1...j′k . (B12)
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Comparing this expression to x = tr(M̃U) we see that x = scsrx as claimed.

B.2. String order for N = 4. In Section 5.3 we write the string order (50) in terms of the simple
string correlators:

Sa,b = lim
M,L→∞

⟨Za
1Z

−a
2 X2

2 . . . X
2
MZ

b
MZ

−b
M+1⟩. (B13)

Multiplying out the terms that appear for N = 4, the string order (50) is equal to

lim
M,L→∞

⟨Õ0,1

(
M−1∏
j=2

X
N/2
j

)
OM,M+1⟩ =

i

2
(S−1,−1 − S1,1) +

1

2
(S−1,1 + S1,−1) . (B14)

Using the same MPS transfer matrix arguments as in the previous subsection we have that Sa,b is
equal to M (a)M̃ (b), where

M (a) =
∑

Λ2
αAαβ1

j1
Aαβ′

1

j′1
Aβ1γ

j2
Aβ′

1δ

j′2
Za
j1,j′1

(Z−aX2)j2,j′2U
γδ (B15)

M̃ (b) =
∑

Λ2
αU

αα′Aαβ1
j1

Aα′β′
1

j′1
Aβ1γ

j2
Aβ′

1δ

j′2
(X2Zb)j1,j′1Z

−b
j2,j′2

. (B16)

U is the fractionalised Z2 symmetry that acts as X2 on physical indices. Using symmetry fractionali-
sation and that X2Z±1 = −Z±1X2 we have that M (a) = −M̃ (a).

Conjugating M (a) amounts to taking the hermitian conjugate of the physical operator. Since we
have (Za

1Z
−a
2 X2

2 )
† = −Z−a

1 Za
2X

2
2 , we conclude that M (a)

= −M (−a). Putting this together

lim
R→∞

⟨Õ0,1

(
R−1∏
j=2

X
N/2
j

)
OR,R+1⟩ = − Im(M (−1)M

(1)
) +

1

2

(
|M (−1)|2 + |M (1)|2

)
=
i

2
(S−1,−1 − S1,1) + S−1,1. (B17)

Using the fixed-point MPS (37), one can show explicitly that Re(M (1)) = − Im(M (1)). At the fixed-

point this means that the string correlator 1 = limR→∞⟨Õ0,1

(∏R−1
j=2 X

N/2
j

)
OR,R+1⟩ = 2S−1,1. Ac-

cording to our numerics, this relationship continues to hold away from the fixed point. It would be
interesting to establish this analytically using the projective representations.
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