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Abstract

Configurational entropy, or complexity, plays a critical role in characterizing disordered
systems such as glasses, yet its measurement often requires significant computational
resources. Recently, Rényi entropy, a one-parameter generalization of Shannon entropy,
has gained attention across various fields of physics due to its simpler functional form,
making it more practical for measurements. In this paper, we compute the Rényi ver-
sion of complexity for prototypical mean-field disordered models, including the random
energy model, its generalization, referred to as the random free energy model, and the
p-spin spherical model. We first demonstrate that the Rényi complexity with index m
is related to the free energy difference for a generalized annealed Franz-Parisi poten-
tial with m clones. Detailed calculations show that for models having one-step replica
symmetry breaking (RSB), the Rényi complexity vanishes at the Kauzmann transition
temperature TK , irrespective of m > 1, while RSB solutions are required even in the
liquid phase. This study strengthens the link between Rényi entropy and the physics of
disordered systems and provides theoretical insights for its practical measurements.
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1 Introduction31

High-dimensional, rugged (free) energy landscapes are a hallmark of disordered systems, in-32

cluding structural glasses [1–3], spin glasses [4, 5], constraint satisfaction problems [6–8],33

machine learning models [9, 10], and biological systems [11, 12]. A key quantity in under-34

standing these landscapes is the complexity (or configurational entropy), Σ, which quantifies35

the number of metastable states within the landscape, providing crucial insights into the sta-36

tistical characterization of these systems [13,14]:37

Σ=
1
N

logN , (1)

where N is the number of metastable state and N is the number of elements (e.g., particles,38

spins). In this paper, the natural logarithm is used unless otherwise stated. Σ defined in39

Eq. (1) is based on Boltzmann’s view on entropy, i.e., the logarithm of the number of accessible40

states. Alternatively, particularly in thermal equilibrium, one can seeΣ based on Gibbs’ view or41

Shannon’s information-theoretical view [15] using the probability distribution, pα, for finding42

a metastable state α:43

Σ= −
1
N

∑

α

pα log pα. (2)

Σ has been measured numerically, or computed analytically in a wide variety of disordered44

systems [5].45

In structural glasses, Σ is one of the most fundamental quantities in theories of the glass46

transition [16–20]. Σ takes a finite value in a supercooled liquid, and it decreases with de-47

creasing temperature. A sharp reduction of Σ reflects rarefaction of the number of accessible48

metastable states, leading to glassy slow dynamics [18,19]. The mean-field theory of the glass49

transition [17, 20] predicts that when the temperature is decreased further, Σ vanishes at a50

finite temperature TK , called the Kauzmann transition temperature [21,22], where the system51

undergoes a phase transition from a supercooled liquid to an ideal glass.52

Although the complexity provides us with valuable insights into the phenomenology of53

glassy systems, its practical measurement involves multiple difficulties [23]. First, in finite54

dimensions, metastable states are no longer well-defined since the energy barrier between55
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states is finite (unlike mean-field models). Thus, metastable states are meaningful only in a56

short (vibrational) timescale [24]. Second, direct (brute force) counting of metastable states57

is virtually impossible except for very small N (say N ≈ 20) because of an exponentially large58

number of states [25]. Various computational schemes have been proposed to circumvent59

these difficulties [26, 27] (see Ref. [23] for review). For example, the inherent structure for-60

malism approximates the free energy landscape by a potential energy landscape at T → 061

and computes the associated complexity [28–30]. Thermodynamic integration schemes were62

introduced by imposing a harmonic potential to confine the system in a glass state [31, 32].63

Among various proposals, measuring the free energy difference between the liquid and glass64

states, using the so-called Franz-Parisi potential (cf. Sec. 2.5) is the most straightforward and65

theoretically grounded [33–35]. However, computation of the (quenched) Franz-Parisi poten-66

tial requires a thermal average of the system (replica 2) under the external field coupled to a67

reference configuration (replica 1). One then performs averaging over independent reference68

configurations. This double (quenched) average requires huge computational resources [36].69

Thus, in the literature, an annealed version of the Franz-Parisi potential, where two replicas70

evolve on the same timescale (hence, single, annealed, average), is often computed as a proxy71

to the quenched Franz-Parisi potential [37, 38]. Although recent developments in efficient72

sampling algorithms, such as swap Monte-Carlo [39], allow to perform simulations for the73

quenched Franz-Parisi potential, the temperature range and system size is still limited due to74

harsh computational costs [40–42]. Despite the frequent use of the annealed Franz-Parisi po-75

tential, its validity as an approximation of the quenched one has yet to be investigated widely76

(except for earlier numerical simulations [36]).77

The difficulty of measuring the Shannon entropy in Eq. (2) originates from its daunting78

functional form, involving the probability density times the logarithm of the probability density.79

This difficulty also arises in other domains of physics: for example, in quantum many-body80

systems, the Shannon entropy corresponds to the von Neumann entropy, which is a measure81

of quantum entanglement. However, direct measurement of the von Neumann entropy is82

challenging in experiments, simulations, and analytical calculations.83

Recently, there has been growing interest in using the Rényi entropy as an alternative to the84

Shannon entropy [43–53]. The Rényi entropy is a one-parameter generalization of Shannon85

entropy (with the parameter denoted as m here), which was initially proposed in information86

theory [54], defined as87

ΣRenyi(m) =
1

N(1−m)
log

∑

α

(pα)
m. (3)

As explained in detail in Sec. 2.3, the Rényi entropy coincides with the Shannon entropy in88

the limit m → 1. The probability density pα enters the Rényi entropy in Eq. (3) in the form89

of
∑

α(pα)
m, while it enters the Shannon entropy via

∑

α pα log pα. The former functional90

form is simpler than the latter in terms of measurements (in experiments and simulations)91

and analytical calculations. This is one of the main reasons why the Rényi entropy is widely92

used. In quantum many-body systems, the Rényi entropy can also serve as a measure of quan-93

tum entanglement, that can be experimentally measured [43, 44, 55] and is computationally94

less demanding in numerical simulations than the Shannon (or von Neumann) entanglement95

entropy [45–48, 56]. Moreover, computing the Rényi entropy for integer m, it is possible to96

obtain the entanglement entropy by analytic continuation [57]. A similar situation can be97

found in the characterization of chaos in dynamical systems: instead of a direct measurement98

of the Kolmogorov-Sinai entropy, which has essentially the same functional form as the Shan-99

non one, it is convenient to compute the Rényi entropy as a proxy of the former [58–60].100

The Rényi entropy also has applications in non-equilibrium statistical mechanics [49,60–62],101

and is frequently used in ecology and statistics. In particular, Hill’s diversity index (corre-102

sponding to the exponential of the Rényi entropy) characterizes the diversity of a statistical103
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ensemble [50,63]. Recently, Wang and Harrowell [51] proposed structural diversity, inspired104

by biodiversity literature, using the (exponential of) Rényi entropy to characterize various105

crystalline and amorphous materials quantitatively. Aside from these examples, Rényi entropy106

is applied in a wide variety of physics research areas [52,53,64].107

However, the use of Rényi entropy is not just for practical purposes, and its relevance in108

physics is not a coincidence. Characterizing the mean of information content (or logarithm of109

probability) is ubiquitous in physics. In Sec. 2.3, we detail the construction of Rényi entropy110

in terms of a generalized mean of information content possessing the additivity property.111

One of the main goals of this paper is to demonstrate the role of the Rényi entropy in112

the context of disordered systems, along the direction initiated by Kurchan and Levine [65],113

which shows the deep connections between the Rényi entropy and the physics of disordered114

systems. Kurchan and Levine interpret the thermodynamics of the glass transition through115

a Rényi version of the complexity [65] (see also a short review [66]). In particular, they116

clarified the relationship between the Rényi complexity and the so-called Monasson approach117

(see Sec. 2.1). Furthermore, going beyond mean-field, they associated the Rényi complexity118

with frequently repeated amorphous patches in real space structure [67], proposing a practical119

method to estimate the Rényi complexity in finite dimensions [65]. Thus, the Rényi complexity120

is not just a convenient analog of the (Shannon) complexity, but it is an insightful quantity to121

assess fundamental aspects of the glass transition.122

In this paper, we extend the phenomenological arguments put forward by Kurchan and123

Levine and investigate the Rényi complexity of disordered models in detail. First, in section 2.1124

we review the computation of the complexity using the Monasson method. In section 2.3 we125

introduce the Rényi complexity as a generalization of the Shannon one, and in section 2.5126

we leverage the connection between the Rényi complexity and the Monasson approach, to127

demonstrate that the Rényi complexity with index m essentially corresponds to the free en-128

ergy difference of the m-components annealed Franz-Parisi potential in any dimension. We129

then compute the Rényi complexity for several prototypical disordered models: the Random130

Free Energy Model [68] –which encompasses the standard Random Energy Model [69] as a131

specific limit– in section 3, and the p-spin spherical model [70] in section 4. From a technical132

perspective, our computation for the p-spin model follows the approach of Kurchan, Parisi,133

and Virasoro [71], using real replicas with integer m (referred to as clones in our paper),134

but extends this to a more detailed analysis for general real values of m. For each model we135

provide detailed temperature and m dependencies, in the liquid phase above the Kauzmann136

transition. Our computations across all models studied show that all Rényi complexities with137

index m vanish at the same Kauzmann transition temperature, TK . However, the solutions re-138

quire a replica symmetry breaking ansatz, even in the liquid phase, and we provide the phase139

diagram for the RS/RSB transition. Interestingly, the RSB solution satisfies the bound imposed140

by an inequality derived using an information-theoretical approach.141

Our results provide deeper insights into the Rényi complexity in disordered systems, par-142

ticularly in models exhibiting one-step replica symmetry breaking. Additionally, they offer an143

insightful guideline for using the Rényi complexity (and the annealed Franz-Parisi potential)144

as an estimate of complexity in numerical simulations. Furthermore, our study serves as a145

concrete example demonstrating the interdisciplinary connection between the Rényi entropy146

in information theory and theoretical techniques in the physics of disordered systems.147

2 Rényi entropy and related approaches148

We first give a brief pedagogical review of the Monasson approach, before explaining how it149

is connected to the Shannon complexity. This also sets up our notations for later use. We then150
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detail how the Rényi complexity provides a generalization of the Shannon one. Finally we151

introduce the Franz-Parisi potentials and explain that the Rényi complexity corresponds to a152

generalized annealed Franz-Parisi potential.153

2.1 Monasson approach for computing the complexity154

In mean-field theories, a convenient way to compute the complexity Σ is Monasson’s construc-155

tion [72] (see also Refs. [73–76] for reviews). Consider the partition function Z(m) of a system156

composed of m (real number) clones belonging to the same metastable state specified by α:157

Z(m) =
∑

α

e−mβN fα(T ) =

∫

d f exp [−N {mβ f −Σ( f , T )}]

≈ exp [−N {mβ f∗(T, m)−Σ( f∗(T, m), T )}] , (4)

where fα(T ) is the free energy density of the metastable state α, and β = 1/T is the inverse158

temperature. Σ( f , T ) is given by159

Σ( f , T ) = 1
N logN ( f , T ) with N ( f , T ) =

∑

αδ( f − fα(T )), where δ(x) is the Dirac delta160

function. In the last equality, we performed the saddle-point approximation, so that f∗(T, m)161

is given by the saddle-point condition,162

mβ = ∂Σ( f , T )/∂ f | f= f∗(T,m). (5)

The free energy per element, φ(m) is given by163

βφ(m) = −
1

mN
log Z(m)≈ β f∗(T, m)−

1
m
Σ( f∗(T, m), T ). (6)

The differentiation of φ(m) with respect to m nicely decomposes the two contributions in164

Eq. (6) as165

Σ( f∗(T, m), T ) = m2 ∂

∂m
βφ(m), (7)

f∗(T, m) =
∂

∂m
mφ(m), (8)

where we have used Eq. (5). In particular, Eq. (7) allows one to extract the complexity, Σ,166

above TK by taking the m→ 1 limit,167

Σ= lim
m→1

m2 ∂

∂m
βφ(m). (9)

Below TK instead, m∗ < 1 is chosen such that Σ( f∗(T, m∗), T ) = 0.168

Thus, the computation of Σ boils down to the computation of βφ(m), which is the free169

energy of the system composed of m clones belonging to the same metastable glass state. In170

practice, to compute βφ(m) from the microscopic Hamiltonian Ei , where i specifies config-171

uration, one needs to constrain m clones in the same state. This is realized, for instance, by172

introducing an overlap q and computing the free energy and associated partition function in173

a constrained ensemble [73], as given by174

βφ(m, q) = −
1

mN
log Z(m, q), (10)

Z(m, q) =
∑

i1

∑

i2

· · ·
∑

im

e−β
�

Ei1+Ei2+···+Eim

� m
∏

a<b

δ(q− q̂ia ,ib
), (11)
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where q̂ia ,ib
is an overlap function characterizing similarity between configurations ia and ib.175

When ia and ib are similar q̂ia ,ib
≈ 1, whereas q̂ia ,ib

≈ 0 when ia and ib are distinct. · · · denotes176

a disordered average if needed, e.g., in cases of spin glasses with disordered couplings. Ideally,177

we wish to compute βφ(m, q) for a given disorder, as the above argument stands on such a178

situation. Yet, in practice, thanks to the self-averaging property, at the thermodynamic limit,179

one can equivalently obtain βφ(m, q) by Eq. (10) with the disordered average. To extract180

Σ at m → 1, one can use log Z(m, q) instead of log Z(m, q) for simple models such as the181

p-spin model. Yet this is not generally correct [76]. When m ̸= 1, the distinction between182

log Z(m, q) and log Z(m, q) is crucial, even for the p-spin model, as the latter must be used for183

the Monasson approach and the computation of Rényi complexity, while the former is related184

to the large deviation function of the free energy [77–80] (see further discussions below). In185

systems with continuous variables, such as spherical models, the summations in Eq. (11) are186

replaced by integrals.187

In practice, to constrain m clones in a metastable glass state at a given temperature T ,188

we set the prescribed overlap q to the finite value q = qEA(T ), where qEA(T ) (often satisfying189

qEA ≈ 1) is the Edwards-Anderson parameter at temperature T . Using Eqs. (9) and (10), one190

then extracts the complexity asΣ(T ) = Σ(qEA(T )), withΣ(qEA) = limm→1 m2 ∂
∂mβφ(m, qEA).(12)191

192

We then obtain the complexity Σ(q) as a function of q, given by193

Σ(q) = lim
m→1

m2 ∂

∂m
βφ(m, q). (13)

Below Mode-Coupling dynamic transition temperature Tmct, the second (local) minimum ap-194

pears in Σ(q), which provides the solution constraining m clones (with m→ 1) in a metastable195

glass state. This corresponds to the Edwards-Anderson parameter qEA(T ) [81], which charac-196

terizes the random freezing of degrees of freedom in the physical system under consideration.197

The identification between the overlap parameter in replica computations and the physical198

Edwards-Anderson parameter is non-trivial and reflects the construction of the replica sym-199

metry (breaking) ansatz (see Ref. [82] for a pedagogical discussion). Finally, we obtain the200

complexity as a function of temperature T ,201

Σ(T ) = Σ(qEA(T )). (14)

202

2.2 Shannon expression of the complexity203

The Monasson construction allows one to compute the complexity in Shannon’s information204

view based on the probability distribution, as given by Eq. (2). Indeed, consider the partition205

function of the original system with m = 1, Z(m = 1) =
∑

α Zα, where Zα = e−βN fα(T ) is the206

partition function restricted to a metastable state α. The probability distribution pα for finding207

a metastable state α can be defined as208

pα =
Zα

Z(m= 1)
=

e−βN fα(T )

Z(m= 1)
. (15)

Then,209

−
1
N

∑

α

pα log pα = β
∑

α

pα fα(T ) +
1
N

log Z(m= 1) = β f∗(T, m= 1)− βφ(m= 1)

= lim
m→1
Σ( f∗(T, m), T ). (16)
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We used
∑

α pα fα(T ) = f∗(T, m = 1), βφ(m = 1) = − 1
N log Z(m= 1), and Eq. (6). Equa-210

tion (16) is nothing but the complexity computed with Monasson’s method. We then conclude211

Σ= −
1
N

∑

α

pα log pα =
1
N

∑

α

pα Iα, (17)

where Iα = − log pα is the information content or magnitude of surprise. This equation pro-212

vides us with Shannon’s information-theoretical view on the complexity. If one observes a213

metastable state with a very small probability pα, one gets a surprise, and hence, it is in-214

formative. Instead, if one observes a state with high pα, it would not be surprising and not215

informative, because it takes place very often. Thus, Σ based on Eq. (17) quantifies a mean of216

the information content. It also quantifies the magnitude of uncertainty on average. At higher217

temperatures, it is uncertain which state one observes among an exponentially large number218

of metastable states; hence, the mean information contentΣ is large. Instead, at lower temper-219

atures, in particular below TK , one would always observe the system in the unique stable state220

(actually a subexponential number of stable states). Hence, the mean information content is221

zero.222

2.3 Rényi complexity223

Given the above considerations, the Rényi entropy corresponds to a one-parameter general-224

ization of the Shannon entropy, whose construction, motivation, and interpretation can be225

understood by considering two key aspects (such details on the Rényi entropy are discussed226

in a recent review [83].)227

• Generalized mean of information content. As we emphasized above, the Shannon entropy228

is nothing but a mean value of the information content Iα, using the standard arithmetic229

mean (or linear average). However, the notion of mean is not limited to arithmetic mean.230

In fact, there are various other types of means, such as the geometric mean, harmonic231

mean, and root mean square (non-linear averages). For example, one encounters the232

harmonic mean when computing the equivalent resistance of parallel electrical circuits.233

Recall also that the root mean square is one of the most used means to analyze data in234

science and technology. Kolmogorov and Nagumo generalized the concept of the mean235

further using a wider class of functional forms [84, 85], which allows one to define a236

more general measure of averaged information content.237

• Additivity. One can then define a generalized entropy using a generalized mean. How-238

ever, as a quantity of information, one wishes to have an entropy with the property of239

additivity for independent events, namely, if two random variables A and B are indepen-240

dent, an entropy S(A, B) of their joint distribution is the sum of their individual entropies,241

S(A, B) = S(A) + S(B). This is called additivity which serves as a fundamental (desired)242

property in information theory. The additivity is also naturally expected for the thermo-243

dynamic entropy in physical systems. We also note that in contrast to the Rényi entropy,244

other generalized entropies, such as the Tsallis entropy, do not satisfy additivity [86–89].245

Alfréd Rényi searched for a generalized entropy using the concept of generalized mean,246

while keeping the additivity condition, and obtained the entropy that is now called the Rényi247

entropy [54]. In our current setting (with the disordered average), we now define the Rényi248

complexity, ΣRenyi(m), by249

ΣRenyi(m) =
1

N(1−m)
log

∑

α

(pα)m, (18)

7
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where m is the Rényi index with 0 < m <∞ and m ̸= 1. The Renyi complexities, ΣRenyi(0),250

ΣRenyi(1), and ΣRenyi(∞) are defined as the corresponding limits of ΣRenyi(m) for m → 0,251

m→ 1, and m→∞, respectively. In this study, we mainly consider m> 1.252

The m→ 1 limit corresponds to the (Shannon) complexity, as one can easily check using253

l’Hôpital’s rule:254

lim
m→1
ΣRenyi(m) = lim

m→1

1
N(1−m)

log
∑

α

(pα)m = lim
m→1

∂
∂m log

∑

α(pα)m

−N

= lim
m→1

1
∑

α(pα)m
∑

α
∂
∂m em log pα

−N
= −

1
N

∑

α

pα log pα = Σ. (19)

The m→∞ limit corresponds to the so-called min-entropy, ΣRenyi
∞ = limm→∞Σ

Renyi(m).255

When m is very large, the state with the highest propbability, maxα{pα}, dominates the sum-256

mation, i.e.,
∑

α(pα)
m ≈ (maxα{pα})m. Thus at m→∞, one obtains257

Σ
Renyi
∞ = −

1
N

log max
α
{pα}=

1
N

min
α
{− log pα}. (20)

In particular, using Eq. (15), one gets258

Σ
Renyi
∞ = β fL(T )− βφ(m= 1), (21)

where fL(T ) =minα{ fα(T )} is the lowest free energy at a given temperature T .259

2.4 General properties of Rényi complexity260

We summarize the properties of the Rényi complexity (or Rényi entropy in general) that are261

relevant to this paper (see Ref. [83] for other interesting properties).262

First, ΣRenyi(m) is a non-increasing function as one can check,263

∂ΣRenyi(m)
∂m

≤ 0. (22)

Thus, ΣRenyi(m) is bounded by ΣRenyi
∞ from below, i.e., ΣRenyi

∞ ≤ ΣRenyi(m). For m > 1, one264

can also obtain an upper bound. In general,
∑

α(pα)
m ≥ maxα{ (pα)m} = (maxα{pα})m.265

Using the definition of the Rényi entropy in Eq. (18) and min-entropy in Eq. (20), we get266

ΣRenyi(m)≤ m
m−1Σ

Renyi
∞ . To summarize, when m> 1, we have267

Σ
Renyi
∞ ≤ ΣRenyi(m)≤

m
m− 1

Σ
Renyi
∞ . (23)

As it is clear from the derivation, the upper bound is realized when the summation is com-268

pletely dominated by the state with the highest probability or lowest free energy. In general, a269

larger value of m in ΣRenyi(m) tends to discriminate or highlight states with larger probability,270

while a smaller value of m tends to take into account states with finite probabilities in a rather271

equal manner. Thus, varying m from the Shannon entropy limit m→ 1 corresponds to biasing272

(m> 1) or unbiasing (m< 1) the original probability distribution.273

2.5 Franz-Parisi potentials274

We now explain the relation between the Rényi complexities and the Franz-Parisi potentials.275

The Franz-Parisi potential, V (q) [33, 34, 90], corresponds to the Landau free energy for the276

glass transition. It is a function of the order parameter q associated with the Kauzmann ideal277
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glass transition, namely the overlap function that we introduced in section 2.1. According278

to mean-field theories, at high temperatures, V (q) shows a single minimum near q ≈ 0,279

which corresponds to the liquid state. Below Mode-Coupling dynamic transition temperature280

Tmct, V (q) develops a second minimum at a finite overlap (the Edwards-Anderson parame-281

ter) q = qEA ≈ 1 corresponding to the metastable glass state. The second minimum (hence282

V (qEA)) decreases with decreasing temperature and coincides with V (q ≈ 0) (which is often283

set to zero) at TK , showing a first-order-transition-like behavior. Yet, the complexity Σ remains284

continuous without latent heat. Therefore, this type of transition is unique to disordered glassy285

systems and is called “random first-order transition” (RFOT) [18,19]. The free energy differ-286

ence between the liquid and glass states amounts to the complexity (times temperature) [33],287

namely,288

Σ= β [V (qEA)− V (q ≈ 0)] . (24)

This equation provides an alternative interpretation of the complexity as a free energy differ-289

ence in the Franz-Parisi potential. The random-first-order transition scenario is not restricted290

to structural glasses. Similar phenomenologies are observed in a wide variety of problems. In291

fact, the original RFOT argument was constructed based on a class of mean-field spin glasses292

showing one-step replica symmetry breaking [91,92].293

Franz-Parisi potentials can be defined by the quenched way, denoted as βV Quench(q) and294

the annealed way, denoted as βV Anneal(q):295

βV Quench(q) = −
1
N

∑

i1

e−βEi1

Z
log

∑

i2

e−βEi2

Z
δ(q− q̂i1,i2), (25)

βV Anneal(q) = −
1
N

log
∑

i1

∑

i2

e−β
�

Ei1+Ei2

�

(Z)2
δ(q− q̂i1,i2). (26)

In the quenched construction, firstly, equilibrium configuration i1 is sampled by e−βEi1/Z ,296

which serves as a reference or template configuration. On top of that, the target configu-297

ration i2 is sampled according to e−βEi2/Z , while the configuration i1 is fixed permanently or298

quenched, together with measuring overlap q̂i1,i2 between i1 and i2. Thus, it requires a double299

average (for a given disorder if it exists), which is computationally demanding in practice.300

We note that, in general, the sampling temperatures for i1 and i2 can be different, and this301

difference was exploited in some cases [41, 42]. Yet we consider that both temperatures are302

the same for simplicity in this paper.303

In the annealed construction, instead, both configurations, i1 and i2, are sampled at the304

same time. In other words, two clones i1 and i2 evolve with the same timescale. Therefore, it305

has only one average operation (again, for a given disorder), reducing the computational cost306

significantly compared with the quenched construction. Indeed, previous literature performed307

molecular simulations under the annealed construction and measured βV Anneal(q) to get a308

proxy of βV Quench(q) [37,38].309

In the annealed construction above, we considered two clones evolving on the same timescale.310

One can generalize this setting to the m clones setting. Namely, one can define the m-annealed311

Franz-Parisi potential, βV Anneal(m, q), given by312

βV Anneal(m, q) = −
1
N

log
∑

i1

∑

i2

· · ·
∑

im

e−β
�

Ei1+Ei2+···+Eim

�

(Z)m

m
∏

a<b

δ(q− q̂ia ,ib
). (27)

One notices that this m-clones setting is conceptually very similar to the Monasson construction313

with m clones (see Sec. 2.1). Indeed, with Eqs. (10) and (11), one can rewrite Eq. (27) as314

βV Anneal(m, q) = m [βφ(m, q)− βφ(m= 1)] . (28)
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Thus, βV Anneal(m, q) is expressed by the difference of the free energy per element for the315

m-clones and the original (single) system.316

2.6 Rényi complexity and m-annealed Franz-Parisi potential317

Now we are in a position to derive the connection between the Rényi complexity defined in318

Eq. (18) and the m-annealed Franz-Parisi potential defined in Eq. (27). We wish to compute319

ΣRenyi(m, q) with a constraint by the overlap q, similar to the argument in Eq. (14). Using320

Eqs. (18) and (15) with the constraint, we get321

ΣRenyi(m, q) =
1

N(1−m)

�

log Z(m, q)−mlog Z(m= 1)
�

=
m

m− 1
[βφ(m, q)− βφ(m= 1)] . (29)

Thus,ΣRenyi(m, q) is expressed by the difference of the free energy per element for the m-clones322

and the original (single) system. Namely, Eq. (29) demonstrates the relationship between the323

Rényi complexity and the Monasson approach as clarified by Ref. [65]. In particular, it is now324

clear that the Rényi index is nothing but the number of clones in the Monasson approach.325

By comparing Eq. (28) and (29), we arrive at326

ΣRenyi(m, q) =
1

m− 1
βV Anneal(m, q). (30)

To conclude, the Rényi complexity with the index m corresponds to the m-annealed Franz-327

Parisi potential with a factor 1/(m− 1).328

In the following sections, we will compute the Rényi complexity in detail for prototypical329

mean-field disordered models, the Random Free Energy Model and the p-spin spherical model.330

3 Random Free Energy Model331

3.1 Definition of the model332

As a simple example to illustrate the evaluation of the Rényi complexity, we first consider333

a slight generalization of the Random Energy Model in which the energies of the different334

configurations are interpreted as the free energies Fα = N fα of metastable states, where N335

is the underlying number of degrees of freedom (that are not described explicitly). We call336

this model Random Free Energy Model (RFEM), taking inspiration from the Random Energy337

Random Entropy Model of Ref. [68]. The case of the standard Random Energy Model (REM)338

[69] is a specific limit of the RFEM, as will appear clearly below. The reason we study the339

RFEM instead of the standard REM is that the RFEM provides clear distinctions among total340

entropy stot, complexity Σ, and vibrational entropy svib (or glass entropy for a metastable341

state). This makes it a useful model for illustrating the essence of the Monasson approach and342

for computing the Rényi complexities, while analytically tractable. In contrast, the standard343

REM has total entropy that is entirely configurational, i.e., stot = Σ, lacking any vibrational344

entropy component.345

The free energy distribution ρ( f ) from which the free energy densities fα are randomly346

drawn is now a Gaussian distribution with a temperature-dependent variance J2(T )/N ,347

ρ( f ) =

√

√ N
2πJ2(T )

exp

�

−
N( f − f0)2

2J2(T )

�

. (31)

10
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We denote as MN the total number of metastable states for a system of size N , and we assume348

that MN grows exponentially with N , as MN ∼ eλN . For the sake of simplicity, the parameter λ349

is assumed to be temperature-independent. It should not be confused with the complexity Σ,350

which takes into account the probability weight∝ e−βN fα of the different metastable states.351

In the usual REM [69], configurations implicitly correspond to 2N spin configurations as in352

an Ising spin model, so that λ = log 2. In the RFEM, the sum is over metastable states which353

contain part of the system entropy as vibrational entropy, so that 0 < λ < log2. The value of354

λ will be determined below.355

To get some insights on the temperature dependence of the parameter J(T ), we focus for356

simplicity on the RFEM derived from the Random Energy Random Entropy Model [68]. In357

this simple model, metastable states are assumed to have both a random energy density ϵα358

and a random entropy density sα drawn from Gaussian distributions, so that fα = ϵα − Tsα.359

Both ϵα and sα are temperature-independent. We assume ϵ = 0, ϵ2 = J2
0/N , s = s0 and360

Var(s) = s2 − s2
0 = σ

2/N , where J0 and σ are two temperature-independent parameters. The361

distribution of fα is thus the Gaussian distribution in Eq. (31), with362

f0 = −Ts0, J2(T ) = J2
0 + T2σ2. (32)

The calculations performed below can in principle be done keeping J(T ) as a generic increasing363

function of T . However, to get tractable explicit expressions for physical observables like the364

typical free energy or the complexity, it is convenient to use the specific parametrization of J(T )365

in Eq. (32). In the following, we thus keep the notation J(T ) as long as expressions remains366

simple with a generic J(T ), and then switch to the specific expression given in Eq. (32).367

3.2 Thermodynamic free energy and entropy368

To evaluate the thermodynamic free energy and entropy of the system, we introduce the par-369

tition function of the model, given by370

Z =
MN
∑

α=1

e−βN fα , (33)

The (total) thermodynamic free-energy density, ftot, averaged over the disorder is then given by371

ftot = −T N−1log Z . The disorder-averaged quantity log Z in the REM may be evaluated using372

the replica trick [93]. However, a standard approach when considering REM-type models is373

to introduce the density of states of a typical sample [69]. We define the density n( f ) of374

metastable states with free energy f . Averaging over disorder, we have for large N375

n( f )∼ eN[λ−( f − f0)2/2J2(T )]. (34)

The average density of states is exponentially large in N over the interval fmin < f < fmax,376

where377

fmin = f0 −
p

2λJ(T ), fmax = f0 +
p

2λJ(T ). (35)

Outside this interval, the average density of states n( f ) is exponentially small in N , meaning378

that in a typical sample of the disorder in a large system, there are no states outside the379

interval [ fmin, fmax]. The density of state ntyp of a typical sample can thus be approximated as380

ntyp ≈ n( f ) for f ∈ [ fmin, fmax] and ntyp = 0 for f /∈ ( fmin, fmax). The partition function of a381

typical sample can thus be evaluated as382

Ztyp ≈
∫ fmax

fmin

d f ntyp( f )e
−N f /T ≈

∫ fmax

fmin

d f e−N g( f ), (36)

11
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where we have introduced the function383

g( f ) = −λ+
( f − f0)2

2J2(T )
+

f
T

. (37)

We then perform the usual approximation, ftot ≈ −T N−1 log Ztyp.384

From Eq. (36), Ztyp can be evaluated by a saddle-point calculation. The value f∗ that385

minimizes g( f ) over the entire real axis is given by386

f∗ = f0 −
J2(T )

T
, (38)

leading to387

g( f∗) = −λ+
f0
T
−

J2(T )
2T2

. (39)

We now need to compare f∗ with fmin. When f∗ > fmin, the typical free energy density388

ftot = −
T
N log Ztyp is obtained from the saddle-point calculation, ftot = T g( f∗). Using Eqs. (35)389

and (38), the condition f∗ > fmin is equivalent to T > J(T )/
p

2λ. To get an explicit condition390

on the temperature, we use the parametrization of J(T ) in Eq. (32). We then find that the391

condition f∗ > fmin boils down to T > TK , where TK = J0/
p

2λ−σ2, provided that λ > σ2/2,392

a condition assumed to hold in the following. In contrast, when f∗ < fmin, corresponding to393

the low-temperature regime T < TK , the free energy is given by the contribution of the lower394

bound of the integral, ftot = T g( fmin). It is also useful to compute the total thermodynamic395

entropy, stot = −∂ ftot/∂ T , from the knowledge of the free energy ftot. For T > TK , one finds396

ftot = −T (λ+
σ2

2
)−

J2
0

2T
+ f0, stot = λ+

σ2

2
−

J2
0

2T2
+ s0. (40)

It follows that for T →∞, the total thermodynamic entropy density goes to s∞ = λ+
σ2

2 + s0.397

Assuming that the RFEM effectively describes a spin model with 2N spin configurations, one398

has s∞ = log2, which fixes the parameter λ to the value,399

λ= log 2− s0 −
σ2

2
. (41)

The condition λ > σ2/2 then imposes the constraint σ2 < log2 − s0, which also fixes the400

range of s0 to 0 < s0 < log2. In the following, we assume that the condition σ2 < log2− s0401

is satisfied1. Note that the REM case corresponds to s0 = 0 and σ = 0 (i.e., metastable states402

boil down to single configurations with zero glass –or vibrational– entropy), and one recovers403

the result λREM = log 2. For σ2 < log 2− s0, the glass transition temperature TK thus reads404

TK =
J0

p

2(log2− s0 −σ2)
. (42)

For T < TK , the free energy ftot and thermodynamic entropy stot read as405

ftot = f0 −
q

(2 log2− 2s0 −σ2)(J2
0 + T2σ2), stot = s0 +σ

2T

√

√

√
2 log2− 2s0 −σ2

J2
0 + T2σ2

. (43)

1Note that for log 2− s0 ≤ σ2 < 2 log 2− 2s0 (the upper bound corresponds to the condition λ > 0), the glass
transition temperature is infinite and the model is glassy at all temperature.
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3.3 Complexity406

We now evaluate the complexity counting the exponential number of metastable states at407

temperature T . To perform this calculation, we follow Monasson’s approach [72], as recalled408

in Sec. 2.1. We thus introduce the partition function Z(m) of m clones,409

Z(m) =
MN
∑

α=1

e−mβN fα , (44)

as well as the corresponding m-clone free energy,410

φ(m) = −
1

mβN
log Z(m). (45)

In practice, we replace log Z(m) in the definition of φ(m) by log Ztyp(m) defined as411

Ztyp(m) =

∫ fmax

fmin

d f e−N g(m, f ), (46)

with412

g(m, f ) = − log 2+ s0 +
σ2

2
+
( f − f0)2

2J2(T )
+

mf
T

. (47)

Following the same reasoning as in Sec. 3.2, the value f∗(m) minimizing g(m, f ) reads413

f∗(m) = f0 −
mJ2(T )

T
. (48)

Using Eq. (32) and assuming σ2 < 2(log2− s0)/(1+m2), the condition f∗(m)> fmin is equiv-414

alent to T > Tc(m), with415

Tc(m) =
J0

Ç

2 log 2−2s0−σ2

m2 −σ2
. (49)

We note that Tc(m = 1) = TK , where TK is the Kauzmann transition temperature defined in416

Sec. 3.2.417

One then finds for the m-clone free-energy,418

φ(m) =











T/m g(m, fmin) = −(2 log 2− 2s0 −σ2)1/2 J(T ) + f0, if T < Tc(m)

T/m g(m, f∗(m)) = −
T

2m(2 log 2− 2s0 −σ2)− m
2T J2(T ) + f0 if T > Tc(m).

(50)

In contrast, ifσ2 ≥ 2(log2−s0)/(1+m2), or equivalently, m≥
p

(2 log2− 2s0 −σ2)/σ, the419

condition f∗(m)< fmin is satisfied for all temperature, meaning that Tc(m) is actually infinite.420

In the following, we focus on the case when Tc(m) is finite, but the results straightforwardly421

generalize to the case of an infinite Tc(m).422

According to Eq. (9), the configurational entropy Σ is obtained from φ(m) as Σ= βφ′(1).423

We thus get,424

Σ=











0 if T < TK

log 2− s0 −σ2 − J2
0

2T2 if T > TK .

(51)

One can check that Σ→ 0 when T → T+K .425
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One may also evaluate the vibrational entropy, svib = stot −Σ. Using Eqs. (40), (43), and426

(51), one obtains427

svib =











s0 +σ2T
È

2 log 2−2s0−σ2

J2
0+T2σ2 if T < TK

s0 +σ2 if T > TK .

(52)

One thus has a nonzero vibrational entropy in the glassy phase, which goes to zero when428

T → 0. Note also that svib is continuous at TK .429

3.4 Rényi complexity430

We now finally evaluate the Rényi complexity as431

ΣRenyi(m, T ) =
mβ

m− 1
[φ(m)−φ(1)], (53)

where m > 1 is now a fixed parameter. The Rényi complexity can readily be evaluated us-432

ing Eqs. (50). As Tc(m) > TK for m > 1, three different temperature regimes have to be433

distinguished, namely T < TK , TK < T < Tc(m), and Tc(m)< T . One finds434

ΣRenyi(m, T ) =



































0 if T ≤ TK ,

mJ4
0

2(m−1)T2

�

1+T/TK

J(T )+T
p

2 log 2−2s0−σ2

�2
�

1− T
TK

�2
if TK < T ≤ Tc(m),

log2− s0 − (1+m)σ
2

2 −
mJ2

0
2T2 if Tc(m)< T.

(54)

We plot the obtained ΣRenyi(m, T ) in Fig. 1a, for s0 → 0 and σ =
p

log 2/2. For m → 1,435

ΣRenyi(m, T ) converges to the standard complexity Σ(T ) evaluated in Sec. 3.3. Σ(T ) mono-436

tonically decreases with a concave manner as the temperature is decreased and vanishes at437

the Kauzmann transition temperature TK > 0, which is a well-known behavior. When m is438

increased from 1, ΣRenyi(m, T ) decreases at a given T , which is a general property of the439

Rényi entropy, as mentioned in Sec. 2.4 (see also Ref. [83]). We note that, in the regime440

TK < T ≤ Tc(m), the expression of ΣRenyi(m, T ) contains the solution associated with one step441

replica symmetry breaking, despite the fact that the system is above TK (this will become clear442

in the p-spin spherical model in Sec. 4). We thus plot ΣRenyi(m, T ) in this intermediate regime443

by the solid curves. The temperature dependence of ΣRenyi(m, T ) has interesting behaviors.444

It becomes milder with increasing m. In particular, the concavity seen as m → 1 turns into445

convex behavior. Nevertheless, ΣRenyi(m, T ) vanishes at the same TK irrespective of m. These446

results suggest that an accurate measurement of ΣRenyi(m, T ) can provide a good estimate of447

the location of TK .448

Moreover, for arbitrary m> 1, the m−dependence factorizes in the regime, TK < T ≤ Tc(m),449

so that:450

ΣRenyi(m, T ) =
m

m− 1
Σ

Renyi
∞ (T ), ∀m> 1, TK < T ≤ Tc(m), (55)

where ΣRenyi
∞ (T )is the min-entropy defined in section 2.3. As shown in Eq. (23) in Sec. 2.4,451

Σ
Renyi
∞ (T ) provides us with lower and upper bounds on ΣRenyi(m, T ) (when m > 1) . In-452

terestingly, from Eq. (55), we find that ΣRenyi(m, T ) reaches its upper bound in the range453

TK < T ≤ Tc(m). This means that in this range, the state with the highest probability or454

lowest free energy (for a given T) completely dominates the contribution to ΣRenyi(m, T ).455

The above observations also hold for the p−spin model, as we derive in section 4.456
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(a) RFEM with σ =
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(b) Special case of the REM, σ = 0.

Figure 1: Rényi complexities for the RFEM model in the limit s0 → 0. The solid
(dashed) curves correspond to the regimes below (above) Tc(m) in Eq. (54).

3.5 Special case of the REM457

As explained above, the RFEM reduces to the Random Energy Model when s0 = 0 and σ = 0.458

In that case we simply have Tc(m) = m TK = m J0/
p

2 log 2. This can be readily seen from the459

fact that, when fα = ϵα is temperature-independent, the cloned partition function in Eq. (44)460

satisfies Z(m, T ) = Z(m= 1, T/m).461

As expected, the complexity becomes equal to the thermodynamic total entropy,462

Σ= log2−
J2

0

2T2
= stot, (56)

while the vibrational entropy in Eq. (52) vanishes, svib = 0. The Rényi complexities in Eq. (54)463

read464

ΣRenyi(m, T ) =































0 if T ≤ TK ,

mJ2
0

2(m−1)T2

�

1− T
TK

�2
if TK < T ≤ m TK ,

log 2− mJ2
0

2T2 if m TK ≤ T

(57)

and are plotted in Fig. 1b.465

One may think that the fact that TK does not depend on m is at odds with the phase diagram466

drawn by Gardner and Derrida in terms of the number of replicas versus temperature [94].467

This difference comes from the fact that they studied the thermodynamics of log Z(m) (m= ν468

in their paper) while our Rényi setting uses log Z(m). As will be clear for the p−spin model,469

the former involves a replica symmetric (RS) transition in the regime of TK < T ≤ mTK when470

m > 1. Yet, RS is not the correct saddle point to compute log Z(m), and we need a 1RSB471

solution even in the liquid phase. We also note that log Z(m) is related to the scaled cumu-472

lant generating function in large deviation theory [77–80], which encodes sample-to-sample473

fluctuations of (total) free energy density.474
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4 p-spin spherical model475

4.1 Definition of the model476

We next study the p-spin spherical model [70], defined by the Hamiltonian,477

H = −
∑

1≤i1<···<ip≤N

Ji1···ip σi1 · · ·σip − h
N
∑

i=1

σi , p ≥ 3 (58)

with N continuous spin variables σi ∈ R that satisfy the spherical constraint
∑N

i=1σ
2
i = N .478

The Ji1···ip are frozen random couplings drawn from479

ρ(Ji1···ip) =

√

√N p−1

πp!
exp

�

−
1
2

2N p−1(Ji1···ip)
2

p!

�

. (59)

For introductions to the p−spin model see e.g., Refs. [75, 80, 82]. We will focus mainly on480

the case p = 3 with no external field, h = 0. In that case the Kauzmann and mode-coupling481

transition temperatures are given respectively by TK ≈ 0.586 and Tmct =
p

3/8≈ 0.612.482

4.2 Replica computation of the Rényi complexity483

We recall that the goal is to compute the following Rényi complexity.484

ΣRenyi(m) =
1

N(1−m)
log

∑

α

(pα)m =
1

N(1−m)
log

∑

α

�

e−βN fα(T )

Z(m= 1)

�m

=
1

N(1−m)

�

log Z(m)−mlog Z(m= 1)
�

=
m

m− 1
[βφ(m)− βφ(m= 1)] . (60)

Thus, the main task here is to compute βφ(m) = − 1
mN log Z(m), which requires the replica485

trick:486

log Z(m) = lim
n→0

1
n

log (Z(m))n. (61)

Using standard techniques (see Ref. [82]), one can express (Z(m))n by487

(Z(m))n =

 

∏

a ̸=b

∫

dOab

!

exp [−NG({Oab})] , (62)

G({Oab}) = −
β2

4

mn
∑

a,b

(Oab)
p −

1
2

log det O−
mn
2
(1+ log2π), (63)

where G({Oab}) is the action and Oab is (the elements of) the mn×mn overlap matrix. The488

above expressions are obtained by replacing n by mn in the standard computation for the489

p-spin model reviewed in Ref. [82]: the system is now composed of m clones, each having490

n replicas. We note that the number of replicas per clone, n, arises from the replica trick in491

Eq. (61), with the limit n→ 0 applied afterward, whereas the number of clones, m, remains492

a fixed parameter. Thus, clones are sometime referred to as real replicas [71], to distinguish493

them from the usual replicas counted by n. Different values of m will be explored in the phase494

diagram (see below).495
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4.2.1 Replica ansatz496

The overlaps entering the matrix O are then non-trivial, even above TK , and should be carefully497

determined. Following Refs. [71,95], we assume that O is given by a m×m block matrix (m= 3498

in the example below),499

O =





Q P P
P Q P
P P Q



 , (64)

where Q and P are n× n matrices. Q characterizes overlaps between replicas from the same500

clone, whereas P represents overlaps between replicas from different clones. Under this as-501

sumption, one can express the terms in Eq. (63) by Q and P as follows.502

mn
∑

a,b

(Oab)
p = m

n
∑

a,b

(Qab)
p +m(m− 1)

n
∑

a,b

(Pab)
p, (65)

logdet O = log
�

det
�

(Q− P)m−1
�

det (Q+ (m− 1)P)
�

= (m− 1) logdet(Q− P) + log det (Q+ (m− 1)P) . (66)

Hence, Eq. (63) becomes503

G ({Qab}, {Pab}) =−
β2

4



m
n
∑

a,b

(Qab)
p +m(m− 1)

n
∑

a,b

(Pab)
p





−
1
2
(m− 1) logdet(Q− P)−

1
2

log det (Q+ (m− 1)P)−
mn
2
(1+ log 2π),

(67)

which is valid for generic Q and P.504

We now make further assumptions in the form of Q and P. In particular, we consider the505

following 1RSB form for Q and P [71,95], composed of submatrices:506

Q1RSB =















1 q1 q1 q0 q0 q0
q1 1 q1 q0 q0 q0
q1 q1 1 q0 q0 q0

q0 q0 q0 1 q1 q1
q0 q0 q0 q1 1 q1
q0 q0 q0 q1 q1 1















, P1RSB =















p2 p1 p1 p0 p0 p0
p1 p2 p1 p0 p0 p0
p1 p1 p2 p0 p0 p0

p0 p0 p0 p2 p1 p1
p0 p0 p0 p1 p2 p1
p0 p0 p0 p1 p1 p2















. (68)

Each submatrix has size x × x (n= 6 and x = 3 in the above example). We assume that Q1RSB
507

and P1RSB share the same value of parameter x .508

For Q1RSB, the diagonal elements correspond to the overlap between the same replicas509

from the same clone, which is set to one. Off-diagonal elements instead correspond to overlaps510

between different replicas from the same clone, parameterized by q0 and q1. For P1RSB, instead,511

the diagonal elements p2 correspond to the overlap between the same replica index yet from512

different clones. Off-diagonal elements, p0 and p1, are overlaps between different replicas513

from different clones. Note that when computing the partition function by the saddle-point514

approximation (see next subsection), the overlaps, as well as the submatrix size x , become515

variational parameters, whereas the number of clones m remains fixed.516

We next compute the terms in Eq. (67) using the 1RSB matrices Q1RSB and P1RSB. One517
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finds518

n
∑

a,b

�

Q1RSB
ab

�p
= n+ n(x − 1)(q1)

p + n(n− x)(q0)
p, (69)

n
∑

a,b

�

P1RSB
ab

�p
= n(p2)

p + n(x − 1)(p1)
p + n(n− x)(p0)

p, (70)

and519

logdet
�

Q1RSB − P1RSB
�

= d1 logΛ1 + d2 logΛ2 + d3 logΛ3 + n log(1− p2), (71)

where Λ1, Λ2, and Λ3 are eigenvalues of
�

Q1RSB − P1RSB
�

/(1− p2), given by520

Λ1 =
1− (q1 − p1)− p2

1− p2
, (72)

Λ2 = Λ1 + x
(q1 − p1)− (q0 − p0)

1− p2
, (73)

Λ3 = Λ2 + n
q0 − p0

1− p2
, (74)

(75)

with degeneracies d1 = n(1− x−1), d2 = n/x − 1, and d3 = 1. Similarly, one obtains521

log det
�

Q1RSB + (m− 1)P1RSB
�

= d1 logΛ′1+d2 logΛ′2+d3 logΛ′3+n log (1+ (m− 1)p2) , (76)

where Λ′1, Λ′2, and Λ′3 are the eigenvalues of
�

Q1RSB + (m− 1)P1RSB
�

/(1+ (m− 1)p2), given522

by523

Λ′1 =
1− q1 − (m− 1)p1 + (m− 1)p2

1+ (m− 1)p2
, (77)

Λ′2 = Λ′1 + x
q1 + (m− 1)p1 − q0 − (m− 1)p0

1+ (m− 1)p2
, (78)

Λ′3 = Λ′2 + n
q0 + (m− 1)p0

1+ (m− 1)p2
. (79)

(80)

The case of zero external field, that we consider here, corresponds to setting q0 = 0 and524

p0 = 0. In this case, the n dependence in the action factorizes as525

G
�

{Q1RSB
ab }, {P

1RSB
ab }

�

= G(n, m, x , q1, p1, p2) = n g(m, x , q1, p1, p2). Here, g(m, x , q1, p1, p2) is526

given by527

g(m, x , q1, p1, p2) = −
mβ2

4
[1+ (x − 1)(q1)

p + (m− 1)(p2)
p + (m− 1)(x − 1)(p1)

p]

−
(m− 1)

2

�

(1− x−1) log (1− (q1 − p1)− p2) + x−1 logη0

�

−
1
2

�

(1− x−1) logη1 + x−1 logη2

�

−
m
2
(1+ log2π), (81)

where we introduce528

η0 = 1+ (x − 1)(q1 − p1)− p2, (82)

η1 = 1− q1 − (m− 1)p1 + (m− 1)p2, (83)

η2 = 1+ (x − 1)q1 + (m− 1)(x − 1)p1 + (m− 1)p2. (84)
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4.2.2 Saddle-point solutions529

Having prepared all detailed equations for the p-spin model, we now perform the saddle-point530

evaluation for (Z(m))n when N ≫ 1 under the above 1RSB ansatz:531

(Z(m))n ≈ exp
�

−N extr
x ,q1,p1,p2

{G(n, m, x , q1, p1, p2)}
�

= exp
�

−nN extr
x ,q1,p1,p2

{g(m, x , q1, p1, p2)}
�

.

(85)
Consequently, we obtain the free energy per spin, βφ(m), as532

βφ(m) = −
1

mN
log Z(m) = −

1
mN

lim
n→0

1
n

log (Z(m))n = m−1 extr
x ,q1,p1,p2

{g(m, x , q1, p1, p2)} .
(86)

The second term in the Rényi entropy in Eq. (60) is then533

βφ(m= 1) = extr
x ,q1
{g(m= 1, x , q1)} , (87)

g(m= 1, x , q1) = −
β2

4
[1+ (x − 1)(q1)

p]−
1
2

�

(1− x−1) log(1− q1)

+x−1 log (1+ (x − 1)q1)
�

−
1
2
(1+ log 2π). (88)

When TK ≤ T the solution is534

βφ(m= 1) = g(m= 1, x∗ = 1, q1∗ = 0) = −
β2

4
−

1
2
(1+ log 2π). (89)

Eventually, we are interested in computing the Rényi complexity for fixed m, as a func-535

tion of the clone overlap p2, since this corresponds to the free energy difference as shown in536

Eq. (29), namely,537

ΣRenyi(m, p2) =
m

m− 1
[βφ(m, p2)− βφ(m= 1)] , (90)

where βφ(m, p2) is given by538

βφ(m, p2) = m−1 extr
x ,q1,p1
{g(m, x , q1, p1, p2)} . (91)

Thus computing ΣRenyi(m, p2) boils down to finding x∗, q1∗, and p1∗ which extremizes the539

function g(m, x , q1, p1, p2), given m and p2. We solved the coupled saddle-point equations540

numerically and analytically, which leads to the following three distinct regimes, depending541

on the value of m and p2.542

• RS regime: x∗ = 1 (equivalently, q1∗ = p1∗ = 0).543

• RSBa regime: x∗ < 1 and q1∗ > p1∗ > 0.544

• RSBb regime: x∗ < 1 and q1∗ = p1∗ > 0.545

The phase diagram in the m versus p2 plane for three values of T is shown in Fig. 2. The546

boundary between RS and either RSBa or RSBb is denoted as p(1)2 (m), whereas the boundary547

between RSBa and RSBb is denoted as p(2)2 (m).548

To better understand the phase diagram, we now monitor the solutions, x∗, q1∗, and p1∗,549

along representative paths in the phase diagram, m = 2.5 at T = 0.6 < Tmct in Fig. 3a and550

at T = 0.75 > Tmct in Fig. 3b. For T = 0.6, at low values of p2 the trivial solution is x∗ = 1551

(equivalently, q1∗ = p1∗ = 0), which corresponds to the replica symmetric (RS) ansatz (RS552

regime). At intermediate values of p2 with p(1)2 < p2 < p(2)2 , a non-trivial, one-step replica553
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symmetry broken solution appears with x∗ < 1 and q1∗ > p1∗ > 0 (RSBa regime). At high554

values of p2 > p(2)2 , the solutions, q1∗ and p1∗, merge, while x∗ < 1 (RSBb regime). As we555

present in details in Appendix A (for the case of p = 3), both the RS and RSBb solutions556

can be found analytically. In the intermediate RSBa regime instead, we resorted to numerical557

extremization.558
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Figure 2: Phase diagrams of the spherical p = 3 spin model for three different tem-
peratures, TK < T = 0.6 < Tmct (a), Tmct < T = 0.7 (b), and Tmct < T = 0.75 (c).
p2,EA locates the local minimum of ΣRenyi(m, p2), and lies either in the RS or in the
RSBb regimes. Note that the line m = 1 always lies in the RS regime, so that the
(Shannon) complexity Σ is given at all T by the RS solution.

At high enough temperature, e.g., at T = 0.7 > Tmct shown in Fig. 3b, the intermediate559

RSBa regime disappears, as is also visible in Fig. 2c. Hence x∗ < 1 and q1∗ = p1∗ > 0 above560

p(1)2 .561
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Figure 3: Saddle points, x∗ (triangles), q1∗ (squares), and p1∗ (diamond), as func-
tions of p2 for a given m= 2.5, below (a) and above (b) Tmct. The dashed and solid
curves correspond to the analytical solutions obtained in the RS and RSBb regimes,
respectively.

Once the saddle points have been identified, we obtain ΣRenyi(m, p2) as a function of p2.562
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Figure 4 shows ΣRenyi(m, p2) for several values of m and T , where the circles are the numerical563

solutions, while the dashed and solids curves correspond to the analytic solutions from the RS564

and RSBb regimes, respectively. The analytic solutions reproduce correctly numerical solutions565

at the range of low (RS) and high (RSBb) p2 values, while they do not capture the intermediate566

values of p2 (RSBa). This is especially visible at higher m and lower temperatures, reflecting567

the phase diagram in Fig. 2. Importantly, we find that the value p2,EA(T ) that locates the568

local minimum of ΣRenyi(m, p2) lies in the RS or RSBb region (as shown in Fig. 2 as dashed569

lines). Therefore, the Rényi complexity, ΣRenyi(m, T ) = ΣRenyi(m, p2,EA(T )), can be computed570

analytically for all m.571
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Figure 4: ΣRenyi(m, p2) with different indices m, as functions of p2, for varying tem-
peratures. In each case we show ΣRenyi(m, p2) computed from numerical minimiza-
tion (circles), as well as the analytic solutions in the RS (dashed) and RSBb (solid)
regimes. There is an expected discrepancy between the numerical points and the
curves in the RSBa regime where none of the analytic solutions hold. In the m→ 1
limit, ΣRenyi(m, p2) coincides with Σ given by Eq. (A.9).

Finally, we plot ΣRenyi(m, T ) = ΣRenyi(m, p2,EA(T )) in Fig. 5, where p2,EA(T ) is determined572

in the RS and RBSb regimes. We find that ΣRenyi(m, T ), calculated using the RS solutions573

(dashed curves), decreases as T decreases in a concave way and becomes zero above TK for574

m > 1. To compute the Rényi complexity correctly, the RSBb solution (solid curves) must be575

used. This solution appears below an m-dependent temperature, Tc(m), defined by Eq. (A.35)576

in Appendix A. With the RSBb solution, ΣRenyi(m, T ) decreases in a convex way at lower tem-577

peratures and becomes zero at the same temperature, TK = Tc(m= 1), regardless of the value578

of m. This behavior is also observed in the RFEM, as discussed in Sec. 3. In Fig. 6 we show579

larger values of m, on the full temperature range TK < T < Tmax, where Tmax is the maximum580

temperature at which the local minimum and hence p2,EA exist. (cf. A.2).581

Besides, we show in Sec. A.2 of Appendix A that, as was made explicit for the RFEM (see582

Eq. (55)), the Rényi complexity below Tc(m) is essentially given by ΣRenyi
∞ (T ) (min-entropy),583

namely,584

ΣRenyi(m, T ) =
m

m− 1
Σ

Renyi
∞ (T )

�

TK < T < Tc(m), m> 1
�

. (92)

ΣRenyi(m, T ) satisfies the upper bound in the general inequality, Eq. (23), derived within infor-585

mation theory. Therefore, as discussed in the RFEM case, the state with the highest probability586

or lowest free energy (at a given T) entirely dominates the contribution to ΣRenyi(m, T ). This587

result provides us with an information-theoretic interpretation of the RSBb regime.588

We can rewrite Eq. (92) in two interesting ways. First we can express all Rényi complexities589

for m> 1 in terms of the Rényi complexity with m= 2 over a restricted temperature range,590

ΣRenyi(m, T ) =
m

2(m− 1)
ΣRenyi(m= 2, T ), TK < T ≤min{Tc(m), Tc(m= 2)}. (93)
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Figure 5: Rényi complexity for different indices m, as functions of T . Above Tc(m),
ΣRenyi is computed by using the RS solution in Eq. (A.7) (dashed-curves), which
vanishes above TK . Below Tc(m), the RSBb solution using Eq. (A.29) is needed to
compute ΣRenyi (solid-curves). We also plot the (Shannon) complexity Σ as the black
dashed curve. The locations of TK = Tc(m→ 1) and Tc(m= 1.08) are indicated with
vertical arrows.
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Figure 6: Rényi complexity with large indices for TK < T < Tmax.

As mentioned before, the Rényi complexity with index m = 2 corresponds to the annealed591

Franz-Parisi potential (see Eq. (30)) which is the easiest to compute in numerical simulations.592

Moreover, Eq. (92) implies that the ratio of Rényi complexities with different indices, m1 and593

m2, with 1< m1 < m2 is a constant below Tc(m1),594

ΣRenyi(m1, T )/ΣRenyi(m2, T ) =
m1(m2 − 1)
m2(m1 − 1)

, TK < T ≤ Tc(m1). (94)

In numerical experiments, this could be used to detect the transition point, Tc(m), from the595

RS to RSBb regimes, provided that Eq. (92) would hold beyond the mean-field limit.596

5 Conclusion and Discussion597

We have computed the Rényi entropy version of complexity, Rényi complexity, for prototypical598

mean-field disordered models: the random energy model, the random free energy model, and599

the p-spin spherical model. We first demonstrated that the Rényi complexity with the Rényi600

index m is linked to the free energy difference of the generalized m-component annealed601

Franz-Parisi potential. Detailed calculations of Rényi complexity for the random energy model602

and random free energy model were performed without using the replica trick, yet these com-603

putations suggest that replica symmetry-breaking solutions are required even in the liquid604

phase. We then performed replica computations for the p-spin spherical model using tech-605

niques involving m clones (real replicas) and n replicas. We confirmed that indeed replica606

symmetry-breaking solutions are needed in the liquid phase when m > 1. All models studied607

consistently exhibit that all Rényi complexities with m> 1 vanish at the same Kauzmann tran-608

sition temperature TK , separating the liquid and glass phases, irrespective of the value of m.609

This finding suggests that the Rényi complexity is also a useful observable for estimating or610

locating TK in practical applications when measured in the liquid phase and extrapolated to-611
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ward lower temperatures. Besides, the RSBb solution (in the liquid phase) satisfies the upper612

bound of a general inequality satisfied by Rényi entropies in information theory.613

For practical measurements of Rényi complexity, through Eq. (30), one can compute the m-614

component annealed Franz-Parisi potential, which can be achieved by a generalization of what615

has been done numerically, e.g., for glass-forming liquids [36–38]. However, our mean-field616

computations in this paper suggest that sampling becomes more challenging when T is low and617

m is large, due to the underlying putative replica symmetry breaking (RSB) at Tc(m), at least618

at the mean-field level. It would be interesting to investigate whether the features observed619

in our mean-field study persist in finite-dimensional systems. Kurchan and Levine proposed620

a different way to measure the Rényi complexity by enumerating frequently appearing local621

patches in amorphous configurations. In principle, this method would not be affected by the622

sampling problem (in terms of measuring Rényi complexity), and is insightful as it connects623

a real-space perspective (an inherently finite-dimensional property) with Rényi complexity. It624

could also allow to verify whether the relation between the Rényi complexities with arbitrary625

index m and the annealed Franz-Parisi potential shown in Eq. (93), as well as Eq. (94), hold626

in finite-dimensional systems.627

In this paper, we considered mainly the case m > 1, motivated by the practical use of628

measurement of the Rényi entropy with, say, m= 2, 3, · · · . In general, varying the Rényi index629

m from the Shannon limit m → 1 corresponds to biasing (m > 1) or unbiasing (m < 1) the630

original probability distribution. Thus, similar to the large deviation studies, it is interesting631

to extend our computation to 0 < m < 1 (or even negative m). It would also be interesting632

to compute the Rényi complexity for more complicated mean-field models, such as the mixed633

p-spin model [75,96,97], and replica liquid theory [98], where the complexity plays a crucial634

role in understanding the glassy behavior of the system.635

This paper demonstrates a strong connection between the Rényi entropy in information636

theory and techniques used in the physics of disordered systems. We expect that further trans-637

fer of knowledge and techniques, leveraging mathematical equivalence, will continue to ad-638

vance both fields.639
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A Analytical solution of the p−spin model647

In this appendix, we describe the detailed calculations leading to the determination of the648

saddle-point solutions. In particular, we give the analytical solution for ΣRenyi(m, T ), in the649

case of p = 3.650

We wish to find the saddle-point solution for g(m, x , q1, p1, p2) in Eq. (81), given m and651

p2. The derivatives of g(m, x , q1, p1, p2)with respect to x , q1, p1, and p2 are respectively given652
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by653

∂ g(m, x , q1, p1, p2)
∂ x

= −
mµ
2p
[(q1)

p + (m− 1)(p1)
p]−

(m− 1)
2x2

log
�

1− (q1 − p1)− p2

η0

�

−
(m− 1)(q1 − p1)

2xη0
−

1
2x2

log(η1/η2)−
q1 + (m− 1)p1

2xη2
, (A.1)

∂ g(m, x , q1, p1, p2)
∂ q1

=
(1− x)

2

�

mµ(q1)
p−1 −

(m− 1)(q1 − p1)
η0(1− (q1 − p1)− p2)

−
q1 + (m− 1)p1

η1η2

�

,

(A.2)

∂ g(m, x , q1, p1, p2)
∂ p1

=
(1− x)(m− 1)

2

�

mµ(p1)
p−1 −

q1 + (m− 1)p1

η1η2
+

q1 − p1

η0(1− (q1 − p1)− p2)

�

,

(A.3)

∂ g(m, x , q1, p1, p2)
∂ p2

=
m− 1

2

�

−mµ (p2)
p−1 +

1
x η0

+
1− x

x
1
η1
−

1
x η2

+
x − 1

x
1

1− (q1 − p1)− p2

�

,

(A.4)

where µ= β2p/2 and654

η0 = 1− p2 + (x − 1)(q1 − p1), (A.5a)

η1 = 1+ (m− 1)p2 − (m− 1)p1 − q1, (A.5b)

η2 = 1+ (m− 1)p2 + (m− 1)(x − 1)p1 + (x − 1)q1. (A.5c)

655

A.1 RS solution656

One can easily check that the saddle-point conditions given by Eqs. (A.1), (A.2), and (A.3)657

have the trivial solution, x∗ = 1 (or q1∗ = 0 and p1∗ = 0), which corresponds to the replica658

symmetric ansatz. Hence, for m > 0 with m ̸= 1, the last variational equation in Eq. (A.4)659

becomes660

µ (p2)
p−1 =

p2

(1− p2) [1+ (m− 1)p2]
. (A.6)

p2∗ = 0 is the trivial solution of Eq. (A.6), which corresponds to the liquid state. Yet we wish661

to find a non-trivial solution in the local minimum of g(m, x∗ = 1, q1∗ = 0, p1∗ = 0, p2), which662

corresponds to the Edwards-Anderson parameter, p2,EA > 0, characterizing the metastable663

glass state. For p = 3 the RS solution then reads664

xRS
∗ = 1, (A.7a)

qRS
1∗ = pRS

1∗ = 0, (A.7b)

pRS
2,EA(m, T ) = R1

�

−
3
2
β2(m− 1),

3
2
β2(m− 2),

3
2
β2,−1

�

, (A.7c)

where R1 is the real root in Eq. (A.37) of the order-3 polynomial in Eq. (A.6). From Eq. (A.6)665

one can also obtain a generalized m-dependent dynamic transition temperature, Td(m), below666

which the local minimum appears. Td(m) is given by667

Td(m) =
p

3m
p

4[1+m(m− 1)]3/2 − (4m3 − 6m2 − 6m+ 4)
. (A.8)

The mode-coupling transition temperature is recovered as Tmct = limm→1 Td(m).668
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When m→ 1, we obtain the complexity as669

Σ(pRS
2,EA) = lim

m→1

m
m− 1

�

βφ(m, pRS
2,EA)− βφ(m= 1)

�

= −
β2

4
(pRS

2,EA)
p −

1
2

log(1− pRS
2,EA)−

pRS
2,EA

2
,

(A.9)

where we used Eq. (89) and L’Hopital’s rule to evaluate the limit. In that case Eq. (A.6)670

becomes an order-2 polynomial and671

pRS
2,EA(T ) =

1
2
+

1
2

√

√

1−
8T2

3
. (A.10)

A.2 RSBb solution672

Finding non-trivial solutions, namely, x∗ < 1, q1∗ > 0, and p1∗ > 0 requires solving the coupled673

saddle-point equations given by Eqs. (A.1-A.4). When m ̸= 1, they become674

0 =
mµ
p
[(q1)

p + (m− 1)(p1)
p] +

(m− 1)
x2

log
�

1− (q1 − p1)− p2

η0

�

+
(m− 1)(q1 − p1)

xη0
+ x−2 log(η1/η2) +

q1 + (m− 1)p1

xη2
, (A.11)

0 = mµ(q1)
p−1 −

(m− 1)(q1 − p1)
η0(1− (q1 − p1)− p2)

−
q1 + (m− 1)p1

η1η2
, (A.12)

0 = mµ(p1)
p−1 −

q1 + (m− 1)p1

η1η2
+

q1 − p1

η0(1− (q1 − p1)− p2)
, (A.13)

0 = −mµ pp−1
2 +

1
x η0

+
1− x

x
1
η1
−

1
x η2

+
x − 1

x
1

1− (q1 − p1)− p2
. (A.14)

While a fully general analytical solution to the above equations is out of reach, they can be675

solved in the RSBb regime, where q1∗ = p1∗ > 0. This allows us to compute analytically the676

Rényi complexities ΣRenyi(m, T ), as the location of the local minimum, p2,EA, of ΣRenyi(m, p2)677

is always located in the RS or RSBb regimes (cf. Fig. 2 and Fig. 4).678

When q1 = p1 and for m> 0 with m ̸= 1, Eqs. (A.11-A.14) reduce to679

µ

p
(q1)

p = −
1

x m
q1

η2
−

1
m2 x2

log(η1/η2), (A.15)

µ (q1)
p−1 =

q1

η1η2
, (A.16)

µ (p2)
p−1 =

q1

η1η2
+

1
m
η1 −η0

η0η1
, (A.17)

and Eqs. (A.5) to680

η1 = 1−mq1 + (m− 1)p2, (A.18)

η2 = 1+m(x − 1)q1 + (m− 1)p2. (A.19)

Equations (A.15) and (A.16) can be rewritten as681

(1− y)2

p y
+ log y + 1− y = 0, (A.20)

µ(q1)
p−2(η1)

2 − y = 0, (A.21)

26



SciPost Physics Submission

where y = η1/η2. For a given p, one can obtain y by solving Eq. (A.20) via, e.g., the bisection682

method. For p = 3, y ≈ 0.3549927. Then Eq. (A.21) gives rise to the solution, q1∗(m, T, p2).683

Finally, we obtain x∗ by inverting the relation, y = η1/η2, and find684

x∗(m, T, p2) =
(1− y) (1−mq1∗ + (m− 1)p2)

myq1∗
. (A.22)

We next find the Edwards-Anderson parameter p2,EA, locating the local minimum associ-685

ated with the metastable glass state. Subtracting Eq. (A.16) from Eq. (A.17) gives686

µ
�

(p2)
p−1 − (q1)

p−1
�

=
p2 − q1

η0η1
. (A.23)

We now specialize to the case of p = 3, where the above equation becomes687

µ (p2 − q1) (p2 + q1) =
p2 − q1

η0η1
. (A.24)

One solution is p2 = q1. We argue that this is the only correct solution (using proof by contra-688

diction). Indeed if p2 ̸= q1 we have689

µ (p2 + q1) =
1
η0η1

⇔ µ(p2 + q1)(1− p2)(1+ (m− 1)p2 −m q1)− 1= 0. (A.25)

This is a second order polynomial for q1. However one can check that the discriminant,690

∆= µ2(p2 − 1)4 + 4 mµ(p2 − 1) [1+µ p2(p2 − 1)(1+ (m− 1)p2)] , (A.26)

is negative for all p2 (for arbitrary values of β , m), so that there cannot exist any real solution691

for q1 if p2 ̸= q1. Therefore p2 = q1.692

693

Assuming then that p2 = q1, we can rewrite Eq. (A.21) as694

µ p2(1− p2)
2 − y = 0. (A.27)

The order-3 polynomial has the solution p2,EA(T ) = R2 [µ,−2µ,µ,−y], which is independent695

of m.696

697

We then summarize the RSBb solution for p = 3, by expressing xRSBb
∗ , qRSBb

1∗ , and pRSBb
1∗ as698

a function of p2,699

qRSBb
1∗ (m,β , p2) = pRSBb

1∗ (m,β , p2)

= R2

�

3
2
β2 m2,−3 mβ2 (1+ [m− 1]p2) ,

3
2
β2 (1+ [m− 1]p2)

2 ,−y
�

,

(A.28a)

xRSBb
∗ (m,β , p2) =

1− y
y

1+ (m− 1)p2 −mqRSBb
1 (m,β , p2)

m qRSBb
1 (m,β , p2)

, (A.28b)

and as a function of β = 1/T ,700

qRSBb
1∗ (β) = pRSBb

1∗ (β) = pRSBb
2,EA (β), (A.29a)

pRSBb
2,EA (β) = R2

�

3
2
β2,−3β2,

3
2
β2,−y

�

, (A.29b)

xRSBb
∗ (m,β) =

1− y
y

1− pRSBb
2,EA (β)

m pRSBb
2,EA (β)

. (A.29c)
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Note that pRSBb
2,EA is defined up to a certain temperature Tmax, such that the polynomial root701

remains real, which can be found for p = 3 as Tmax =
1
3

Ç

2
y ≈ 0.7912.702

Finally we compute ΣRenyi(m, p2,EA) in the RSBb regime:703

ΣRenyi(m, pRSBb
2,EA ) =

m
m− 1

�

βφ(m, pRSBb
2,EA )− βφ(m= 1)

�

=
m

m− 1

�

−
β2

4
(mxRSBb

∗ − 1)(pRSBb
2,EA )

3 −
1
2

log(1− pRSBb
2,EA )

−
1

2mxRSBb
∗

log
1+ (mxRSBb

∗ − 1)pRSBb
2,EA

1− pRSBb
2,EA



 . (A.30)

Interestingly, the terms inside the bracket in Eq. (A.30) do not depend on m, since from the704

solutions in Eq. (A.29), pRSBb
2,EA and mxRSBb

∗ depend on temperature only. Thus, as we found705

explicitly for the RFEM, one can express the Rényi complexities below Tc(m) in terms of the706

min-entropy, ΣRenyi
∞ (pRSBb

2,EA ):707

ΣRenyi(m, pRSBb
2,EA ) =

m
m− 1

Σ
Renyi
∞ (pRSBb

2,EA ), (A.31)

where ΣRenyi
∞ (pRSBb

2,EA ) is given by708

Σ
Renyi
∞ (pRSBb

2,EA ) = −
β2(1− y − pRSBb

2,EA )(p
RSBb
2,EA )

2

4y
−

1
2

log(1− pRSBb
2,EA )+

pRSBb
2,EA y log y

2(1− pRSBb
2,EA )(1− y)

. (A.32)

A.3 Transition temperature Tc(m)709

We determine the temperature Tc(m) (below Tmax) marking the transition between the RS and710

RSBb solutions. In the RSBb regime, as shown in Eq. (A.29), we have qRSBb
1∗ = pRSBb

1∗ = pRSBb
2,EA .711

In this case, the condition for the local minimum, Eq. (A.17), becomes712

µ pRSBb
2,EA =

1

(1− pRSBb
2,EA )(1+ (m xRSBb

∗ − 1)pRSBb
2,EA )

. (A.33)

By using y = η1/η2, we can express pRSBb
2,EA in terms of xRSBb

∗ as pRSBb
2,EA = (1−y)/

�

1+ y(m xRSBb
∗ − 1)

�

.713

Therefore, Eq. (A.33) can be rewritten in terms of xRSBb
∗ as714

3
2T2

=
[1+ y(mxRSBb

∗ − 1)]3

m2(xRSBb
∗ )2 y(1− y)

. (A.34)

From Eq. (A.34), the transition temperature Tc(m) is identified when xRSBb
∗ → xRS

∗ = 1. Thus715

we get716

Tc(m) =

√

√

√
3 m2 y(1− y)

2 [1+ y(m− 1)]3
. (A.35)

In particular, one can check that Tc(m= 1) = TK [80]. In Fig. 7, we plot Tc(m) and Td(m) in the717

m versus T plane. By solving Tc(m) = Tmax =
1
3

Ç

2
y , we find that for m≥ mc =

2(1−y)
y ≈ 3.63,718

the Rényi complexity is given by the RSBb solution on the whole interval, TK ≤ T ≤ Tmax, and719

there exist no non-trivial (p2,EA > 0) RS regime, as can be seen also in Fig. 6 for m= 4.720
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Figure 7: Phase diagram for the computation of the Rényi complexity. Tc(m)
separates the RS and RSBb regimes. Below Td(m) a secondary minimum of the
generalized annealed Franz-Parisi potential appears in the RS regime, and below
Tc(m) in the RSBb regime. Specifically, Tc(m = 1) = TK and Tc(m) = Tmax when
m≥ mc =

2(1−y)
y ≈ 3.63.

A.4 Roots of order 3 polynomials721

We write here for reference the solutions of the polynomial equation,722

a x3 + b x2 + c x + d = 0. (A.36)

The three roots x = R j ( j ∈ {1, 2,3}) of Eq. (A.36) are given by723

R j [a, b, c, d] = P + z j

�

Q+
Æ

Q2 − (P2 − R)3
�

1
3 + z̄ j

�

Q−
Æ

Q2 − (P2 − R)3
�

1
3
, (A.37)

where724

P = −
b

3a
Q = P3 +

bc − 3ad
6a2

R=
c

3a

z1 = 1 z2 = −
1
2

�

1+
p

3i
�

z3 = −
1
2

�

1−
p

3i
�

.
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