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Abstract

Configurational entropy, or complexity, plays a critical role in characterizing disordered
systems such as glasses, yet its measurement often requires significant computational
resources. Recently, Rényi entropy, a one-parameter generalization of Shannon entropy;,
has gained attention across various fields of physics due to its simpler functional form,
making it more practical for measurements. In this paper, we compute the Rényi ver-
sion of complexity for prototypical mean-field disordered models, including the random
energy model, its generalization, referred to as the random free energy model, and the
p-spin spherical model. We first demonstrate that the Rényi complexity with index m
is related to the free energy difference for a generalized annealed Franz-Parisi poten-
tial with m clones. Detailed calculations show that for models having one-step replica
symmetry breaking (RSB), the Rényi complexity vanishes at the Kauzmann transition
temperature Tk, irrespective of m > 1, while RSB solutions are required even in the
liquid phase. This study strengthens the link between Rényi entropy and the physics of
disordered systems and provides theoretical insights for its practical measurements.
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1 Introduction

High-dimensional, rugged (free) energy landscapes are a hallmark of disordered systems, in-
cluding structural glasses [1-3], spin glasses [4, 5], constraint satisfaction problems [6-8],
machine learning models [9, 10], and biological systems [11,12]. A key quantity in under-
standing these landscapes is the complexity (or configurational entropy), X, which quantifies
the number of metastable states within the landscape, providing crucial insights into the sta-
tistical characterization of these systems [13,14]:

T= ]lvlog/\f, (1)

where N is the number of metastable state and N is the number of elements (e.g., particles,
spins). In this paper, the natural logarithm is used unless otherwise stated. % defined in
Eq. (1) is based on Boltzmann’s view on entropy, i.e., the logarithm of the number of accessible
states. Alternatively, particularly in thermal equilibrium, one can see X based on Gibbs’ view or
Shannon’s information-theoretical view [15] using the probability distribution, p,, for finding
a metastable state a:

1
r= N Za:palogpa. (2)

Y has been measured numerically, or computed analytically in a wide variety of disordered
systems [5].

In structural glasses, X is one of the most fundamental quantities in theories of the glass
transition [16-20]. X takes a finite value in a supercooled liquid, and it decreases with de-
creasing temperature. A sharp reduction of X reflects rarefaction of the number of accessible
metastable states, leading to glassy slow dynamics [18,19]. The mean-field theory of the glass
transition [17, 20] predicts that when the temperature is decreased further, ¥ vanishes at a
finite temperature T, called the Kauzmann transition temperature [21,22], where the system
undergoes a phase transition from a supercooled liquid to an ideal glass.

Although the complexity provides us with valuable insights into the phenomenology of
glassy systems, its practical measurement involves multiple difficulties [23]. First, in finite
dimensions, metastable states are no longer well-defined since the energy barrier between
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states is finite (unlike mean-field models). Thus, metastable states are meaningful only in a
short (vibrational) timescale [24]. Second, direct (brute force) counting of metastable states
is virtually impossible except for very small N (say N & 20) because of an exponentially large
number of states [25]. Various computational schemes have been proposed to circumvent
these difficulties [26,27] (see Ref. [23] for review). For example, the inherent structure for-
malism approximates the free energy landscape by a potential energy landscape at T — 0
and computes the associated complexity [28-30]. Thermodynamic integration schemes were
introduced by imposing a harmonic potential to confine the system in a glass state [31, 32].
Among various proposals, measuring the free energy difference between the liquid and glass
states, using the so-called Franz-Parisi potential (cf. Sec. 2.5) is the most straightforward and
theoretically grounded [33-35]. However, computation of the (quenched) Franz-Parisi poten-
tial requires a thermal average of the system (replica 2) under the external field coupled to a
reference configuration (replica 1). One then performs averaging over independent reference
configurations. This double (quenched) average requires huge computational resources [36].
Thus, in the literature, an annealed version of the Franz-Parisi potential, where two replicas
evolve on the same timescale (hence, single, annealed, average), is often computed as a proxy
to the quenched Franz-Parisi potential [37,38]. Although recent developments in efficient
sampling algorithms, such as swap Monte-Carlo [39], allow to perform simulations for the
quenched Franz-Parisi potential, the temperature range and system size is still limited due to
harsh computational costs [40-42]. Despite the frequent use of the annealed Franz-Parisi po-
tential, its validity as an approximation of the quenched one has yet to be investigated widely
(except for earlier numerical simulations [36]).

The difficulty of measuring the Shannon entropy in Eq. (2) originates from its daunting
functional form, involving the probability density times the logarithm of the probability density.
This difficulty also arises in other domains of physics: for example, in quantum many-body
systems, the Shannon entropy corresponds to the von Neumann entropy, which is a measure
of quantum entanglement. However, direct measurement of the von Neumann entropy is
challenging in experiments, simulations, and analytical calculations.

Recently, there has been growing interest in using the Rényi entropy as an alternative to the
Shannon entropy [43-53]. The Rényi entropy is a one-parameter generalization of Shannon
entropy (with the parameter denoted as m here), which was initially proposed in information
theory [54], defined as

() = s log D (p)" ®)

As explained in detail in Sec. 2.3, the Rényi entropy coincides with the Shannon entropy in
the limit m — 1. The probability density p, enters the Rényi entropy in Eq. (3) in the form
of >.,(p,)™, while it enters the Shannon entropy via Y., p,logp,. The former functional
form is simpler than the latter in terms of measurements (in experiments and simulations)
and analytical calculations. This is one of the main reasons why the Rényi entropy is widely
used. In quantum many-body systems, the Rényi entropy can also serve as a measure of quan-
tum entanglement, that can be experimentally measured [43,44,55] and is computationally
less demanding in numerical simulations than the Shannon (or von Neumann) entanglement
entropy [45-48,56]. Moreover, computing the Rényi entropy for integer m, it is possible to
obtain the entanglement entropy by analytic continuation [57]. A similar situation can be
found in the characterization of chaos in dynamical systems: instead of a direct measurement
of the Kolmogorov-Sinai entropy, which has essentially the same functional form as the Shan-
non one, it is convenient to compute the Rényi entropy as a proxy of the former [58-60].
The Rényi entropy also has applications in non-equilibrium statistical mechanics [49, 60-62],
and is frequently used in ecology and statistics. In particular, Hill’s diversity index (corre-
sponding to the exponential of the Rényi entropy) characterizes the diversity of a statistical



104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

SciPost Physics Submission

ensemble [50, 63]. Recently, Wang and Harrowell [51] proposed structural diversity, inspired
by biodiversity literature, using the (exponential of) Rényi entropy to characterize various
crystalline and amorphous materials quantitatively. Aside from these examples, Rényi entropy
is applied in a wide variety of physics research areas [52,53, 64].

However, the use of Rényi entropy is not just for practical purposes, and its relevance in
physics is not a coincidence. Characterizing the mean of information content (or logarithm of
probability) is ubiquitous in physics. In Sec. 2.3, we detail the construction of Rényi entropy
in terms of a generalized mean of information content possessing the additivity property.

One of the main goals of this paper is to demonstrate the role of the Rényi entropy in
the context of disordered systems, along the direction initiated by Kurchan and Levine [65],
which shows the deep connections between the Rényi entropy and the physics of disordered
systems. Kurchan and Levine interpret the thermodynamics of the glass transition through
a Rényi version of the complexity [65] (see also a short review [66]). In particular, they
clarified the relationship between the Rényi complexity and the so-called Monasson approach
(see Sec. 2.1). Furthermore, going beyond mean-field, they associated the Rényi complexity
with frequently repeated amorphous patches in real space structure [67], proposing a practical
method to estimate the Rényi complexity in finite dimensions [65]. Thus, the Rényi complexity
is not just a convenient analog of the (Shannon) complexity, but it is an insightful quantity to
assess fundamental aspects of the glass transition.

In this paper, we extend the phenomenological arguments put forward by Kurchan and
Levine and investigate the Rényi complexity of disordered models in detail. First, in section 2.1
we review the computation of the complexity using the Monasson method. In section 2.3 we
introduce the Rényi complexity as a generalization of the Shannon one, and in section 2.5
we leverage the connection between the Rényi complexity and the Monasson approach, to
demonstrate that the Rényi complexity with index m essentially corresponds to the free en-
ergy difference of the m-components annealed Franz-Parisi potential in any dimension. We
then compute the Rényi complexity for several prototypical disordered models: the Random
Free Energy Model [68] —which encompasses the standard Random Energy Model [69] as a
specific limit- in section 3, and the p-spin spherical model [70] in section 4. From a technical
perspective, our computation for the p-spin model follows the approach of Kurchan, Parisi,
and Virasoro [71], using real replicas with integer m (referred to as clones in our paper),
but extends this to a more detailed analysis for general real values of m. For each model we
provide detailed temperature and m dependencies, in the liquid phase above the Kauzmann
transition. Our computations across all models studied show that all Rényi complexities with
index m vanish at the same Kauzmann transition temperature, Tx. However, the solutions re-
quire a replica symmetry breaking ansatz, even in the liquid phase, and we provide the phase
diagram for the RS/RSB transition. Interestingly, the RSB solution satisfies the bound imposed
by an inequality derived using an information-theoretical approach.

Our results provide deeper insights into the Rényi complexity in disordered systems, par-
ticularly in models exhibiting one-step replica symmetry breaking. Additionally, they offer an
insightful guideline for using the Rényi complexity (and the annealed Franz-Parisi potential)
as an estimate of complexity in numerical simulations. Furthermore, our study serves as a
concrete example demonstrating the interdisciplinary connection between the Rényi entropy
in information theory and theoretical techniques in the physics of disordered systems.

2 Rényi entropy and related approaches

We first give a brief pedagogical review of the Monasson approach, before explaining how it
is connected to the Shannon complexity. This also sets up our notations for later use. We then
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detail how the Rényi complexity provides a generalization of the Shannon one. Finally we
introduce the Franz-Parisi potentials and explain that the Rényi complexity corresponds to a
generalized annealed Franz-Parisi potential.

2.1 Monasson approach for computing the complexity

In mean-field theories, a convenient way to compute the complexity ¥ is Monasson’s construc-
tion [72] (see also Refs. [ 73-76] for reviews). Consider the partition function Z(m) of a system
composed of m (real number) clones belonging to the same metastable state specified by a:

Z(m) ="y eIV = f df exp[~N {mpf —2(f, T)}]

a

where f,(T) is the free energy density of the metastable state a, and 8 = 1/T is the inverse
temperature. %(f, T) is given by

S(f,T) = xlogN(f,T) with N(f, T) = 3., 6(f — f4(T)), where 5(x) is the Dirac delta
function. In the last equality, we performed the saddle-point approximation, so that f, (T, m)
is given by the saddle-point condition,

mp =0%(f,T)/0f s (1,m)- (5)
The free energy per element, ¢ (m) is given by
1 1
B¢(m)=———-logZ(m) ~ B f.(T,m)— —%(f(T,m),T). (6)
mN m

The differentiation of ¢(m) with respect to m nicely decomposes the two contributions in
Eq. (6) as

STmLT) = mafm) @
m
fTm) = —m(m), ®
m

where we have used Eq. (5). In particular, Eq. (7) allows one to extract the complexity, %,
above Ty by taking the m — 1 limit,

¥ = lim mziﬁqb(m). )
m—-1  dm

Below Ty instead, m, < 1 is chosen such that (£, (T,m,), T) = 0.

Thus, the computation of ¥ boils down to the computation of ¢ (m), which is the free
energy of the system composed of m clones belonging to the same metastable glass state. In
practice, to compute 3¢ (m) from the microscopic Hamiltonian E;, where i specifies config-
uration, one needs to constrain m clones in the same state. This is realized, for instance, by
introducing an overlap g and computing the free energy and associated partition function in
a constrained ensemble [73], as given by

Bomq) = ——logZ(mq), (10)
mN

Z0mq) = ZZ_..Ze—ﬁ(Ei1+Ei2+---+Eim)lﬁ[5(q—flia’ib)’ (11)
ip iy im

a<b
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where §; ; is an overlap function characterizing similarity between configurations i, and i.
When i, and i}, are similar §; ; »~ 1, whereas g; ;, ~ 0 when i, and i} are distinct. --- denotes
a disordered average if needed, e.g., in cases of spin glasses with disordered couplings. Ideally,
we wish to compute 3¢ (m,q) for a given disorder, as the above argument stands on such a
situation. Yet, in practice, thanks to the self-averaging property, at the thermodynamic limit,
one can equivalently obtain S¢(m,q) by Eq. (10) with the disordered average. To extract
Y at m — 1, one can use logZ(m,q) instead of logZ(m,q) for simple models such as the
p-spin model. Yet this is not generally correct [76]. When m # 1, the distinction between
log Z(m,q) and log Z(m, q) is crucial, even for the p-spin model, as the latter must be used for
the Monasson approach and the computation of Rényi complexity, while the former is related
to the large deviation function of the free energy [77-80] (see further discussions below). In
systems with continuous variables, such as spherical models, the summations in Eq. (11) are
replaced by integrals.

We then obtain the complexity >(q) as a function of g, given by

Vol
%(q) = lim m*——pB¢(m,q). (13)
m—1 om

Below Mode-Coupling dynamic transition temperature T,,, the second (local) minimum ap-
pears in ¥(q), which provides the solution constraining m clones (with m — 1) in a metastable
glass state. This corresponds to the Edwards-Anderson parameter qpa(T) [81], which charac-
terizes the random freezing of degrees of freedom in the physical system under consideration.
The identification between the overlap parameter in replica computations and the physical
Edwards-Anderson parameter is non-trivial and reflects the construction of the replica sym-
metry (breaking) ansatz (see Ref. [82] for a pedagogical discussion). Finally, we obtain the
complexity as a function of temperature T,

2(T) = %(qra(T)). (14)

2.2 Shannon expression of the complexity

The Monasson construction allows one to compute the complexity in Shannon’s information
view based on the probability distribution, as given by Eq. (2). Indeed, consider the partition
function of the original system with m = 1, Z(m = 1) = 3.  Z,,, where Z, = e PNfe(T) js the
partition function restricted to a metastable state a. The probability distribution p,, for finding
a metastable state a can be defined as

Z, e PNfu(T)
P Zm=1) " Zm=1) 1s)
Then,
_I%Za:pa logp, = ﬁza:pafa(T) + IlvlogZ(Tl)z Bf(T,m=1)—B¢(m=1)

= 1im1 2(f.(T,m), T). (16)
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We used Y, pofo(T) = f(T,m = 1), Bp(m = 1) = —3logZ(m = 1), and Eq. (6). Equa-
tion (16) is nothing but the complexity computed with Monasson’s method. We then conclude

1 1
Z:_N;palogpa = ﬁ;pala’ 17)

where I, = —logp,, is the information content or magnitude of surprise. This equation pro-
vides us with Shannon’s information-theoretical view on the complexity. If one observes a
metastable state with a very small probability p,, one gets a surprise, and hence, it is in-
formative. Instead, if one observes a state with high p,, it would not be surprising and not
informative, because it takes place very often. Thus, X based on Eq. (17) quantifies a mean of
the information content. It also quantifies the magnitude of uncertainty on average. At higher
temperatures, it is uncertain which state one observes among an exponentially large number
of metastable states; hence, the mean information content X is large. Instead, at lower temper-
atures, in particular below Ty, one would always observe the system in the unique stable state
(actually a subexponential number of stable states). Hence, the mean information content is
zero.

2.3 Rényi complexity

Given the above considerations, the Rényi entropy corresponds to a one-parameter general-
ization of the Shannon entropy, whose construction, motivation, and interpretation can be
understood by considering two key aspects (such details on the Rényi entropy are discussed
in a recent review [83].)

* Generalized mean of information content. As we emphasized above, the Shannon entropy
is nothing but a mean value of the information content I, using the standard arithmetic
mean (or linear average). However, the notion of mean is not limited to arithmetic mean.
In fact, there are various other types of means, such as the geometric mean, harmonic
mean, and root mean square (non-linear averages). For example, one encounters the
harmonic mean when computing the equivalent resistance of parallel electrical circuits.
Recall also that the root mean square is one of the most used means to analyze data in
science and technology. Kolmogorov and Nagumo generalized the concept of the mean
further using a wider class of functional forms [84, 85], which allows one to define a
more general measure of averaged information content.

* Additivity. One can then define a generalized entropy using a generalized mean. How-
ever, as a quantity of information, one wishes to have an entropy with the property of
additivity for independent events, namely, if two random variables A and B are indepen-
dent, an entropy S(A, B) of their joint distribution is the sum of their individual entropies,
S(A,B) = S(A) + S(B). This is called additivity which serves as a fundamental (desired)
property in information theory. The additivity is also naturally expected for the thermo-
dynamic entropy in physical systems. We also note that in contrast to the Rényi entropy,
other generalized entropies, such as the Tsallis entropy, do not satisfy additivity [86-89].

Alfréd Rényi searched for a generalized entropy using the concept of generalized mean,
while keeping the additivity condition, and obtained the entropy that is now called the Rényi
entropy [54]. In our current setting (with the disordered average), we now define the Rényi
complexity, £RWi(m), by

. 1 =
yReYi(m) = ml()gZ(pa)m7 (18)
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where m is the Rényi index with 0 < m < oo and m # 1. The Renyi complexities, Z™(0),
wRei(1) and RWi(0o) are defined as the corresponding limits of =F™i(m) for m — 0,
m — 1, and m — oo, respectively. In this study, we mainly consider m > 1.

The m — 1 limit corresponds to the (Shannon) complexity, as one can easily check using
I'Hopital’s rule:

. 2 10g> (pg)™
: Renyi — m — om a\a
lim 2 (m) lim ————— N(1 gZ(pa) lim —
mlogp, -
e 2 (pa)m z“ om® _ 1 _
= 311_& N = Nza:palogpa =2 (19)
The m — oo limit corresponds to the so-called min-entropy, Zhe™' = lim,,_, oo RWi(m).

When m is very large, the state with the highest propbability, max,, { Puts dommates the sum-
mation, i.e., ). (p)™ ~ (max,{p,})™. Thus at m — oo, one obtains

i 1 1
Rl — _ ~logmax{p,} = —min{—logp,}. (20)
N a N a

In particular, using Eq. (15), one gets

e = B(T)— Bp(m = 1), ©3))

where f;(T) = min,{f,(T)} is the lowest free energy at a given temperature T.

2.4 General properties of Rényi complexity

We summarize the properties of the Rényi complexity (or Rényi entropy in general) that are
relevant to this paper (see Ref. [83] for other interesting properties).
First, ZRWi(m) is a non-increasing function as one can check,

Kl ZRenyi(m) -

22
am (22)
Thus, FWi(m) is bounded by T from below, i.e., T < ¥Rewi(m). For m > 1, one
can also obtain an upper bound. In general, ), (p,)" = max,{ (p,)™"} = (max,{p, ™.
Using the definition of the Rényi entropy in Eq. (18) and min-entropy in Eq. (20), we get
nRei(m) < %Eiinyl. To summarize, when m > 1, we have

. , - .
siRemt o yrRenyi( ) < —12?;““. (23)
m —

As it is clear from the derivation, the upper bound is realized when the summation is com-
pletely dominated by the state with the highest probability or lowest free energy. In general, a
larger value of m in ©R*%(m) tends to discriminate or highlight states with larger probability,
while a smaller value of m tends to take into account states with finite probabilities in a rather
equal manner. Thus, varying m from the Shannon entropy limit m — 1 corresponds to biasing
(m > 1) or unbiasing (m < 1) the original probability distribution.

2.5 Franz-Parisi potentials

We now explain the relation between the Rényi complexities and the Franz-Parisi potentials.
The Franz-Parisi potential, V(q) [33, 34, 90], corresponds to the Landau free energy for the
glass transition. It is a function of the order parameter g associated with the Kauzmann ideal

8
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278 glass transition, namely the overlap function that we introduced in section 2.1. According
270 to mean-field theories, at high temperatures, V(q) shows a single minimum near ¢ ~ 0
280 which corresponds to the liquid state. Below Mode-Coupling dynamic transition temperature
281 Toe, V(q) develops a second minimum at a finite overlap (the Edwards-Anderson parame-
282 ter) g = qga ~ 1 corresponding to the metastable glass state. The second minimum (hence
283 V(qga)) decreases with decreasing temperature and coincides with V(g & 0) (which is often
284 set to zero) at Ty, showing a first-order-transition-like behavior. Yet, the complexity 3 remains
285 continuous without latent heat. Therefore, this type of transition is unique to disordered glassy
286 systems and is called “random first-order transition” (RFOT) [18,19]. The free energy differ-
287 ence between the liquid and glass states amounts to the complexity (times temperature) [33],
288 namely,

Z=p[V(gea) —V(g~0)]. 24
280 This equation provides an alternative interpretation of the complexity as a free energy differ-
200 ence in the Franz-Parisi potential. The random-first-order transition scenario is not restricted
201 to structural glasses. Similar phenomenologies are observed in a wide variety of problems. In
202 fact, the original RFOT argument was constructed based on a class of mean-field spin glasses
203 showing one-step replica symmetry breaking [91,92].
204 Franz-Parisi potentials can be defined by the quenched way, denoted as 8V Qu""(q) and
205 the annealed way, denoted as VA (g):

ﬁEl e_ﬁEiz
ﬂVQuench(q) — ]ogz 5(q—€]i1,i2), (25)
i
VAnneal — __1 E e 5 —4§;. ; 26
pramsig) = ogZZ I T =

206 In the quenched construction, firstly, equilibrium configuration i; is sampled by e PEuyz,
207 which serves as a reference or template configuration. On top of that, the target configu-
208 ration i, is sampled according to e P2 /7, while the configuration i; is fixed permanently or
200 quenched, together with measuring overlap g;, ;, between i; and i,. Thus, it requires a double
300 average (for a given disorder if it exists), which is computationally demanding in practice.
301 We note that, in general, the sampling temperatures for i; and i, can be different, and this
s02 difference was exploited in some cases [41,42]. Yet we consider that both temperatures are
303 the same for simplicity in this paper.

304 In the annealed construction, instead, both configurations, i; and i,, are sampled at the
305 same time. In other words, two clones i; and i, evolve with the same timescale. Therefore, it
306 has only one average operation (again, for a given disorder), reducing the computational cost
307 significantly compared with the quenched construction. Indeed, previous literature performed
s0s molecular simulations under the annealed construction and measured BVA™¢(q) to get a
300 proxy of BV uench(g) 37, 38].

310 In the annealed construction above, we considered two clones evolving on the same timescale.
s11  One can generalize this setting to the m clones setting. Namely, one can define the m-annealed
s12 Franz-Parisi potential, BV (m, q), given by

E+E++E

ﬂVAnneal(m q) — __IOgZZ Z (Z)m l’" l_[ 5(q qla lb 27)

i1 I a<b

313 One notices that this m-clones setting is conceptually very similar to the Monasson construction
314 with m clones (see Sec. 2.1). Indeed, with Egs. (10) and (11), one can rewrite Eq. (27) as

BVAT(m, q) = m[B¢(m,q)—pd(m=1)]. (28)

9
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Thus, BVA™ea(m q) is expressed by the difference of the free energy per element for the
m-clones and the original (single) system.

2.6 Rényi complexity and m-annealed Franz-Parisi potential

Now we are in a position to derive the connection between the Rényi complexity defined in
Eqg. (18) and the m-annealed Franz-Parisi potential defined in Eq. (27). We wish to compute
»ReWi(m, q) with a constraint by the overlap g, similar to the argument in Eq. (14). Using
Egs. (18) and (15) with the constraint, we get

yReYi(m q) = ]m [logZ(m,q) —mlogZ(m = 1)]

= T [Bp(mq)—Bp(m=1)]. (29)
m—1

Thus, ZRW(m, q) is expressed by the difference of the free energy per element for the m-clones
and the original (single) system. Namely, Eq. (29) demonstrates the relationship between the
Rényi complexity and the Monasson approach as clarified by Ref. [65]. In particular, it is now
clear that the Rényi index is nothing but the number of clones in the Monasson approach.

By comparing Eq. (28) and (29), we arrive at

. 1
Rei(m, q) = —1/5VA“neal(m,q). (30)
m —_—

To conclude, the Rényi complexity with the index m corresponds to the m-annealed Franz-
Parisi potential with a factor 1/(m —1).

In the following sections, we will compute the Rényi complexity in detail for prototypical
mean-field disordered models, the Random Free Energy Model and the p-spin spherical model.

3 Random Free Energy Model

3.1 Definition of the model

As a simple example to illustrate the evaluation of the Rényi complexity, we first consider
a slight generalization of the Random Energy Model in which the energies of the different
configurations are interpreted as the free energies F, = Nf, of metastable states, where N
is the underlying number of degrees of freedom (that are not described explicitly). We call
this model Random Free Energy Model (RFEM), taking inspiration from the Random Energy
Random Entropy Model of Ref. [68]. The case of the standard Random Energy Model (REM)
[69] is a specific limit of the RFEM, as will appear clearly below. The reason we study the
RFEM instead of the standard REM is that the RFEM provides clear distinctions among total
entropy s, complexity 3, and vibrational entropy s.;, (or glass entropy for a metastable
state). This makes it a useful model for illustrating the essence of the Monasson approach and
for computing the Rényi complexities, while analytically tractable. In contrast, the standard
REM has total entropy that is entirely configurational, i.e., s,,; = %, lacking any vibrational
entropy component.

The free energy distribution p(f) from which the free energy densities f, are randomly
drawn is now a Gaussian distribution with a temperature-dependent variance J2(T)/N,

_ N N(f — fo)?
0=z = (- ) o

10
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We denote as My the total number of metastable states for a system of size N, and we assume
that My grows exponentially with N, as My ~ eV . For the sake of simplicity, the parameter A
is assumed to be temperature-independent. It should not be confused with the complexity X,
which takes into account the probability weight o< e #Nfa of the different metastable states.
In the usual REM [69], configurations implicitly correspond to 2V spin configurations as in
an Ising spin model, so that A =log2. In the RFEM, the sum is over metastable states which
contain part of the system entropy as vibrational entropy, so that 0 < A < log2. The value of
A will be determined below.

To get some insights on the temperature dependence of the parameter J(T), we focus for
simplicity on the RFEM derived from the Random Energy Random Entropy Model [68]. In
this simple model, metastable states are assumed to have both a random energy density ¢,
and a random entropy density s, drawn from Gaussian distributions, so that f, = g, — Ts,.
Both ¢, and s, are temperature-independent. We assume ¢ = 0, £2 = Jg/N , S = sg and

Var(s) = 5_2—5(2) = 02/N, where J, and o are two temperature-independent parameters. The
distribution of f, is thus the Gaussian distribution in Eq. (31), with

fo==Tso, JAT)=J3+T?c> (32)

The calculations performed below can in principle be done keeping J(T) as a generic increasing
function of T. However, to get tractable explicit expressions for physical observables like the
typical free energy or the complexity, it is convenient to use the specific parametrization of J(T)
in Eq. (32). In the following, we thus keep the notation J(T) as long as expressions remains
simple with a generic J(T), and then switch to the specific expression given in Eq. (32).

3.2 Thermodynamic free energy and entropy

To evaluate the thermodynamic free energy and entropy of the system, we introduce the par-
tition function of the model, given by

My
Z=> N, (33)
a=1

The (total) thermodynamic free-energy density, f,., averaged over the disorder is then given by
fior =—TN _1@. The disorder-averaged quantity log Z in the REM may be evaluated using
the replica trick [93]. However, a standard approach when considering REM-type models is
to introduce the density of states of a typical sample [69]. We define the density n(f) of
metastable states with free energy f. Averaging over disorder, we have for large N

T(f) ~ eNAU—fo)*/27%(1)] (34)

The average density of states is exponentially large in N over the interval f;, < f < fiax
where

Fain = fo— V2AI(T),  Foax = fo+ V2AJ(T). (35)

Outside this interval, the average density of states n(f) is exponentially small in N, meaning
that in a typical sample of the disorder in a large system, there are no states outside the
interval [ fiin, fmax]- The density of state n,y, of a typical sample can thus be approximated as

Ny ~ 1(f) for f € [ fiin, fmax] and ny, = 0 for f € (fiin, fmax)- The partition function of a
typical sample can thus be evaluated as

fmax fmax
Zypm | df ngp(fle ™M & f df e Ve, (36)

f min min

11
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where we have introduced the function

(f —fo)?

s(f)=—-21+ 272(T)

+ (37)

f
T
We then perform the usual approximation, f,,, & —TN ' log Ziyp-

From Eq. (36), Zy, can be evaluated by a saddle-point calculation. The value f, that
minimizes g(f) over the entire real axis is given by

JA(T
f.=f- 0, (38)
T
leading to
L fo T

We now need to compare f, with f;;. When f, > f,i,, the typical free energy density
fiot = —% log Z,, is obtained from the saddle-point calculation, f;,. = Tg(f.). Using Egs. (35)
and (38), the condition f, > f.,;, is equivalent to T > J(T)/+/2A. To get an explicit condition
on the temperature, we use the parametrization of J(T) in Eq. (32). We then find that the
condition f, > fy,;, boils down to T > Ty, where Ty = Jo/v24 — 02, provided that A > 02/2,
a condition assumed to hold in the following. In contrast, when f, < f,;,, corresponding to
the low-temperature regime T < Tk, the free energy is given by the contribution of the lower
bound of the integral, f,o, = Tg€(fmin)- It is also useful to compute the total thermodynamic
entropy, Sior = —0 fior/ 9 T, from the knowledge of the free energy f,.;. For T > Ty, one finds

o? J§ o? J§
ftotz_T(k+7)_ﬁ+f0: 5tot=A+7_ﬁ+50- (40)

It follows that for T — oo, the total thermodynamic entropy density goes to so, = A+ %2 +50.
Assuming that the RFEM effectively describes a spin model with 2V spin configurations, one
has s, = log 2, which fixes the parameter A to the value,

2
Azlogz—so—%. (41)

The condition A > o2/2 then imposes the constraint 02 < log2 —s,, which also fixes the
range of s, to 0 < sq < log2. In the following, we assume that the condition o2 < log2 —s,
is satisfied!. Note that the REM case corresponds to s, = 0 and o = 0 (i.e., metastable states
boil down to single configurations with zero glass —or vibrational- entropy), and one recovers
the result Agpy = log 2. For 02 < log2 —s,, the glass transition temperature Ty thus reads

Jo
Ty = . (42)
K v2(log2 —sq— 02)
For T < T, the free energy f,,, and thermodynamic entropy s,,, read as
2log2—2sqy— 02
= f,— — 90— 2)(J2 + T252 - 2 0
foot =fo \/(210g2 250—0 )(J0+T o2), Stot =So T O T\J Jg-i—TzO'z (43)

INote that for log2 —s, < 0 < 2log2 — 2s,, (the upper bound corresponds to the condition A > 0), the glass
transition temperature is infinite and the model is glassy at all temperature.

12
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3.3 Complexity

We now evaluate the complexity counting the exponential number of metastable states at
temperature T. To perform this calculation, we follow Monasson’s approach [72], as recalled
in Sec. 2.1. We thus introduce the partition function Z(m) of m clones,

My

Z(m) = Z e MPNfa, (44)

a=1
as well as the corresponding m-clone free energy,

1 —

BN log Z(m). (45)

p(m)=—

In practice, we replace log Z(m) in the definition of ¢(m) by log Z,,,,(m) defined as

fmax
Zyp(m) = f df eNemD), (46)

min

with ) ( )2
_ o~ f—fo m_f
glm,f)=—log2+sy+ 5 +—2J2(T) + T 47)

Following the same reasoning as in Sec. 3.2, the value f,(m) minimizing g(m, f) reads
mJ2(T)

Using Eq. (32) and assuming o2 < 2(log2—s,)/(1+m?), the condition f,(m) > fo, is equiv-
alent to T > T.(m), with
Jo

2log2—2sy—02 )
\/gTO — 02

We note that T.(m = 1) = Ty, where Ty is the Kauzmann transition temperature defined in
Sec. 3.2.
One then finds for the m-clone free-energy,

T/mg(m, fuin) = —(2l0g2 —2sy — 022 J(T) + f,, if T < T.(m)
¢(m) = (50)
T/mg(m, f.(m)) = —5=(2log2—2sy —02) — ZJ%(T) + f, if T > T.(m).

In contrast, if 02 > 2(log 2—s,)/(1+m?), or equivalently, m > +/(2log2 — 2s, — 02)/0, the
condition f,(m) < fu, is satisfied for all temperature, meaning that T.(m) is actually infinite.
In the following, we focus on the case when T,(m) is finite, but the results straightforwardly
generalize to the case of an infinite T.(m).

According to Eq. (9), the configurational entropy X is obtained from ¢(m) as = = ¢’(1).
We thus get,

0 if T < Ty

= (51)

Jz .
2 if T> Ty.

log2—sy—0°— 575

One can check that ¥ — 0 when T — T; }

13
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One may also evaluate the vibrational entropy, sy, = Sio — . Using Egs. (40), (43), and

(51), one obtains
2 2log2—2sy—02 .
Sot+ O T“JOZ-!—T(OTZ 1fT<TK

Syib = (52)

so+ 02 if T > Tg.

One thus has a nonzero vibrational entropy in the glassy phase, which goes to zero when
T — 0. Note also that s, is continuous at Tg.

3.4 Rényi complexity

We now finally evaluate the Rényi complexity as

: m
£i(m, 1) = 1 (m) — p 1), 59
where m > 1 is now a fixed parameter. The Rényi complexity can readily be evaluated us-
ing Egs. (50). As T.(m) > Ty for m > 1, three different temperature regimes have to be

distinguished, namely T < Tg, Tx < T < T.(m), and T.(m) < T. One finds

0 if T<Tg,
Renyi mJé 1+T/Tx 2 T 2
Z (m; T) = { 2(m—1)T2 (J(T)+T\/210g2—2$0—02) (1 - ﬁ) lf TK < T S Tc(m), (54)
2
| log2—sp—(1+m)% — 38 if T.(m)<T.

We plot the obtained ©R*™i(m, T) in Fig. 1a, for s, — 0 and 0 = 4/log2/2. For m — 1,
»Rei(m T) converges to the standard complexity %(T) evaluated in Sec. 3.3. %(T) mono-
tonically decreases with a concave manner as the temperature is decreased and vanishes at
the Kauzmann transition temperature Ty > 0, which is a well-known behavior. When m is
increased from 1, RWi(m, T) decreases at a given T, which is a general property of the
Rényi entropy, as mentioned in Sec. 2.4 (see also Ref. [83]). We note that, in the regime
Ty < T < T.(m), the expression of LF*Wi(m, T') contains the solution associated with one step
replica symmetry breaking, despite the fact that the system is above T (this will become clear
in the p-spin spherical model in Sec. 4). We thus plot Zf™i(m, T) in this intermediate regime
by the solid curves. The temperature dependence of Z*™Wi(m, T) has interesting behaviors.
It becomes milder with increasing m. In particular, the concavity seen as m — 1 turns into
convex behavior. Nevertheless, Z8Wi(m, T) vanishes at the same Ty irrespective of m. These
results suggest that an accurate measurement of ~*"i(m, T) can provide a good estimate of
the location of Ty.

Moreover, for arbitrary m > 1, the m—dependence factorizes in the regime, Ty < T < T.(m),
so that:

m

wReWi(m T) = m—1 TeM(T), ¥m>1, Tx<T<T(m), (55)
—

where ZE‘:;HYI(T)is the min-entropy defined in section 2.3. As shown in Eq. (23) in Sec. 2.4,

YRenYi(T) provides us with lower and upper bounds on ZF™i(m, T) (when m > 1) . In-

terestingly, from Eq. (55), we find that ZRWi(m, T) reaches its upper bound in the range

Tx < T < T.(m). This means that in this range, the state with the highest probability or

lowest free energy (for a given T) completely dominates the contribution to ZR™i(m, T).
The above observations also hold for the p—spin model, as we derive in section 4.

14
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- - Te(m)<T —— m=5 == Te(m)<T m=5
O | | | O | | | |
0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3
T T
(a) RFEM with o = 4/log2/2. (b) Special case of the REM, o = 0.

Figure 1: Rényi complexities for the RFEM model in the limit s, — 0. The solid
(dashed) curves correspond to the regimes below (above) T.(m) in Eq. (54).

ss7 3.5 Special case of the REM

458 As explained above, the RFEM reduces to the Random Energy Model when s; =0 and o = 0.
50 In that case we simply have T.(m) = m Ty = mJ,/+/2log2. This can be readily seen from the
a0 fact that, when f, = ¢, is temperature-independent, the cloned partition function in Eq. (44)
461 satisfies Z(m, T)=Z(m =1, T/m).

462 As expected, the complexity becomes equal to the thermodynamic total entropy,
J2
¥ =log2— 2—T°2 = Siors (56)

463 while the vibrational entropy in Eq. (52) vanishes, s,;, = 0. The Rényi complexities in Eq. (54)
462 read

(0 if T<Tg,
. 2 2
o= i (i-2) f n<renn, @
1 9 mJg f T, <T
L og — 372 1 milg =

465 and are plotted in Fig. 1b.

466 One may think that the fact that Ty does not depend on m is at odds with the phase diagram
a67 drawn by Gardner and Derrida in terms of the number of replicas versus temperature [94].
a8 This difference comes from the fact that they studied the thermodynamics of log Z(m) (m = v
460 in their paper) while our Rényi setting uses log Z(m). As will be clear for the p—spin model,
470 the former involves a replica symmetric (RS) transition in the regime of Ty < T < mTx when

a1 m > 1. Yet, RS is not the correct saddle point to compute logZ(m), and we need a 1RSB
a2 solution even in the liquid phase. We also note that log Z(m) is related to the scaled cumu-
473 lant generating function in large deviation theory [77-80], which encodes sample-to-sample
474 fluctuations of (total) free energy density.
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4 p-spin spherical model

4.1 Definition of the model
We next study the p-spin spherical model [70], defined by the Hamiltonian,

H=-— Z Jil-"i O; - 0; —hZO'i, p23 (58)

. . p 1 P .
1<i) <--<i, <N i=1

with N continuous spin variables o; € R that satisfy the spherical constraint . =1 O'l-z =N.
The Ji.i, are frozen random couplings drawn from

PUii)) = (59)

Np-1 1 2NP71(J;,, )
exp|——w———|.
np! 2 p!

For introductions to the p—spin model see e.g., Refs. [75, 80, 82]. We will focus mainly on
the case p = 3 with no external field, h = 0. In that case the Kauzmann and mode-coupling
transition temperatures are given respectively by Ty ~ 0.586 and T, = +/3/8 ~ 0.612.

4.2 Replica computation of the Rényi complexity

We recall that the goal is to compute the following Rényi complexity.

. e PNJa(T) —BNfo(T)
ZRenyl —
= ; [logZ(m)— mlogZ(m = 1)]
N(1—m)
m
= ——[Be(m)—PLo(m=1)]. (60)
m—1
Thus, the main task here is to compute ¢ (m) = —ﬁlog Z(m), which requires the replica
trick: 1
logZ(m) = lin}) = log(Z(m))". (61)
n—-0n

Using standard techniques (see Ref. [82]), one can express (Z(m))" by

(Zm)" = ( Jdoab)exp[—NG({Oab})] (62)
a#b
G({0,}) = —ﬂ—ZZ(Oab)p——logdetO——(1+log2n) (63)

where G({O,;}) is the action and O, is (the elements of) the mn x mn overlap matrix. The
above expressions are obtained by replacing n by mn in the standard computation for the
p-spin model reviewed in Ref. [82]: the system is now composed of m clones, each having
n replicas. We note that the number of replicas per clone, n, arises from the replica trick in
Eq. (61), with the limit n — 0 applied afterward, whereas the number of clones, m, remains
a fixed parameter. Thus, clones are sometime referred to as real replicas [71], to distinguish
them from the usual replicas counted by n. Different values of m will be explored in the phase
diagram (see below).
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4.2.1 Replica ansatz

The overlaps entering the matrix O are then non-trivial, even above Ty, and should be carefully
determined. Following Refs. [71,95], we assume that O is given by a mxm block matrix (m = 3
in the example below),

Q|P|P
o=| P|Q|P |, (64)
P|P|Q

where Q and P are n x n matrices. Q characterizes overlaps between replicas from the same
clone, whereas P represents overlaps between replicas from different clones. Under this as-
sumption, one can express the terms in Eq. (63) by Q and P as follows.

4

D0 = mD (Qu)l +mm—1) (Pu), (65)
a,b a,b a,b
logdet0 = log[det((Q—P)™!)det(Q+ (m—1)P)]
= (m—1)logdet(Q—P)+logdet(Q+ (m—1)P). (66)
Hence, Eq. (63) becomes
/52 n n
G ({Qap} PpD) === | m D (Qup)? +m(m—1) D (Py)
a,b a,b

1 1
— E(m —1)logdet(Q —P)— > logdet(Q+(m—1)P)— %(1 +log2m),
(67)
which is valid for generic Q and P.

We now make further assumptions in the form of Q and P. In particular, we consider the
following 1RSB form for Q and P [71,95], composed of submatrices:

[ 1 q1 91|49 9qo 9o | [ P2 P1 P1|Po Po Po |
@1 1 q1|9% 90 9o P1 P2 P1|Po Po Po
QRSB — G ¢ 1{9% 9 % ) pRsB _ [ P1 P1 P2 |Po Po Po | (68)
G 9 |1 @1 a1 Po Po DPo|P2 P1 P1
9 90 9|0 1 @& Po Po Po|P1 P2 Pi
LG % 9|91 @1 1 L Po Po DPo|P1 P1 P2 .

Each submatrix has size x x x (n = 6 and x = 3 in the above example). We assume that Q'*B

and P'®B share the same value of parameter x.

For Q'®B the diagonal elements correspond to the overlap between the same replicas
from the same clone, which is set to one. Off-diagonal elements instead correspond to overlaps
between different replicas from the same clone, parameterized by q, and q;. For P'®B instead,
the diagonal elements p, correspond to the overlap between the same replica index yet from
different clones. Off-diagonal elements, p, and p;, are overlaps between different replicas
from different clones. Note that when computing the partition function by the saddle-point
approximation (see next subsection), the overlaps, as well as the submatrix size x, become
variational parameters, whereas the number of clones m remains fixed.

We next compute the terms in Eq. (67) using the 1RSB matrices Q'®8 and P®B, One
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518 ﬁnds
STQEEY = ntn(x—1)(q,) +n(n—x)(4o) 69)
a,b
DIPEEY = n(py)? +nlx —1)(p1) + n(n—x)(po)P, (70)
a,b

s10 and

log det (QlRSB - PlRSB) =d;logA; +dylog Ay +d3log Az +nlog(1—p,), (71)

s20 where A, Ay, and A; are eigenvalues of (Q'8 — PIRSB) /(1 —p,), given by

1—(q1—p1)—Dp2

A= , (72)
1—py
A, = A1+x(q1_pl)_(q0_p0), (73)
1—py
A3 = A2 + nqo _pO B (74)
1—p,
(75)

s21 with degeneracies d; = n(1—x"1), d, = n/x —1, and d; = 1. Similarly, one obtains
logdet (Q'F® + (m — 1)P'B) = d, log A, +d, log A+ d3 log A +nlog (1 + (m—1)p,), (76)

s22 where A7, A}, and Aj are the eigenvalues of (QIRSB +(m— 1)P1RSB) /(1 +(m—1)p,), given
523 by

1—q;—(m—1)p; +(m—1)p,

VIS , 77
! 1+(m—1)p, 77)
+(m—1)p; —qo—(m—1
A = A 4xD (m—1)p1 —qo—(m )Po’ 78)
1+(m—1)p,
+(m—1)py
A, = A+ qo—. 79
3 2 n1+(m—1)p2 (79)
(80)
524 The case of zero external field, that we consider here, corresponds to setting g, = 0 and

525 po = 0. In this case, the n dependence in the action factorizes as

526 G({be{SB}) {p;gSB ) = G(Tl, m)x$q1:p1:p2) =n g(m,x3q1:p13p2)' Here: g(m;x3q1:p1)p2) is
527 given by

2

g(m,x,q1,p1,P2) = —mT[1+(X—1)(Q1)p+(m—1)(Pz)p+(m—1)(X—1)(P1)p]
—1
_(m2 )[(1—X‘1)log(1—(q1—pl)—pz)+x‘1logno]
—% [(1 —x Hlogn; +x7! lognz] - g(l +log2m), (81)
s28  where we introduce

Mo = 1+(x—1)(q;—p1)—Pp2 (82)
nm = 1—q;—(m—1)p; +(m—1)p,, (83)
Ny = 1+(x—1)q; +(m—1)(x—1)p; +(m—1)p,. (84)
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4.2.2 Saddle-point solutions

Having prepared all detailed equations for the p-spin model, we now perform the saddle-point
evaluation for (Z(m))" when N > 1 under the above 1RSB ansatz:

(Z(m))"NeXp[—N extr {G(n,m,x,ql,pl,pz)}]=eXp[—nN extr {g(m,x,ql,p1,pz)}].
x’ql’plﬁp2 x:ql’plﬂp2 (85)

Consequently, we obtain the free energy per spin, ¢ (m), as

1 — 1 1 — _
Be(m) =———logZ(m) = ——— lim ~log (Z(m))" =m™' _extr {g(m,x,q1,p1,p2)}
mN mN n—0n X,q1,P1:P2
(86)
The second term in the Rényi entropy in Eq. (60) is then

Pp(m=1)=extr{g(m=1,x,q.)}, (87)
2
80m=1,%,4)) =L 14+ 0= D@1 - 2 [0 -xlog1 ~qy)

1
+xtog (14 (x — 1)q1)] — 5(1 +log2m). (88)
When Ty < T the solution is

2
1
Be(m=1)=g(m=1,x,=1,q;,=0)= 4 5(1 +log2m). (89)
Eventually, we are interested in computing the Rényi complexity for fixed m, as a func-
tion of the clone overlap p,, since this corresponds to the free energy difference as shown in
Eq. (29), namely,

ERi(m, p) = —= [B(m.py) — B (m = 1)), (90)

where 3¢ (m, p,) is given by

ﬂqb(meZ):m_lxeq)itII).l {g(m7x1q1>p17p2)}' (91)

Thus computing ZR™(m, p,) boils down to finding x,, qi,, and p;, which extremizes the
function g(m, x,qy,p1,P2), given m and p,. We solved the coupled saddle-point equations
numerically and analytically, which leads to the following three distinct regimes, depending
on the value of m and p,.

* RS regime: x, =1 (equivalently, q;, = p1, = 0).
* RSB, regime: x, <1 and q;, > p;, > 0.
* RSB, regime: x, <1 and q;, = p1, > 0.

The phase diagram in the m versus p, plane for three values of T is shown in Fig. 2. The

boundary between RS and either RSB, or RSB, is denoted as pgl)(m), whereas the boundary

between RSB, and RSB, is denoted as pgz) (m).

To better understand the phase diagram, we now monitor the solutions, x,, q;,, and py,,
along representative paths in the phase diagram, m = 2.5 at T = 0.6 < T, in Fig. 3a and
at T = 0.75 > T, in Fig. 3b. For T = 0.6, at low values of p, the trivial solution is x, = 1
(equivalently, q;, = p;, = 0), which corresponds to the replica symmetric (RS) ansatz (RS
regime). At intermediate values of p, with pgl) < py < pgz), a non-trivial, one-step replica
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symmetry broken solution appears with x, < 1 and q;, > p;, > 0 (RSB, regime). At high
the solutions, q;, and p,,, merge, while x, < 1 (RSB; regime). As we
present in details in Appendix A (for the case of p = 3), both the RS and RSB, solutions
can be found analytically. In the intermediate RSB, regime instead, we resorted to numerical

values of p,

2
> pl?,

extremization.
3 _ 3 : 3 :
- : +— RSB, :
vz om | ¥ g ins
5 8| = 3
2.5 T S E 2.5 S iy 2.5 2
=12 S RS 'S RSB,
. 2l gs | RSB, | RSB, 2/ Rs '3 RSB, 2
pg(l)(
= = 772
1.5 1.5 (773) 1.5 )
| T=00 ; LT=07 |\T=0m
0 02 04 06 08 1 0 02 04 06 1 0 02 04 06 038
P2 D2 D2
(a) T=0.6 () T=0.7 (©) T =0.75

(1)

Figure 2: Phase diagrams of the spherical p = 3 spin model for three different tem-
peratures, Ty < T = 0.6 < T (@), Tee < T =0.7 (b), and Ty < T = 0.75 (c).
P2 ga locates the local minimum of wReWi(m, p,), and lies either in the RS or in the
RSB, regimes. Note that the line m = 1 always lies in the RS regime, so that the
(Shannon) complexity X is given at all T by the RS solution.

At high enough temperature, e.g., at T = 0.7 > T, shown in Fig. 3b, the intermediate
RSB, regime disappears, as is also visible in Fig. 2c. Hence x, < 1 and q;,, = p;, > 0 above

by -

0.8

0.6

0.4

0.2

RS
p OOOCFP o pi. numerical I ©  p1. numerical
[ CpcPo q1» numerical || 0.2 - q1. numerical ||
IS 2, numerical A x, numerical
(1) (2) - == RSsolution (1) - - = RS solution
I - p2 p2 —— RSBy, solution | | 0 - m‘pQ —— RSB, solution | |
| | | | | | |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
P2 P2

(@) T¢ < T =0.6< Ty

(b) Tmct <T=0.75

Figure 3: Saddle points, x, (triangles), q;, (squares), and p;, (diamond), as func-
tions of p, for a given m = 2.5, below (a) and above (b) T,,.. The dashed and solid
curves correspond to the analytical solutions obtained in the RS and RSB, regimes,

respectively.

Once the saddle points have been identified, we obtain LR*™!(m, p,) as a function of p,.
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Figure 4 shows SR (m, p,) for several values of m and T, where the circles are the numerical
solutions, while the dashed and solids curves correspond to the analytic solutions from the RS
and RSB, regimes, respectively. The analytic solutions reproduce correctly numerical solutions
at the range of low (RS) and high (RSB}) p, values, while they do not capture the intermediate
values of p, (RSB,). This is especially visible at higher m and lower temperatures, reflecting
the phase diagram in Fig. 2. Importantly, we find that the value p, pA(T) that locates the
local minimum of X*W!(m, p,) lies in the RS or RSB, region (as shown in Fig. 2 as dashed
lines). Therefore, the Rényi complexity, ZRWi(m, T) = BReWi(m, P2ra(T)), can be computed
analytically for all m.

0.1 ‘ 7 0.1 : 0.1 :
oI =Tk ": o T =Tk o T =Tk
|| T=06 o Ll T=T Ll T=T
R B o 80T =00 1 80T r =070
@ i T =0.75 T =0.75
Sﬂﬁ 102 16-1072| 1 6-1072f
= o
ERER : 44-1072 4 4-1072F
2 i
. —2 EAa - —2 L 4 10-2 - 7 o0
2107 ; 2-10 2.10 o
@‘TA'-;":M-““% 4 §£f_m& g{,a‘ziﬁa 20y
0 il | tay | 0 i 0 il |
0 0.2 04 0.6 0.8 1 0 0.2 1 0 0.2
P2
(a) m=1.001 (b)ym=1.5 (c)m=25

Figure 4: =RWi(m, p,) with different indices m, as functions of p,, for varying tem-
peratures. In each case we show Z™i(m, p,) computed from numerical minimiza-
tion (circles), as well as the analytic solutions in the RS (dashed) and RSB;, (solid)
regimes. There is an expected discrepancy between the numerical points and the
curves in the RSB, regime where none of the analytic solutions hold. In the m — 1
limit, =RWi(m, p,) coincides with X given by Eq. (A.9).

Finally, we plot ZF™i(m, T) = £RW!(m, p, pA(T)) in Fig. 5, where p, ga(T) is determined
in the RS and RBS, regimes. We find that =RWi(m, T), calculated using the RS solutions
(dashed curves), decreases as T decreases in a concave way and becomes zero above Ty for
m > 1. To compute the Rényi complexity correctly, the RSB} solution (solid curves) must be
used. This solution appears below an m-dependent temperature, T.(m), defined by Eq. (A.35)
in Appendix A. With the RSB, solution, Z™i(m, T) decreases in a convex way at lower tem-
peratures and becomes zero at the same temperature, Ty = T.(m = 1), regardless of the value
of m. This behavior is also observed in the RFEM, as discussed in Sec. 3. In Fig. 6 we show
larger values of m, on the full temperature range Ty < T < Tp,.x, Where Ty, is the maximum
temperature at which the local minimum and hence p, g, exist. (cf. A.2).

Besides, we show in Sec. A.2 of Appendix A that, as was made explicit for the RFEM (see
Eq. (55)), the Rényi complexity below T.(m) is essentially given by Ziinyl(T) (min-entropy),
namely,

m
m—1
yRei(m, T) satisfies the upper bound in the general inequality, Eq. (23), derived within infor-
mation theory. Therefore, as discussed in the RFEM case, the state with the highest probability
or lowest free energy (at a given T) entirely dominates the contribution to Zf™i(m, T). This
result provides us with an information-theoretic interpretation of the RSB regime.

We can rewrite Eq. (92) in two interesting ways. First we can express all Rényi complexities
for m > 1 in terms of the Rényi complexity with m = 2 over a restricted temperature range,

ZRenyi(m, T)= ﬁ

yRenyi(gy ) = yRenyi Ty (T < T < T.(m), m>1). (92)

wRewim =2, T), Tx < T <min{T.(m), T.(m=2)}.  (93)
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7

| |
0.585 0.59  0.595 0.6 0.605 0.61
T

Figure 5: Rényi complexity for different indices m, as functions of T. Above T.(m),
xRenvi s computed by using the RS solution in Eq. (A.7) (dashed-curves), which
vanishes above Tx. Below T.(m), the RSB, solution using Eq. (A.29) is needed to
compute LW (solid-curves). We also plot the (Shannon) complexity 3 as the black
dashed curve. The locations of Ty = T.(m — 1) and T.(m = 1.08) are indicated with
vertical arrows.
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ZRenyi(m’ T)

|
0.6 0.65 0.7 0.75

Figure 6: Rényi complexity with large indices for Ty < T < Tpax-

As mentioned before, the Rényi complexity with index m = 2 corresponds to the annealed
Franz-Parisi potential (see Eq. (30)) which is the easiest to compute in numerical simulations.
Moreover, Eq. (92) implies that the ratio of Rényi complexities with different indices, m; and
m,, with 1 < m; < m, is a constant below T.(m;),

my(my —1)

yRemi(m,, T) /2R (m,, T) = Tx < T < T.(my). (94)

my(my — 1)
In numerical experiments, this could be used to detect the transition point, T.(m), from the
RS to RSBy, regimes, provided that Eq. (92) would hold beyond the mean-field limit.

5 Conclusion and Discussion

We have computed the Rényi entropy version of complexity, Rényi complexity, for prototypical
mean-field disordered models: the random energy model, the random free energy model, and
the p-spin spherical model. We first demonstrated that the Rényi complexity with the Rényi
index m is linked to the free energy difference of the generalized m-component annealed
Franz-Parisi potential. Detailed calculations of Rényi complexity for the random energy model
and random free energy model were performed without using the replica trick, yet these com-
putations suggest that replica symmetry-breaking solutions are required even in the liquid
phase. We then performed replica computations for the p-spin spherical model using tech-
niques involving m clones (real replicas) and n replicas. We confirmed that indeed replica
symmetry-breaking solutions are needed in the liquid phase when m > 1. All models studied
consistently exhibit that all Rényi complexities with m > 1 vanish at the same Kauzmann tran-
sition temperature Ty, separating the liquid and glass phases, irrespective of the value of m.
This finding suggests that the Rényi complexity is also a useful observable for estimating or
locating Ty in practical applications when measured in the liquid phase and extrapolated to-
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ward lower temperatures. Besides, the RSBy, solution (in the liquid phase) satisfies the upper
bound of a general inequality satisfied by Rényi entropies in information theory.

For practical measurements of Rényi complexity, through Eq. (30), one can compute the m-
component annealed Franz-Parisi potential, which can be achieved by a generalization of what
has been done numerically, e.g., for glass-forming liquids [36-38]. However, our mean-field
computations in this paper suggest that sampling becomes more challenging when T is low and
m is large, due to the underlying putative replica symmetry breaking (RSB) at T.(m), at least
at the mean-field level. It would be interesting to investigate whether the features observed
in our mean-field study persist in finite-dimensional systems. Kurchan and Levine proposed
a different way to measure the Rényi complexity by enumerating frequently appearing local
patches in amorphous configurations. In principle, this method would not be affected by the
sampling problem (in terms of measuring Rényi complexity), and is insightful as it connects
a real-space perspective (an inherently finite-dimensional property) with Rényi complexity. It
could also allow to verify whether the relation between the Rényi complexities with arbitrary
index m and the annealed Franz-Parisi potential shown in Eq. (93), as well as Eq. (94), hold
in finite-dimensional systems.

In this paper, we considered mainly the case m > 1, motivated by the practical use of
measurement of the Rényi entropy with, say, m = 2,3, ---. In general, varying the Rényi index
m from the Shannon limit m — 1 corresponds to biasing (m > 1) or unbiasing (m < 1) the
original probability distribution. Thus, similar to the large deviation studies, it is interesting
to extend our computation to 0 < m < 1 (or even negative m). It would also be interesting
to compute the Rényi complexity for more complicated mean-field models, such as the mixed
p-spin model [75,96,97], and replica liquid theory [98], where the complexity plays a crucial
role in understanding the glassy behavior of the system.

This paper demonstrates a strong connection between the Rényi entropy in information
theory and techniques used in the physics of disordered systems. We expect that further trans-
fer of knowledge and techniques, leveraging mathematical equivalence, will continue to ad-
vance both fields.
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A Analytical solution of the p—spin model

In this appendix, we describe the detailed calculations leading to the determination of the
saddle-point solutions. In particular, we give the analytical solution for ZfWi(m, T), in the
case of p =3.

We wish to find the saddle-point solution for g(m, x,qy, p1,p2) in Eq. (81), given m and
py. The derivatives of g(m, x, q;, p1, p») With respect to x, q1, p;, and p, are respectively given
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by

9g(m, x,q1,p1,P2) _

_ (o —p}—
_73—5[(%)P+(m—1)(p1)p]_(szzl)log( (g1 —pr1) Pz)

Jox Mo
(m—1)(q;—p1) 1 +(m—1)
i NPV log(ny /my) — DL (A1)
X1g 2x 2x1,
9g(m,x,q1,p1,p2) _ (1 —x) 1 (m—1)(q: —p1) g1 +(m—1)p;
= mu(q)’ — — ,
oq 2 no(1—(q1 —p1) —Pp2) UIUP
(A.2)
d (m,X, ) ) ) 1—x)(m—1 _ +(m—1) —
g q1,P1,P2) _ ( ) )[mu(pl)p 1. G P1 91— P1 ]
op: 2 MmN no(1—(q1 —p1) —Pp2)
(A.3)
a s ] ) _1 _ 1 1_ 1 ]. —1 ]_
g(m,x,q1,p1,p2) _ m |:_m‘u(p2)p 1, 1 o I=x1 1 x
op; 2 xny x M xmy x 1—=(q1—p1)—p2
(A.4)
where u = 32p/2 and
Mo =1—py+ (x—1)(q; —p1), (A.5a)
m =1+(m—1)p,—(m—1)p; —q, (A.5b)
Ny =1+(m—1)py +(m—1)(x —1)p; + (x —1)q;. (A.5¢0)

A.1 RS solution

One can easily check that the saddle-point conditions given by Egs. (A.1), (A.2), and (A.3)
have the trivial solution, x, = 1 (or q;, = 0 and p;, = 0), which corresponds to the replica
symmetric ansatz. Hence, for m > 0 with m # 1, the last variational equation in Eq. (A.4)

becomes P
Pl — 2 . A6
w2 = T 3+ Gn—Dpa] (4.9

D2, = 0 is the trivial solution of Eq. (A.6), which corresponds to the liquid state. Yet we wish
to find a non-trivial solution in the local minimum of g(m, x, = 1,q;, = 0, p1, = 0, p,), which
corresponds to the Edwards-Anderson parameter, p, gy > 0, characterizing the metastable
glass state. For p = 3 the RS solution then reads

=1, (A.72)

qll:{f — piif =0, (A.7b)
RS 3 2 3 2 3 2

pZ’EA(ma T) = Rl _Eﬂ (m - 1)) Eﬁ (m - 2)7 Eﬁ ’_1 5 (A.7C)

where R; is the real root in Eq. (A.37) of the order-3 polynomial in Eq. (A.6). From Eq. (A.6)
one can also obtain a generalized m-dependent dynamic transition temperature, T4(m), below
which the local minimum appears. T;(m) is given by

V3m

Td(m)z .
VA[1+m(m—1)]3/2— (4m3 —6m2 — 6m + 4)

(A.8)

The mode-coupling transition temperature is recovered as Ty, = lim,,_,; T4(m).
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When m — 1, we obtain the complexity as

B(p§3a) = lim ——[Bp(m, pf3,) —Bo(m=1)]

2 1 (A9)
== (P2)’ — 5 log(1 —poy) =

RS
D3 ra
2 5

where we used Eq. (89) and L'Hopital’s rule to evaluate the limit. In that case Eq. (A.6)
becomes an order-2 polynomial and

1———. (A.10)

A.2 RSB, solution

Finding non-trivial solutions, namely, x,, < 1, q;,, > 0, and p,, > 0 requires solving the coupled
saddle-point equations given by Eqs. (A.1-A.4). When m # 1, they become

=E (@) +(m =11+ (m—zl) log(1 — (@ _P1)—P2)
| X Mo
G+ (m=1)py

+(m— 1)(q1 —p1)

+x2log(n1/ny) + (A.1D)
XNo XMN2
_ m—1 — +(m—1
mu(qy)P " — ( (g1 —p1) 4 ( )P1 , (A.12)
No(1—(q1 —p1)—Pp2) N17M2
_ +(m—1) -
mu(py P~ — 2L P1 A , (A.13)
mne2 M0(1—(q1 —p1) —P2)
_ 1 1—x 1 1 -1 1
—mppt Tt — X = 4 % . (A1)

X1 X M XMy x 1—(q1—p1)—Dp2

While a fully general analytical solution to the above equations is out of reach, they can be
solved in the RSB, regime, where q;, = p;, > 0. This allows us to compute analytically the
Rényi complexities ZRWi(m, T), as the location of the local minimum, P2,ga, Of wReWYi(m p,)
is always located in the RS or RSB, regimes (cf. Fig. 2 and Fig. 4).

When q; = p; and for m > 0 with m # 1, Egs. (A.11-A.14) reduce to

and Egs. (A.5) to

u 1 ¢q 1
I—)((h)p = —mn—l—mzleog(m/nz), (A.15)
2
plg )t = ﬁ, (A.16)
112
1 —
pp Pt = S R I i/ (A.17)

Mmmn2 mM T

M = 1—mgqy+(m—1)p,, (A.18)
Ny = 14+m(x—1)g; +(m—1)p,. (A.19)

Equations (A.15) and (A.16) can be rewritten as

1—v)2
Q+logy+1—y = 0, (A.20)

u(g P *(m)*—y = 0, (A.21)

26



SciPost Physics Submission

682 Where y =1;/m,. For a given p, one can obtain y by solving Eq. (A.20) via, e.g., the bisection
683 method. For p =3, y ~ 0.3549927. Then Eq. (A.21) gives rise to the solution, g,,(m, T, p5).
es4 Finally, we obtain x, by inverting the relation, y = 1;/7n,, and find

(1—3’)(1—mQ1*+(m—1)P2)_

x,(m, T, py) = (A.22)
myqis
685 We next find the Edwards-Anderson parameter p, ga, locating the local minimum associ-
ess ated with the metastable glass state. Subtracting Eq. (A.16) from Eq. (A.17) gives
_ - P2—q1
ploy ™ = (g '] =22 (A23)
Mo
687 We now specialize to the case of p = 3, where the above equation becomes
P2—4q
w(p2—a1) (P2 +q1) = 2—711 (A.24)
o™

ess One solution is p, = q;. We argue that this is the only correct solution (using proof by contra-
es0 diction). Indeed if p, # q; we have

1
p(pa+qi) = . < w(p2 +q1)(1—p2)(1+(m—1)py —mq;)—1=0. (A.25)
0™
600 This is a second order polynomial for q;. However one can check that the discriminant,

A=pP(py—1)*+4mp(py — 1) [1+ ppa(py — (1 + (m—1)py)]1, (A.26)

601 is negative for all p, (for arbitrary values of 3, m), so that there cannot exist any real solution
602 for q; if py # q;. Therefore p, = q;.

693

694 Assuming then that p, = q;, we can rewrite Eq. (A.21) as

upa(l—py)*—y=0. (A.27)

e9s The order-3 polynomial has the solution py go(T) = R, [u, —2u, u,—y ], which is independent
696 Of m.

697

608 We then summarize the RSB, solution for p = 3, by expressing x , qi{fBb and p?f b

600 a function of p,,
qt(m, B,pa) = pro (m, B, ps)
=Ry | 2 P2, —3m R (1 [m—11p2), 2F2(+ Im—10p)% - |,
(A.28a)
1—y 1+(m—1)p,—maqy (m, B,ps)

xR (m, B, py) = , (A.28b)
y mql;SBb(m;ﬂJPZ)

700 and as a function of § =1/T,

0 (B)=py, (B =pypx (), (A.292)

P (p) = RZ[ 26 -3p% 22 ] (A.20D)

foBb(m,/S)z 1- pRi]f x (F) (A.29¢)
Y mpypt(B)
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701 Note that szS P is defined up to a certain temperature T,,.,, such that the polynomial root

JEA
702 remains real, which can be found for p = 3 as Ty, = %\/g ~ 0.7912.
703 Finally we compute ZRWi(m, P2,ra) in the RSB, regime:
RS
im, piay) = —=[Bb(m,pygn) —Bd(m=1)]
2
B X — 1) — - log(1 — P
m—1 4
RSB RSB
1 log 1+ (mx, b —1)p 2,EAb (A.30)
2mx P 1— pRSBb

704 Interestingly, the terms inside the bracket in Eq. (A.30) do not depend on m, since from the

705 solutions in Eq. (A.29), pZRSE]?{’ and mxfS Be depend on temperature only. Thus, as we found

706 explicitly for the RFEM, one can express the Rényi complexities below T.(m) in terms of the

707 min-entropy, L™ (p Payg Bb)
ERi(m, phy) = —=Te0” (P, (A-31)
1
708 where Z}Renyl(pRSBb) is given by
RSB RSBj+2 RSBy,
B*(1 =Y = DPypn NPypa) PypaYlogy
Renyl( RSBb)__ 2,EA 2,E __10 (1 pRSBb) 2EAB (A.32)
4y 2(1—pypa )1 — y)

700 A.3 Transition temperature T,(m)

710 We determine the temperature T,.(m) (below T,,,) marking the tran51t10n between the RS and
711 RSBy solutions. In the RSB regime, as shown in Eq. (A.29), we have ql* = pffB” = pgsEib.
712 In this case, the condition for the local minimum, Eq. (A.17), becomes

RSB, 1
up
2FA — (1— RSBb)(1+(meSBb_1) P Bb)

(A.33)

713 Byusing y = n;/n,, we can express pgsEBA’ in terms of x; RBs as szSE]?f =(1-y)/ [1 +y(m xRSBb - 1)].

714 Therefore, Eq. (A.33) can be rewritten in terms of xfs Bo as

3 [1+ y(meSB” Ik

= . (A.34)
212 m2(x[™ )2y (1 - y)
715 From Eq. (A.34), the transition temperature T,.(m) is identified when xfs Bo x = 1. Thus
716 We get
3m2y(1—y)
T.(m) = ya-y . (A.35)
2[1+y(m—1)]

717 In particular, one can check that T.(m = 1) = T¢ [80]. InFig. 7, we plot T.(m) and T,;(m) in the

718 mversus T plane. By solving T.(m) = Tpax = é\/g, we find that form > m, = 2(1;”) ~ 3.63,

710 the Rényi complexity is given by the RSB, solution on the whole interval, Ty < T < Tp,.4, and
720 there exist no non-trivial (p, g > 0) RS regime, as can be seen also in Fig. 6 for m = 4.
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Figure 7: Phase diagram for the computation of the Rényi complexity.

Telm)

separates—the RS—and-RSBy—regimes: Below T;(m) a secondary minimum of the

generalized annealed Franz-Parisi potential appears in the RS regime, and below
T.(m) in the RSBy, regime. Specifically, T.(m = 1) = Tx and T.(m) = T, Wwhen

mchzww&G&

A.4 Roots of order 3 polynomials

We write here for reference the solutions of the polynomial equation,
3 2 —
ax’+bx“+cx+d=0.

The three roots x = R; (j €{1,2,3}) of Eq. (A.36) are given by

Ry[a,b,c,d]=P+5[Q+ V@ —(P2—RF| +5[Q— /E—P—RP],

where
b bc—3ad c
P=—— =P+ ——"— R=_—
3a Q 6a2 3a
1 1
21:1 22:—5(1"1"\/51) 23:_5(1_‘\/§1).
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