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Abstract

The study of ecological systems is gaining momentum in modern scientific research,
driven by an abundance of empirical data and advancements in bioengineering tech-
niques. However, a full understanding of their dynamical and thermodynamical proper-
ties, also in light of the ongoing biodiversity crisis, remains a formidable endeavor. From
a theoretical standpoint, modeling the interactions within these complex systems – such
as bacteria in microbial communities, plant-pollinator networks in forests, or starling
murmurations – presents a significant challenge. Given the characteristic high dimen-
sionality of the datasets, alternative elegant approaches employ random matrix formal-
ism and techniques from disordered systems. In these lectures, we will explore two
cornerstone models in theoretical ecology: the MacArthur/Resource-Consumer model,
and the Generalized Lotka-Volterra model, with a special focus on systems composed of
a large number of interacting species. In the second part, we will highlight timely direc-
tions, particularly to bridge the gap with empirical observations and detect macroeco-
logical patterns.

Copyright attribution to authors.
This work is a submission to SciPost Physics Lecture Notes.
License information to appear upon publication.
Publication information to appear upon publication.

Received Date
Accepted Date
Published Date

1

Contents2

1 Introduction 23

2 MacArthur’s consumer-resource (CR) model:4

a simple instance for niche theory 45

2.1 Low-dimensional criterion for feasibility and stability vs ZNGIs 46

2.2 Rephrasing the CR model in high dimensions: statistical physics lens 57

2.3 Steady-state solutions 58

2.3.1 Interpretation of the CR model as a Constraint Satisfaction Problem 79

2.4 How to recover the Generalized Lotka-Volterra (GLV) model from a CR model? 810

2.5 Cavity method for the GLV model: zero-noise picture 911

3 High-dimensional random GLV equations with stochasticity 1112
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1 Introduction29

In recent years, the study of ecological communities has attracted growing interest from both30

theoretical physics and quantitative biology. Despite significant advances, several foundational31

questions remain unresolved. Among these is the long-standing diversity-stability debate [1,2],32

which seeks to clarify the role of ecological diversity in maintaining ecosystem resilience, once33

appropriate diversity metrics are defined. Another critical challenge lies in understanding how34

ecosystems respond to external perturbations, whether from sudden shocks or gradual envi-35

ronmental changes. Ecosystems exhibiting abrupt responses to gradual environmental changes36

are particularly concerning. Prominent examples include desertification in arid regions, coral37

reef bleaching, and the collapse of tropical forests into treeless landscapes. These shifts are38

frequently linked to the emergence of multiple stable states under specific conditions [3–5].39

Minor perturbations can induce transitions between these states, triggering severe declines40

in biodiversity and ecosystem functionality. This raises a central theoretical question: Is the41

number of feasible equilibria in such ecosystems exponential or sub-exponential relative to42

system size?1 Local multistability refers to the coexistence of numerous stable states, some of43

which may require an extended time to equilibrate. Whether the number of such stable and44

uninvadable states grows exponentially with the number of species – a behavior that could45

be observed in simulations or tailored laboratory experiments – or on a much smaller scale46

remains an open question.47

Moreover, identifying key drivers of ecosystem fragmentation and segregation, as well48

as developing quantitative precursor indicators, could be essential for predicting ecological49

collapses. For instance, dispersal in spatially structured communities can rescue fragmented50

ecosystems from extinction. Depending on demographic fluctuations, the transition from a51

self-sustained state to ecosystem collapse may be continuous or abrupt, with the latter often52

associated with tipping points, metastability, and hysteresis – concepts widely recognized not53

only in ecology but also in environmental science, and condensed matter physics.54

In these lecture notes, we aim at bridging the gap between statistical physics approaches55

1In disordered systems literature, two main reference classes are commonly distinguished: i) spin-glass land-
scapes, characterized by a sub-exponential number of free-energy minima in the system size, with free-energy
barriers expected to be sub-extensive; ii) simple structural-glass landscapes, where the number of free-energy min-
ima grows exponentially with the system size, and the barriers separating these minima are extensive. This kind
of question might also be rephrased and adapted to ecological systems.
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and the empirical analysis of large, heterogeneous ecosystems. Statistical physics offers effi-56

cient tools for investigating complex dynamics of species-rich ecosystems and eventually ad-57

dressing still open questions in this booming field. Notably, we shall discuss three reference58

models: neutral models, the Generalized Lokta-Volterra model, and the Consumer-Resource59

(or MacArthur) model.60

• Neutral Models. Neutral models, exemplified by Hubbell’s unified neutral theory of bio-61

diversity and biogeography [6], assume that all individuals are ecologically equivalent,62

regardless of species identity. They share identical per-capita birth and death rates, as63

well as equal migration and speciation probabilities. While this assumption implies that64

species are statistically indistinguishable, demographic stochasticity creates variability:65

species with larger populations are more likely to persist, while smaller populations66

face a higher risk of extinction due to random fluctuations. These dynamics are often67

modeled using stochastic birth-death processes, and in some cases, their stationary dis-68

tributions can be exactly obtained. As such, neutral models capture fluctuations that are69

driven purely by demographic stochasticity. Neutral theories have since been extended70

to incorporate additional factors and have successfully reproduced several macroecologi-71

cal patterns [7–9]. However, the assumption of functional equivalence among species has72

been widely criticized for oversimplifying biological systems. In fact, species often ex-73

hibit significant differences in their environmental adaptations, and their interactions74

actively shape the environment they inhabit.75

• Niche models. Conversely, models that explicitly account for species differences are76

collectively referred to as niche models. Each niche is occupied by a single species ac-77

cording to the competitive exclusion principle. In other words, two species competing78

for the same limited resource cannot coexist: the fittest one will dominate in the long79

term, thus leading either to extinction or an evolutionary shift towards another niche.80

Among this class of models, Lotka-Volterra equations deserve a special place [10–12].81

They were introduced in the early 20th century – in terms of a pair of first-order nonlin-82

ear differential equations – postulating that the demographic rates of a species depend83

not only on its abundance but also on the abundance of other species in the commu-84

nity. This departure from neutrality enables niche models to explore how inter-specific85

interactions drive coexistence, competition, and overall stability of a given ecological86

community.87

However, one of the main shortcomings of the niche framework is its limited predictive88

ability. While it provides a way to explain the coexistence of two species by compar-89

ing their ecological requirements and preferences, it offers little insight into determin-90

ing the number of niches in a given environment without directly counting the species91

that occupy them. MacArthur attempted to address this issue by proposing a famous92

consumer-resource model. Accordingly, a stable equilibrium can only be achieved if the93

number of competing species does not exceed the total available resources. However,94

this upper bound is frequently violated in natural ecosystems, particularly in planktonic95

communities, giving rise to the so-called paradox of the plankton [13].96

By focusing on two of these benchmark models, we aim at achieving a better understand-97

ing of the intricate dynamics of large ecosystems, thus offering analytical insights into their98

resilience to external perturbations, species coexistence, and biodiversity maintenance.99
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2 MacArthur’s consumer-resource (CR) model:100

a simple instance for niche theory101

The foundational concepts of competition and selection shaping communities can be traced102

back to the pioneering works of R. Levine and R. MacArthur in the sixties [14,15].103

Let us consider S species, characterized by their abundances Ni (i = 1,2, ...S) and compet-104

ing for M resources with abundances Rα (α= 1, 2..., M). Their dynamics are defined by:105

dNi

d t
= Ni gi(R) ,

dRα
d t
= Fα(R)−

∑

i

NiciαRα = Fα(R) +
∑

i

Niqiα(R) ,
(1)

where ciα is a S × M matrix accounting for the metabolic strategies or consumer preferences106

in terms of the α resource, whereas gi(R) =
∑

α ciαwαRα − χi is the growth rate with qual-107

ity factor wα. In the spirit of MacArthur’s seminal work, each species has its own minimum108

requirement χi . The function Fα(R) is also called resource supply, which typically satisfies a lo-109

gistic form with Fα(Rα) = Rα(Kα−Rα), Kα being the carrying capacity associated with resource110

α . The formulation of such Consumer-Resource (CR) equations relies on the assumption that111

interactions between species are mediated by the consumption of external resources. In other112

words, the growth function and the impact vector for each species qiα(R) do not depend on113

the population size.114

Given this system of S ×M coupled equations, one can define three different conditions:115

• steady state population, by imposing dNi
d t = 0;116

• non-invasibility if gi(R)≤ 0;117

• feasible equilibria provided Ni ≥ 0.118

2.1 Low-dimensional criterion for feasibility and stability vs ZNGIs119

Pioneering works in theoretical ecology have relied on models composed of a few species and120

few resources. In these cases, stability properties could be deduced by simple geometrical121

arguments [16, 17]. By denoting with ciαRα = −qiα(R) the impact vector of species i, one122

can deduce fixed-point properties. For the sake of simplicity, let us consider a 2-dimensional123

model. There exist three geometric conditions that allow us to determine stable coexistence124

of two competing species:125

• The Zero Net Growth Isoclines (ZNGI), defined by the conditions gi(R) = 0, must in-126

tersect. This criterion is valid in any dimension and leverages the Competitive Exclusion127

Principle according to which at most M consumer species can safely coexist.128

• The supply vector Fα(R) evaluated at the fixed point must lie within the cone spanned129

by the negative impact vector. This second condition guarantees the existence of a set of130

positive population sizes, with Ni > 0. It corresponds to imposing dRα
d t = 0, which leads131

to Fα(Rα) =
∑

i Ni(−qiα(R)), still holding regardless of the dimensionality of the system.132

• The impact of each species is biased toward the resource that significantly influences its133

growth rate, which is particularly challenging to identify in higher dimensions. Based134

on Tilman’s geometrical framework, the orientation of the impact vector should be com-135

pared to that of the ZNGIs.136
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2.2 Rephrasing the CR model in high dimensions: statistical physics lens137

The aforementioned geometrical criteria offer an intuitive starting point for ecological inter-138

pretation, especially in the context of low-dimensional systems. However, in recent years,139

there has been a growing focus on systems composed of an enormous number of interacting140

components, i.e. by considering S, M → ∞ at fixed ratio γ = M/S [18–20]. Such a pic-141

ture leads to the neglect of individual details and zooms out on the typical behaviors of large142

communities. In other words, since measuring how single-species parameters scale with the143

system size is particularly hard, one can therefore resort to a coarse-grained description by144

averaging over a large number of (functionally equivalent) microscopic degrees of freedom.145

Effective models thus retain only a few fundamental features of the real system, using them to146

capture general properties, such as macroscopic observables or collective dynamics.147

The difficulty of inferring the interactions in diverse ecosystems, such as for microbial148

communities, stems from several factors: the high dimensionality of microbiome datasets, the149

shortage of long time-series experiments, the time-dependent nature of microbial interactions,150

and environmental filtering effects due to abiotic factors such as resources, temperature, and151

pH. Another challenge involves disentangling noisy fluctuations from true ecological signals152

in empirical data.153

An alternative and elegant way out was originally pioneered by Robert May leveraging154

Random Matrix Theory to model species interaction networks: each entry of the adjacency155

matrix is drawn from a given probability distribution. This approach drastically reduces the156

number of model parameters to be estimated, from S2 to just a few [21]. Within a statistical157

physics scenario, one typically splits the consumer preference matrix into a deterministic part158

and a fluctuating contribution, that is:159

〈ciα〉=
µc

M
, 〈(ciα − 〈ciα〉)2〉=

σ2
c

M
. (2)

160

〈χi〉= χ , 〈(χi − 〈χi〉)2〉= σ2
χ (3)

161

〈Kα〉= K , 〈(Kα − 〈Kα〉)2〉= σ2
K . (4)

This description is consistent with a generalist picture, meaning that all species tend to grab162

a large number of resources. This is also consistent with the scaling of the metabolic strategy163

coefficients ciα: the outflow associated with each resource decreases with the amount of re-164

sources itself. This precise rescaling of the random coefficients will appear much clearer from165

a formal point of view in the following derivations. In other words, the scaling with M of the166

first two moments guarantees a proper thermodynamic limit.167

2.3 Steady-state solutions168

To derive the mean-field self-consistent equations, we ask what happens if we add an additional169

species and resource to the pre-existing pool of S species and M resources. Intuitively, this is170

equivalent to exploring whether a new species can invade the ecosystem.171

Formally, by denoting with N0 the new species and R0 the new resource, we aim to study172

correlations between resource and species entangled dynamics. However, because we always173

leverage a high-dimensional formalism in which S, M ≫ 1, considering a system with S + 1174

species and M + 1 resources does not sensitively affect the resulting thermodynamic picture.175

This addition will result in a slight perturbation of the original system, to be studied in terms176

of two local susceptibilities:177

χ =
1
M

∑

α

∂ R∗α
∂ Kα

, ν=
1
S

∑

i

∂ N ∗i
∂ gi

= −
1
S

∑

i

∂ N ∗i
∂ χi

. (5)
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The first expression (left) encodes the change of the mean resource abundance if we slightly178

perturb the supply of all external resources, by summing over α. Conversely, on the right,179

the other susceptibility quantifies the change of the mean species abundance upon decreasing180

their fitness cost (or increasing the growth rate). The so-called susceptibilities χ and ν can be181

advantageously measured in experiments, for instance investigating growth and community182

structure by the addition of a given molecule, i.e. glucose.183

In the following, in Sec. 2.5, we will see how to explicitly derive the steady-state abun-184

dances for a simpler model, by using the so-called cavity method. For the sake of compactness,185

we show here the resulting expressions for N ∗0 and R∗0, to be obtained by means of the Gaussian186

nature of the ciα, i.e. ciα =
µ
M +σcηiα where 〈ηiα〉= 0, 〈ηiαη jβ〉=

δi jδαβ
M :187

N ∗0 =max

�

0,
g +σgz0

γσ2
cχ

�

R∗0 =max

�

0,
Keff +σK effz̃0

1− γ−1σ2
cν

� (6)

where we have denoted as z0, z̃0 two Gaussian variables with zero mean and unit variance.188

Eq. (6) will thus represent two truncated Gaussian distributions for the typical species and189

resource variables. Keff(N) = Kα −
∑

i Niciα denotes instead an effective resource capacity.190

The above expressions give rise to a straightforward interpretation: by integrating out191

the quenched disorder formally encoded in the matrix ciα and Kα, we obtain an effective192

description where both the growth rates and the carrying capacities are normally distributed.193

Depending on the sign of the invasion growth rate, g +σgz0, two options are possible:194

• If such a quantity is strictly positive, the species will survive with an abundance propor-195

tional to the invasion growth rate;196

• otherwise, it will not be able to invade, thus going extinct in a finite time.197

An analogous reasoning can be applied to Keff: if the overall quantity Keff +σKeff
z̃0 turns out198

to be negative, the new resource will be depleted; otherwise, it will be proportional to the199

carrying capacity itself.200

In the previous expressions, we have assumed that the depletion and growth rates share201

the same matrix structure. However, we can also consider a slightly different variant:202

dNi

d t
= Ni

�

∑

δ

ciδwδRδ −χi

�

dRα
d t
=

rα
Kα

Rα(Kα − Rα)−
∑

j

d jαN jRα .
(7)

203

Imposing dRα
d t = 0 leads to a stability criterion, i.e. Rα = Kα −

1
ρα

∑

j d jαN j , where ρα204

denotes the ratio between the growth rate and the carrying capacity. The condition on Rα is205

associated with two distinct scenarios: i) if the term in parenthesis is negative, dRα
d t < 0 for206

all positive Rα, and therefore Rα = 0 will be the stable solution. Conversely, if the term in207

parenthesis is positive, Rα = 0 becomes unstable and even a small perturbation will result208

in a positive growth rate. Despite its simplicity, the consumer-resource model can display a209

plethora of appealing dynamical behaviors. Provided a feasible fixed point, it turns out to be210

stable if the two matrices are equal. In other words, by looking at the species abundance as a211

function of time, it will converge to a unique fixed point. More complex scenarios, like limit212

cycles and persistent fluctuations, can, however, emerge when the growth and depletion rates213

are not identical, as qualitatively depicted in Figure 1.214
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Time
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Various possible dynamics

Figure 1: Distinct consumption and growth probabilities can lead to instabilities and
subsequently richer dynamics. Complex and out-of-equilibrium behavior, including
both limit cycles and chaotic dynamics, can occur upon changing the correlation
between consumption and growth rates. Figure adapted from [22] (courtesy of Y.
Liu).

2.3.1 Interpretation of the CR model as a Constraint Satisfaction Problem215

In the limit of a large number of species and resources S, M → ∞, the MacArthur model216

has recently been reformulated as a constraint satisfaction problem, displaying the typical fea-217

tures of a perceptron model [18, 20]. Originally introduced in the theory of neural networks218

and machine learning as a binary classifier, the perceptron makes predictions by applying a219

weighted sum to the input features and using a threshold to assign a class label. A key quan-220

tity is represented by the fractional volume of the solution space occupied by the interacting221

patterns, which corresponds to the maximum storage capacity of the network. In its convex222

regime – meaning that the configurational landscape is characterized by a unique fixed point223

– the critical transition occurs at zero interaction heterogeneity and fixed ratio between the224

number of patterns and the total degrees of freedom (i.e., the number of bits), equal to two.225

This transition separates a SAT region, where all constraints are simultaneously satisfied, from226

an UNSAT region, where no solution can fulfill all clauses.227

Rephrased in an ecological context, the former of Eqs. (7) can be recast as a function of a228

resource surplus, ∆i:229

dNi

d t
∝ Ni∆i , (8)

where again i = 1, ..., S. This novel framework, introduced by Tikhonov and Monasson [18],230

focuses exclusively on equilibrium configurations, leading to two possible scenarios: (i) Ni > 0231

and ∆i = 0, or (ii) Ni = 0 and ∆i < 0 (extinction). Conversely, the opposite case, for ∆i > 0,232

is prohibited by the model definition. Then, the total demand Tδ =
∑

i Niciδ – where the233

index δ = 1, ..., M denotes the number of available resources – is a function of the species234

abundances themselves, hence resulting in a feedback loop mechanism.235

This model was initially devised to provide a clear geometric interpretation: metabolic236

strategies are represented as S vectors in the M -dimensional space of resource availability.237

The equality
∑

δ ciδwδRδ = χi defines a hyperplane, which divides the configuration space of238

abundances into two regions: an unsustainable region, where the scalar product is smaller than239

the effective requirement χi , and a sustainable region, above this hyperplane, where a positive240

resource surplus enables species to self-sustain and multiply. The single species requirement241

can also be recast in terms of a random cost, such that χi =
∑

δ ciδ + εx i , ε denoting an242

infinitesimally small parameter and x i a unit-variance Gaussian variable. Accordingly, one243

can establish the full phase diagram of the model and investigate its stability as a function244

7
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of a restricted number of control parameters: the ratio between the species in the pool and245

the number of available resources α = S
M ; the width of the cost distribution ε; the average246

and variance of the metabolic strategy distribution; and, if an additional layer of complexity247

is introduced, the variance of the resource supply. To characterize the system’s dynamics, a248

Lyapunov function can be defined for each trajectory:249

F({Ni}) =
∑

α

Rα log

�

∑

i

Niciα

�

−
∑

i

Niχi . (9)

One key advantage of defining a convex and bounded Lyapunov function is that it allows for250

the analysis of system stability in each phase by considering the harmonic fluctuations of such251

a function with respect to the species-abundance order parameter. In this system, it has been252

shown that a globally stable equilibrium state always exists, which, under certain conditions,253

may approach a marginally stable configuration [20].254

The asymptotic behavior of the system can then be evaluated in the large-β limit, which255

corresponds to the zero-temperature regime of a statistical physics problem, where β = 1/T256

is the inverse equilibrium temperature. As ε→ 0 limit, the model exhibits a phase transition257

between two distinct regimes [18]: a shielded phase, where a collective and self-sustained258

behavior arises, basically unaffected by external conditions; and a vulnerable phase, where259

species cannot sustain themselves and turn out to be highly sensitive to environmental changes260

and improvements. This kind of transition reminds the aforementioned SAT/UNSAT transition261

occurring in the perceptron, interpreted as a linear signal classifier.262

Moreover, in the low-temperature regime, the logarithmic term in the effective free energy263

becomes the dominant contribution. This behavior is associated with vanishing∆i for a subset264

of selected species. Then, by analyzing the harmonic fluctuations of the Lyapunov function265

around its minimum, one can extract the spectral density in both phases, revealing a critical266

Marchenko-Pastur distribution [23]. This signals the onset of a marginal stability condition,267

reminiscent of the glassy phenomenology observed in critical jammed systems, such as infinite-268

dimensional hard spheres and other continuous constraint satisfaction problems belonging to269

the same universality class [20,24].270

2.4 How to recover the Generalized Lotka-Volterra (GLV) model from a CR model?271

Different dynamical frameworks can be applied depending on the type of interaction being272

modeled—whether with the environment or among species. In the CR model, interactions273

primarily occur with the environment, whereas in the LV model, the environment serves as274

a mediator for inter-species interactions, akin to a thermal bath in physics. For the sake of275

simplicity, let us consider the scenario in which both depletion and growth rates are encoded276

in the same matrix, ciα.277

Ṅi

Ni
=
∑

δ

ciδRδ −χi

Ṙα
Rα
=

rα
Kα
(Kα − Rα)−

∑

j

cT
α jN j

(10)

Each row of the matrix is an M -dimensional vector, the uptake profile of the species i. If we278

allow resource dynamics to be much faster than those of the competing species, we can apply279

an adiabatic approximation and set the latter equations to zero:280

mα(Kα − Rα)−
∑

j

cT
α jN j = 0 , (11)

8
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where mα denotes the ratio between the growth rate and the carrying capacity for each α.281

Equation (11) implies a closed-form expression for the resources as a function of species’ abun-282

dances283

Rα = Kα −
1

mα

∑

j

c jαN j . (12)

As a consequence, the former dynamic turns out to be:284

Ṅi

Ni
=
∑

δ



ciδ

 

Kδ −
1

mδ

∑

j

c jδN j

!



−χi =

�

∑

δ

ciδKδ −χi

�

−
∑

δ

�

1
mδ

�

∑

j

ciδcT
δ jN j . (13)

It can be rephrased in a more compact form:285

Ṅi

Ni
= Ui − AiiNi −

∑

j ̸=i

Ai jN j (14)

by slightly shaping the interaction matrix286

Ai j =
∑

δ

ci,δcT
δ, j . (15)

Note that we have made use of two assumptions: i) we have assumed mδ = m = 1, namely287

species-independent parameters and constant over time; ii) we have split the sum over j in Eq.288

(13) into a diagonal and off-diagonal contribution, and eventually swapped the summation289

over resources and species. In this rephrasing, the interactions are written as a scalar product290

between uptake profiles, which allows us to recover the Generalized Lotka-Volterra equations291

with symmetric interactions Ai j = A ji . A detailed derivation can be found in the SI of [25].292

2.5 Cavity method for the GLV model: zero-noise picture293

One possibility for investigating how a system reacts to external perturbations is to apply linear294

stability analysis, linearizing the dynamical equations around their fixed point. This approach295

reflects May’s original intuition.296

However, to account for more complex scenarios, especially those featuring multiple equi-297

libria or persistent fluctuations, one can use the cavity method, a powerful technique in the298

analysis of disordered systems. Therefore, we consider the multi-species dynamics for the299

species abundances Ni , without any demographic or environmental noise:300

dNi

d t
= riNi

 

Ki − Ni −
∑

j ̸=i

Ai jN j

!

. (16)

As in previous frameworks, the index i = 1,2, ..., S runs over the total number of species301

in the pool. Positive interaction coefficients Ai j > 0 denote competition, whereas negative302

coefficients stand for mutualism. For simplicity, we shall set the growth rates ri = r = 1303

and the carrying capacities Ki = K (upon rescaling the other parameters). The analysis can304

nevertheless be extended in the case of random carrying capacities [26], providing only a305

quantitative change in terms of the resulting phase diagram.306

Our goal is to characterize the steady-state solution, defined by dNi
d t = 0, where the coeffi-307

cients Ai j are extracted from a suitably defined random matrix. Let us consider then:308

Ni

 

K − Ni −
∑

j ̸=i

Ai jN j

!

= 0 (17)

9
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where, similarly to the MacArthur model, 〈Ai j〉 = µ/S and 〈A2
i j〉c = σ

2/S. Such scaling is309

essential to ensure a well-defined thermodynamic limit, that is the quantity
∑

j Ai jN
∗
j must be310

independent of the system size. Therefore, we assume that the elements scale as311

Ai j =
µ

S
+σai j (18)

where the first and the second moments of the Gaussian variable ai j read312

〈ai j〉= 0 , 〈ai jakl〉=
1
S
δikδ jl +

ρ

S
δilδ jk . (19)

However, writing down a closed-form set of equations does not require the interactions to be313

Gaussian. The only condition is that the first two moments are finite, and the distribution does314

not exhibit long tails.315

In the cavity formalism, a new species is added to the ecosystem with mutual interac-316

tions A0 j and A j0 with the rest of the community. By construction, the different trajectories317

{Ni(t)} evolving according to the dynamics (21) are independent of such interaction coeffi-318

cients, which allow us to use central-limit arguments. The dynamics of the former S species319

can be written as320

Ni

 

K − Ni −
∑

j

Ai jN j − Ai0N0

!

= 0 , (20)

whereas for the new one, we have:321

N0

 

K − N0 −
∑

j

A0 jN j

!

= 0 . (21)

For compactness, we have dropped the asterisk in the steady-state solution. As we have seen322

for the consumer-resource model, adding a new species is equivalent to slightly perturbing the323

carrying capacity by an amount δKi . Let us consider the local susceptibilities χi j =
∂ Ni
∂ K j

, and324

apply the linear response theory to rewrite the stationary solution in perturbation theory:325

Ni = Ni\0 −
∑

j

χi jA j0N0 . (22)

The term Ni\0 represents the abundance in the absence of the 0-th species, which gives rise to326

the cavity designation. Since A0i ∼ O
� 1

S

�

, the term Ai0N0 can be treated as a small perturba-327

tion. Plugging the expression above into Eq. (21) for the 0-th species, we end up with328

N0



K − N0 −
∑

j

A0 j

�

N j\0 −
∑

i

χ jiAi0N0

�



= 0 . (23)

Solving the equation for N0, and excluding the trivial vanishing solution, we obtain to the329

leading order:330

N0 =
K −

∑

j σa0 jN j\0 −µ〈N〉

1−σ2
∑

i j χi ja0 jai0
. (24)

According to the central limit theorem, one can claim that the contribution
∑

i a0iχiiai0331

will converge to its expectation value. We can therefore rewrite the term at the denominator332

as ρ 1
S

∑

j χ j j = ρχ yielding333

N0 =max

�

0,
K −

∑

j σa0 jN j\0 −µ〈N〉

1−σ2ρχ

�

(25)
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which is required to be non-negative, otherwise the solution does not exist. Then, one need334

to evaluate the scaling of the typical fluctuations: the non-diagonal term is associated to cor-335

rections O(S−1/2), which become subleading in the thermodynamic limit.336

As a next fundamental hypothesis to close the equations on N0 we need to ask for self-337

averaging property in the thermodynamic limit, that implies:338

 S
∑

j=1

σa0 jN j\0

·

= Sσ〈a0 j〉〈N〉= 0 ,

�

 

S
∑

j=1

σa0 jN j\0

!2
�

= σ2
∑

j,k

〈a0 ja0k〉N j\0Nk\0 = σ
2〈N2〉

(26)

where we have introduced 1
S

∑

j N j\0 = 〈N0〉= 〈N〉,
1
S

∑

j N2
j\0 = 〈N

2
0 〉= 〈N

2〉. By gathering all339

ingredients together and introducing a standard normal variable z, we obtain the distribution340

of the solutions for N0:341

N0 =max

�

0,
K −µ〈N〉+

p

σ2〈N2〉z
1−σ2ρχ

�

(27)

which reflects the typical shape of a Gaussian distribution with mean (K −µ〈N〉)/(1−σ2ρχ)342

and variance σ2〈N2〉/(1 − σ2ρχ)2. To the leading order in 1/S, the resulting distribution343

of the typical species abundance is a truncated (positive-definite) Gaussian law. It inherently344

implies the resolution of the following set of self-consistent equations:345

〈N〉=
1
S

∑

i

Ni\0 , 〈N2〉=
1
S

∑

i

N2
i\0 , (28)

346

χ =


∂ N0

∂ ξ0

·

=
φ

1−σ2ρχ
, φ =

1
S

∑

i

θ (N0) . (29)

where the susceptibility essentially accounts for the single-species response function to a slight347

perturbation, for instance in the carrying capacity or the growth rate. It can be recast in terms348

of the fraction of surviving species φ and χ itself. The symbol θ (·) denotes the Heaviside step349

function. See also [17] for an alternative derivation in a few benchmark models.350

3 High-dimensional random GLV equations with stochasticity351

We consider the following dynamical equations for the evolution of the species abundance Ni352

at time t, where the index i runs over the total number of species i = 1, ..., S:353

dNi

d t
=Ni



(Ki − Ni)−
∑

j,( j ̸=i)

Ai jN j



+ηi(t) +λi =

=Ni



−∇Ni
Vi(Ni)−

∑

j,( j ̸=i)

Ai jN j



+ηi(t) +λi ,

(30)

Ni(t) is interpreted as a relative species abundance of species i at time t, meaning that the354

population is actually normalized by the total number of individuals populating the ecosystem355

in the absence of interactions (deterministic scenario, i.e. Ai j = 0).356

To account for demographic fluctuations, we introduce the variable ηi(t), a white Gaussian357

noise with zero mean and variance 〈ηi(t)η j(t ′)〉= 2T Ni(t)δi jδ(t−t ′), where T represents the358
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noise amplitude. The amplitude T turns out to be inversely proportional to the total number359

of individuals in the pool: hence, the larger the system size, the smaller the demographic noise360

strength. We specifically follow Itō’s convention for the stochastic part: the multiplicative na-361

ture of the equations ensures that for zero immigration (λi = 0) – if the absorbing state Ni = 0362

is reached – the population goes extinct and remains there at all later times. Alternatively,363

to properly study the interplay with an intrinsic source of fluctuations, one can introduce a364

species-independent immigration parameter λ, therefore preventing overall extinctions in a365

finite time.366

3.1 Itō’s versus Stratonovich prescription367

Equation (30) is meaningless without selecting a proper discretization for the noise. If one368

adopts Itō’s prescription, the time derivative of a generic observable O can be expressed as369

d
d t
〈O({N j})〉= 〈

∑

i

∂O
∂ Ni

dNi

d t
〉+ T 〈

∑

i

∂ 2O
∂ N2

i

Ni〉 , (31)

where 〈·〉 stands for the average over the probability distribution P({N j}, t), i.e. over the370

thermal noise.371

Then, in the symmetric interaction case (for Ai j = A ji), one can show that the multi-species372

dynamics admit an invariant equilibrium-like probability distribution [26,27]. By plugging the373

dynamical equation (30) in the above expression, we obtain:374

d
d t
〈O({N j})〉=



∑

i

∂O
∂ Ni



−Ni∇Ni
Vi(Ni)− Ni

∑

j

Ai jN j +λ





·

+ T 〈
∑

i

∂ 2O
∂ N2

i

Ni〉 . (32)

The three terms in parenthesis can be collected together and denoted as F̃({N j}) allowing us375

to rewrite the time evolution of the average operator as376

d
d t
〈O({N j})〉=

∫

∏

i

dNi P({N j}, t)

�

∑

i

∂O
∂ Ni

F̃({N j}) + T
∑

i

∂ 2O
∂ N2

i

Ni

�

, (33)

from which the resulting equation for 〈O({N j})〉 can easily be obtained by integration by parts.377

In the same spirit, the dynamical equation for the probability distribution reads:378

∂ P({N j}, t)

∂ t
=
∑

i

�

−
∂

∂ Ni

�

F̃({N j})P({N j}, t)
�

+ T
∂ 2

∂ N2
i

�

P({N j}, t)Ni

�

�

(34)

from which, by imposing the R.H.S. to be zero, we obtain the stationary probability distribu-379

tion. Therefore, we ask the invariant probability distribution to scale as P∝ exp(−βH), with380

H an effective energy function, and inverse temperature β = 1/T . This implies 1
P
∂ P
∂ Ni
= − 1

T
∂ H
∂ Ni

381

from which, by integrating over Ni , we can deduce the associated energy function valid in the382

symmetric interaction case:383

H =
∑

i

Vi(Ni) +
∑

i< j

Ai jNiN j + (T −λ)
∑

i

ln Ni . (35)

A complete derivation can be found for other instances of conservative dynamics, for instance384

in the case of a non-logistic self-regulation contribution (see [28]).385

In other words, the original dynamical process in Eq. (30) describes the time evolution386

of an interacting ecosystem whose thermodynamics is defined by Eq. (35). Note that – at387

variance with the simplest scenario corresponding to the analysis in the limit T → 0 and388
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λ→ 0+ – introducing a small but finite immigration results in a qualitative behavioral change.389

The immigration parameter ensures that no species will go extinct thus replacing the concept390

of indefinite extinction with the concept everything is everywhere [29].391

Conversely, Stratonovich discretization has the advantage of preserving invariance under392

time reversal. However, due to the multiplicative nature of the noise, the two discretization393

schemes are not formally equivalent and necessitate the introduction of an additional drift394

term:395

η
p

N → η
p

N −
1
2

p
2T

2
p

N

p
2T N = η

p
N −

T
2

. (36)

3.2 Disordered free energy: replica method396

The disorder average of the free energy can be computed through the replica method [30], a397

powerful technique originally introduced for dealing with spin-glass problems. It relies on the398

identity399

−βF = ln Z = lim
n→0

ln Zn

n
. (37)

where one first computes the replicated partition function for integer values of n, and only at400

the final stage considers the analytical continuation n→ 0. Despite being thermodynamically401

independent, replicas turn out to be correlated because they are taken over the same realiza-402

tion of the disorder. Therefore, integrating over the disorder introduces an effective coupling403

between them.404

Let us thus proceed with the computation of Zn:405

Zn =

∫

∏

i< j

dAi j exp

 

−
∑

i< j

(Ai j −µ/S)2

2σ2/S

!

∫ n
∏

a=1

∏

i

dN a
i exp

�

−β
∑

a

H({N a
i })
�

(38)

By performing a Gaussian integration over the random variables Ai j with finite mean and406

variance, we obtain:407

Zn =

∫ n
∏

a=1

∏

i

dN a
i exp

�

∑

i< j

σ2

2S

�

β
∑

a

N a
i N a

j

�2

+

− β
∑

a

�

∑

i

[Vi(Ni) + (T −λ) ln(Ni)] +
µ

S

∑

i< j

N a
i N a

j

��
(39)

To decouple the first term, we thus introduce the following quantities corresponding respec-408

tively to the overlap matrix between two replicas a, b of the reference system and the mean409

abundance:410

Qab =
1
S

S
∑

i=1

N a
i N b

i , Ha =
1
S

S
∑

i=1

N a
i (40)

The replicated partition function can eventually be rewritten in terms of the new order param-411

eters:412

Zn =

∫

∏

a≤b

dQab

∏

a

dHa exp {SA ({Qab, Ha})} (41)

where the free-energy action A reads:413

A ({Qab,Qaa, Ha}) = −
1
2
σ2β2

�

∑

a<b

Q2
ab +

1
2

∑

a

Q2
aa

�

+
βµ

2

∑

a

H2
a +

1
S

∑

i

ln Zi({Qab, Ha}) .

(42)
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Alternatively, one can recognize a Hubbard-Stratonovich transformation structure, which in414

the case of a multivariate Gaussian integral reads:415

√

√(2π)N

det Â
exp

�

−
bT Âb

2

�

=

∫ ∞

−∞
exp

�

−
yT Â−1y

2
+ bT · y

�

dy , (43)

which we apply to y =Qab (and Ha, in turn).416

The last piece in Eq. (42), i.e. the effective partition function for the one-species abun-417

dances in different replicas, reads:418

Zi =

∫

∏

a

dN a
i exp

�

−βHeff({N a
i }, {Qab, Ha})

�

(44)

whose associated effective Hamiltonian is419

Heff = −βσ2

�

∑

a<b

N a
i N b

i Qab +
1
2

∑

a

(N a
i )

2Qaa

�

+
∑

a

�

µHaN a
i +V (N a

i )+(T−λ) ln N a
i

�

. (45)

420

3.3 Saddle-point evaluation of the free energy421

In the S→∞ limit only the values of Qab and Ha that extremize the action will contribute2:422

ln Zn

S
=A({Q∗ab, H∗a}) . (46)

Therefore, based on the stationarity condition, one obtains:423

∂A
∂Qab

= 0

∂A
∂ Ha

= 0
−→

Q∗ab =
1
S

∑

i

〈N a
i N b

i 〉

H∗a =
1
S

∑

i

〈N a
i 〉

(47)

where the brackets indicate the thermal average over the resulting Hamiltonian Heff. It de-424

pends on Qab and Ha requiring the explicit integration or, in a more straightforward way, the425

resolution of a set of self-consistency equations. As it is for spin-glass models, Qab represents426

the overlap matrix between two replicated configurations, in the presence of an external field,427

denoted by Ha.428

3.4 The replica symmetric solution429

Solving these high-dimensional equations without guessing a specific form for the overlap430

matrix Qab and the mean abundance Ha seems impractical. To address this challenging task,431

one can initiate the analysis by assuming a replica-symmetric (RS) ansatz. Since the action is432

symmetric under the exchange of replica indices, we can first claim that the solution respects433

this symmetry. Therefore, all fields must be equal and the overlap can only take two values:434

q0 for the overlap between different replicas, and qd > q0 for the self-overlap (see Fig. 2).435

Qab = q0

Qaa = qd

Ha = h

a ̸= b

a = b

∀a

(48)
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qd
q0

n

q0 qd

n

Figure 2: Replica-Symmetric (RS) ansatz for the overlap matrix Qab, which is
parametrized by two values only, the diagonal term (self-overlap) and the off-
diagonal contribution (inter-state overlap).

The stability of the solution will be eventually checked by computing the Hessian of the free436

energy, and notably its leading eigenvalue, the so-called replicon eigenvalue [30–32]. If there437

were multiple equilibria, two distinct replicas would have a different overlap according to438

whether they were in the same state or not. Since here distinct replicas always have overlap439

q0, this ansatz corresponds to assuming that there is a unique equilibrium state. The "size" of440

this state is characterized by the overlap between different replicas q0: if it is large (q0 ≲ qd)441

the configurations in the same state are very similar, so that the state is very localized in phase442

space, if it is small (q0 ≪ qd) the state is very wide. We can insert it in the action and in the443

effective Hamiltonian:444

A(qd , q0, h) = −
1
2
σ2β2

�

n(n− 1)
2

q2
0 +

n
2

q2
d

�

+
βµn

2
h2 +

1
S

∑

i

ln Zi(qd , q0, h) (49)

445

He f f = −
βσ2

2

�

q0

�

∑

a

N a
i

�2

+ (qd − q0)
∑

a

(N a
i )

2

�

+
∑

a

�

µhN a
i + V (N a

i ) + (T −λ) ln N a
i

�

(50)
To decouple the different replicas we introduce a Gaussian integration over an auxiliary vari-446

able zi , thus obtaining:447

Zi =

∫ +∞

−∞

dzip
2π

e−z2
i

�∫

dNi exp
�

−βHRS
eff (Ni; qd , q0, h; z)

	

�n

(51)

448

HRS
eff = −βσ

2 qd − q0

2
N2

i + (µh− z
p

q0σ)Ni + V (Ni) + (T −λ) ln Ni (52)

One of these terms is proportional to a fluctuating field z, which accounts for the ran-449

domness of the interactions. Considering the stationary condition, performing the analytic450

continuation for n→ 0 and taking into account that after the integration over the fluctuating451

2Ha would actually need to be integrated over the imaginary axis; deforming the integration contour and using
the method of steepest descent would then yield the stated result.
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field z all species are equivalent, the self-consistent equations (47) become:452

h=

∫

Dz

 
∫∞

0 dNe−βHRS
eff (q0,qd ,h,z)N

∫∞
0 dNe−βHRS

eff (q0,qd ,h,z)

!

= 〈N〉

qd =

∫

Dz

 
∫∞

0 dNe−βHRS
eff (q0,qd ,h,z)N2

∫∞
0 dNe−βHRS

eff (q0,qd ,h,z)

!

= 〈N2〉

q0 =

∫

Dz

 
∫∞

0 dNe−βHRS
eff (q0,qd ,h,z)N

∫∞
0 dNe−βHRS

eff (q0,qd ,h,z)

!2

= 〈N〉2

(53)

where we used the calligraphic notation for the Gaussian integral in z:
∫

Dz ≡
∫∞
−∞

dzp
2π

e−z2/2.453

The brackets indicate the average over the Boltzmann distribution under the effective Hamil-454

tonian, while the overbar denotes the average over the disorder, represented by the Gaussian455

unit-variance variable z. The two averages coincide with a single species abundance’s thermal456

and disorder average, respectively. Given the resulting values of the above set of equations,457

one can eventually compute the disordered free energy as:458

f =
F
S
= − lim

n→0

ln Zn

nβS
= − lim

n→0

A(h, q0, qd)
βn

. (54)

Solving these equations analytically at finite β is impractical. It is thus necessary to employ459

a numerical scheme that, given an initial guess, allows us to solve them iteratively.460

Algorithmic protocol

• Initialize the mean abundance h, and the two overlaps qd , q0 at the initial time;

• Solve Eqs. (53) iteratively upon progressively increasing β = 1/T . The introduc-
tion of a damping parameter – for instance α= 0.1 – can be beneficial to facilitate
the convergence.

Therefore, by looking at the first equation, one should consider:

ht ← α
∫

Dz
∫∞

Nc
dNe−βHRS(q

t−1
0 ,qt−1

d ,ht−1,z)N
∫∞

Nc
dNe−βHRS(q

t−1
0 ,qt−1

d ,ht−1,z)
+ (1−α)ht−1 .

• The algorithm is expected to converge if the error between the (t − 1)-value and
t-value ≤ ε, a given arbitrary precision ε, for each of the three order parameters.

461

3.5 Numerical interpretation of the order parameters462

To validate the replica symmetric ansatz, one can simulate the dynamical system defined in463

Eq. (30). To generate a single ecosystem realization:464

• First, one needs to sample the S×S interaction matrix with rescaled parameters (µ̃, σ̃2);465

• One sets up the initial conditions Ni(t = 0), by assuming for instance a uniform distri-466

bution in [0,1];467

• Then, demographic fluctuations are sampled from a white-noise distribution with am-468

plitude T .469
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The dynamical equations can then be integrated deterministically up to a given tmax, which470

denotes the maximal extent of the simulation. Also, to analyze variability, it is beneficial to471

perform the simulation for Nsamples independent realizations, each obtained by varying the472

sources of randomness. This process produces a dataset {N p
i (t)}t=0,...,tmax;i=1,...,S;p=1,...,Nsample

.473

Eventually averaging over all these different contributions, one can have access to the dynam-474

ical correlator:475

E[N(t)N(t ′)] =
1
S

1
Nsample

S
∑

i=1

Nsample
∑

p=1

N p
i (t)N

p
i (t
′) , (55)

which, for sufficiently large samples (N ≃ 50−60), shows a convergence in law. Moreover, at476

sufficiently large times, the correlator appears to satisfy the time translational invariance (TTI)477

property being a function only of the time difference: E[N(t)N(t ′)] = C(t−t ′), ∀t ≥ t ′ > twait.478

The waiting time depends on the parameters’ choice, notably (σ, T ); however, in the single479

equilibrium phase, we are guaranteed that the dynamics converge to the TTI state and twait480

turns out to be typically 102.
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qd

The (left) Figure shows the numerical compari-
son for two characteristic one-time observables:
the self-overlap qd and the mean abundance h in
the single-equilibrium (RS) regime. The dashed
line corresponds to the theoretical prediction; the
full line results from the integration of Dynami-
cal Mean-Field Theory equations. For more details
see [27,33].

481

We eventually find:482

h= E[N(t)] , qd = C(0) = [N(t)2] , q0 = lim
τ→∞

C(τ)≃ E[N(t)N(tmax)] , (56)

where the L.H.S. is computed through the replica method and the R.H.S. provides the numer-483

ical comparison.484

3.6 Stability analysis: Single equilibrium versus multiple equilibria485

In the symmetric interaction case, for Ai j = A ji , the RS solution becomes unstable at σc =
1p
2
.486

In the asymmetric case, the instability bound is slightly modified to take the correlation be-487

tween asymmetric coefficients into account [34]. Without correlation, the transition from the488

unique equilibrium to multiple attractors turns out to be independent of µ and lies on the line489

σ =
p

2. For a generic asymmetry ρ, on the other hand, σc =
p

2/(1 + ρ). Increasing the490

symmetry shifts the two transitions towards lower variance and stronger interactions. In this491

light, predation-prey relationships may contribute to stabilizing the community.492

To investigate the stability of the different phases, we introduce the Hessian matrix of493

the free energy, which allows us to study the harmonic fluctuations in terms of the matrix494

δQab. Thanks to the symmetry group properties of the replica space, the diagonalization of495

the Hessian matrix can be expressed as a function of three different contributions. Following496

[31, 35], we define three sectors: the longitudinal, λL, the anomalous, λA, and the replicon,497

λR.498

An instability leading to the breaking of replica symmetry is signaled by the Hessian ma-499

trix, projected on the so-called replicon sector, no longer being strictly positive definite. If its500
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smallest eigenvalue reaches zero, this signals the onset of an instability, analogous to the de501

Almeida-Thouless line, as originally identified in the Sherrington-Kirkpatrick model for spin502

glasses [36].503

Conversely, a zero longitudinal mode provides insights into spinodal points describing how504

a state opens up along an unstable direction. This phenomenon is particularly relevant for un-505

derstanding the emergence of tipping points and catastrophic collapses, which typically occur506

through first-order phase transitions. To be more detailed, we consider the matrix of the sec-507

ond derivatives of the action, as in Eq. (42), differentiated with respect to the overlap matrix:508

Mabcd ≡ −
∂ 2A

∂Qab∂Qcd
= β2ρ2σ2

�

δ(ab),(cd) − (β2ρ2σ2)〈N aN b, N cN d〉c
�

. (57)

The subscript 〈·〉c denotes the connected part of the correlation function.509

It should be noted that the limit n→ 0 implies a negative multiplicity for Qs, thus entailing510

a change in the convexity of the free energy at the stationary point. Therefore, one should511

evaluate the corrections to the saddle point and select only those solutions with a positive-512

defined second derivative of the action.513

Within the replica formalism, Eq. (57) can eventually be recast as a function of three514

different correlators, depending on the choice of the replica indices:515

Mabcd = Mab,ab

�

δacδbc +δadδbc

2

�

+Mab,ac

�

δac +δbd +δad +δbc

4

�

+Mab,cd . (58)

In the specific case of the replicon sector, the associated eigenvalue reads:516

λR = (βρσ)
2
�

1− (βρσ)2
�

Mab,ab − 2Mab,ac +Mab,cd

�

�

(59)

where each of these contributions can be rewritten as a function of the species abundance517

correlators as follows518

Mab,ab − 2Mab,ac +Mab,cd =
�

〈(N a)2(N b)2〉 − 2〈(N a)2N bN c〉+ 〈N aN bN cN d〉
�

. (60)

As usual, the average 〈·〉 is performed over the effective Hamiltonian, while the disordered519

one is denoted by ·. In the presence of a single equilibrium – namely in the replica-symmetric520

approximation – this leads to the following replicon eigenvalue:521

λR = (βρσ)
2
h

1− (βρσ)2(〈N2〉 − 〈N〉2)2
i

. (61)

The averaged difference in the parenthesis accounts for fluctuations between the first and522

second moment of the species abundances within one state, namely between the diagonal523

value qd and the off-diagonal contribution q0 of the overlap matrix. Such a difference can also524

be interpreted as the response function of the single species to an infinitesimal perturbation.525

The identification of a vanishing replicon eigenvalue is intricately linked to the emergence526

of marginal states and diverging susceptibilities.This aspect is also pertinent in the context of527

out-of-equilibrium aging dynamics. This stability analysis procedure can be repeated as many528

times as needed, ranging from the 1RSB ansatz to the full-RSB solution. In the 1RSB scenario,529

a key difference lies in the distinction between the intra-state average, computed within a530

single replica state, and the inter-state average, computed over a block of replicas of size m.531

In a similar manner, the replicon eigenvalue reads:532

λ1rsb
R = (βρσ)2

�

1− (βρσ)2〈
�

〈N2〉1r − 〈N〉21r

�2〉m-r

�

, (62)

The point at which the 1RSB replicon mode vanishes marks a critical phase transition to a533

more structured phase.534
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q0

q1

Figure 3: Pictorial representation of a replica-symmetric landscape for the General-
ized Lotka-Volterra model, depicted by a single fixed point (left); fractal landscape
structure in the low-demographic noise phase, formally captured by a full-RSB solu-
tion (right).

4 Derivation of the phase diagram at finite noise535

Different regimes associated with increasing complexity can be pointed out by varying the536

demographic noise amplitude, T , and the heterogeneity of the interactions, σ2 as pertinent537

control parameters of the model. Below the blue line in Fig. (4), which reflects the vanishing538

behavior of RS replicon eigenvalue, the landscape structure is no longer identified by a single539

equilibrium. It would be depicted, instead, by a more complex, two-level structure, which540

turns out to be associated with an additional order parameter as well.541

Remarkably, upon further decreasing the demographic noise and increasing the variance542

of the interaction matrix σ2, the system undergoes a Gardner transition to a marginally stable,543

amorphous phase, terminology borrowed from glassy physics. In this regime, each state –544

also referred to as a basin – fragments into a fractal hierarchy of sub-basins (metabasins), as545

illustrated in Fig. (3), right panel. As a result, the internal structure of the emerging sub-546

basins is formally described by the full replica symmetry breaking (full-RSB) solution of the547

partition function (below the orange line, Fig. (4)). This regime is characterized by an infinite548

hierarchy of broken symmetries in the order parameter [30]. In other words, the original549

piecewise function parametrizing the overlap matrix will converge to a continuous function550

q(x), with x ∈ [0,1].551

Analytical calculations in high-dimensional hard-sphere systems and continuous constraint552

satisfaction problems have allowed for the prediction of this type of transition, supporting the553

emergence of a fractal hierarchy [37]. Hence, the infinite-dimensional theory corroborates the554

hypothesis that an equilibrium glass state undergoes a structural change, transitioning from a555

normal glass to a marginal one in the low-temperature regime. Remarkably, for the first time556

in an ecological context, an analogy between low-temperature glassy systems and complex en-557

ergy landscapes in the Generalized Lotka-Volterra model has been highlighted in [27], building558

on prior studies in this direction [20,26,34]. However, what a replica symmetry-breaking sce-559

nario precisely yields for biological and ecological communities – whether linked to a finite or560

a hierarchical sequence of slower and slower timescales in the dynamics – represents still an561

open and intriguing question.562

4.1 Zero-temperature limit of the RS solution563

At T → 0, the two order parameters tend to become degenerate, i.e. q0 → qd . It is therefore564

useful to define an auxiliary quantity ∆q = βρ(qd − q0) that remains finite. In this limit,565

the integrals are exactly solvable given the vanishing trend of the logarithmic term in the566

Hamiltonian (35) and their consequent Gaussian nature.567
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Figure 4: Phase diagram of the GLV model in the presence of finite demographic
fluctuations and random symmetric interactions, i.e. αi j = α ji . At sufficiently high
demographic noise, the landscape is described by a single fixed point (above the
blue line). At low-noise and high-heterogeneity values, the dynamics get trapped in
different multiple-equilibria phases, which are captured either by a 1-RSB scenario
or a full-RSB one. Figure adapted from [27].

The self-consistent equations for the order parameters turn out to be then:

h= N ∗(z) ,

q0 = N ∗(z)2 ,

∆q =
θ (N ∗(z)

H ′′

RS(N ∗(z))

(63)

568

where the θ (·) function in the last expression accounts only for the positive-definite species569

abundances. The saddle-point approximation eventually yields for the typical value:570

N ∗(z) =max
�

0,
K −µh+ zσ

p
q0

1−∆qσ2

�

. (64)

Equations (63) are explicitly written in the symmetric case, for ρ = 1, where the replica571

method safely applies. They immediately recall those obtained by the cavity method, also572

implying:573

N ∗(z) =max
�

0,
K −µ〈N〉+ zσ

p
q0

1−ρσ2χ

�

, (65)

where ρ stands for the generic correlation between the interaction matrix couplings.574

4.2 Conclusions and Perspectives575

We shall now discuss a few exciting research directions that could pave the way not only576

for a better theoretical understanding of large ecosystems – interpreted through the lens of577
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disordered systems – but also for a more immediate detection of empirical macroecological578

patterns and quantitative contributions to biomedical research.579

4.2.1 Dynamical Mean-Field Theory approach: asymmetric interactions and spatial de-580

pendence581

Non-reciprocal interactions break detailed balance. When the dynamics are no longer gov-582

erned by conservative forces, defining a free energy and minimizing its Hessian on a proper583

subsector becomes unfeasible. However, asymmetric interactions can give rise to fascinating584

phenomena, including an exponential number of attractors, limit cycles, and chaotic behavior.585

We now revisit the dynamical equations for the Generalized Lotka-Volterra model with586

arbitrary correlation ρ between the interaction coefficients Ai j:587

dNi

d t
= Ni



(1− Ni)−
∑

j,( j ̸=i)

Ai jN j



+ηi(t) +λi . (66)

In the large system size limit, for S→∞, this many-body problem can be conveniently rewrit-588

ten in terms of a single-variable self-consistent stochastic process, also referred to as Dynamical589

Mean-Field Theory (DMFT):590

dN(t)
d t

= N(t)

�

1− N(t)−µh(t)−σζ(t) +ρσ2

∫ t

0

d t ′R(t, t ′) N(t) +Hext(t)

�

(67)

where h(t) = E[N(t)] represents the mean abundance evolving in time, C(t, t ′) = E[N(t)N(t ′)]591

the correlation function, and R(t, t ′) = E
�

δN(t)
δHext(t ′)

�

�

�

Hext=0

�

the response function, thus com-592

puted w.r.t an external field Hext. The notation E[·] denotes the average on all different sources593

of randomness: random couplings, initial conditions, and demographic noise. The derivation594

is similar to that to obtain the Langevin equation from Newtonian dynamics. However, an595

additional layer of complexity arises here because the statistical properties of the effective596

thermal bath – accounting for the interactions with the rest of the system – must be deter-597

mined self-consistently.598

This DMFT formalism has been widely applied to a variety of interdisciplinary contexts,599

starting from strongly correlated electrons, to the analysis of rheological properties of amor-600

phous systems under shear deformations, up to active matter. Moreover, this approach allows601

us to go beyond a purely well-mixed approximation and model a multi-species metacommunity602

in the presence of external noise and random interactions [38]. In the simultaneous limits of603

an infinite number of species and spatial patches, the phase diagram can be determined an-604

alytically. For sufficiently large demographic fluctuations, the transition between an active605

phase – where most species persist – and an inactive phase is continuous, falling within the606

universality class of Directed Percolation. However, at lower values of demographic noise, the607

scenario changes dramatically. In this regime, the transition becomes discontinuous, unveiling608

novel features as well as the pivotal role of random interactions.609

The effect of migration between distinct patches in the strong heterogeneity regime was610

also investigated in the presence of non-symmetric interactions and zero noise [39,40]. In the611

latter, chaotic behaviors associated with long-lived persistent fluctuations can take place.612

4.2.2 Heavy-tailed distributions613

The RS solution discussed thus far predicts a truncated Gaussian distribution for the typical614

species abundances, which is known to be not the kind of distribution observed in Nature [41].615
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Nearly all the continuous statistical distributions (normal, exponential, gamma) have light616

tails. However, when talking about ecological collapses and external perturbations, such as the617

distribution of the largest fires within a limited region [42], the rate of population spread [43]618

or even hurricanes [44], heavy-tailed distributions seem to be the right answer.619

Moreover, one might wonder whether the phase transitions obtained in high-dimensional620

phase diagrams (multiple equilibria, Gardner, etc.) remain true beyond the mean-field approx-621

imation, although there is by now remarkable experimental evidence of multiple alternative622

stable states. In light of this, scaling and crossover theory might account for the long-range623

fluctuations that the mean-field approximation ignores.624

Within the framework of disordered systems, accurately representing more realistic distri-625

butions requires incorporating two additional key ingredients: asymmetric interactions and626

multiple fixed-point scenarios. Indeed, asymmetric interactions between species can result in627

chaotic dynamics, in which a sharp timescale separation between many rare species – respon-628

sible for power-law trends – and a few abundant ones, associated with sudden turnovers can629

be detected [45–47]. It is quite acknowledged that such heavy tails arise as an emergent prop-630

erties of large ecological communities, the result of the interplay between interactions and631

stochasticity [48]. How a large number of species can coexist in those complex communities632

and what is the mechanism according to which they are mostly dominated by rare species is633

still not completely understood. Over the years several efforts have been done to recover such634

distributions from simple statistical or mechanistic models:635

• Heavy-tailed distributions can be obtained within an individual-based model (IBM) with636

a maximum number of individuals [49], thus counterbalancing immigration of new637

species with the interactions between species. In other words, the IBM are stochastic638

cellular automatons in which immigration, growth rates, and extinction events can hap-639

pen at every time step with the rates. All individuals of a species are assumed to be640

equivalent (same growth rates, same self-interaction strengths, same immigration pa-641

rameters). Then, species abundances evolve stochastically. [49, 50] showed separately642

that depending on the immigration rate, both power law and lognormal abundance dis-643

tributions can be observed. By using experimental data of plankton and microbial com-644

munities, it has been found out that a log-normal distribution, rather than a power law,645

fits best the distribution of abundances of the most abundant species.646

• Alternatively, [48] proposes a stochastic GLV model with a global maximal capacity –647

meaning that communities are limited by finite resources and limited space – taking648

both the immigration and the degree of connectivity into account as relevant control649

parameters. At high connectivity, the abundance distribution allows for the emergence650

of non-trivial power-law behaviors.651

The abundance distribution of microbial communities is typically a lognormal. In IBMs,652

broad distributions are the result of the system being self-organized at the edge of sta-653

bility [49]. Immigration increases the number of species, whereas interactions between654

species cause individual extinction. Both the IBM and simplistic models with maximal655

capacity give rise, in different ways, to heavy-tailed rank abundance distributions. No-656

tably, in the presence of logistic equations, a uniform distribution of the self-interaction657

leads to a power-law abundance distribution. In contrast, lognormal distributions of the658

growth rate and the self-interaction term give rise to lognormal trends.659

4.2.3 Data-driven approaches660

The growing availability of observational datasets, particularly for microbial communities,661

allows increasingly detailed characterizations of local communities. Recent studies indicate662
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that samples of the same community type, collected from various spatial or temporal locations,663

hosts, etc. frequently exhibit shared statistical properties [29,51,52]. These findings support664

the application of ensemble averages as representative markers of distinct community states,665

a concept fundamental to statistical physics methodologies [53].666

However, comparing model predictions with empirical abundance distributions as a crite-667

rion for model selection may lead to several challenges. Three notable approaches are usually668

employed in this regard. First, longitudinal datasets reveal temporal changes in community669

composition, enabling more precise comparisons with theoretical models. Although determin-670

istic and stochastic models may predict similar species abundance distributions, they differ in671

the timescales of fluctuations and resulting abundance trajectories. A key challenge requires672

distinguishing measurement errors, noise, and chaotic dynamics. New non-parametric time-673

series analysis methods are addressing these limitations [54]. Moreover, time-series proper-674

ties like critical slowdown can signal approaching tipping points, potentially leading to catas-675

trophic shifts in ecosystem states [55]. Detecting such transitions is crucial for ecological676

forecasting and decision-making, where statistical physics methods can play a fundamental677

role.678

Second, incorporating ecological functions – such as productivity, metabolic activity, or679

trophic structures – into community descriptions can enhance the theoretical accuracy. The680

definition of functional groups, accounting for the biological knowledge of how species with a681

similar role contributes to ecosystem functions, often reduces variability [56,57]. This multi-682

layer approach enables better model selection and motivates new theoretical directions.683

Third, some microbial communities exhibit ergodicity breaking, thus resulting in multiple684

attractor states [58–60]. In light of this, since multistability reflects distinct community prop-685

erties [61,62], there is hope that the inferred information from data could improve predictions686

on species compositions and emerging patterns, also for classifying specific ecosystem services687

and distinct diseases in microbial dynamics [25,63].688
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