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The mutual feedback between quantum condensed matter and cold atom physics has been quite
fruitful throughout history and continues to inspire ongoing research. Motivated by the recent
activities on the quantum simulation of topological orders among the ultracold Rydberg atom arrays,
we consider the possibility of searching for topological orders among the dipolar quantum magnets
and polar molecules with a kagomé lattice geometry. Together with other quantum interactions such
as the transverse field, the dipolar interaction endows the kagomé system with a similar structure
as the Balents-Fisher-Girvin model and thus fosters the emergence of the Z2 topological orders. We
construct a Z2 lattice gauge theory to access the topological ordered phase and describe the spinon
and vison excitations for the Z2 topological orders. We explain the spectroscopic consequences for
various quantum phases as well as the experimental detection. We further discuss the rare-earth
kagomé magnets, ultracold polar molecules, and cluster Mott insulators for the physical realization.

I. INTRODUCTION

Ever since the proposal and discovery of the Bose-
Einstein condensation, the mutual feedback and the con-
fluence between the ultracold atomic systems and the
quantum condensed matter physics have been a fertile
ground for creativity and innovation [1–3]. In the new
century of quantum simulation, this mutual interaction
is further accelerated, generating a set of new ideas and
activities [4–22]. One active direction of such activities is
to search for the intrinsic topological order with the ul-
tracold atom settings. Recent progress has been made to-
wards the ultracold atom realization of the bosonic quan-
tum Hall effect (chiral Abelian topological order) [14] and
the Z2 topological order and the Rydberg atom arrays
were designed for the latter [23, 24]. On the geometri-
cally frustrated lattices, the Rydberg blockade creates the
degenerate classical manifold. The detuning field gener-
ates the quantum tunneling between the classical states
in the degenerate manifold and induces the topological
orders with the assistance of the extended 1/r6 Rydberg
interaction. Motivated by this interesting and important
proposal, we consider the possibility of identifying the
topological orders among the kagomé dipolar systems.

The Z2 topological order was proposed for the Rydberg
atom arrays on the kagomé lattice [23, 24]. Owing to the
Rydberg blockade and the long-range interaction, part
of the physical intuition was drawn from making a con-
nection to the well-known Balents-Fisher-Girvin (BFG)
model on the kagomé lattice [25]. The BFG model has a
quantum dimer model (QDM) description on the triangu-
lar lattice formed by the centers of the hexagonal plaque-
ttes [26, 27]. The equivalent dimer resonating is gener-
ated by the high-order perturbation by the detuning field
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on the Rydberg atom. The numerical calculation found
an extended region of Z2 spin liquid that is compatible
with the physical intuition [23, 24]. The ingredients for
making such a connection are the Rydberg blockade, the
long-range interaction, and the geometrically frustrated
kagomé lattice. Along this line of thinking, it seems that
the dipolar interactions on the frustrated lattice could
carry these ingredients as well. Actually, the 1/r3 dipo-
lar interaction is more extended than the 1/r6 interaction
[21, 22]. It has been proposed recently a Dirac spin liquid
can be realized in the kagomé dipolar XY model [22]. We
propose two different kagomé dipolar systems. One is the
dipolar quantum magnet with a kagomé lattice geometry.
This is naturally realized in the rare-earth-based tripod
kagomé compounds [28–30]. The other is the ultracold
polar molecule on the kagomé optical lattice [21, 31–36].
In fact, the ultracold polar molecule has been proposed
to realize various spin models in quantum magnets as
well as the extended t-J models [31, 32]. Since both sys-
tems could share the same type of model Hamiltonian
and the tripod kagomé compounds involve more compli-
cations about the local moment degrees of freedom, we
will devote most of our discussion to the kagomé com-
pounds, and postpone the discussion about the ultracold
polar molecule and cluster Mott insulator realization at
the end of this paper.

Differing from the 1/r6 Rydberg interaction, the dipo-
lar interaction for the magnetic moments is not just
more extended with a 1/r3 dependence, and moreover
is anisotropic [21, 22]. We will begin with explaining
the interaction and the physics by working with the lo-
cal moments from the non-Kramers doublets for the tri-
pod kagomé systems, and then discuss the application
to the Kramers doublets. For the rare-earth magnets,
the strong spin-orbit coupling entangles the spin and
the orbitals and leads to the spin-orbit-entangled mo-
ment J [37]. Unlike the Kramers doublet whose degener-
acy arises from the time-reversal symmetry for the half-



2

integer J , the non-Kramers doublet occurs for the inte-
ger J when the two-fold degenerate crystal field ground
states are protected by the lattice symmetry. For the
kagomé lattice, however, no symmetries protect the de-
generacy of the non-Kramers doublet. Hence, there al-
ways exists a finite splitting between the two states of
the non-Kramers doublet on the kagomé lattice [28]. If
these two states of the non-Kramers doublet are well sep-
arated from other crystal field excited levels, the low-
temperature magnetic physics is fully governed by the
non-Kramers doublet. One then introduces an effective
pseudospin-1/2 degree of freedom, S, to operate on the
non-Kramers doublet. An example of this kind is the
Ho3+ ion in the compound Ho3Mg2Sb3O14 [30]. Due
to the microscopic reasons, only one component of the
pseudospin, Sz, is linearly related to the magnetic dipole
moment, and the splitting between the two states of the
non-Kramers doublet can often be modeled as an intrin-
sic transverse field [28]. Thus, the relevant model for the
system is given as

H =
1

2

∑
i̸=j

V

r3ij

[
ẑi · ẑj − 3(ẑi · r̂ij)(ẑj · r̂ij)

]
Sz
i S

z
j

−
∑
i

hxS
x
i −

∑
i

hz(ẑ · ẑi)Sz
i + · · · ,

(1)

where the first term is the magnetic dipole-dipole interac-
tion with rij the lattice vector connecting i and j and is
long-ranged, the second term is the intrinsic transverse
field and the third term is the external Zeeman field.
The “· · · ” refers to the other interactions, especially the
superexchange interaction between the pseudospins, and
these interactions can sometimes help enhance quantum
fluctuations. The magnetic moment of the Ho3+ ion
is quite large and is ∼ 9.74µB in Ho3Mg2Sb3O14 [30].
Hence, the dipole-dipole interaction is a large energy
scale in the system and should be seriously considered.
In Eq. (1), the ẑi is the local Ising direction at the lattice
site i and defines the direction of the local magnetiza-
tion (see Fig. 1). By realizing the connection with the
Z2 topological order and the BFG model, we adopt the
Z2 parton-gauge construction for the Z2 topological or-
dered phases [23] (or Z2 spin liquids) and consider the
instability towards other ordered phases. Throughout
this work, we will use the Z2 topological orders and the
Z2 spin liquids interchangeably. This parton-gauge con-
struction not only captures the exotic properties within
the Z2 topological order [23, 38–46], but also qualitatively
establishes the global phase diagram.

Since the Z2 topological order has not yet been fully
discovered in any existing experiment, it is more im-
portant for us to address the key experimental features
that distinguish it from other states. For this purpose,
we discuss various experimental probes and their conse-
quences. Besides the thermodynamic properties, we com-
bine the microscopic properties of the local moments and
the symmetry enrichments of the Z2 topological order
and explore the spectroscopics. Although there exist the

spinon and the vison excitations for the Z2 topological
order [47, 48], for the non-Kramers doublets, only the vi-
son continuum is detectable in the inelastic neutron scat-
tering measurements. This selective measurement arises
from the microscopic property of the local moment and
the relation of the magnetic moment with the vison bi-
linears [49, 50]. Moreover, the external Zeeman coupling
polarizes the magnetic moment component Sz, and thus
modulates the background dual Z2 gauge flux for the vi-
sons. In terms of the old language in the literature, dis-
tinct flux patterns correspond to odd and even Z2 gauge
theories [47, 48, 51]. It is then shown that, at different
magnetization plateaux, the system can access distinct
symmetry enriched Z2 topological orders with distinct
symmetry fractionalizations for the visons [43]. The di-
rect consequences of the distinct symmetry fractionaliza-
tion for the visons are the enhanced spectroscopic peri-
odicity in the Brillouin zone.

Away from the context for the non-Kramers doublet,
we further consider the Kramers doublet [52]. The in-
trinsic transverse field is not allowed by the time-reversal
symmetry. The transverse field has to be applied exter-
nally. Once the system establishes the Z2 topological
order, one can discuss the measurements. Unlike the
non-Kramers doublet, both the spinon continuum and
the vison continuum show up in the inelastic neutron
scattering measurements. Due to the clear separation of
the spinons and the visons in energies, it is feasible to
separately identify their contribution and examine the
spectroscopic signatures. In the ultracold polar molecule
context, however, the measurement of the excitations is
not as straightforward as the inelastic neutron scatter-
ing measurement in quantum materials [53, 54]. There is
the spin-echo type of measurement like NMR for the po-
lar molecules, and the two-photon Raman spectroscopy
that is equivalent to the inelastic neutron scattering mea-
surement [31, 32]. Unlike the quantum materials whose
couplings are more-or-less fixed by the materials them-
selves, the advantage of the polar molecule quantum sim-
ulation is to provide more tunability of the couplings in
the model Hamiltonian.

For the realization with the cluster Mott insulators,
the electron charge is identified as the relevant degree
of freedom [55–58]. The electron’s occupation and ab-
sence on a lattice site can be thought of as an effective
spin-1/2 degree of freedom. The zero-field case of the
spin problem corresponds to the 1/4 filling of the elec-
trons. Unlike the spin system, here the electron spectral
function encodes the signature of charge fractionaliza-
tion, and density-density correlation encodes the vison
continuum.

The remaining parts of the paper are organized as fol-
lows. In Sec. II, we introduce the model formulation for
both non-Kramers doublet and Kramers doublet on the
kagomé lattice, as well as the ultracold polar molecule
context. In Sec. III, we briefly explain the relation be-
tween our model and the BFG model and compare the
difference from the Rydberg atom array. In Sec. IV, we
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perform a perturbative analysis of our model and gain
some basic insights about the condition for Z2 topologi-
cal order. In Sec. V, we work out the global phase dia-
gram by a non-perturbative parton-gauge mean-field the-
ory. In Sec. VI, we devote to the physical properties of
the Z2 topological ordered phases, and these include the
detailed excitation structures for both the spinon contin-
uum and the vison continuum. Finally in Sec. VII, we
elaborate the detection of the Z2 topological orders from
both thermodynamic and spectroscopic measurements,
and discuss the real materials (including the rare-earth
magnets and the cluster Mott insulators) and the fea-
sibility of quantum simulation with the ultracold polar
molecules.

II. MODEL FORMULATION

We start with the non-Kramers doublet on the kagomé
dipolar magnets. In the actual tripod kagomé material,
the local easy axis is controlled by the local crystal en-
vironment and the non-magnetic ions above/below the
kagomé plane, and thus can be tuned by ambient pres-
sure or chemical pressure. To avoid the complication with
the structural details, we work in the case that each local
spin moment is aligned perpendicular to the kagomé lat-
tice plane with a uniform ẑ on every site. The variation
from a uniform ẑ is discussed at the end of the paper.
Under this choice, the model in Eq. (1) is simplified to

H =
1

2

∑
i ̸=j

VijS
z
i S

z
j − hz

∑
i

Sz
i − hx

∑
i

Sx
i + · · · , (2)

where Vij = g/r3ij + Jz
ij has included both the dipo-

lar interaction and the superexchange interaction Jij ,
and “· · · ” refers to other interactions such as the su-
perexchange between the transverse spin components,
J⊥
ij (S

x
i S

x
j +Sy

i S
y
j ). Here, g refers to the coupling strength

of the dipolar interaction. Since we prefer the local mo-
ment to be in the Ising limit (with the doublet wave-
function to be polarized towards the large J states), the
superexchange between the transverse spin components
could be relatively weak.

As we have previously mentioned, the degeneracy of
non-Kramers doublet is not protected by the symmetry
of the kagomé lattice and the time reversal, allowing for
the introduction of an intrinsic transverse field, hx, to
account for the intrinsic splitting of the non-Kramers
doublets. Under the time-reversal operator, the effec-
tive pseudospin-1/2 operator for the non-Kramers dou-
blet transforms as

T (Sx, Sy, Sz)
non-Kramers

=⇒ (Sx, Sy,−Sz). (3)

Thus, only Sz of the non-Kramers doublets couples to
the external Zeeman field, hz. As we will clarify later,
this unique property of non-Kramers doublets leads to
a selective measurement of the vison excitations for the
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FIG. 1. (a) A schematic phase diagram for kagomé dipo-
lar magnets is presented. We assume V2 = V3 in this plot.
When V2 and V3 are fully suppressed, the model reduces
to a transverse-field Ising model (TFIM) on the kagomé lat-
tice. However, if V2 and V3 acquire finite values relative to
V1, the system flows to a restricted BFG regime, which can
be mapped to the QDM with extra constraints. When the
strengths of V2 and V3 become comparable to V1, the model
flows to the conventional BFG regime. (b) Definition of in-
teractions between the nth neighbor sites. (c) Spin represen-
tation of the flippable dimer structure and dimer flipping.

Z2 topological ordered states in the measurement such as
the inelastic neutron scattering (INS) experiments.

For the Kramers doublet, the two-fold degeneracy is
protected by the time-reversal symmetry. In this case,
the transverse field hx has to be applied externally. The
effective pseudospin-1/2 operator transforms like a real
magnetic moment under the time-reversal operator,

T (Sx, Sy, Sz)
Kramers
=⇒ (−Sx,−Sy,−Sz). (4)

As a result, the INS-like experiments can probe more
types of fractionalized excitations in the Z2 topological
ordered states.

The extended dipolar interaction can be further real-
ized with the ultracold polar molecules on optical lattices.
A polar molecule consists of two atoms that are often
alkali-metal atoms but different atoms. As the diatomic
object breaks the spatial rotational symmetry, one needs
the rotational degrees of freedom to describe a polar
molecule. The rotational degrees of freedom endow the
polar molecules with permanent dipole moments, whose
direction can be controlled by an external electric field.
When they are loaded onto an optical kagomé lattice,
these polar molecules interact by a dipolar interaction.
Such a setup leads to a t-J-V -W model [31, 32], whose
coupling coefficients can be tuned experimentally. Under
the suitable circumstances, the Hamiltonian in Eq. (2)
can be reproduced.
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III. CONNECTION TO THE
BALENTS-FISHER-GIRVIN MODEL

What is the relation between our model and the
BFG model? We here sketch a description of the BFG
model [25]. In the theoretical progress of spin liquids, one
goal was to go beyond the contrived models and write
down the physical-looking models such that these mod-
els may be experimentally relevant and then spin liquids
can be realized physically. The BFG model serves as
one of the first few such physical-looking models around
its time. It incorporates first-neighbor, second-neighbor,
and third-neighbor Ising interactions, where the third-
neighbor is between the diagonal sites on the hexagon
plaquette of the kagomé lattice [see Fig. 1(b)]. When
these three interactions are equal, the Ising part of the
interaction can be expressed in terms of the square of the
total Sz spin within each hexagon, leading to a highly de-
generate ground state manifold. With the perturbative
exchange interaction between the transverse spin com-
ponents, the system develops a 4-site ring exchange [see
Fig. 1(c)] interaction that allows quantum fluctuations
among the degenerate manifold, and these quantum pro-
cesses can be mapped to the dimer resonances for a QDM
on the triangular lattice formed by the centers of the
hexagon plaquettes. It is well established that the QDM
on a triangular lattice exhibits a Z2 topological ordered
phase near the Rokhsar-Kivelson point [26, 42, 59], and
thus, the BFG is one of the first few physical-looking
models with a Z2 topological ordered ground state.

To clarify the relation of our model with the BFG
model, we first let Vn represent the Ising interaction
strength Vij between the nth neighbor sites. With only
the nearest-neighbor Ising interaction V1, the model re-
duces to the kagomé transverse field Ising model (TFIM).
The antiferromagnetic kagomé TFIM at zero longitu-
dinal field hz is known to be a quantum paramag-
net and is smoothly connected to the paramagnetic
phase at the strong transverse fields [25]. There is no
topological order in the absence of long-range interac-
tions. In the superexchange interactions Jz

ij ’s, the ra-
tio of the long-range dipolar interactions is given by
V1 : V2 : V3 : V4 = 1 : 0.193 : 0.125 : 0.054. Here, V4 is
comparably weak and may be truncated in the first anal-
ysis. It is illuminating to compare this ratio with the one
for the Rydberg atom array that is 1 : 1/27 : 1/64. Al-
though the ratio for the Rydberg atoms is far away from
the uniform limit in the original BFG model, the ring
exchange in the BFG model can be generated by the
fourth-order perturbation of the transverse field term,
and the non-uniformity of the Ising interaction does not
play a significant role in destabilizing the Z2 topological
order for the Rydberg atom array [24]. In contrast, our
kagomé dipolar model is actually less non-uniform than
the Rydberg atom array and is probably more favorable
toward the BFG model realization and the associated Z2

topological order.

We summarize and extend our qualitative discussion

above in the schematic plot of Fig. 1(a). This plot is not
a phase diagram and should not be taken quantitatively.
It can only be used for the qualitative understanding.
For the convenience of the explanation, we set V2 = V3

and the other longer-distance Ising interactions to zero.
In the limit of V2/V1 → 0, the system is in the TFIM
regime and the quantum paramagnetic state. With a
weak and finite V2/V1, the system enters the so-called
“restricted BFG regime” where the large V1 Ising inter-
action restricts the spin configuration on each triangular
plaquette to be ↑↑↓ or ↓↓↑ and the remaining interac-
tions still drive the system with the restricted states into
the topological phases of the BFG model. The Rydberg
atom array on the kagomé lattice is suggested to be re-
lated to this “restricted BFG regime”. When V2/V1 = 1,
the system can be well mapped to the BFG model. This
regime is referred to as the “BFG regime” in the plot.
With the dipole-dipole interaction, the kagomé dipolar
magnet, owing to the presence of the nearest-neighbor su-
perexchange interaction, can be driven to the “restricted
BFG regime” or “the BFG regime”. This depends on
the sign of the nearest-neighbor Ising exchange coupling,
which we explain below.

IV. PERTURBATIVE ANALYSIS FOR Z2

TOPOLOGICAL ORDER

In this section, we provide a perturbative analysis of
the model in Eq. (2). Although the validity of the pertur-
bative analysis is limited to the perturbation treatment,
it gives us a basic understanding of the emergence and
the possible conditions for the Z2 topological order. We
separate the discussion into two subsections. The first
subsection is about the ferromagnetic The Ising exchange
case and the second subsection are about the antiferro-
magnetic Ising exchange case.

A. Ferromagnetic case

Unlike the dipolar interaction that is extended and
long-ranged, the superexchange interaction of the 4f
electrons is quite short-ranged and is often dominated
by the first exchange. Here, we consider the effect for
a ferromagnetic Ising exchange with Jz

1 < 0 between the
first neighbors. In this case, the total first-neighbor Ising
interaction, V1, is suppressed, and the ratio to second and
third-neighbor Ising interactions is more toward unifor-
mity. Thus, the model of Eq. (2) in this case is closer to
the original BFG model than the Rydberg atom array.

Ignoring the longer range interactions for (Vn≥4), the
Hamiltonian in Eq. (2) can be written as

H = H f +H f
∼ +H3′ +Hx + · · · , (5)
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where

H f =
V3

2

∑
r

(
Sz
r − hz

2V3

)2

, (6)

H f
∼ = (V1 − V3)

∑
⟨ij⟩

Sz
i S

z
j + (V2 − V3)

∑
⟨⟨ij⟩⟩

Sz
i S

z
j , (7)

H3′ = V3

∑
⟨⟨⟨ij⟩⟩⟩′

Sz
i S

z
j , (8)

Hx = −hx

∑
i

Sx
i . (9)

Here, Sz
r =

∑
i∈ r

Sz
i represents the total Sz of the spins

on the six corners of the hexagon plaquette, and r refers
to the hexagon that is centered at r. The term H f cor-

responds to the BFG Hamiltonian in the presence of an
out-of-plane magnetic field, H f

∼ captures all spatial non-
uniformity in the interactions, H3′ accounts for the inter-
hexagon third-neighbor Ising interaction, Hx represents
the transverse field, and “· · · ” refers to the remaining in-
teraction such as the superexchange between the trans-
verse components and will not be included in our calcu-
lation of the main text.

If H f
∼ = H3′ = 0 is satisfied, the system reduces to

the BFG model. Depending on hz, several magnetiza-
tion plateaux can emerge in H f with the magnetization

mz = 0, 1/6, 1/3 of the saturation magnetization msat.
The mz = 0 plateau corresponds to the case that is stud-
ied in the original BFG model [25]. Up to the leading-
order perturbation in Hx, the effective Hamiltonian be-
comes a 3-dimer QDM with the dimers connecting the
centers of the hexagon plaquette [24]. Here, the hexagon
centers form a triangular lattice, and the dimer covering
(absence) on the bonds of the triangular lattice corre-
sponds to the spin-↓ (↑) configuration on the kagomé lat-
tice. The mz = 0 plateau leads to the three dimers con-
necting every triangular site. Similarly, for mz = msat/6
and mz = msat/3, the effective Hamiltonian reduces to
the 2-dimer and 1-dimer QDMs on the triangular lattice,
respectively [24, 43].

In all three cases, the effective Hamiltonian takes the
following form

Heff = −t
∑(

| ⟩ ⟨ |+ | ⟩ ⟨ |
)

+µ
∑(

| ⟩ ⟨ |+ | ⟩ ⟨ |
)
,

(10)

where the only difference between the cases lies in the
dimer constraint. The dimer-resonating strength is given
by t ∼ O(h4

x/V
3
3 ), while µ represents the on-site poten-

tial for the flippable dimer structures, which is µ = 0 in
the cases here. Moreover, the neglected transverse ex-
change J⊥

1 (Sx
i S

x
j + Sy

i S
y
j ) contributes to the dimer res-

onance at the second order, and this further enhances
the energy scale of the dimer-resonating and may be re-
garded as one advantage over the Rydberg atom array

[23, 24]. The triangular lattice QDM is known to host an
extended Z2 topological ordered phase near the Rokhsar-
Kivelson point [26]. Quantum Monte Carlo simulations
in Ref. [43] suggest that for mz = 0 and mz = msat/3,
the liquid phase remains extended even for µ = 0. For
mz = msat/6, a finite on-site potential µ is needed to
stabilize the Z2 topological order [43].
In the previous discussion, we have neglected the de-

formation term H f
∼ and the inter-hexagon third-nearest-

neighbor interaction H3′ . The deformation can be safely
ignored if both V1 − V3 ≪ V3 and V2 − V3 ≪ V3 [24].
Nevertheless, H3′ plays a critical role in stabilizing the
liquid phase. Since the strength ofH3′ can be comparable
to V3, the ground state manifold is significantly altered.
A sufficiently strong H3′ suppresses the presence of the
flippable dimer structures, thus destroying the topologi-
cal order and triggering a phase transition into the Ising
ordered phases. Therefore, stabilizing the Z2 topological
order prefers weakening the strength of H3′ .
At the level of the perturbative analysis, we have al-

ready noticed that a weak H3′ helps stabilize the topo-
logical order. One potential solution is to involve the
superexchange interactions. On the kagomé lattice, due
to the different exchange paths, the inter-hexagon and
intra-hexagon third-neighbor superexchange interactions
should differ from each other. The other solution is to
consider the noncolinear local axis of the dipole moments.
As we will discuss in the end, the tilting of the local axis
away from ẑ could significantly suppress H3′ . These to-
gether could potentially weaken H3′ , expressed as

H3′ = V ′
3

∑
⟨⟨⟨ij⟩⟩⟩′

Sz
i S

z
j , (11)

where V ′
3 incorporate other effects such that V ′

3 could
be much weaker than V3. Under these conditions, the
effective Hamiltonian from the perturbative analysis de-
rived earlier remains valid. Moreover, for mz = msat/6,
the weak V ′

3 interaction behaves as an on-site potential
µ = V ′

3 , which nevertheless could help stabilize the topo-
logical order.

B. Antiferromagnetic case

For the second case, Jz
1 is antiferromagnetic, and V1 be-

comes much stronger than the higher-order interactions,
such that V1 ≫ V2 ≳ V3 ≫ Vn≥4. The strong nearest-
neighbor interaction V1 imposes a restriction on the spin
configurations of the ground states. If the external field
hz is relatively small compared to V1, the spin configura-
tion on each triangular plaquette must be ↑↑↓ or ↓↓↑. In
such a restricted space, the remaining interactions still
lead to the BFG model. Thus, we refer to this case as
the “restricted BFG regime” (see Fig. 1).

To gain more understanding of the restricted BFG
model, we rewrite the model in Eq. (2) as

H = Haf
△ +Haf +Haf

∼ +H3′ +Hx + · · · , (12)
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where

Haf
△ =

V1 − V3

2

∑
△R

[
Sz
R − hz

2(V1 − V3)

]2
, (13)

Haf =
V3

2

∑
r

(Sz
r )

2
, (14)

Haf
∼ = (V2 − V3)

∑
⟨⟨ij⟩⟩

Sz
i S

z
j . (15)

The terms H3′ , Hx, · · · remain the same as in the ferro-
magnetic case, and H3′ also includes the superexchange
interaction. Here, Sz

R =
∑

△R
Sz
i is the total Sz of the

spins on the three corners of the triangular plaquette△R,
which is centered as R. These R’s form a honeycomb
lattice, which is the dual lattice of the triangular lattice
formed by these r’s (see Fig. 2).

For sufficiently strong antiferromagnetic Jz
1 , the energy

scale of V1 becomes much larger than the other interac-
tions in the system. Since V1 − V3 ≫ V3 and Haf

△ is the
largest energy scales of the model, we restrict the discus-
sion to its ground states manifold. The external mag-
netic field hz modifies the magnetization of the ground
states, leading to the magnetic plateaux mz = ±1/3,±1
of the saturation magnetization msat. If hz lies deep in
the magnetic plateaux, the number of down-spins in each
triangle is fixed. For example, in the 1/3 magnetization,
each triangle is ↑↑↓ state and the number of down-spins
(the number of dimers) is one. Then, we consider Haf ,

which is exactly an BFG Hamiltonian. However, be-
cause a dimer-flipping term (the 2nd row of Eq. (10))
now changes the number of down-spins in the triangles,
the QDM description cannot be realized in these cases.
We have to consider those cases in which the number
of down-spins is allowed to vary. These correspond to
that hz is near the transition between two magnetization
plateaux.

Concretely, we consider the case hz ≈ 0, in which the
ground states manifold consists of those ↑↑↓ and ↓↓↑ con-
figurations, which can be understood as a restriction of
the Hilbert space. Further considering the remaining
terms: Haf , Haff

∼ , H3′ , more detailed structures would

appear in the restricted Hilbert space. One can notice
that Haf takes the same form as the BFG model. After

ignoring the deformation Haff
∼ and H3′ and regarding the

down-spins as dimer coverings, the quantum dynamics of
Hx on the ground states of Haf is captured by the same

QDM as Eq. (10), while a constraint should be imposed:
the number of dimers on each triangle is either 1 or 2.

The QDM on a triangular lattice hosts an extended Z2

liquid phase, and a chemical potential term can be added
to further stabilize this phase. The key question here
is whether the extra constraint imposed on the dimers
prevents the formation of a liquid phase in the QDM.
The answer can be argued by examining the Rokhsar-

e particle

m particle

i

j
k

r1

r2

R1 R2

σ

τ
μ

η

(a) (b)

S

FIG. 2. (a) The kagomé lattice sites are denoted as i, j, k, . . . .
The Z2 QSL of a kagomé dipolar magnet contains two el-
ementary excitations: e particles (spinons) and m particles
(visons). e particles (in red) live inside the hexagonal plaque-
ttes; m particles (in blue) live inside the triangular plaquettes.
(b) A triangular lattice (in red) is constructed by connecting
the hexagon centers of the kagomé lattice, and its lattice sites
are denoted as r1, r2, . . . . The τ matter field and the σ gauge
field are placed on the triangular lattice sites and links, re-
spectively. The dual lattice of the triangular lattice is the
honeycomb lattice (in blue), where a dual µ matter field and
a dual η gauge field are put on the sites and links, respectively.
The honeycomb lattice sites are denoted as R1,R2, . . . .

Kivelson (RK) point (with µ = t),

HRK = −t
∑(

| ⟩ − | ⟩
) (

⟨ | − ⟨ |
)
, (16)

where the QDM is exactly solvable. The solution is the
equal-amplitude superposition of all dimer coverings with
the constraint. In such a state, one can break one dimer
and create two spinons (or monomers). The energy of
the state is independent of the separation between two
spinons. Therefore, the spinons are deconfined. The con-
straint does not destroy the Z2 liquid phase of the QDM.

V. NON-PERTURBATIVE MEAN-FIELD
THEORY

1. Parton-gauge construction

Beyond the perturbation theory, we study the Z2 spin
liquid in our model by the non-perturbative mean field
theory. The framework has been developed and well-
tested in the Rydberg atom array [23]. The formulation
begins with the parton-gauge construction for the Z2 spin
liquid. Ignoring the gapped particles in the Z2 topologi-
cal order, the remaining are the gauge links [23]. We first
introduce the gauge links and then insert the gapped par-
ticles. In the spirit of the string-net condensation [71],
the loops of the gauge links are closed strings that are
condensed, and the ends of the open strings are decon-
fined particles due to the tensionless strings. The spin
operator S corresponds to the shortest open string. In
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terms of the gauge links, the spin operator S is set to

Sx
i → 1

2
σz
r1r2

, (17)

Sz
i → 1

2
σx
r1r2

, (18)

where r1r2 is the link on the triangular lattice that is
formed by the hexagon centers of the kagomé lattice, and
the i is the kagomé lattice site that is located at the mid-
point of r1r2 (see Fig. 2). Here, σx and σz are Pauli
matrices. A τ field is then introduced as the spinon mat-
ter field at the hexagon centers of the kagomé lattice and
attached to the end of the open string. The original spin
model is then reformulated as a Z2 lattice gauge theory
on the triangular lattice [23] with

H =
1

2

r1r2 ̸=r3r4∑
r1r2,r3r4

Vr1r2,r3r4

4
σx
r1r2

σx
r3r4

+
hz

2

∑
r1r2

σx
r1r2

+
hx

2

∑
r1r2

σz
r1r2

τzr1
τzr2

.

(19)

To constrain the enlarged Hilbert space, we impose the
Gauss’s law

τxr =
∏

rr′∈ r

σx
rr′ , (20)

where we have denoted the triangular lattice sites as r,
and r is the set of six legs emanating from r. The
notation Vr1r2,r3r4

is the same as the original Vij , where
i or j is the center of the link r1r2 or r3r4.

We here give more explanation of the physical mean-
ing for the τ field and the σ field [23]. From Eq. (20), τxr
records the Z2 gauge charge that creates the gauge field
around r as the Gauss’s law. Given a ground state with
a determined gauge charge distribution, the action of Sx

i

on the kagomé lattice site i changes the sign of gauge
field σx

rr′ = 2Sz
i . Thus, the Z2 gauge charge τxr and τxr′

are flipped, creating two point-like excitations. Continu-
ous action of Sx

i along a path in the kagomé lattice can
move the two excitations away from each other, and the
two ends of this path/string are two gapped excitations.
Thus, the τ field is interpreted as the spinon field. A sim-
ilar interpretation could be made for the visons via the
Sz strings. τxr records the Z2 spinon parity and τzr is the
spinon operator. Spinons are minimally coupled to the
gauge link σz-field. When the gauge field is in the decon-
fined state with a nonzero ⟨σz⟩, separating two spinons
creates a string that has no tension, and the spinons are
deconfined in this case [23, 60]. When the spinon be-
comes gapless and condensed, the system is in a Higgs
phase. Besides the deconfined and Higgs phases, there
is the confining phase that is realized when the vison is
condensed [23, 60].

2. Mean-field theory

To develop a mean-field theory and access the Z2 spin
liquid, we introduce a hardcore boson representation of
the spin-1/2 operators [23, 43]. The gauge field is ex-
pressed as

σx
rr′ = 1− 2B†

rr′Brr′ , (21)

σz
rr′ = B†

rr′ +Brr′ , (22)

where B⟨ij⟩ and B†
rr′ are hardcore boson operators. In

this representation, spin-up (down) states are mapped to
zero (one) boson states. For the spinon τ field, we choose
a slightly different substitution. We aim for the ground
state to be free of gauge excitations. For instance, if the
ground state enforces τzr = 1 (τzr = −1), then τzr = −1
(τzr = 1) will represent an excitation. Thus, we define

τxr = ζr(1− 2b†rbr), (23)

τzr = b†r + br, (24)

where ζr = 1 or ζr = −1. Assuming the translational
symmetry is protected, we focus on two types of ground
states: (1) an even Z2 spin liquid, where τzr = 1 for all r,
and we set ζr = 1; and (2) an odd Z2 spin liquid, where
τzr = −1 for all hexagons, and we set ζr = −1. Conse-
quently, we can omit the r-dependence of ζr.
In the hardcore boson representation, the Z2 gauge

charge is represented by the number of bosons. The
gauge constraint of Eq. (20) can be written as

b†rbr +
∑

rr′∈ r

B†
rr′Brr′ = Q, (25)

with Q = 0, 1, 2, . . . , 7. (26)

For an even (odd) Z2 spin liquid, Q is even (odd). This
gauge constraint is enforced by a Lagrange multiplier λ,
leading to an interacting theory between the B and b
bosons. To determine the dispersion of the b bosons, we
condense the B bosons, setting

⟨Brr′⟩ = ⟨B†
rr′⟩ = B. (27)

This results in a Bogoliubov-de-Gennes (BdG) Hamilto-
nian for the spinons

Hspinon = −hxB
∑
rr′

(b†r + br)(b
†
r′ + br′)

+λ
∑
r

b†rbr + E0, (28)

where

E0 =
V
4
Nk(1− 2B2)2 − hz

2
Nk(1− 2B2)

+λNt(6B2 −Q), (29)

where V = 2V1 + 2V2 + 3V3 + . . . represents the total
dipolar interaction energy per spin, and Nk = 3Nt,
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with Nk and Nt denoting the number of sites on the
kagomé and triangular lattices, respectively. Diagonaliz-
ing Hspinon in momentum space as [61–64]

Hspinon =

B.Z.∑
k

ωk(a
†
kak +

1

2
)− NTλ

2
+ E0, (30)

we obtain the ground state energy E as

E =
1

2

∑
k∈B.Z.

ωk − NTλ

2
+ E0, (31)

where ak is a linear combination of bk and b†k via the
Bogoliubov transformation, and the spinon dispersion is
given as

ωk = (λ2 − 2hxBλγk)1/2. (32)

Here γk = 2[cos(
√
3kx) cos(ky) + cos(2ky)]. We have set

the lattice constant of the kagomé lattice to 1.
The mean-field parameters λ and B are determined by

solving the self-consistent equations [23],

∂E/∂λ = 0, ∂E/∂B = 0. (33)

Since B minimizes the ground state energy E, we
must also ensure that ∂2E/∂B2 > 0. Furthermore, as

b†r and B†
rr′ represent hardcore bosons, the mean-field

value B must satisfy the conditions 0 ≤ B2 ≤ 1 and
0 ≤ Q− 6B2 ≤ 1.
To prevent the spinon condensation, the spinon dis-

persion ωk should have a finite energy gap. By solving
the self-consistent equations, we identify several regions
in the parameter space (V, hz, hx) where the spinons re-
main stable. Each region corresponds to a distinct type of
Z2 spin liquid. Specifically, we find four types of Z2 spin
liquid [23], corresponding to Q = 1, 2 and B < 0,B > 0
(See Fig. 3 for further details). At the phase boundary of
Z2 spin liquids, the minimum of the spinon energy band
touches zero, the system is then condensed to ordered
phases.

VI. EXCITATIONS AND SPECTRUM

In this section, we focus on the Z2 topological ordered
phases of our model and explore the spectroscopic prop-
erties of the fractionalized excitations. For the Z2 topo-
logical order, the fractional excitations are spinons and
visons [23, 39, 43]. They are sometimes referred to as e
particles andm particles (see Fig. 2). Here we do not talk
about the composite of e and m as it is not directly man-
ifested in the pair-wise spin correlators. In our model,
spinons are created by flipping the Sz spin. Thus, the
spinons are excitations by breaking the dimers. In con-
trast, visons are created by modulating the superposition
of the dimer coverings without breaking the dimers. The
energy scale of visons is much smaller compared to the
one of spinons. The spectra of spinons and visons are well
separated, and we will compute them explicitly below.

-20 -15 -10 -5 0 5 10 15 20

0

10

20

30

40

FIG. 3. The phase boundaries of possible spin liquid solutions
are mapped in the parameter space (hz,V), with the trans-
verse field hx = 1 taken as the energy unit. Each colored
region represents a distinct spin liquid phase, while the black
curves indicate the phase boundaries between these spin liquid
phases and non-liquid phases. Some regions exhibit overlap
between different spin liquid phases. The phases with Q = 1
(Q = 2) correspond to odd (even) Z2 spin liquids, and the
sign of B determines the minimum of the spinon dispersion.

A. Spinon continuum

The spinon operators τzr are related to the physical
spin operator Sx

i via Sx
i = 1

2σ
z
rr′τzr τ

z
r′ , and incorporates

the spinon creation and annihilation operators ak and a†k
under the hardcore boson representation. Thus, the spin
correlator ⟨Sx

i (t)S
x
i (0)⟩ that is measured by the neutron

scattering experiments, includes the contribution from
the spinon continuum. Assuming a uniform gauge field
condensation, ⟨Sx

i (t)S
x
i (0)⟩ is proportional to the density

of states of spinon continuum ρspinon(k, E) up to a non-
universal form factor [65]. Moreover, according to the
energy-momentum conservation, the two spinons share
the energy and momentum loss (E,k) of the neutron as
E = ωq2

+ ωq2
and k = q1 + q2, where ωq is the spinon

dispersion. The structure of the spinon continuum in the
energy and the momentum domains are constrained by
the spinon dispersion.

The odd and even Z2 gauge theory description for the
Z2 topological order differs in the flux that is experi-
enced by the vison, and does not occur in the spinon
sector. Thus, the spinon continuum for the odd and even
Z2 topological orders has no qualitative difference. In
Fig. 4, we depict the spinon continuum of two examples
of the Z2 topological orders, B > 0 and B < 0. It most
obvious features of the continuum are the reverse of low-
energy and high-energy parts. For B > 0, the minima of
the spinon energy band are located at two inequivalent
K points. The condensation of two spinons at K points
leads to either an ordered phase with a wave vector K or
a uniform phase with wave vector Γ. For B < 0, spinons
feel a π flux around the triangular plaquettes of the tri-
angular lattice. Such a flux pattern in the triangular
lattice doesn’t cause symmetry fractionalization but re-
verses the energy band. Now, the minimum of the spinon
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(a) (b)

(c) (d)

FIG. 4. The spinon continuum of the even Z2 spin liquid
is shown along the high-symmetry lines in (a) for positive
B; in (c) for negative B. The lower and upper limits of the
continuum in the first Brillouin zone for both cases are plotted
in (b) and (d), respectively. The model parameters for this
figure are V = 30 and hz = −15, which correspond to λ =
10.07 and B = 0.5762 for B > 0 case; λ = 10.05 and B =
−0.5767 for B < 0 case. For the odd Z2 quantum spin liquid,
the spinon continuum has no qualitative difference then the
even one, hence is not shown in the figure.

energy band occurs at the Γ point. Thus, the minimum
of the spinon continuum is also located at the Γ point,
leading to a uniform phase when condensing. The spinon
continuum minima can be used to differentiate two kinds
of Z2 spin liquids in experiments.

In the analysis of spinon mean-field theory, we have
ignored the quantum dynamics generated from the per-
pendicular spin-flipping J±-term. Actually, the J±-term
leads to a second-nearest hopping of spinons, which
changes the shape of the spinon spectrum. In the pres-
ence of a nonzero J±, the spinon continuums for B > 0
and B < 0 show more different structures, depending on
the relative strength between J± and hx (see the Ap-
pendix).

B. Vison continuum

1. Duality transformation

To reveal the vison excitations, the Z2 lattice gauge
theory in Eq. (19) on the triangular lattice is further
transformed to the dual Z2 gauge theory on the dual
honeycomb lattice (see Fig. 2) [23, 42, 50, 66]. We de-
note the honeycomb lattice sites as R. At the sites of
the honeycomb lattice, we define a dual µ matter field;
at the links, we introduce a dual η gauge field. Due to
the one-to-one mapping between (i) the links of the tri-
angular lattice and the links of the honeycomb lattice,
(ii) the sites of the triangular lattice and the plaquettes

of the honeycomb lattice, and (iii) the plaquettes of the
triangular lattice and the sites of the honeycomb lattice,
we can associate σ field and τ field with η field and µ
field,

τxr =
∏

RR′∈ r

ηzRR′ , µx
R =

∏
RR′∈△R

σz
RR′ ,

σx
RR′ = ηzRR′µz

Rµz
R′ , ηxRR′ = σz

RR′τzr τ
z
r′ .

(34)

In the second row, the triangular lattice link RR′ has the
same center as the honeycomb lattice link RR′. Substi-
tuting these relations into the Z2 gauge theory Eq. (19),
we obtain the dual gauge theory

H =
1

2

R1R2 ̸=R3R4∑
R1R2,R3R4

VR1R2,R3R4

4
ηzR1R2

ηzR3R4

× µz
R1

µz
R2

µz
R3

µz
R4

− hz

2

∑
RR′

ηzRR′µz
Rµz

R′

− hx

2

∑
RR′

ηxRR′ ,

(35)

where VR1R2,R3R4
is also a renaming of the dipolar in-

teraction Vij . The gauge constraint Eq. (20) is automat-
ically satisfied by the duality transformation.
Tracking the duality transformation, one can find Sz

i =
ηzRR′µz

Rµz
R′ . The spin liquid ground state is a superposi-

tion of many states with different Sz textures. The action
of Sz

i on the ground states changes the superposition co-
efficients, creating two visons at the honeycomb lattice
sites R and R′. Thus, µz

R is interpreted as the vison
creation operator, while µx

R records the vison number.

2. Vison mean-field Hamiltonian

When a spin liquid is stabilized, it is also possible
to discuss the dynamics of visons in the background of
spinon matter. Visons and Spinons obey mutual semion
statistics. Such a property can be quantitatively de-
scribed by a Wilson loop operator. In Z2 spin liquid
ground state |Ψ⟩, the Wilson loop of σ gauge field has
determined value∏

RR′∈ r

σx
RR′ |Ψ⟩ = W |Ψ⟩ , (36)

where W = ±1. The value W should be uniform for
all the hexagons in the kagomé lattice because Z2 spin
liquid does not break any translational symmetry. We
call |Ψ⟩ an even (odd) Z2 spin liquid state if W = 1
(W = −1). Gauge constraint relates the spinon number
operator τxi with the gauge charge. Therefore, in the
even Z2 spin liquid, there is no spinon distributed in the
triangular lattice, while in the odd Z2 spin liquid, there
is one spinon per site of the triangular lattice. When
a vison goes around a spinon, it feels a π flux. Such an
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(a)

(d) (e) (g)

(b) (c)

FIG. 5. The density of states ρ
even/odd
vison (k, E) (normalized by its maximum) of vison continuum for even and odd Z2 quantum

spin liquids. Model parameters are µ = 4, J1 = cosϕ and J2 = sinϕ. The three figures in the upper panel are for even Z2, while

these in the lower panel are for odd Z2. (a) and (d) show the integrated density of states ρ
even/odd
vison (E) =

∑
k ρ

even/odd
vison (k, E) as

a function of ϕ. The boundaries of the continuum are indicated by white solid lines. (b) and (e) are the plot of ρ
even/odd
vison (k, E)

along the high-symmetry lines by fixing ϕ = π/4. The enhanced periodicity of odd Z2 is clear in (e). (c) and (g) plot the upper
limit and lower limit of the vison continuum for ϕ = π/4.

effect manifests itself in the gauge field η. One can derive
from the duality relations Eq. (34) that the η gauge field
satisfies

∏
RR′∈ r

ηzRR′ = W for two kinds of Z2 spin
liquid states.

To explore the dynamics of visons, we treat the spin
liquid ground state as a mean field, in which the ηz gauge
field is locked to a mean-field value ηzRR′ = ηzRR′ that
generates the 0 or π flux for the even or odd spin liquids.
Then the low-energy physics of Eq. (35) is described by
a mean-field Hamiltonian

Hvison =
1

2

R1R2 ̸=R3R4∑
R1R2,R3R4

VR1R2,R3R4

4
η̄zR1R2

η̄zR3R4

× µz
R1

µz
R2

µz
R3

µz
R4

− hz

2

∑
RR′

η̄zRR′µz
Rµz

R′ .

(37)

The out-of-plane Zeeman field hz gives rise to nearest-
neighbor vison interaction, while the dipolar interac-
tion VR1R2,R3R4

is associated with four vison opera-
tors and leads to long-range interaction. If we trun-
cate VR1R2,R3R4

at the nearest neighbor, the links
R1R2 and R3R4 share a common site. The four vi-
son operators are then reduced to two vison opera-
tors. The resulting Hamiltonian becomes an Ising model
with nearest-neighbor interaction J1 = −hz/2 and next-

nearest-neighbor interactions J2 = V1/4,

Hvison = J1
∑
RR′

η̄zRR′µz
Rµz

R′

+ J2
∑
RR′

η̄zRR′′ η̄zR′′R′µz
Rµz

R′ ,
(38)

where R′′ is the honeycomb lattice site that makes RR′′

and R′′R′ connect. The truncation of dipolar interac-
tion at V1 is justified for the restricted BFG model where
V1 ≫ Vn≥2. For the conventional BFG model where V1,
V2, and V3 have close strength, one can treat the high-
order dipolar interactions as a mean field and give rise to
the renormalization of J1 and J2. Under this approxima-
tion, it is possible to work out the vison dispersion, which
is nothing but the soft modes of the Ising Hamiltonian
Eq. (38).

3. Even Z2 spin liquids

For the even Z2 spin liquid, each hexagon of
the honeycomb lattice contains no gauge flux, i.e.,∏

RR′∈ r
η̄zRR′ = 1. In terms of X-G Wen’s scheme of

classification, this belongs to a Z2A spin liquid for the
vison sector [46]. We can trivialize the mean gauge field
as η̄zRR′ = 1. Diagonalizing Eq. (38), we obtain the vison
dispersion

ϵeven±,k = µ+
J2
2
γk ± |J1|

2
|ζk|, (39)
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where γk = 2[cos(
√
3kx) cos(ky) + cos(2ky)] and ζk =

1 + 2ei
√
3kx cos(ky). Notably, the J2 interaction of the

honeycomb lattice forms two decoupled triangular lat-
tices, and ζk and γk are the structure factors of the hon-
eycomb lattice and the triangular lattice, respectively.
We have added a chemical potential µ to avoid the vison
condensation.

The vison dispersion shows a competition between the
triangular lattice part and the honeycomb lattice part.
When J2 ≫ |J1|, γk dominates, the dispersion looks like
the one of a triangular lattice. In this case, the energy
minimum is at the K points of the Brillouin zone. When
|J1| ≫ J2, |ζk| dominates and the dispersion now looks
like the one of a honeycomb lattice, which has two in-
equivalent Dirac cones at two K points. The energy min-
imum moves to the Γ point. Thus, the vison condensa-
tion of these two cases may cause the Ising ordered phases
with different magnetic wave vectors. In the intermedi-
ate regime, the vison minima actually develop the con-
tour degeneracies in the reciprocal space, which is quite
similar to the spin correlation for the honeycomb lat-
tice classical spiral spin liquid [67–69]. The Ising nature
of the vison field may bring extra complication to these
contour degeneracy [68]. This contour degeneracy is not
protected by symmetry, and the vison interaction and
further neighbor vison hoppings should be able to lift
the degeneracy and lead to other competing Ising orders
once the vison is condensed [23, 43].

When the visons are deconfined in the spin liq-
uid phase, the spin correlation function Szz

ij (t) =
⟨Sz

i (t)S
z
j (0)⟩ contains the signal of the vison continuum,

because 2Sz
i = σx

RR′ = ηzRR′µz
Rµz

R′ is related to two
vison fields. According to the energy-momentum conser-
vation, the DoS of the vison continuum ρevenvison(k, E) is
given by E = ϵevenα,q1

+ ϵevenβ,q2
and k = q1 + q2, where α and

β run in two vison bands.

4. Odd Z2 spin liquids

For the odd Z2 spin liquid, each hexagon contains a
π gauge flux,

∏
RR′∈ r

η̄zRR′ = −1. In terms of X-G
Wen’s scheme of classification, this belongs to a Z2B
spin liquid for the vison sector. We fix the gauge by
η̄zRR′ = − exp (iξRR′Q ·R), where ξRR′ = 1 for those
links that are parallel to x-direction, and 0 for the oth-
ers. The wave vector Q = π(− 1

2
√
3
, 1
2 ) accounts for the

periodicity of the gauge field. Due to the π flux, the unit
cell of the honeycomb lattice is enlarged to the magnetic
unit cell, and the translational symmetry is fractional-
ized. Such an effect leads to the enhanced periodicity of
the vison spectrum. What is interesting here is that the
translational symmetry of the spin liquid ground state
is not broken, but the periodicity of vison spectrum is
enhanced.

The DoS ρoddvison(k, E) of the vison continuum for the
odd Z2 spin liquids is given by E = ϵα,q1

+ϵβ,q2
a nd k =

q1 + q2 +Q, in which the wave vector of the nonuniform

gauge field η̄z plays the role of a momentum offset. In
Fig. 5, we compare the vison continuum of even and odd
Z2 spin liquids. The enhanced periodicity of the odd Z2

spin liquid is depicted in Fig. 5(e).

VII. DISCUSSION

We have systematically studied the Z2 topological or-
ders for the kagomé dipolar systems, from the micro-
scopic degrees of freedom and the model construction
to the perturbative analysis and the non-perturbative
mean-field theory. The perturbative treatment and non-
perturbative treatment are complementary to each other
and provide useful insights to understand the emergent
Z2 topological orders in the system. The dynamic prop-
erties of the Z2 topological orders for the spinon and
vison sectors are then studied in different regimes. In
the following, we explain the experimental consequences
and detection of the Z2 topological orders for the dipolar
kagomé systems and then discuss the material relevance
and polar molecules.

A. Experimental consequences and detection of Z2

topological order

Fundamentally, the Z2 topological order belongs to the
family of string-net condensed states [60, 70, 71]. In the
string-net description, the topological order corresponds
to the condensation of the closed strings, while the ends
of open strings correspond to the emergent fractional-
ization quasiparticles/anyons. In the Z2 topological or-
dered state, these strings have no tension, and thus the
end particles are deconfined. For our specific case, the
Sx
i breaks the dimer and thus creates the shortest open

strings whose ends are two spinons. On the opposite,
when the strings have a finite tension, these particles are
confined. The recent technology of the Rydberg atom
array enables the direct exploration of confinement and
string breaking dynamics with a high spatiotemporal res-
olution by quenching certain local controllable parame-
ters in the quantum simulation [72], in which rather than
a Z2 lattice gauge theory a U(1) one is constructed when
truncating at the strongest V1 interaction [28, 72]. Here
we focus on the properties of Z2 spin liquids. The solid-
state-based experiments have not yet been able to access
such spatio-temporal dynamics of the strings. Instead,
we discuss the more traditional thermodynamic and spec-
troscopic measurements for the kagomé dipolar magnets
[73].

1. non-Kramers doublets

We start with the thermodynamics. The simple en-
tropy measurement, that is obtained from the specific
heat, could reflect the interaction and correlation of the
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system [53, 73]. Let us consider the restricted BFG case.
If one cools the system from the high-temperature param-
agnetic phase, the entropy drops from S = R ln 2 per spin
to an entropy plateau at a temperature scale T ∼ O(V1).
This entropy plateau is the kagomé spin ice type of en-
tropy that counts the degeneracy of the Ising spin con-
figuration on the triangular plaquette. Using Pauling’s
argument, this entropy is S ∼ (1/3)R ln(9/2) ≈ 0.50R
per spin [74, 75]. If one further cools the system down
to the temperature of the scale of T ∼ O(V2, V3), this re-
duces the degeneracy and the entropy plateau occurs at
SrBFG that is ≈ 0.28R per spin (estimated for a kagomé
lattice with 2 × 3 unit cells and periodic boundary con-
ditions). As the temperature goes further down, the
(quantum mechanical) “dimer resonating” process starts
to play a role, and the system is moving towards the ac-
tual ground state. For the conventional BFG case, there
is no such two-entropy-plateau process. Since V1, V2 and
V3 are close in energy, the system reaches the entropy
plateau with S ∼ (1/3)R ln(5/2) ≈ 0.31R per spin at the
temperature scale of O(V1, V2, V3). As the “dimer res-
onating” process starts to play a role at even lower tem-
peratures, the system moves toward the ground state.
The multi-step entropy behaviors are shown in Fig. 6.

For the Z2 topological order, all the excitations are
gapped [46]. At low temperatures, the specific heat of
the system should have a gapped behavior [76, 77]. With
an independent vison gas and spinon gas assumption,
the specific heat is expected to have a dependence on the
temperature like

Cv(T ) ∼ c1e
−∆m/T + c2e

−∆s/T , (40)

where c1, c2 are prefactors, and ∆m and ∆s are the vison
gap and the spinon gap, respectively. Due to the sepa-
ration of the energy scales between the spinon and the
vison, the very low-temperature specific heat should be
mostly contributed by the activated visons. Owing to
the vison and spin gas in the thermodynamic measure-
ment, the gaps extracted from the thermodynamics are
the single vison gap and the single spinon gap. Likewise,
the low-temperature spin susceptibility also reveals such
gaps. For the non-Kramers doublet, since only the Sz

is coupled to the magnetic field and Sz creates the vi-
son pairs, thus only the vison gap is revealed in the spin
susceptibility as

χ(T ) ∼ χ0 + c3e
−∆m/T , (41)

where c3 is a prefactor, and χ0 is the zero-temperature
susceptibility. For the Kramers doublets, the spinon
and vison contributions can be separately identified by
considering the probing fields along in-plane and out-of-
plane directions for our model, respectively [50]. The
spin susceptibility is better measured by the Knight shift
in an NMR or µSR experiment [78, 79].
In contrast to the thermodynamic results, the spec-

troscopic measurements provide more useful informa-
tion about the emergent quasiparticles in the system

T

S
Rln2

0.50R
SrBFG

Exponential decay
(spinon & vison gap)

O(V1)O(V2, V3)O(t)

Paramagnet

kagome
spin ice

Classical
restricted

BFG

O(V1, V2, V3) T

classical BFG

Paramagnet

Exponential decay
(spinon & vison gap)

Rln2

0.31R

S

(a)

(b)

O(t)

FIG. 6. Entropy S of kagomé dipolar magnets shows several
plateaux as the temperature T decreases. (a) is for the re-
stricted BFG case (V1 ≫ V2 ∼ V3). At high-temperature, the
system has a paramagnetic entropy R ln 2. When T is near
the energy scale O(V1), the kagome spin ice entropy ∼ 0.50R
starts to appear. Further decreasing T to the energy scale
O(V2, V3), the entropy goes to the classical entropy of the
restricted BFG model, which is estimated as SrBFG ≈ 0.28R
from a kagome lattice with 2×3 unit cells. When the temper-
ature is lower than the energy scale of the “dimer resonating”
process O(t), the effects of spin liquids appear, which make S
decay exponential with spin gap ∆s and vison gap ∆m. (b) is
for the normal BFG case (V1 ∼ V2 ∼ V3). The decreasing of
T from the paramagnetic scale to O(V1, V2, V3) makes S drop
to the plateau of the classical BFG model. Further decreasing
T also leads to exponential decay due to the spin liquids.

[54, 73, 80, 81]. This can be achieved with the inelas-
tic neutron scattering measurement and the 1/T1 spin-
lattice relaxation time measurement of NMR [82]. More
crucially, there exists an interesting and important selec-
tive measurement for the visons and the spinons. This se-
lective measurement of emergent quasiparticles was orig-
inally proposed for the non-Kramers doublets and the
dipole-octupole doublets in the context of pyrochlore
quantum spin ice [50, 83] and is found to be quite useful
in the current context. We start with the non-Kramers
doublet. For the non-Kramers doublet, as only Sz is
time-reversal odd, the Sz-Sz correlation is automatically
selected in the neutron scattering or 1/T1 NMR measure-
ments. Thus, the vison continuum is naturally selected
in these measurements. In particular, the spectral gap,
which is recorded in these spectroscopic measurements, is
two vison gap, and is twice of the vison gap in the ther-
modynamic measurement. The inelastic neutron scat-
tering provides more information about the momentum
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distribution. If the vison experiences a background flux
and thus the crystal symmetry fractionalization, the vi-
son continuum, which is detected by the neutron, could
exhibit the enhanced spectral periodicity in the recipro-
cal space (see Fig. 5). The background flux also creates
multiple vison bands, and each vison band has a rela-
tively narrower bandwidth than the zero-flux case. The
vison continuum further exhibits more peak structures in
the energy domain (see Fig. 5). These are useful signa-
tures to be experimentally examined.

2. Kramers doublets

For the Kramers doublet, the spin correlations of all
spin components are included in the spectroscopic mea-
surements. One could use the polarized neutrons to sepa-
rate the z-component and the in-plane component corre-
lations. The former corresponds to the vison continuum,
and the latter corresponds to the spinon continuum. Nev-
ertheless, deeply inside the Z2 topological ordered phase
rather than the phase boundary, the spinon has a much
higher energy scale than the vison, and in principle, one
can visualize the spinon continuum and the vison con-
tinuum even in the energy domain. Since the structures
of the vison continuum have been explained, we turn to
the structures of the spinon continuum. Again, the gap
of the spinon continuum is twice of the spinon gap that
is extracted from the thermodynamics.

The spinon also experiences a background 0 flux (B >
0) or a π flux (B < 0) generated by the visons. How-
ever, π flux does not cause symmetry fractionalization in
the triangular lattice [84]. The periodicity of the spinon
continuum is not enhanced (see Fig. 4). In fact, the back-
ground flux reverses the minima and maxima of the con-
tinuum. For the 0 flux case, the minima occur at Γ point
and K points; while for the π flux case, the minimum
is at the Γ point. Moreover, the high-density regime of
the continuum is crowded near the lower or upper limits
for the 0 flux or π flux case, respectively. These features
of the spinon continuum can be used to differentiate the
type of spin liquids in the measurements.

3. Cluster Mott insulators

We turn to the cluster Mott insulator with the electron
degrees of freedom and describe the difference from the
spin degrees of freedom. We only describe the 1/4-filling
case, and other fillings can be understood in the similar
manner. It is convenient to convey the discussion with
an extended Hubbard model on the kagomé lattice with

H =
∑
ij

(
−tijd

†
iαdjα + Vijninj

)
+ U

∑
i

ni↑ni↓, (42)

where d†iα (diα) creates (annihilates) the electron with
spin α at the site i, U is the usual onsite interaction, and

Vij is the neighboring repulsive interaction with V1, V2, V3

the first, second, and third neighbor interaction on the
hexagon plaquette, respectively. Here Vij ’s arise from the
Coulomb interaction and depend on the relevant orbital
content. The Hubbard-U alone cannot localize the elec-
tron and create a Mott state. Being a large energy scale,
the role of U is simply to suppress the double occupation.
It is the Vij ’s that localize the electrons and create the
cluster Mott insulating states.
For the restricted BFG regime of Fig. 1, the electron

is first localized in each triangular plaquette at the en-
ergy/temperature scale of V1, and the electron number
of each triangular plaquette is restricted to 1 or 2. The
electron correlation on the hexagons enters at the energy
scale of V2 and V3, such that the total number of elec-
trons on the hexagon is then restricted to 3. For the BFG
regime of Fig. 1, V1 and V2, V3 are close in energy, and
the electron is localized on the hexagon plaquette. These
clusterly localized electrons further develop a correlated
motion on the hexagon plaquette, which is equivalent to
the dimer resonating process of Sec. IV. As a result, the
charge sector could develop a Z2 topological order.
One immediate consequence of the charge-sector Z2

topological order is the charge fractionalization [85–87].
The fractionalized chargeon carries 1/2 of the electron
charge. The charge fractionalization can be detected via
the shot-noise measurement [88, 89]. The chargeon con-
tinuum can be recorded in the electron spectral func-
tion. The complication here is the fate of the spin of the
electron that may also be exotic on its own and form a
quantum spin liquid. On the other hand, the electron
density-density correlation, which can be measured by
X-ray scattering [90–92], encodes the vison continuum of
the Z2 topological order.

4. Polar molecules

For polar molecules, the dipole moments come from the
rotational degrees of freedom of the two-atom molecules.
One important difference between polar molecules and
non-Kramers or Kramers doublets is that the dipole mo-
ments of polar molecules are electric rather than mag-
netic. Namely, instead of being coupled with the mag-
netic field, polar molecules are coupled with the electric
field. These differences lead to different experimental
techniques of measurement. Nevertheless, the thermo-
dynamics results are still valid, though the thermody-
namic measurement in the ultracold atom systems can be
quite challenging. Instead, one often chooses to perform
certain correlation measurements to extract the spectro-
scopic properties. To access the spectroscopic properties
of the Z2 liquid phase in the polar molecule systems, one
can use the two-photon Raman spectroscopy [93] to ob-
tain equivalent outcomes as the inelastic neutron scatter-
ings for the spins. The polarization degrees of freedom of
photons can be coupled with the electric dipole moment,
hence the two-photon Raman spectroscopy measures the
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FIG. 7. (a) The local x-axis xi and the global z-axis. The
local axis ẑi = ẑ cos θ + x̂ sin θ. (b) A generic non-collinear
magnetic order. Red, green, and blue dots and arrows refer
to the three different kagomé sublattices. (c) The strength of
the nth neighbor interaction Vn as a function of θ.

correlation function of the electric dipole moment, which
contains the spinon and vison continuum in the liquid
phase. Moreover, it is also possible to use the similar
technology of the Rydberg atom array with a high spa-
tiotemporal resolution to explore the string dynamics in
polar molecule systems [72].

B. Material’s relevance and polar molecules

In this part, we discuss the material’s relevance and
the polar molecules. We start with the kagomé dipo-
lar magnets. One candidate family of materials is the
rare-earth-based tripod magnets, RE3Mg2Sb3O14 and
RE3Zn2Sb3O14 [29, 30, 94]. So far, owing to the con-
nection with the pyrochlore spin ice physics, the existing
discussion is based on the kagomé version of the classi-
cal spin ice, and the long-range dipole-dipole interaction
can be incorporated into the discussion of the kagomé
spin ice [74, 95–99]. It is certainly true that the kagomé
spin ice physics should be applicable to a few members
of these tripod kagomé materials, especially in the finite
temperature regime where the thermal fluctuations gov-
ern the physics. One important difference between the
tripod kagomé system from the pyrochlore spin ice is that
the local ẑi axis for the tripod kagomé system no longer
points to the center of the tetrahedron [30]. The local
ẑi axis is modified by the non-magnetic ions (Mg2+ and
Zn2+) above and below the kagomé layer. We introduce
an angular variable θ to parametrize the deviation of the
local ẑi from the normal direction (ẑ) of the kagomé plane
(see Fig. 7), and depict the dependence of the Vij ’s on θ.

To be concrete, the local ẑi is given by ẑi = ẑ cos θ +

x̂i sin θ, where x̂i’s are defined on three sublattices and
point outwards from the center of the triangle (see Fig. 7).
The non-collinear local ẑi’s make the dipole moments at
different sites mismatch, modifying the relative strength
of the nth neighbor interaction Vn (see Fig. 7). It turns
out that a finite θ could actually drive the dipolar in-
teractions closer to the BFG model, helping the stabi-
lization of Z2 spin liquid. For example, if θ ≈ 23.2◦,
then the nonuniformity between V2 and V3 is completely
eliminated, while the unwanted V ′

3 interaction is weak-
ened. Therefore, the non-collinear local axes in real tri-
pod kagomé materials add more degrees of freedom that
can help stabilize Z2 spin liquids. The angle θ can be
controlled by ambient pressure or chemical pressure. Ide-
ally, it is likely to see the quantum phase transition from
mundane phases to spin liquids by varying the pressure.

For RE3BWO9 and Ca3RE3(BO3)5, there are extra
complications [100–102]. In addition to the different lo-
cal axes, the kagomé lattice is actually distorted from
the perfect one. This requires more analysis of the ac-
tual dipole-dipole couplings under these lattice distor-
tions. Moreover, there are the interlayer couplings. If
the interlayer couplings are weak and do not destabilize
the Z2 topological order in the 2D limit, our results can
be applied. When the interlayer coupling is strong, there
are two possibilities. In one possibility, the Z2 topologi-
cal order is destroyed and a trivial state is obtained. In
the other possibilities, the frustrated and long-range 3D
interactions may stabilize the Z2 topological order in 3D.

For the realization in the polar molecular systems,
the commonly used systems are 40K87Rb and 23Na40K
molecules [33–36]. These molecules can be trapped on a
kagomé optical lattice. Since these molecules break the
parity, a dipole moment is carried by these molecules,
which naturally yields a dipolar interaction between these
dipoles. These dipoles can be coupled to an external elec-
tric field. It is possible to design the profile of the electric
field to tune the direction of the local ẑ axis, by which one
can realize the equivalent magnetic orders as the tripod
kagomé materials.

To summarize, we have shown the possibility of search-
ing spin liquids in the dipolar kagomé systems. These
systems can be described by Ising spins with long-range
dipolar interactions and other quantum interactions. The
interactions endow the model with a similar structure as
the Balents-Fisher-Girvin model. The elementary exci-
tations, spinons, and visons can be described by an emer-
gent Z2 lattice gauge theory and its dual theory. Mean-
field theory shows the stability of fractionalization. I The
spectroscopic and thermodynamic experiments can mea-
sure the properties of these emergent and fractionalized
excitations.

A direction that can be explored in future studies is
the numerical demonstration of the Z2 spin liquids in
the kagomé dipolar systems. Equipped with the density-
matrix renormalization group (DMRG) [103, 104], the
ground states and then the static spin structure fac-
tors can be computed. Ideally, a phase diagram can
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be worked out. If Z2 spin liquids do exist in the phase
diagram, one can calculate the dynamic spin structure
factor using tDMRG [105], and examine the fractional-
ized excitations. Due to the long-range and anisotropy
of the dipolar interaction, however, the bond dimension
of the matrix product states must be sufficiently large,
and the system size cannot be too small. Finally, it was
shown that the 2D topological order is not variationally
robust [106]. If the phase region for the topological or-
der is quite narrow, it is likely that the system may be
trapped in a metastable state whose energy differs from
the topological ordered ground state by a sub-extensive
amount. Small system sizes may not be able to resolve
these competing states well. Owing to these challenges,
we leave the DMRG studies of dipolar systems to a sep-
arate work.
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Appendix A: Lattice structures

The lattice constant of the kagomé lattice is set to 1.
The centers of the hexagonal plaquettes in the kagomé
lattice form a triangular lattice. The dual lattice of the
triangular lattice is a honeycomb lattice. The lattice con-
stant of the triangular lattice is 2 and of the honeycomb
lattice is 2/

√
3. The triangular lattice and the honey-

comb lattice have the same lattice vectors

a1 = (
√
3,−1), a2 = (

√
3, 1). (A1)

The reciprocal lattice vectors are

b1 = π(
1√
3
,−1), b2 = π(

1√
3
, 1). (A2)

For the honeycomb lattice with π flux, the unit cell is
enlarged to the magnetic unit cell, whose lattice vectors
are

a′
1 = (

√
3, 1), a′

2 = (0, 4). (A3)

The reciprocal lattice vectors are

b′1 = π(
2√
3
, 0), b′2 = π(− 1

2
√
3
,
1

2
). (A4)

We give the definitions of high-symmetry points that
were used in the main text

Γ = Γ00 : 0, Γ11 : b1 + b2,

M :
1

2
(b1 + b2), K :

1

4
(2b1 + b2).

(A5)

Appendix B: Diagonalization of the bosonic spinon
BdG Hamiltonian

We present the details of the diagonalization of the
following Hamiltonian

H = hxB
∑
RR′

(b†r + br)(b
†
r′ + br′) + λ

∑
r

b†rbr. (B1)

The sum over nearest-neighbor links can be rewritten as

H =
hxB
2

∑
r

∑
δ

(b†r + br)(b
†
r+δ + br+δ) + λ

∑
r

b†rbr,

(B2)
where δ runs in the vectors that connect the nearest
neighbor. For the triangular lattice, they are

±a1, ±a2, ±(−a1 + a2). (B3)

Under the Fourier transformation

br =
1√
NT

B.Z.∑
k

bke
ik·r, (B4)

H becomes

H =
hxB
2

B.Z.∑
k

(
b†k b−k

)(γk + λ
hxB γk

γk γk + λ
hxB

)(
bk
b†−k

)
− λNT

2
,

(B5)
where

γk =
∑
δ

eik·δ = 2
[
2 cos

(√
3kx

)
cos(ky) + cos(2ky)

]
(B6)

is the structure factor of the triangular lattice.
H is a bosonic BdG Hamiltonian. When the 2-by-2

matrix is positively definite, the Hamiltonian is stable
and can be diagonalized by para-unitary matrices. The
diagonal elements are given by the eigenvalues of the fol-
lowing matrix (

γk + λ
hxB γk

−γk −γk + λ
hxB .

)
(B7)

After the diagonalization, we obtain

H =
1

2

B.Z.∑
k

(
ωka

†
kak − ωka−ka

†
−k

)
− λNT

2
, (B8)

where

ωk =
√

λ (λ+ 2hxBγk). (B9)

Reorganizing the bosonic operators, we obtain

H =

B.Z.∑
k

(
ωka

†
kak +

1

2

)
− λNT

2
. (B10)
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(a) (b) (c)

FIG. A1. Vison dispersion on the honeycomb lattice with
zero flux. (a) J1 = 1 and J2 = 0; (b) J1 = 1 and J2 = 1; (c)
J1 = 0 and J2 = 1. Chemical potential is set to µ = 4.

Appendix C: Diagonalization of even Z2 vison
Hamiltonian

We present the details of the diagonalization of the
following Ising Hamiltonian

H = J1
∑
RR′

µz
Rµz

R′ + J2
∑
RR′

µz
Rµz

R′ . (C1)

In principle, we can use the hard-core boson represen-
tation of vison creation operator µz and diagonalize a
bosonic BdG Hamiltonian to obtain the vison dispersion,
as we have done for spinons. This process is actually
equivalent to solving the soft modes of Ising model. To
proceed, we define the Fourier transformation,

µz
R =

1√
NH

B.Z.∑
k

µz
ke

ik·R. (C2)

Under the transformation, µz
k is no longer an Ising oper-

ator because of the constraint (µz
R)2 = 1. We can remove

the constraint by adding a mean-field chemical potential
term µ

∑
R[(µz

R)2 − 1]. Finally, we obtain

H =

B.Z.∑
k

(
µz
1,−k µz

2,−k

)(µ+ J2

2 γk
J1

2 ζk
J1

2 ζ∗k µ+ J2

2 γk

)(
µz
1,k

µz
2,k

)
,

(C3)
where

γk =
∑
δ

eik·δ = 2
[
2 cos

(√
3kx

)
cos(ky) + cos(2ky)

]
(C4)

is the structure factor of the triangular lattice, and

ζk = 1 + eik·a1 + eik·a2 = 1 + 2e−i
√
3kx cos(ky) (C5)

is the structure factor of the honeycomb lattice. Diago-
nalizing the 2-by-2 matrix, we obtain

H =

B.Z.∑
k

(
ϵ−,kµ

z
−,−kµ

z
−,k + ϵ+,kµ

z
+,−kµ

z
+,k

)
, (C6)

with energy bands

ϵ±,k = µ+
J2
2
γk ± |J1|

2
|ζk|. (C7)

When tuning the relative strength of J1 and J2, one
would see a crossover from the honeycomb lattice dis-
persion to the triangular lattice dispersion. In Fig. A1,
we show three cases: (a) J1 = 1 and J2 = 0, the dis-
persion is dominated by the honeycomb lattice part; (b)
J1 = 1 and J2 = 1, the dispersion is a mix of the hon-
eycomb lattice part and the triangular lattice part; (c)
J1 = 0 and J2 = 1, the dispersion is purely from the
triangular lattice part.

π
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π
π
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FIG. A2. The honeycomb lattice with π flux in each hexagon.
The gauge field on blue links is η̄z = +1 and in red links is
η̄z = −1. The magnetic unit cell contains four sites.

(a) (b) (c)

J1 decreases, J2 increases

FIG. A3. Four energy bands of visons on the honeycomb
lattice with π flux. (a) J1 = 1 and J2 = 0; (b) J1 = 1 and
J2 = 1; (c) J1 = 0 and J2 = 1.



17

Appendix D: Diagonalization of odd Z2 vison
Hamiltonian

We present the details of the diagonalization of the
following Hamiltonian

H = J1
∑
RR′

η̄zRR′µz
Rµz

R′

+ J2
∑
RR′

η̄zRR′′ η̄zR′′R′µz
Rµz

R′ ,
(D1)

where the gauge field η̄zRR′ = 1 for the blue links and −1
for the red links (see Fig. A2). Such a gauge choice leads
to a uniform π flux pattern. The unit cell is enlarged to
the magnetic unit cell, which contains four sites.

To study the vison dispersion, we calculate the soft
modes of the Ising Hamiltonian H. After the Fourier
transformation Eq. (C2), we obtain

H =
J1
2

B.Z.∑
k

(
µz
1,−k µz

2,−k µz
3,−k µz

4,−k

)
−1 + eik·a

′
1 eik·a

′
1

eik·(a
′
1−a′

2) 1 + eik·a
′
1

−1 + e−ik·a′
1 e−ik·(a′

1−a′
2)

e−ik·a′
1 1 + e−ik·a′

1



µz
1,k

µz
2,k

µz
3,k

µz
4,k



+
J2
2

B.Z.∑
k

(
µz
1,−k µz

2,−k µz
3,−k µz

4,−k

)−2 cos(k · a′
1) αk

α∗
k 2 cos(k · a′

1)
−2 cos(k · a′

1) βk

β∗
k 2 cos(k · a′

1)



µz
1,k

µz
2,k

µz
3,k

µz
4,k



+ µ

B.Z.∑
k

(
µz
1,−k µz

2,−k µz
3,−k µz

4,−k

)1
1

1
1



µz
1,k

µz
2,k

µz
3,k

µz
4,k



(D2)

αk = 1 + eik·a
′
2 + eik·a

′
1 − eik·(a

′
2−a′

1), βk = 1 + eik·a2 − eik·a
′
1 + eik·(a

′
2−a′

1). (D3)

The analytical diagonalization of the 4-by-4 matrix is
impossible. Thus, we obtain the vison dispersion by nu-
merical diagonalization. In Fig. A3, we plot the vison
dispersion for three cases: (a) J1 = 1 and J2 = 0, the
dispersion is dominated by the honeycomb lattice part;
(b) J1 = 1 and J2 = 1, the dispersion is a mix of the
honeycomb lattice part and the triangular lattice part;
(c) J1 = 0 and J2 = 1, the dispersion is purely from the
triangular lattice part.

Appendix E: The effects of J⊥ spin-flipping terms

The formation of spin liquids significantly relies on the
quantum dynamics of the ground state manifold. In the
main text, we have focused on the quantum dynamics
generated by the transverse field hx. Actually, there exist
perpendicular J⊥

ij spin-flipping terms in kagomé dipolar
magnets, which can provide similar quantum dynamics
as the transverse field hx but have some quantitative dif-
ferences. Thus, we here address some key aspects of J⊥

ij

spin-flipping terms.

To be concrete, we rewrite the kagome dipolar Hamil-
tonian Eq. (2) with the nearest neighbor J⊥

1 spin-flipping

terms explicitly,

H =
1

2

∑
i ̸=j

VijS
z
i S

z
j +

∑
⟨ij⟩

J⊥
1 (Sx

i S
x
j + Sy

i S
y
j )

− hz

∑
i

Sz
i − hx

∑
i

Sx
i + · · · .

(E1)

What results would change in the main text when we
include J⊥

1 terms? From the perturbative point of view
in Sec. IV, the dimer-flipping dynamics is generated on
the BFG or restricted BFG ground state manifold at
the second-order perturbation of J⊥

1 , which is generally
stronger than that of the transverse field hx.
From the non-perturbative mean-field point of view

in Sec. V, J⊥
1 terms lead to higher-order hoppings of

spinons. To see this, we recall the mapping

Sx
i → 1

2
σz
rr′ , Sy

i → −1

2
σy
rr′ , Sz

i → 1

2
σx
rr′ . (E2)

Under the gauge constraint Eq. (20), σz
rr′ is mapped

to σz
rτ

z
r τ

z
r′ and σy

rr′ is mapped to σy
rτ

y
r τ

y
r′ . Then, after

choosing the mean-field ansatz that condenses the gauge
field, ⟨σx

i ⟩ = 1 − B2, ⟨σy
i ⟩ = 0, and ⟨σz

i ⟩ = 2B, one can
see that the J⊥

1 terms become∑
⟨ij⟩

J⊥
1 (Sx

i S
x
j + Sy

i S
y
j ) ∼ 2J⊥

1 B2
∑
r1r2

∑
r3 ̸=r1

τzr1
τzr3

, (E3)
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(a) (b)

(c) (d)

FIG. A4. The spinon continuum for J⊥
1 = 1 and hx = 1. (a)

and (b) are the case of B > 0, the parameters are V = 30,
hz = −15, λ = 12.53 and B = 0.5769; (c) and (d) are the case
of B > 0, the parameters are V = 30, hz = −15, λ = 12.54
and B = −0.5768. (a) and (c) are the spinon continuum along
high-symmetry lines; (b) and (d) show the lower and upper
limits of the continuum

where r1r2 and r2r3 are triangular lattice
links. These terms are reduced to the nearest-
neighbor and next-nearest-neighbor hoppings of
spinon. Considering the next-nearest-neighbor
hoppings, the spinon energy band now becomes

ωk =
√

λ2 − 2hxBλγk + 4J⊥
1 B2λ(γk + γ′

k), where

γ′
k = 2

[
2 cos

(√
3kx

)
cos(3ky) + cos(2

√
3ky)

]
is the

structure factor of the next-nearest-neighbor links of
the triangular lattice. In the presence of J⊥

1 , the four
kinds of Z2 spin liquids still exist in the mean-field phase
diagram, the only difference is a quantitative shift of the
phase boundaries. Moreover, as J⊥

1 changes the spinon
energy band, the spinon continuum also changes. The
case of B > 0 and B < 0 is no longer symmetric (see
Fig. A4).
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