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We propose a mechanism of topology-induced symmetry breaking, where certain local symmetry
preserved by the Hamiltonian is explicitly broken in the eigenmodes of excitation due to nontriv-
ial real-space topology. We demonstrate this phenomenon by studying magnonic excitations on a
Mobius strip comprising of two antiferromagnetically coupled spin chains. Even with a simple Hamil-
tonian respecting local rotational symmetry and all local curvature effects ignored, magnons exhibit
linear polarization of the Néel vector devoid of chirality, forming two non-degenerate branches that
cannot be smoothly connected to or be globally decomposed by the circularly-polarized magnons.
Correspondingly, one branch undergoes a spectral shift and only admits standing waves of half-
integer wavelength, whereas the other only affords standing waves of integer wavelength. Under the
Mobius boundary condition, we further identify an exotic phase hosting spontaneous antiferromag-
netic order whilst all exchange couplings are ferromagnetic. The suppression of chirality in the order
parameter dynamics, hence the pattern of standing waves, can be generalized to other elementary
excitations on non-orientable surfaces. Our findings showcase the profound influence of real-space

topology on the physical nature of not just the ground state but also the quasiparticles.

I. INTRODUCTION
A. Background

In solid-state systems, symmetry and interactions can
directly manifest in the physical properties of quasipar-
ticles (i.e., quanta of elementary excitations) by affect-
ing the momentum-space topology, whereas the subtle
impact of real-space topology remains elusive. Prevail-
ing studies customarily adopt periodic boundary condi-
tions (PBCs) in the real space when dealing with quasi-
particles [I], for which the system becomes topologically
equivalent to a circle, a torus, or a 3D-torus depending
on the dimensionality. However, there exist exotic struc-
tures such as Mobius strips that inherently do not con-
form with the PBCs and cannot be smoothly deformed
into tori. Figure [1|illustrates that a Md&bius strip is non-
orientable by nature as it consists of a single surface and
a single edge, which leads to an ambiguous global normal
vector, precluding the validity of ordinary PBCs.

Concerning the physical behavior of quasiparticles on
such a non-orientable object and their subtle relations
with the ground state, it is tempting to ask: what are
the implications of the topologically non-trivial boundary
conditions? Recently, quasiparticles residing on Md&bius
strips aroused increasing theoretical attentions [2H9]. On
the experimental side, Mobius strips have been realized
in a wide variety of systems such as molecules [I0] [IT],
single crystals [12], resonators [I3HI5], and optical cavi-
ties [16) [I7], fertilizing a vibrant arena for exploring new
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FIG. 1. A Mobius strip is non-orientable because the normal
vector cannot be globally defined and the PBCs are inappli-
cable. As a result, chirality associated with the normal vector
(illustrated in dashed arrows) becomes ambiguous, rendering
the chiral modes of elementary excitations (such as circularly
polarized magnons) at odds with the boundary condition.

physics emerging from the Mobius topology. Neverthe-
less, most of these studies focused on the local curvature
effects under continuous geometry. It is far from clear if
there exist any residual consequences arising only from
the Mobius boundary condition when spatial curvature
is discarded, which can even survive in the limit of very
large systems.

B. General Considerations

A direct consequence following the ambiguity of global
normal vector is the absence of a globally defined chiral-
ity. As illustrated in Fig. [1| the right-handed direction
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locally associated with the normal vector inevitably con-
flicts with itself as we loop around the M&bius strip for
a full cycle, fundamentally disrupting the eigenmodes of
excitations of all kinds accompanied by chirality. In par-
ticular, it is impossible to distinguish between the right-
handed and left-handed polarizations.

To be more quantitative, let us construct a local or-
thogonal basis shown in Fig. |1} wherein z coincides with
the local normal vector while z (y) is along the longi-
tudinal (transverse) direction of the strip. We represent
the linearly polarized modes along x and y by |¢.(7))
and |¢,(r)), respectively, with » = {z,y} specifying the
location on the strip. Through gauge fixing, |¢. (7)) and
|y (7)) can be locally in phase. Generally, a mode with
chirality is expressed as a coherent superposition:

= 2N [l0a(r + Sl ] (1)

where A/ (7) is a normalization factor; f(r) and 6(r) are
independent real continuous functions. At 7, |¢) exhibits
the right-handed (left-handed) chirality for 6(r) < 0 (>
0). The corresponding classical trajectory is elliptical for
O(r) # £m/2, with the principal axes along tan~! f(r)
and tan~! f(r)+7/2. When 0(r) = 47/2, the trajectory
is circular and all directions can be viewed as principal
axes. When 6(r) — 0, the trajectory shrinks to a line so
that the polarization becomes linear. In the summation
over r, x runs from 0 to L with L labeling the length of
the Mobius strip, while y runs over the width from —w/2
to +w/2. Should é(r) be allowed to keep the same sign
everywhere on the strip, the mode represented by |¢) will
acquire a globally well-defined chirality. .

To impose the boundary conditions, we define T}, as
the translation operator (along x) that moves functions
of r from (z,y) to (x + L,y) by continuously sliding the
local coordinate frame along the strip. Since the linearly
polarized modes are not entitled with chirality in prior:
and are not disrupted by the ambiguity of the normal
vector, they must be single valued, thus

T116u(r,9)) = |0u(x + L)) = [da(z, ~y)),  (20)

Tp gy (w,9)) = ¢y (@ + Ly)) = |y (x,—y)) . (2b)
On the other hand, the superposition coefficients satisfy
TiN(2,y) =Nz + Ly) = N(x,—y),  (3a)

Ty f(x,y) = f(z + Lyy) = flz,~y), (3b)
Tp0(z,y) = 6(z + L,y) = —0(z, ), (3¢)

where —1 in the last equation is interpreted as e™'™ with
+ referring to the two distinct ways of wrapping up the
Méobius strip [see the schematics in Fig. 2[b) and (c)].
In general, if a strip is multiply twisted when attaching
its two ends, T1.0[x, y] = exp(2ipr)f|z, (—1)?/Ply] where p
registers the number of turns on the strip. The Mdobius
strip is half-twisted so p = £1/2.

If |¢) serves as an eigenmode of excitation, it must be
single valued, i.e., invariant after traversing the Mobius

strip by L, or simply 77, |1) = |1). Applying the above

boundary conditions, we obtain

= ZN(J?, —y)X
(1622, ) + F(@, —g)e @ |y (2, —y))]
= N ) [lox(r) + £ o, ()], (1)

where the symmetric range of summation over y has been
exercised when 7’ replaces r in the last step. Comparing
Eq. with Eq. , we have Ty, |¢) = |¢) if and only
if O(r) vanishes identically, indicating that [¢) is strictly
linearly-polarized. That is to say, a single-valued mode
on the Mobius strip cannot possess a definite chirality,
whereas a mode with prescribed chirality cannot be single
valued, let alone being an eigenmode.

The Mobius topology does not place a strong restric-
tion on the Hamiltonian H, so long as H is single valued
and respects Tr H(xz,y) = H(x + L,y) = H(x, —y). For
instance, the Heisenberg Hamiltonian acting only in the
spin space preserves the local spin-rotational symmetry,
not contradicting with the boundary conditions. In the
topological trivial scenarios, this symmetry ensures the
existence of circularly-polarized eigenmodes in the spin
excitations, which are furnished by well-defined chirality.
On the other hand, the Mdbius topology can drastically
modify these eigenmodes and suppress their chirality, as
analyzed above. At this point, it is inspiring to conceive
a hitherto overlooked scenario:

Certain local symmetry preserved by the Hamiltonian
is explicitly broken in the eigenmodes of excitation (or
quasiparticles) owing to the real-space topology.

We name the underlying mechanism topology-induced
symmetry breaking (TISB), which unravels the extraor-
dinary behavior of quasiparticles exclusively enabled by
the topological boundary conditions (TBCs) but has
nothing to do with the local curvature effect. While TISB
could entail profound consequences in various physical
systems with non-trivial real-space topology, in this pa-
per we demonstrate its manifestation in the magnonic
excitations on a Md&bius strip.

Ty |9)

C. System Description

To avoid confusion with the well-known mechanism
of spontaneous symmetry breaking associated with the
ground state, here we consider a special case where the
ground state remains intact and trivial, whereas the
eigenmodes of excitation are fundamentally disrupted by
the Mobius topology. As illustrated in Fig. we con-
sider a nano-ribbon composed of two ferromagnetic spin
chains that are oppositely aligned, forming an effective
antiferromagnetic (AFM) system. The nano-ribbon can
form a Mobius strip in two distinct ways according to
Fig. I and (c). To motivate our study, we first make



FIG. 2. Schematic illustration of the system. (a) An AFM
nano-ribbon consists of two ferromagnetic spin chains, where
the red (blue) arrows signify the equilibrium spin orientation
of the A (B) sub-lattice. The black dashed arrows indicate the
manner of spin precessions associated with the left-handed
magnon mode, where S4 has a larger amplitude than Sp.
On the contrary, the right-handed mode is characterized by
a larger precession of Sp over Sa (not shown). (b) and (c)
depict the two distinct ways of connecting the ribbon into
a Mobius strip. While the AFM ground state is compatible
with the TBC, the excited states in the form of circularly-
polarized magnons are radically disrupted.

a critical observation: although the AFM configuration
in the ground state is compatible with the M&bius TBC,
the magnon excitations with circular polarizations are
inherently irreconcilable with the system topology. To
be specific, when only the exchange interactions and the
easy-axis anisotropy are considered, the spin Hamilto-
nian respects the local O(2) rotational symmetry in the
spin space. Consequently, if the TBC is disregarded, the
magnon eigenmodes would become circularly polarized,
exhibiting either left-handed or right-handed chirality for
both spin species [I8H22]. For example, in the left-handed
mode depicted in Fig. a), S 4 and Sp both rotate clock-
wisely but S4 has a larger oscillation amplitude. How-
ever, as illustrated in Fig. [b) and (c), imposing the
Mobius TBC by connecting the 1 and N sites (with A
and B swapped) will inevitably disrupt both the chiral-
ity and the amplitude of the spin precessions. Therefore,
the magnon solutions that are commensurate with the
Mobius topology must be fundamentally different from
the circularly-polarized modes widely known for collinear
AFM materials.

II. MODEL AND SOLUTIONS

Consider a nano-ribbon with the AFM configuration
shown in Fig. where the red and blue arrows indi-
cate the spins on the A and B sub-lattices in the ground
state. A Mobius strip can then be constructed based

on either Fig. or Fig. which are topologically

distinct and satisfy different TBCs to be specified later.
To unambiguously separate the influence of real-space
topology from local geometric effects, we intentionally
exclude the curvature of the strip [23H29]. In this regard,
we adopt a minimal Hamiltonian that preserves the local
rotational symmetry about the local z axis:

Hy=—Jr Z< i) (SAz SA] + SB’L SB])

+Jar Y Sai-Spi— K (S +55), (5)

where ¢ labels the lattice on the strip, Jg (Jar) is the
nearest-neighbor exchange interaction for (between) the
same (different) spin species, and K is the perpendicu-
lar easy-axis anisotropy. In our convention, all parame-
ters are positive. The collinear AFM ordering depicted
in Fig. [2|is well protected by the magnetic anisotropy K,
which suppresses quantum fluctuations in the reduced di-
mension. The summation (i, j) is equivalent on all links,
including that between 1 and N, such that every link
in the longitudinal direction looks the same; we are free
to re-number the whole strip by moving 1 to anywhere.
Contrary to a single ferromagnetic spin chain arranged
on a Mobius strip [23] [24], our system is free from geo-
metrical frustration, thus no domain wall is present.

To derive the quantum magnon excitations, we apply
the linearized Holstein—Primakoff transformations on the
spin raising and lowering operators (assuming that S is
sufficiently large), ST = S% 4 1Y, for each sublattice

SXZ ~V2Sa;, Sy~ \/QSa;r,
St~ V28Sbl,  Sg, ~ V2Sh;,

where a; (b;) represents the annihilation of a magnon on
site ¢ and sublattice A (B), and S is the spin magnitude
on each site. By neglecting the constant terms, we obtain
the magnon Hamiltonian as

S%,=95— aal, (6a)
8%, =blb;— S, (6b)

H=(2K +2Jp + Jar)S Y _ (ala; + blb;)

—JFSZ g

+JAFSZ TbT'Faz 1 (7)

(a;faj + a;r-ai + bjbj + b;rbl)

We cannot directly apply Fourier transformations to
Eq. because the PBCs, a;+ny = a; and b; 4y = b;, are
explicitly broken. Instead, we have the TBCs

i+ N = bz', bi+N = @, (8)
which means the definitions of A and B chains are inter-
changed after winding around the M&bius strip. Basing
on Eq. , we can recombine a; and b; as

a; — b)) T, P ==
) ’ V2

where x; specifies the position of site 7 along the strip
[see Fig. , L is the total length of the nano-ribbon, and

(ai + bz ) s (9)



& = +1 corresponds to the two distinct ways of connec-

tion illustrated in Fig.|2(b)|and Now, the new oper-
ators «; and 3; satisfy not only the bosonic commutation

relations but also the PBCs
Bixn = Bi. (10)

Under this new set of basis, Equation @ becomes

Qi N = Qy,

H=2K+2Jr + JAF)S Zz |:Oé;rOéi + B;rﬂz}
B JFSZM

- JArS S [ talal — l6! 4 he] (1)

[eiwf(wi—wj)/[/a;[aj + ﬁjﬂ] + h.C.}

where h.c. denotes hermitian conjugate. Equation
is naturally decomposed into H = H, + Hp for the o;
and (; sectors. Applying the Fourier transformations

o = —ilk=Em/D)ei (g, — by), (12a)

1
Va2
k FZ e*lk}II az+b)

we can derive the momentum-space Hamiltonian. To this
end, we adopt the Bogoliubov-de-Gennes (BdG) basis

Vs = (B, 1) (13)

with { = L/N being the lattice constant, H, = \I’IY’HQ\IIQ
and Hg = \IIE"HB\I/& Here, the BdG Hamiltonian reads

FJar/2
Qa(s) ) ’ 14)

(12b)

— T T
‘I]a - (aIm a,k+2ﬂ£/L) )

_ Qu(p)
Haep) =5 <:FJAF/2

where Qo = K + Jar/2 + Jp[l — cos (k — {n/L)I] and
Qp = K+ Jar/2+ Jp[l —cos (kl)] and the + (—) sign in
the off-diagonal elements corresponds to the H, (Hg). It
should be noted that in the a sector, magnons of momen-
tum k couple those of momentum —k + 27€/L; whereas
in the 8 sector, k pairs with —k without a shift.

Owing to the bosonic commutation relations of the
BdG basis, we need to diagonalize 0,H(g) rather than
Ha(py for the magnon solutions [30]. This can properly
take care of the “minus sign” associated with the Bo-
goliubov normalization for bosons [31]. By doing so, we
obtain the eigen-frequencies (we set i = 1)

+ o 1 2
Wa(g) = T/ a(s)da(s) (15)

with the corresponding eigenvectors (unnormalized)

T
vy = (x/q;i +VaE VR TF qa) ; (16a)
T
=<\/q};i\/q2,—\/q,§i\/q§) (16b)
where ¢! o) = Qa(p) +Jar/2 and qa(ﬂ) Qa(p) — Jar/2

are both positive. The negative frequency branches and

their associated eigenvectors are redundant solutions,
which can be interpreted as a hole representation. For
instance, vg (k) describes a hole at k that corresponds to
a real S-magnon at —k. A similar picture is applicable to
the « branch so long as the 27¢/L momentum shift ap-
pearing in Eq. is taken into account. Consequently,
V() and v;( g) are linearly dependent, representing one
unique physical solution.

Let us concentrate on the positive frequency branches
and consider the £ = 1 connection [i.e., Fig. [2b)]. For
simplicity, we also omit the super-index +. With a proper
normalization of ’U;( 8 the magnon eigenmodes associ-
ated with w, () are described by

o VISR, V-

2(qhq2)1 2(qaqa)1

\F\F \F[B* (17b)
qq4 qq

7k+27r/L (17a)

and their counterparts d};, B}; Figure a) and (b) plot
the discretized dispersion relations for N = 10 (only the
lowest few states on each branch are shown), along with
illustrations of the magnon eigenmodes at £k = 0. While
the 8 modes distribute symmetrically wg(—k) = wg(k),
the « branch shifts rightward by 6k = w/L such that
wa(—k) = wa(k + 20k). The skewed w, (k) is intimately
related to the asymmetric paring of ¥, in Eq. (13)), which
originates from the non-trivial topology of the Mobius
strip. It is easy to verify that setting & = —1 [i.e., using
the connection of Fig. 2fc)] leads to a leftward shift of
wa (k), or 6k = —7 /L. Interestingly, if we reversely count
the sites on the strip, the spectral shift §k also flips sign,
but in this case the eigenvectors are different from what
one would obtain for £ = —1.

To intuitively understand the magnon eigenmodes, we
now express Eq. (17) in terms of the original spin vari-
ables. Using Eqs. (6)) and , we obtain

1(k ok)x;

&lt = Z l [@SAz - 1@5%1

*@Sgi - i\/cgs%i] , (18a)
s
+@Sj§i +iy/abS%] -

The classical limit of Egs. @ can be established by con-
sidering the quantum averages: (S;) = v2S(a') and
(SE) = V2S(bt) correspond to the left-handed preces-
sions of S4 and Sy with respect to the equilibrium di-
rection of Sy (the reference direction). By a straight-
forward algebra, we obtain the real-time evolution of the

4

3’1:22(

(18b)



classical spin vectors as

Sj/B ~ Re[(:l:\/gi: +1 qu)) ei”“t_i(k_‘sk)m] , (19a)
Sh/p ~ Rel(y/age +iyfabg) et ]

for the a- and B-branch, respectively, where the + (—)
sign corresponds to the A (B) sublattice. Because qé(ﬁ) >

qi(ﬁ) > 0, both the o and 8 branches exhibit left-handed

(right-handed) elliptical precession of S4 (Sp). The ma-
jor axes of the trajectory for the a (8) mode lies along
z (y); Sa and Sp always precess about the easy-axis
with the same amplitude but opposite chirality. As a re-
sult, the Néel vector n = (S4 — Sp)/2S exhibits linear
oscillation devoid of chirality, on which we will further
elaborate in the next section.

As demonstrated in Fig.[3(a)-(b), the two branches are
quite different in character even though they share one
thing in common: from a local bird-eye view, S4 and
Sp in both o and S mode at £ = 0 overlap with each
other when passing the minor axes of their elliptical tra-
jectories while becoming back-to-back when passing the
major axes. Due to the momentum shift 0k = w/L in the
« branch, the spin precessions on site i = N + 1 (same
as i = 1) acquires a 7 phase (accumulated through ev-
ery site) even for k = 0, which exactly compensates the
impact of the Mobius TBC that connects sites 1 and NV
with a half twist. In contrast, the § mode at k = 0
does not exhibit any phase difference between 1 and N,
which is just commensurate with the TBC. From a local
perspective (disregarding the phase difference among dif-
ferent sites), the o and 8 modes have their major axes of
spin precessions perpendicular to each other, rendering
the planes of Néel vector oscillation orthogonal.

(19b)

III. ANALYSIS AND DISCUSSION

To further understand the unique characteristics of the
magnon eigenmodes obtained above, we draw a 3D per-
spective in Fig. (c) where S, and Sy share the same
origin such that their precessional trajectories are concen-
tric about the local z axis. It is easy to deduce that the
Néel vector n = (S4 — Sp)/2S undergoes a pendulum-
like oscillation confined on the plane containing the major
axes of the two elliptical trajectories. Comparatively, the
total spin vector S = (54 +Sp)/2S oscillates linearly on
a plane orthogonal to that of n. Per the definition of spin
wave polarization (in terms of the order parameter dy-
namics) [T9-21], both the o and 8 modes are considered
linearly polarized, thus being devoid of chirality.

The above intuitive picture can be corroborated by
Eq. , from which we can further read off the oscil-
lating components of the Néel vector and the total spin

=~
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FIG. 3. (a, b) Hlustrations of the @ and 8 modes at k = 0,
and the plots of the lowest few modes on each branch for
E=1,N=10,1=1,5=2, Jp = Jar =1, and K = 0.1.
While wg(—k) = wg(k) is symmetric, wq (—k) = wa (k + 20k)
is skewed by 0k = /L. The spectral shift of the a branch
is accompanied by an accumulative 7 phase in the spin pre-
cessions as we move from site i to ¢ + N (i.e., traveling by
a full loop), reflecting the impact of the Mdbius TBC. (c)
Left: a 3D illustration of the spin precessions in the o and
B modes, where S4 and Sg rotate elliptically with an equal
amplitude and opposite chirality, rendering the Néel vector
linearly-polarized. Right: illustration of the oscillating Néel
vector (solid blue) and the oscillating spin vector (dashed red)
for the o and 8 modes based on Eq. (20). That dn. L dng
should not be confused by their being shown in different loca-
tions. (d) Ordinary AFM right-circular (R) and left-circular
(L) magnon modes, and their superposition L+ R and L — R
characterized by a linearly-polarized Néel vector (solid blue)
orthogonal to the oscillating spin vector (dashed red).




vector as
0 (k) ~ &/ ql cos [wa (k)t — (k — 0k) 2], (20a)
Salk) ~ §y/@ sin [wa(K)t — (k — 8k) 2], (20b)
ng(k) ~ y\/781n (k)t — kx], (20c)
Sp(k) ~ &4/ q3 cos [wg(k)t — k], (20d)

all of which are indeed linearly polarized bearing null
chirality, confirming the picture inferred in Fig. c). As
qi(ﬂ) > qi(ﬁ) > 0, the oscillation amplitude of the Néel
vectors are larger than that of the total spin in both
modes, namely, |61, > |Sa(5)| The geometrical re-
1at10nb embedded in Eq are illustrated by the right
panel of Fig. [3{(c).

The total number of sites N = L/l is finite, so the
magnon eignmodes must be discrete, taking place only at
k=0, £2r/L, +47/L --- as plotted in Fig.[3] Because
the spectrum wq (k) # wa(—k) is skewed by 0k = /L
while wg(k) = wg(—k) is symmetric, the formation of
standing waves by these two branches is quite different.
A standing wave features separation of ¢ and x in the
wavefunction, which, under the boundary conditions, re-
stricts the way of mode pairing. For the « branch, a pair
of magnons of momenta k%, = 0k(1+n) can superimpose
and form a standing wave

Ing(kyy) + 0ng(ky_) ~ & cos(wat) cos(ndkx), (21)

where n = 1, 3, 5... is odd integer representing the number
of nodes as shown in Fig. a). For an even integer, it
is impossible to separate ¢ and x because of the spectral
shift and its ensuing 7-phase shift in the spin precessions.
On the other hand, mode pairing within the 8 branch can
only happen between kni = 4+ndk with an even integer
n =0,2,4... such that

okl ) +ong(kl_) ~ gsin(wst) cos(ndkz),  (22)

which is shown in Fig. a). Comparatively, the § branch
bears a similar standing-wave formation as the case of
trivial PBC, whereas the « branch is unconventional and
unique to the TBC. While the number of nodes in each
standing-wave mode is well-defined, their locations in-
dicated by the cos(ndkx) factor in Egs. and
are determined up to a global shift. This is because the
Hamiltonian Eq. is translationally invariant (with re-
spect to a relocation of ¢ = 1).

At this point, it is instructive to compare the unique
magnon eigenmodes on a Mobius strip with what would
become the eigenmodes if the topologically trivial PBC
is imposed on the nano-ribbon in Fig. a). Under the
PBC, the nano-ribbon only admits the well-known eigen-
modes in collinear AFM materials [T9H21] since we have
excluded the local curvature effect from the Hamiltonian.
As illustrated in Fig. [3(d), these modes are the right-
circular (R) and left-circular (L) eignmodes, which, by a
coherent superposition, can form L + R and L — R fea-
turing elliptical precessions of S4 and Sp with opposite

chirality, leading to a linearly-polarized oscillation of the
Néel vector n with null chirality (so is S). While L + R
and L— R are linearly polarized, the eigenspace they span
is topologically distinct from that spanned by the o and
£ modes. To be specific, while L + R is locally identical
to the a mode, it is not accompanied by a built-in /L
phase shift at £ = 0 for every location, let alone a spec-
tral shift. Despite their superficial similarity to (L — R)
and (L + R), the a and § modes cannot be exactly ex-
pressed as a linear superposition of R and L. This is
because the M6bius strip is a non-orientable manifold on
which the chirality of spin precession becomes ambiguous
globally, given that +2 and —z are indistinguishable. In
other words, the eigenspace spanned by « and [ is not
smoothly connected to that spanned by R and L under a
global picture; the two cases fall into distinct topological
sectors.

The structure of the eigenspace deserves an intuitive
explanation. The spin precession on each sublattice can
be decomposed into |©) and ), while the sublattice de-
gree of freedom is represented by |A) and |B). Here |O)
(|0)) can be interpreted as Re [(& & ig)e!@*=#®)]. With
all constraints relieved, the linear space spanned by the
direct products of these vectors is 4D. Under the impact
of TBC, however, the magnon eigenspace only covers a
2D subspace. Specifically, the quanta of o and 3 eigen-
modes described by Egs. and can be recast into
a suggestive from

|a> :dk ‘0> = uﬁargc |A> ® |O> + u(slmall |A> & ‘O>

gmall|B>®|O> _uﬁargc|B>®|O>ﬂ (233’)
18) =Bk 10) = g | 4) © |O) + gy 14) © )
+ Umant | B) @ [0) + g | B) @ 0), (23b)
where brﬁiil < uf;(r’? ’ with u{l(ril—i-ubmd)u x q(ll( ) and
ula(rgi u‘:‘rf]iil x qi((lﬁ Comparatively, the eigenspace

under the constraint of ordinary PBC, as illustrated in
Fig. d), is spanned by

|R) =Nsman |A) @ ‘©> -
IL) =Marge [4) ® |O)

Marge | B) ® [O) ,
— Msmall |B> ® |O> )

(24a)
(24Db)

where 0 < Ngmail < Marge and the minus sign indicates a
phase difference for S4 and Sp shown in Fig. d). This
is apparently different from that under the TBC. These
two subspaces, in spite of their partial overlap for some
special parameters, are generally distinct and cannot be
transformed into each other by a linear combination of
the coefficients, given that q(ll(Q) #* qé(z). Starting from a
4D Hilbert space, one needs to specify the PBC (A — A
and B — B) or TBC (A — B and B — A) when recon-
ciling site ¢ with ¢+ N, thereby projecting the original 4D
space into a chosen 2D subspace. In Sec[[V] one can fur-
ther appreciate the distinctions between the two different
2D subspaces.
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FIG. 4. (a) Illustration of the standing wave configurations
for the lowest three « () modes with an odd (even) number
of nodes n. The vertical axis indicates the amplitude of spin
oscillation, where a sign difference corresponds to a m phase
difference. (b) Illustration of the elliptical spin trajectories
(on site 2 = 1) that smoothly deform when J4r varies. Other
sites (not shown) follow a similar pattern of change.

One may wonder what happens when the system size
approaches infinity. In this limit, the spectral shift of the
« branch vanishes so the two branches become degenerate
in terms of eigenvalues. Nevertheless, the eigenvectors
(hence the eigenspace) for each allowed k remain struc-
turally distinct from their counterparts associated with
the PBC. In other words, the eigenspace conforming with
TBC does not coalesce with the eigenspace under PBC
as the system approaches infinity. In particular, the ac-
cumulative 7 phase shift of the a mode is topological
protected and independent of the system size.

Now let us inspect the manifestation of the proposed
TISB. It is established that in easy-axis AFM materi-
als such as MnFy [19, B2], R and L are degenerate in
energy in the absence of magnetic fields. In easy-plane
AFM materials such as NiO, the existence of hard-axis
anisotropy explicitly breaks the rotational symmetry in

the spin Hamiltonian and lifts the degeneracy, render-
ing L — R and L 4+ R the magnon eigenmodes [20-22].
In these common scenarios, the magnon eigenstates ex-
hibit the same symmetry with the spin Hamiltonian, as
we only consider the excited states while excluding the
ground state that is subject to the spontaneous sym-
metry breaking and recasts the broken symmetry in the
Goldstone modes. By contrast, the Hamiltonian we
adopted preserves the local rotational symmetry (with
respect to the local easy axis), which is explicitly bro-
ken in the magnon eigenstates ascribing to the Mobius
TBC. This intriguing phenomenon is a direct manifes-
tation of the TISB, i.e., non-trivial topology in the real
space alone leads to lifted degeneracy in the eigenvalues,
as well as reduced symmetry in the eigenspace of elemen-
tary excitations, without the aid of symmetry-breaking
interactions. Because a quantum of angular momentum
associated with the R-(L-)circular mode is +% (), the
TISB we found should be followed by the suppression of
longitudinal magnon spin currents on a Md&bius strip.
To close this section, we mention that the standing
waves formed by the a and S modes can be locally ex-
cited and distinguished through a microwave. While it is
difficult to fabricate and measure an AFM Mobius strip
using natural materials, our findings are amenable to en-
gineered meta-materials such as magnonic crystals made
of artificial AFM units, which can be as large as centime-
ters with just hundreds of artificial unit cells. If we align
the rf field of a microwave source with the longitudinal
and transverse directions of the strip, the a and 8 modes
can then be selectively driven with different absorption
rates. This is because the rf field directly couples the
total spin S rather than the Néel vector, and S is polar-
ized differently in these two modes [as shown in Fig. [3].
By exciting the lowest few standing-wave modes using a
frequency-tunable source, the pattern of nodes shown in
Fig. a) should in principle be detectable through time-
resolved microscopy [33] and other optical approaches.

IV. EXOTIC PHASE

While the major axis of the elliptical orbits for & modes
lie in the z-direction (longitudinal direction of the strip),
they are in the y-direction for the § modes. This im-
portant property, according to Eq. , is attributed
to q(lx(ﬁ) > qi(ﬂ), where qi(ﬂ) = Qap) + Jar/2 and
@5y = Qa(p) — Jar/2 with Jap > 0. On this point, it
is instrumental to notice that if Jap < 0, i.e., the AFM
inter-chain exchange coupling turns ferromagnetic, then
the opposite relation will be true: qi(ﬁ) < qi(m, leading
to elongated trajectories in the y-direction (a-direction)
for the a () modes. However, an immediate prob-
lem with the Jarp < 0 regime is that the AFM ground
state may become unstable, which will be reflected as the
magnon spectra (eigenvalues) touching zero.

One may naively expect a phase transition when Jap



flips sign such that the AFM state yields to the ferromag-
netic state and necessarily forms a domain wall [23] [24].
However, a careful inspection reveals something counter-

intuitive. According to Egs. and ,

gt = K+ Jap + Jp[l — cos (k — éx /L),
2 = K+ Jp[l —cos (k — ém/L)),

(25a)
(25b)

but now Jar < 0 is assumed. At momentum k = /L,
both ¢, and ¢2 reach minimum, so does the eigenvalue:

minw,] = S\/q; (?) qaz (T)
= SVE(K + Jar), (26)

and similarly, the minimum of wg occurs at k£ = 0, where
minfwg] = minfw,]. One can tell from Eq. that the
AFM ground is preserved even for —K < Jap < 0. A
phase transition must take place at Jop = —K, where
magnons become infinitely soft and proliferate, melting
the AFM configuration and driving the ground state
into a ferromagnetic domain wall (note that a uniform
ferromagnetic configuration is forbidden by the Mdbius
boundary condition).

The surprising region of —K < Jap < 0 features an
exotic phase in which the AFM ground state can stand
even though the inter-chain and intra-chain exchange in-
teractions are both ferromagnetic. As schematically illus-
trated in Fig. b), the elliptical trajectories of sublattice
spins deform smoothly while J4r varies from positive to
negative, until the threshold Jar = —K. An ideal circu-
lar polarization for each sublattice is reached at J4r = 0.
In the exotic regime — K < Jap < 0, the principal axes of
spin precession for both the o and 8 modes indeed swap
relative to the Jar > 0 case. Nonetheless, the magnon
eigenspace is still a disparate subspace comparing to that
dictated by the PBC, regardless of the sign of Jar.

The « and 8 modes in this exotic phase has a unique
feature which is fundamentally impossible for the con-
ventional linearly-polarized modes L+ R and L — R: The

trajectories of S4 and Sp, when being projected onto
the local x — y plane, meet along the major axis and be-
come opposite to each other along the minor axis. While
the linear polarization status of the Néel vector and the
total spin vector remain the same for both Jap > 0 and
—K < Jap < 0, the magnitudes of their oscillations are
noticeably different in the two phases, which can be picto-
rially inferred from Fig. b) and be rigorously quantified
via the same set of formulas in Sec. II and III.

V. OUTLOOK

Even though we have demonstrated the TISB in the
AFM magnons on a Mdbius strip, the mechanism itself is
general and can manifest in other contexts with different
quasiparticles or TBCs. For example, we anticipate that
the eigenmodes of phonon excitations on a Mdbius strip
to be linearly polarized while the circularly-polarized chi-
ral phonons are suppressed by the Mébius topology. For
photons that are governed by Maxwell’s equations, the
axis of circular polarization is parallel to the momentum
k, which defines a distinct geometry compared to ours,
calling for a separate investigation. For tight-binding
electrons on a Mobius strip, while the Hamiltonian is very
similar to ours, the fermionic statistics brings a funda-
mental distinction in the diagonalization [which does not
involve o, as that in obtaining Eq. ] Under alterna-
tive TBCs such as a Klein bottle, even the AFM magnons
could acquire new features of TISB beyond what we have
shown in this work. Therefore, our findings could greatly
inspire a broader research endeavor in the near future
highlighting the profound impact of real-space topology
on the physical nature of elementary excitations.
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