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Abstract

Using unfolded top-quark decay data we can measure the top quark mass, as well as
search for unexpected kinematic effects. We present a new generative unfolding method
for the two tasks and show how they both benefit from unbinned, high-dimensional un-
folding. Unlike weight-based or iterative generative methods we include a targeted unbi-
asing with respect to the training data. This shows significant advantages over standard,
iterative methods, in terms of applicability, flexibility and accuracy.
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1 Introduction

Particle physics studies the fundamental properties of particles and their interactions, with
the goal to discover physics beyond the Standard Model. The methodology is defined by
the interplay between precision predictions and precision measurements. A key challenge
is that perturbative quantum field theory makes predictions for partons, while experiments
observe particles through their detector signatures. First-principle simulations link these two
regimes [1]. They start with predictions for the hard process from a Lagrangian, and then
add parton decays, QCD radiation, hadronization, and the detector response, to eventually
compare with experimental data. This forward-simulation inference is the basis of, essentially,
all LHC analyses.

The first problem with forward inference is that it requires access to the data and the en-
tire simulation chain; neither of them are available outside the experimental collaborations.
Second, it is not guaranteed that the best theory predictions are implemented in the forward
simulation chain. Finally, in view of the high-luminosity LHC, hypothesis-driven forward anal-
yses will overwhelm our computing resources for precision theory predictions and detector
simulations. All three problems motivate alternative analysis techniques.

An exciting alternative analysis method is based on inverse simulations or unfolding. In-
stead of simulating detector effects for each predicted event, we can correct the observed
events, for example, for detector effects. Then, we perform inference on particles before the
detector or even partons and their hard scattering. Because the forward simulations are based
on quantum physics and are stochastic, unfolding poses an incomplete inverse problem on a
statistical basis. Still, in this way

1. analyses can be done outside the experimental collaborations;
2. theory predictions can be updated and improved easily;
3. and BSM hypotheses can be tested without full simulations.

Machine learning (ML) methods are revolutionizing not only our daily lives, but also
LHC physics [2]. While classical unfolding methods are severely limited in many ways, ML-
unfolding allows us to unfold unbinned events in many dimensions [3]. A reweighting-based
ML-based unfolding method is MultiFold or OmniFold [4], applied to H1 [5-7], LHCb [8] and,
recently, ATLAS [9] data. Generative ML-unfolding either maps distributions [ 10-14] or learns
the underlying conditional probabilities [ 15-22]. Which of these complementary methods one
would want to use depends on the specific task. Learning conditional probabilities to invert
the forward simulation chain gives us access to per-event probabilities smoothly over phase
space [23], guaranteeing the correct event migration. Its success rests on sufficiently precise
generative networks [24-27], which are developed and benchmarked also for fast forward
simulations [28-32]. In this paper we present a novel direction in ML-unfolding:

* we target an especially challenging task, mass measurement and unfolding of strongly
peaked kinematics. Here, established methods, weight-based as well iterative generative
unfolding, fail;

* we show the first unfolding results related to a CMS analysis [33, 34]. While this paper
shows fast simulation results only, even more promising results for full CMS simulations
can be obtained from the CMS members on our team.

This analysis also marks the first application of generative unfolding to properly simulated
data by an LHC experiment. In Sec. 2 we describe the goal of the analysis, show the results
from the classic CMS analysis, introduce the dataset, and sketch the basic features and the
implementation of generative unfolding. In Sec. 3 we see how the top mass appears in the
unfolded dataset. We find that a major problem is the uncontrolled bias induced by the training
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data. It can be solved as described in Sec. 3.2. Next, we show in Sec. 3.3 how the top mass
can be measured from the unfolded distributions, and in Sec. 3.4 we show how to then unfold
the entire top decay phase space for re-analysis.

In App. A we illustrate how iterative bias removal methods do not work for peaked phase
space distributions. The goal of this paper is to show that decay kinematics can be unfolded
and to provide a blueprint for an LHC analysis using generative unfolding.

2 Goal and method

If we want to unfold top-quark decay events, the main challenge is the model dependence and
resulting bias when the top masses assumed for the simulated training data and the actual top
mass differ. We could attempt this with iterative improvements of the unfolding network [35],
but we will see that this approach is numerically extremely challenging. We follow a slightly
different strategy:

1. we ensure that the bias from the top mass assumed in the simulated training data is small;
2. we infer the correct top mass from the data, using a reduced unfolded phase space;
3. we produce training data with the inferred top mass and unfold the full phase space.

2.1 Top mass measurement

The extraction of the top mass from the invariant jet mass of highly boosted hadronic top quark
decays can shed light on possible ambiguities in top mass measurements using simulated par-
ton showers. The ultimate goal is to compare the measured jet mass distribution to predictions
from analytic calculations. For that, it is convenient to unfold detector effects.

Unfolding uses simulated data, biasing the unfolded data towards the model used in the
simulation. In particular, the choice of the top mass in the simulation leads to a significant
uncertainty [34]. These modelling biases can be reduced by including more information and
granularity into the unfolding process, motivating the use of ML-unfolding methods.

In the existing CMS measurement this is done by also unfolding differentially in the top-jet
transverse momentum and by including various sideband regions close to the measurement
phase space. Using ML-unfolding, the data can be unfolded in a larger number of phase space
dimensions, providing ways to reduce the model bias.

The result from our CMS benchmark analysis [34] is shown in Fig. 1. This analysis unfolds
the reconstructed 3-subjet mass M;;; and the corresponding reconstructed transverse momen-
tum, pr ;; to measure the top mass. The three subjets are obtained using a two-step clustering
with the eXclusive Cone (XCone) algorithm [36]. In the first step, the event is clustered into
two large-radius jets with a distance parameter R = 1.2 to capture the decay products of the
top quark and antiquark. In a second step, the two large-radius jets from the first step are each
reclustered into three XCone subjets with R = 0.4, where the subjets capture the dynamics of
the hadronic top quark decay. Before the unfolding, the jet mass scale is calibrated by recon-
structing the W-boson from the two light-quark subjets and fitting the subjet energy scales to
the resulting W peak. The W boson decay is identified with the help of b-tagging informa-
tion, which is obtained for the XCone subjets by matching these in angular distance to small-R
anti-kt jets. This matching is needed because the b-tagging information is not calculated for
XCone subjets in CMS. The uncertainty in the unfolding from the modeling of final state radi-
ation is reduced with the help of another auxiliary measurement of N-subjettiness ratios [37]
on large-R anti-k jets, matched by angular closeness to the large-R XCone jets. The matching
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Figure 1: CMS benchmark result from Ref. [34]. It shows the differential top pair cross section
as a function of the top-jet invariant mass, compared to theory predictions for different top
masses. The vertical bars represent the total uncertainties, statistical uncertainties are shown
as short horizontal bars, and theoretical uncertainties as shaded bands.

procedures and auxiliary measurements add considerable complications to the measurement
and come with non-negligible uncertainties. Because of the finite efficiency of the b tagging
and the associated mis-identification rate, the information from the W reconstruction cannot
be used in the unfolding because it breaks the permutation invariance among the jets. The
leading systematic uncertainties in this measurement originate from the jet energy scale, jet
mass scale, jet mass resolution, the b-jet response and the unfolding bias from the choice of
the top mass in the simulation. Non-negligible uncertainties also arise from the modeling of
non-perturbative effects. Ideally, unfolding enough phase space dimensions to capture the W
decay and the salient features of the jet substructure should allow us to constrain the domi-
nating uncertainties in-situ and remove the top-mass bias in the unfolding.

Once we have measured the jet mass in an event sample and consequently the top mass,
we can further analyze the unfolded dataset. For instance, we can look for effects from higher-
dimensional SMEFT operators on the decay of boosted tops, or we can search for anomalous
kinematic distributions from new particles, modified interactions, or enhanced QCD effects
at the subjet level. While the unfolding for the top mass measurement has to include a suf-
ficiently large number of dimensions, as discussed above, we now need to unfold the full,
12-dimensional phase space. Three of these dimensions are finite jet masses, generated by
QCD effects.

2.2 Dataset

We use simulated events for top pair production, similar to the one used for a CMS measure-
ment [34]. We generate the events with Madgraph 5 [38]. Hadronization, parton showers,
and multiple parton interactions are simulated with Pythia 8.230 [39] with the underlying
event tune CP5 [40]. The samples include a simulation of the detector response implemented
in Delphes 3.5.0 [41] using the default CMS card with pile-up, and the e-flow algorithm. The
pile-up subtraction only removes charged tracks associated to pile-up vertices. This simulation
is a Delphes version of the CMS simulation for Ref. [34].

In the simulated data, we have access to three stages of the simulation chain. The parton
level includes the hard interactions of the top quarks, that decay into a b-quark and a W-boson,
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that subsequently decays into two quarks or lepton and neutrino. The particle level refers to
all stable particles with lifetimes longer than 1078 s after parton shower and hadronization.
Finally, the detector level describes particle candidates after the detector simulation. At this
point, we limit ourselves to events which appear at all three stages, our results show that the
treatment of efficiency effects is sub-leading and beyond the scope of this study.

Event selections are applied at the particle and detector level. All events that do not pass
either of the selections are rejected from further analysis. For the signal or measurement
region, we only consider tt pairs in the lepton+jets decay at the parton level,

pp — tt — (bqq") (b€~ ¥)+c.c. with £=e,u, (D
with the lepton acceptance
pry>60GeV and [n,|<2.4. (2)

The top jet is constructed using XCone clustering and identified by the larger angular distance
to the lepton. It must fulfill

prs > 400GeV and Prj,, > 30GeV In;,,,l <2.5, 3)

for the large-R jet J and three subjets j;. In the following, we will refer to these subjets as jets.
The second large-R jet has to have pr; > 10GeV to reject poorly reconstructed events where
only the lepton and not the b quark is reconstructed in the second large-R jet. To reduce the
contribution from events where the full top quark decay is not reconstructed within the top
jet, we require the invariant mass of the three jets, M ijj» to exceed the invariant mass of the
lepton and the large-R jet close to it.

At the detector level, in addition to the above requirements, the missing transverse mo-
mentum has to be larger than 50 GeV and at least one b-tagged jet must be present.

The measurement-region selection criteria leave us with approximately 800,000 events
simulated with a top mass of m, = 172.5GeV, of which we use 75% for the training. To be
consistent with the amount of events available in CMS with the full detector simulations for
the reference analysis, we choose samples with different top masses to have less events. All
events contain the full generator (gen) and reconstruction (reco) level information. The XCone
algorithm clusters the jets separately for reco-level jets and gen-level jets. The clustered jets
are sorted according to pr.

We only consider paired events in our signal, i.e. events that passed both reco- and gen-
level cuts. Non-paired events can be treated as background if they are selected at the reco-
level but are not part of the measurement’s fiducial phase space at the gen-level. On the
other hand, events that were generated in the fiducial phase space at gen-level but were not
reconstructed because of the detector’s acceptance or an inefficiency will need to be accounted
for by an efficiency correction. This can be done through weights, as for example done in
the Iterative Bayesian unfolding method [42-45] as implemented in RooUnfold [46] and in
TUnfold [47], and successfully applied in several jet substructure analyses at the LHC, see for
example Refs. [34,48-50]. Another way to include efficiency and acceptance effects is through
a classifier [51], but we leave the details of such a study to future work as these are closely
related to the actual implementation of the data analysis.

The CMS analysis [34] shows that continuum backgrounds, like W+jets production, can
be subtracted bin-wise to the level where they are no longer relevant for in the analysis. The
normalization uncertainties in the different backgrounds introduce a shape uncertainty when
changing the normalization of single processes. While the background normalizations vary
between 20-100% in the CMS analysis, the overall background uncertainty was estimated to
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Figure 2: Kinematic distributions at reco-level and gen-level for the second jet (top), combining
two jets (center), and combining three jets (bottom).

be only 0.01 GeV in the extraction of the top quark mass and is thus negligible compared to
other uncertainties. The method of bin-wise background subtraction can be generalized to the
unbinned case with the help of a classifier [52], which suggests that background uncertainties
will remain small compared to other systematic uncertainties in this measurement. Therefore,
we neglect these in our study and consider signal events only.

2.3 Jet-mass features

For the generative unfolding algorithm a perfect matching between reco-level and gen-level
jets is not critical, as the reco-level is used only as a condition. We have checked that when per-
muting the ordering of the reco-level jets randomly, we observe no difference in performance.
Once we switch to the 4-momentum representation (m,pr, ¢,n), we see small differences
between reco-level and gen-level, for instance in the p; and individual jet masses shown in
Fig. 2 (top row).

Differences in the jet masses are mostly due to pile-up in our simulation, which is added

6



200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

SciPost Physics

at the reco-level, and to a lesser degree from inefficiencies and mis-reconstructions in the
reconstruction of photons, charged and neutral hadrons. Pile-up contributions are reduced by
removing tracks originating from pile-up vertices. The remaining difference in the jet mass
mostly comes from photons and neutral hadrons in the pile-up.This positive contribution to
the jet masses is largest for the leading jet because of its larger p; compared to the other jets.
Figure 2 implies that unfolding detector effects includes correcting for these pile-up effects. As
Delphes assumes an idealized vertex reconstruction, we expect those differences to be larger
when including full detector effects with GEANT4 [53].

Going beyond single-jet observables, we need to understand and eventually unfold detector
effects on jet-jet correlations. In Fig. 2 (middle row) we show two examples. The distribution
in the angular separation between the two leading jets shows a characteristic peak, originating
from the boosted decay kinematics combined with mass effects and the detector acceptance.
The 2-jet masses have a peculiar distribution, owed to the fact that out of the three jets two
come from the W decay. Because of the py-ordering, any of the three combinations

M%{ = mi2 + mi +2 (mT,imT’k cosh Ay — DPr,iPTK COS Aqbl-k) (@)

1

can reconstruct my,. This is an exact equation for the three 2-jet masses, where Ay;;, represents
the difference in jet rapidities. Of the three 2-jet masses in a top decay, two tend to be similarly
close to M;; ~ my, [54]. In Fig. 2 (middle right), we also observe the upper endpoint in the
top decay kinematics at gen-level [55]

my* < y/mf —mj, ~155GeV . 5)

Following Eq.(4), we can improve the training of the unfolding network by including the
2-jet masses as explicit features. Each of the 2-jet masses then substitutes an angular variable.
With this basis transformation we sacrifice access to the individual azimuthal angles and are
left with their absolute differences.

Next, we see in Fig. 2 (bottom row) that the transverse top quark momentum is not affected
significantly by detector effects, and the 3-jet mass peaks around the top mass value. In our
phase space parametrization we can calculate the 3-jet mass as

2 _ g2 2 2 2 2 2
M, =My, + My + Mjz —mj —my —ms. (6)
By using all these jet masses as training features, we can greatly improve the learning and
unfolding of the 3-jet mass. The no-free-lunch theorem, however, tells us that this gain will lead
to a mismodelling of other correlations. In particular, we will see that there is no guarantee
that cosA¢ € [0,1] anymore, leading to the generation of unphysical event kinematics in
some cases.

2.4 Generative unfolding

Traditional unfolding algorithms [56-58] have been used to unfold simple differential cross
section measurements. Widely used methods include Iterative Bayesian Unfolding [42-45],
Singular Value Decomposition [59], and TUnfold [47]. Their limitation is the need for binned
data in a low-dimensional phase space. This also means that we have to preselect the observ-
ables we want to unfold and decide on their binning before the unfolding.

To use ML-methods for high-dimensional and unbinned unfolding, we invert the forward
simulation using Bayes’ theorem
W(xgen)p(xgen)

W(xreco )p (xI'ECO) ’

(7)

p(xgen|xreco) = p(xreco|xgen)
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Figure 3: Schematic representation of generative unfolding with a CFM network.

where X, is a point in the weighted gen-level phase space and x,.., a point in the weighted
reco-level phase space. The gen-level and reco-level weights are encoded by w(xg.,) and
W(X,eeo) Tespectively. To unfold reco-level data, we need to learn

pmodel(xgenlxreco) A p(xgenlxreco) (8)

as the statistical basis of an inverse simulation. The network endoding this conditional proba-
bility can be a GAN [15], an INN version of a normalizing flow [16], or a diffusion network [3].
Once a generative neural network encodes pyodel(Xgen|Xreco), We calculate

punfold(xgen) = J dxreco pmodel(xgen|xreco)W(xreco)p(xreco) . )]

At the event level, this integral can easily be evaluated by marginalizing the corresponding
joint probability. Our method can be summarized as

psim(xgen) punfold(xgen)
paired data] Ipmode](xgenlxreco)
correspondence
psim(xreco) ¢ ? pdata(xreco) . (10)

The two distributions pgim(Xreco) and Pgim(Xgen) are encoded in one set of simulated events,
before and after detector effects, or at the parton- and the reco-level.

The generative network we employ to learn pp,ogel(Xgen|Xreco) is Conditional Flow Match-
ing (CFM). The generative CFM network is the leading architecture for precision-LHC simu-
lations [26]. Mathematically, CFM is based on two equivalent ways of describing a diffusion
process using an ordinary differential equation (ODE) or a continuity equation [60]

dx(t)
dt

e@,0  or PO o g G, 0pe, 01, (D)

both with the same velocity field v(x(t),t). The diffusion process described by t € [0,1]
relates a latent Gaussian distribution pj,.n () to the physical phase space pgaea(x),

Pdata(x) t—0
)= (12)
Pl {platent(r) =N(r;0,1) t—1.
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We employ a simple linear interpolation

(O=1—Ox+tr—1" (=0 (13)
x()=AQ—-t)x+tr—
r~N(0,1) t—1.
Using this approximation, we train the network to learn
ve(x(£), t) & v(x(t), ) 14

using the continuity equation and then generate phase space configurations using a fast ODE
solver. Even though the corresponding MSE loss function

Lepm = [w(x)(ve — (r — )T (15)

is not a likelihood loss, a Bayesian version of the CFM generative network can learn uncer-
tainties on the underlying phase space density together with the central values underlying its
sampling [26].

The CFM setup is illustrated in Fig. 3. Its conditional extension is straightforward, in
complete analogy to the conditional GANs [15] and conditional INNs [16] developed for un-
folding. While the naive GAN setup does not learn the event-wise (inverse) migration correctly
and therefore does not encode physical, calibrated conditional probabilities, the cINN with its
likelihood loss does exactly that. The CFM succeeds because of its mathematical foundation,
Eq.(11) [3].

Training bias

In Eq.(10) we describe the structure of generative unfolding, but we are missing a critical
complication — the simulated reco-level data pg;,(X,ec,) might not agree with the actual reco-
level data pdata(xreco)-

Let us assume a simple case where the simulation depends on a simulation parameter m,
which we can tune to describe the actual data. This can be a physics parameter we eventually
infer, or a nuisance parameter which we profile over. The dependencies of the four datasets
on m, and its ‘correct’ value in the data, my, turn Eq.(10) into

psim(xgenlms) punfold(xgenlms: md)
p(xrecolxgen)l ]\pmodel(xgenlxreco’ms)
correspondence
psim(xreco|ms) — pdata(xrecolmd) . (16)

In the forward direction, p(Xyeco|Xgen) does not have an explicit m;-dependence, but both
simulated datasets follow pgiy,(Xgen|m;) and pgim(Xreco|m;) induced by the generator settings.
By assumption, m, = m, ensures that the simulated and actual data agree at the reco-level,

!
psim(xrecolms = md) = Pdata(xrecolmd) . 17)

We then use this relation to infer m, at the reco-level.

Alternatively, we can do the same inference at the gen-level, requiring

|
psim(xgenlms = md) = punfold(xgenlms =my, md) . (18)
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The problem with this unfolded inference is the dual dependence of p y,1d(Xgen|m, my) through
the reco-level data and the learned conditional probability. This dual dependence is automati-
cally resolved if ppso1q(Xgen) Only depends on my through the reco-level data, so the bias from
Pmodel(Xgen|Xreco» M) can be neglected. It is important to emphasize that such a bias from the
training data would lead to an uncontrolled systematic shift and a wrongly measured mass
value.

An established way to remove the bias is through iteratively re- weighting the training
dataset. This IcCINN method [35] can of course applied to any conditional generative network.
It relies on a learned classifier over xg., which reweights pgpy to pypfoiq including the my-
dependencies and serves as a basis for re-training the unfolding network. It implicitly assumes
that pynfo1d(Xgen|ms, my) depends mostly on my and at a reduced level on m;. In that case the
endpoint of the Bayesian iteration is reached when the two dependencies coincide at the level
of the remaining statistical uncertainty. In App. A we show results for top decays and discuss
the reasons for them not working.

3 Unbinned top quark decay unfolding

Unfolding top decays is technically challenging, because the top mass and the W mass are dom-
inant features of an altogether 12-dimensional phase space. We start with a naive unfolding in
Sec. 3.1, using our appropriate phase space parametrization with reduced dimensionality [20].
In Sec. 3.2, we show how the model dependence from the top mass in the training data can be
controlled. With this enhancement, we show in Sec. 3.3 how the high-dimensional unfolding
improves the existing top mass measurement based on classic unfolding. Finally, we show how
to unfold the entire 12-dimensional phase space using the measured top mass in Sec. 3.4.

3.1 Lower-dimensional unfolding

We know that the precision of learned phase space distribution using neural networks scales
unfavorably with the phase space dimension [61,62].* The full 12-dimensional phase space
will not be the optimal representation to measure the top mass. Instead, we only use a lower-
dimensional phase space representation for the top mass measurement, finding a balance be-
tween relevant kinematic information and dimensionality. We postpone the full kinematic
unfolding to the point where we need to access the full kinematics and benefit from the mea-
sured top mass.

For the traditional CMS analysis [34], two phase space dimensions were unfolded, M;;; and
Pr,jjj> where the pr;;; was integrated over in the final measurement. The jet mass calibration
relies on the reconstructed W boson. Identifying the W-decay jets in the top jet ideally requires
b-tagging information, but because of the inefficiency not all jets from the W decay can be
identified. Instead, the jet mass can be calibrated by using all possible 2-jet combinations,
where each of the three resulting distributions feature a sharp W-mass peak (see Fig. 2).
Therefore, we unfold those for the top mass measurement such that a reliable calibration can
be performed at a later stage.

Our unfolding setup follows Sec. 2.3. From Eq.(6) we know that we can extract the 3-jet
mass as a proxy for the top mass from the set of single-jet and 2-jet masses. Because the single-
jet masses are largely universal and not a good handle on the jet energy calibration, our first

*For a possible improvement see Ref. [63,64].
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Figure 4: Kinematic distributions from the 4-dimensional unfolding. We also show the reco-
level and the gen-level truth for m, = 172.5GeV. In the bottom-right panel we compare M;;;
for m; = 172.5 GeV to generated unfolding for m, = 173.5GeV, not seen during training.

choice is to measure the top mass from a 4-dimensional unfolding of

{ MjljZ)Mj2j3>Mj1j3>Zmi } . (19)
i
The results are shown in Fig. 4. First, we see that we can unfold the sum of the single jet
masses extremely well, with deviations of the unfolded data from the generator truth at the
per-cent level. This means that we expect to be able to extract the 3-jet mass essentially from
the sum of all 2-jet masses with a known and controlled offset.

Next, we show a 2-jet mass, with the characteristic W peak and the shoulder at mg‘]?". The
W peak is washed out at the reco-level, but the generative unfolding reproduces the gen-level
extremely well. The relative deviation of the unfolded to the truth 2-jet mass distributions is at
most a few per-cent, with no visible shift around the W peak. The same quality of the unfolding
can be observed in the M;;; distribution, perfectly reproducing the top mass at m, = 172.5GeV,
the correct value in the training data and in the data which gets unfolded.

The problem with measuring the top mass from unfolded data appears when we unfold
data simulated with a different top mass. In the lower-right panel of Fig. 4 we show the un-
folded M;;; distribution for reco-level data generated with m, = 173.5 GeV, unfolded with gen-
erative networks trained on m, = 172.5 GeV. We see that the top peak in the unfolded data is
dominated by the training bias of the network, specifically a maximum at M;;; = (172£1) GeV.
This means the top peak is entirely determined by the training bias and hardly impacted by

the reco-level data which we unfold.

From the 4-dimensional unfolding we know that the network learns the W peak in the
2-jet masses and the top peak in the 3-jet mass at a precision much below the physical particle
widths. The problem is that the bias from the network training completely determines the

11
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Figure 5: Kinematic distributions from 6-dimensional unfolding. In the right panel we compare
M;;; for m, = 172.5GeV to generated unfolding for m, = 173.5GeV, not seen during training.

position of these mass peaks in the unfolded data. To confirm that these findings are not
an artifact of our reduced phase space dimensionality, we repeat the same analysis for the
6-dimensional phase space

{ Mj1j2, Mjaj3, Mj1j3, mj1, M)z, M3 } . (20)

The unfolded 3-jet mass distributions are shown in Fig. 5, corresponding to the 4-dimensional
case in Fig. 4. While the unfolded peak in M;;; is a bit worse than for the easier 4-dimensional
case when unfolding the same value of m; as used in the training, the bias from the training
remains in spite of the fact that we are weakening the expressive power of the unfolding
network by adding distributions that are mildly affected by the peak position.

Finally, it is instructive to study the true and learned migrations between the reco-level and
the gen-level 3-jet distribution. These are shown in Fig. 6, where in the left panel we see that
the forward simulation maps the sharp peak at gen-level to a broader peak at reco-level. The
problem with the central ellipse describing this physical migration by detector effects is that it
does not indicate any correlation between the M;;;-values at reco-level and at gen-level. The
learned migration in the right panel reproduces the forward migration exactly.

250 250
225 225
200 __/g 200
Gl =
& 175 XS] 175
= =
= 2
<7150 ~ 150
<
125 125
100 100
75 ", =172.5 GeV 75 m, =172.5 GeV
|}
100 150 200 250 100 150 200 250
M;;; (reco) Mj;; (reco)

Figure 6: True and learned migrations in the M;;; distribution between reco-level and gen-
level.
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For the generative unfolding this means that small differences at reco-level will always be
unfolded to the same sharp region at gen-level, independent of the information contained in
the reco-level data. Following Sec. 2.4 and Eq.(16) the unfolded distribution pypg1d(Xgen) i
entirely determined by the training choice m,; and shows practically no dependence on the
value m, encoded in the actual data.

3.2 Taming the training bias

The next question is how we can improve the situation where, m, being the top mass value
used for the simulation and m, the actual top mass in the data, Eq.(16) turns into

psim(xgenlms) punfold(xgenlms: %)

p(xrecolxgen)l Ipmodel(xgenlxreco’ms)

Correspondence

psim(xreco|ms) pdata(xrecolmd) . (21)

In the unfolded distribution, the training information m, completely overwrites m,. More-
over, even if there was enough sensitivity, a classifier comparing two shifted mass peaks learns
weights far away from unity, leading to numerical challenges. This means we cannot use the
usual iterative methods to remove the bias from the training data.

Following the strategy from Sec. 2, we first increase the sensitivity on my. For this, we
pre-process the data such that my is directly accessible by adding an estimator of m, to the
representation of x,..,. Ideally, this estimator would be inspired by an optimal observable.
Such a one-dimensional observable with sufficient statistical precision should exist, and we
know how to construct it. For the top mass we just use the weighted median of the 3-jet masses
at reco-level, M}’j‘}mh = Iﬁzyb‘"‘“h M;;; i, where the sum runs over all, possibly weighted,
events in one batch. For a batch size around 10* events, this information will be strongly
correlated with the top mass,

MT_)atch

i mmg =my . (22)

data

This batch-wise kinematic information can be extracted at the level of the loss evaluation, and it
goes beyond the usual single-event information, similar to established MMD loss modifications
of GAN training [15, 24].

Second, we weaken the bias from the training data by combining training data with dif-
ferent top masses, but without an additional label,

m, = {169.5,172.5,175.5} GeV (combined training). (23)

It turns out that it is sufficient to cover a range of top masses with separate, unmixed training
batches. The range ensures that top masses in the actual data are within the range of the train-
ing data. We ensure a balanced training by enlarging the event samples with m;, = 169.5 and
175.5 GeV to match the size of the largest sample. This is done by repeating and shuffling the
input data, which effectively uses these events several times per epoch. we avoid overfitting
using an appropriate regularization. The limited number of simulated events for the eventual
analysis makes this training strategy sub-optimal. We expect larger and additional m, simula-
tions, unavailable at this time, to improve the results. As shown in App. A, both steps need to
be included to ensure precise, unbiased results.
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Figure 7: Schematic representation of a parallel transfusion network, adapted from [3].

Obviously, this strategy of strengthening the dependence on m; and reducing the training
bias is not applicable to all problems, and it does not lead to the endpoint of the Bayesian
iterative method, but for our combined inference-unfolding strategy it works, and this is all
we need.

Transfusion architecture

As the network task becomes significantly more difficult we replace the simple dense architec-
ture with a transfusion network, described in detail in Refs. [3,51] and visualized in Fig. 7.

Each component of the n-dimensional condition as well as of the time-dependent N -dimen-
sional input x(t) are individually embedded by concatenating positional information and zero
padding. The embedded conditions are passed through the encoder part of a transformer,
while the embedded input is passed through the decoder counterpart. In both transformer
parts, we apply self-attention to learn the correlations in the condition and in the input. The
network is complemented by a cross-attention between encoder and decoder outputs, to learn
the correlations between conditions and inputs. These are crucial for the unfolding task. For
every component of the input, the transformer returns one high-dimensional embedding vector
¢;, which is mapped back to a one-dimensional component of the velocity field by a shared
dense linear network. This way, we express the learned N -dimensional velocity field of Eq.(14)
as

Ve (xgen(t): t, xreco) = (VG (Cl; t)eees Vo (CN; t)). (24)

The hyperparameters of the network can be found in Appendix B.

Using the transfusion network we unfold the 4-dimensional phase space from Eq.(19).
The results are shown in Fig. 8 (top row). We unfold data generated with two different top
masses, m, = 171.5 and 173.5GeV. Neither of these two values are present in the training
data. We observe in both cases that the top mass as the main kinematic feature is reproduced
well, without a significant deviation from the gen-level distributions. The fitted peak values
of the distributions are mpe, = (1724 1) GeV when unfolding data with m, =171.5GeV, and
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Mpeak = (174 + 1) GeV when unfolding data with m, = 173.5GeV. While the bias might not
have vanished entirely, it is well contained within the numerical uncertainties. We will extract
the unfolded top mass value properly in Sec. 3.3.

Dual network

Given the more complicated training task, we observe a drop in performance when we increase
the dimensionality to unfold the 6-dimensional phase space

x = ( {m;}, {Mik}) s (25)

defined in Eq.(20) using the transfusion network. Inspired by Refs. [25,26], we factorize the
phase space density into two parts, each encoded in a generative network: the first network
learns the individual jet mass directions in phase space, which are universal and do not de-
pend on the value of m,; the second network generates the 2-jet masses conditioned on the
individual jet masses,

— batch batch
p(xgenlxreco) =p ({mi,gen}N xreco,ijé}tC )p ({Mik,gen}| {mi,gen}, Xrecos ijz}tc ) (26)
netv;gl“k 1 netv?grkZ

Both CFM-transfusion networks also receive MP2h calculated for a full batch using Eq.(6). For
the event generation we first generate the unfolded jet masses {m;}, pass them as a condition
to the second network, and then generate the unfolded 2-jet masses {M;;}.

m, =171.5 GeV m, =173.5 GeV

gen
—— unfolded 0.04
reco -

gen
—— unfolded

120 140 160 180 200 220 120 140 160 180 200 220

m, =171.5 GeV m, =173.5 GeV

gen gen

—— unfolded

0.04 —— unfolded 0.04
reco -

reco

120 140 160 180 200 220 120 140 160 180 200 220

Figure 8: ijj-distributions from the 4-dimensional (top row) and 6-dimensional (bottom
row) unfolding of data with m, = 171.5GeV (left column) and m, = 173.5GeV (right col-
umn). We train the network combining samples with three top masses, Eq.(23).
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Looking at the 6-dimensional correlation giving M;;; in Fig. 8 (bottom row), we observe
a hardly visible drop in performance, but still no bias from the training data. As before, we
observe peak values at mpe, = (172 £ 1) GeV when unfolding data with m, =171.5GeV and
at Mpeqx = (174 £ 1) GeV when unfolding data with m, =173.5GeV.

3.3 Mock top quark mass measurement

We estimate the benefit from generative unfolding by repeating the top quark mass measure-
ment from Ref. [34], but with a large number of bins in the M;;; histogram. The top mass is
extracted from the binned unfolded distributions using a fit based on y2 = d7V~'d, where
d is the vector of bin-wise differences between the normalized unfolded distribution and the
normalized prediction from the simulated data. The covariance matrix V contains the uncer-
tainties and corresponding bin-to-bin correlations. A parabola fit provides the central value of
m, and the standard deviation. Experimental systematics and simulation uncertainties have
to be propagated to the top mass measurements [34], combined with an in-situ jet calibration
using the known W-mass peak. Crucially, these uncertainties do not lead to an uncontrolled
bias of the unfolding, but will typically manifest themselves as noise.

Statistical and model uncertainties

First, this fit requires the covariance matrix describing statistical uncertainties [65]. We sample
N times from the latent space, conditional on the reco-level events. This means we generate N
unfolded distributions from the posterior pp,dei(Xgen|Xreco)- We then use a Poisson bootstrap,
where we assign a weight from a Poisson distribution with unit mean. The size of one replica
is 52,000 events, corresponding to the approximate number of real data events. The number
of events follows a Poisson distribution, with the mean given by the nominal sample size.

For the measurement, we create N, = 1000 replicas by selecting the nominal number of
reco-level events from the test dataset with m, = 172.5 GeV and the full datasets for the simu-

lations at different top masses. We unfold each replica, calculate M;;;, and use the histogram
(n)

i

i

entries u; ° to compute the correlation matrix of statistical fluctuations as

rep

N N,
1 N 1
COVij = N Z(ufn) — l_ll')(ug-n) — l_l]) Wlth l_ll' = Z ugn)

rep n=1 Nrep n=1
COVi]‘ (27)
pl] N Q/COVii1/COij '

This procedure also takes into account the uncertainties due to the statistical fluctuations of
Mjb]?;.“:h. The training of the network itself introduces correlations which are at least one order
of magnitude smaller and therefore ignored in the measurement.

The 5 x 5 and 60 x 60 correlation matrices p;; from the 4-dimensional unfolding using
the largest sample generated with m;, = 172.5GeV are shown in Fig. 9. We see two distinct
sources of bin-to-bin correlations. In general, an event migrating from bin i to bin j gives rise
to negative correlations in p;; between the two bins. Additionally, unbiasing the unfolding
ensures that a shift in the batch-wise condition also shifts the unfolded peak. This effect,
accounted for in the bootstrapping method, introduces an additional contribution to the bin-
to-bin correlations. It causes positive correlations between bins on the same side of the peak
and anti-correlations otherwise. In our case, both effects are most apparent in the peak region
and its neighboring bins.

We follow Ref. [ 34] to estimate the uncertainty from the choice of m, in the simulation used
for the unfolding. We evaluate the difference in each bin i between the unfolded distribution
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Figure 9: Correlation matrices obtained from N,., = 1000 replicas for 5 bins (left) and 60 bins
(right) in the 4-dimension unfolding with m, = 172.5GeV.

and the corresponding simulated gen-level distribution. From the differences d;, we construct
a covariance matrix

COV?;Ode] = pl]dld] N (28)

where p;; are the correlations between bins i and j. Because the bin-to-bin correlations are
not known and we do not observe any systematic pattern, we choose a diagonal covariance
matrix with p;; = 1 for i = j and p;; = 0 otherwise. It was verified that other choices do
not alter the results. To estimate the impact of this model uncertainty, we perform the m,
extraction twice. First, we only include the statistical covariance matrix corresponding to
52,000 available events at the reco-level. Second, we repeat the same measurement also
including the model uncertainty.

E 50 " N . T T T T N T T T T N T T T T N T T T T N
(;.<E [y —— CFM, 4d, 60 bins, m = 172589 Gev ]
B U CFM (stat. only), 4d, 60 bins, m =172.58}) GeV |

40 ——— CFM, 6d, 60 bins, m = 17263 GeV -
AR T— CFM (stat. only), 6d, 60 bins, m = 172.64'3% Gev £
r —— TUnfold, m, = 172.50°7% GeV ]

304 rrrrrr TUnfold (stat. only), m, = 172.51°% Gev

20—

T T

10

| IR |

171.5 172 172.5 173 173.5

m, [GeV]

| IR

Figure 10: Extraction of m, with a y2 test. The dotted lines include only statistical uncertain-
ties, while the solid lines also include the model uncertainty from the choice of m,.
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Improvement

To compare our new unfolding technique to the existing TUnfold results [34], we repeat the
extraction using the simulated data set with 172.5 GeV and using the statistical covariance ma-
trix from the measured data, published in HEPData [66]. The y-curves and the corresponding
results are displayed in Fig. 10, where we show the 4-dimensional and 6-dimensional unfold-
ings with 60 bins and the TUnfold result. We see that the uncertainty in the choice of m, is
reduced from being a leading model uncertainty in the CMS measurement to a much smaller
level. The statistical uncertainty in the TUnfold result was already small relative to the system-
atic uncertainties. Both the 4-dimensional and 6-dimensional unfoldings exhibit comparable
statistical uncertainties with the 5-bin configuration. However, increasing the number of bins
leads to a reduction in statistical uncertainty, as demonstrated below.

To confirm that the choice in m, does not leave a residual bias, we repeat the top quark mass
extraction for unfolded data obtained from reco-level data simulated with different top masses.
The results are shown in the left panel of Fig. 11. For a top mass of m; = 173.5 GeV, we observe
a bias of about 0.5 GeV when using a measurement with 5 bins. This is not surprising as the
exact binning has been optimized for a minimal model dependence in the CMS measurement,
which we did not do here. While the bin width in the unfolding with TUnfold is limited by
the jet mass resolution, we test various binning schemes for the unbinned unfolding. The
bias gets reduced when using more bins in the measurement, as expected because the binning
introduces a regularization in the unfolding which leads to a model dependence. With 10 and
more measurement bins, we observe that the bias from the model dependence is removed. For
more measurement bins than 60, the comparably coarse grid of gen-level distributions with
m, = {169.5,171.5,172.5,173.5,175.5} GeV leads to an unstable closure test.

To circumvent this limitation, we interpolate the gen-level distributions for m,-values close
to 172.5GeV, where three samples with a separation of 1 GeV are available and a linear de-
pendence of the bin content as a function of m, represents a valid approximation. Now, we can
compare the resulting values of m, from the generative unfolding with 5 to 60 bins in terms
of the statistical uncertainty. The results are displayed in the right panel of Fig. 11, indicating
an increase in the statistical precision in m, due to the improved resolution.

3.4 Full phase space unfolding

As a last step of our unfolding program, we unfold the full 12-dimensional phase space given
the measured top mass. This has the advantage that the leading source of training bias is
removed. Following the same precision arguments as before, we keep the mass basis of Eq.(20)
for the first 6 of the 12 phase space dimensions. This ensures that the 2-jet and 3-jet masses
are reproduced well, albeit not at the level of the dedicated first unfolding step.

The remaining phase space dimensions are

X = ( {mi}) {Mik}) {pT,i}a {nl} ) i: k= 19273 5 (29)

all other kinematic observables can be computed from these basis directions. For the 12-
dimensional unfolding we use a single transfusion network, after checking that the dual net-
work does not lead to an improvement. The hyperparameters are given in Appendix B. Two
kinematic distributions are shown in Fig. 12. In the left panel, we see that the top mass peak
is learned almost as well as for the 4-dimensional and 6-dimensional cases. Indeed, this is the
case for all jet masses and 2-jets masses, which are combined to the 3-jet mass with the top
peak.

A serious issue arises from the azimuthal angle between the two leading jets, |A¢q,|.
According to Eq.(4) this angle is learned as a correlation of 7 phase space directions. Moreover,
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Figure 11: Deviation of the extracted top mass from the reco-level truth, employing 4-
dimensional and 6-dimensional unfoldings with different numbers of measurement bins for
m, = 171.5, 172.5, and 173.5GeV (left) . The size of the statistical uncertainties in m,
from the 4-dimensional and 6-dimensional unfoldings with different binnings, assuming
m, = 172.5GeV (right).

we do not have access to the azimuthal angles, only to the cosine of differences between angles.
Here the problem arises that the network does not ensure that this cosine comes out in the
physical range —1...1. We enforce the physical range by clipping the cosine for small angles
to one, which causes a mis-modelling of the small-|A¢,| regime, shown in the right panel of
Fig. 13.

A simple way to improve this mis-modelling is to require cos A¢,, < 1. However, from
Fig. 12 we know that this does not solve the problem. Instead, we accept the fact that for
unfolding the masses well we might have to pay a prize in the coverage of the angular corre-
lations, and we apply an additional acceptance cut

Ay > 0.1 (30)

both, at the reco- and gen-levels in our simulated events. This reduces the size of the unfolded
dataset by 30%. An extended set of unfolded kinematic distribution after this cut are shown
in Fig. 13.

[
o

< — gen gen

2 0.04 — unfolded E 1.5 unfolded
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g g
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Figure 12: Kinematic distributions from full, 12-dimensional unfolding. We show the 3-jet
mass as well as the azimuthal angle between the two leading jets.
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535 We know that our unfolding method covers correlations between the original phase space
536 directions well, because many of the kinematic observables shown in Fig. 13 are built from
537 complex correlations of our phase space basis. However, to end with a nice figure and to
s3s  drive home the message that high-dimensional unfolding using conditional generative net-
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Figure 13: Kinematic distributions from full, 12-dimensional unfolding. We show the target

3-jet distribution, the azimuthal angle between the jets after cut, and a set of single-jet observ-
ables, 2-jet correlations, and 3-jet correlations (top to bottom).
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Figure 14: Correlation of two 2-jet masses at gen-level truth (left) and after unfolding (right).

works does learn the corresponding correlations well, we show one of our favorite correlations
in Fig. 14. Indeed, there is literally no difference in the correlations between two of the three
2-jet masses. This correlation also confirms that the condition M;; &~ my, leads to three distinct
lines in phase space, where close to the crossing points it is impossible to reconstruct which
two of the jets come from the W decay.

4 Outlook

Unfolding is one of the ways modern machine learning is transforming the way we can do LHC
physics. Employing an inverse simulation, it allows for the efficient analysis of LHC data by
the LHC collaborations, to combine analyses between different experiments, and even make
unbinned, unfolded data accessible to researchers outside the experimental collaborations.
Unfolding has been used in particle physics frequently, but modern neural networks allow us
to unfold a high-dimensional phase space without a choice of binning. This technical advance
will turn multi-dimensional and unbinned unfolding into a standard analysis method at the
LHC and future experiments.

For our study, we unfold detector effects from boosted top quark decay data using state-of-
the-art conditional generative networks. Unfolding decay kinematics is especially challenging
because we expect a large model dependence and even systematic bias from the choice of
the top mass in the simulated training data. Our study shows that generative unfolding with
a new methods for prior removal solves this problem and provides a first milestone towards
incorporating generative unfolding in an existing CMS analysis.

First, we showed that for an appropriate phase space parametrization, a combination of
diffusion network and transformer can reliably unfold a 4-dimensional and 6-dimensional sub-
space of the full top-decay phase space at the percent level precision. This included the 3-jet
mass as a proxy to the top mass. The problem in this unfolding is a strong bias from the top
mass used to generate the training data. To compensate this bias we added a global estimate
of the top mass to the representation of the measured data and weakened the training bias by
including a range of top masses there. As a result of these two structural modifications, the
top mass bias was essentially removed.

Using this setup we showed how to extract the top mass along the lines of a recent CMS
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analysis [34]. We included two covariance matrices, one describing all statistical uncertainties
and one covering the model uncertainty from the training data. We found that, indeed, the
impact of the model uncertainty is becoming irrelevant, and that the error in the top mass can
be reduced when using the kind of fine binning allowed by the unbinned unfolding method.

Finally, we unfolded the full, 12-dimensional phase space for a given top mass. One failure
mode in reproducing the angular distributions was induced by our phase space parametriza-
tion. However, a simple lower cutoff on the azimuthal angular separations of the top decay
jets allowed for an excellent reproduction of all correlations.

This study serves as a blueprint for an actual CMS analysis, both, for a top mass mea-
surement and for a wider use of the unfolded data. Results for full CMS simulations cannot
be shown in this publications, but are available from the CMS members on the author team.
Their performance is slightly better than for the fast simulation shown here.
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A Bias removal methods

As stated in Sec. 3.2, we rely on both, batch-wise conditioning and data augmentation, to
unfold the triple jet mass without bias. In Fig. 15 this is demonstrated by showing unfolding
results, where we train either without augmentation or without batch-wise conditioning. For
both setups, we observe a clear drop in performance when compared to Fig. 8, although all
results are produced with the same hyperparameters of Tab. 2. Iterative generative unfolding
can ensure prior independence [ 18], but does not succeed for the triple jet mass in our appli-
cation. For iterative generative unfolding [ 18] the first step consists of a generative network to
learn the posterior distribution of Eq.(7). For the 4-dimensional unfolding scenario, we look
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Figure 15: Kinematical distributions from 4-dimensional unfolding. We compare M;;; for
m, = 172.5GeV to generated unfolding for m, = 173.5GeV, not seen during training. On
the left panel we show results where the batch-wise condition of Eq.(22) is included into the
training pipeline but no augmentation. On the right panel we show results where the training
data was augmented with samples of different top masses, but no batch-wise conditioning was

included.

at the unfolding results of Fig. 4 as our first step. We train the generative network on MC
simulations with m, = 172.5 GeV and try to unfold reco-level pseudo-data with a correspond-
ing top-quark mass of m, = 173.5GeV. In a second step we learn a reweighting between the
unfolded pseudo-data and the MC simulation used during training. We see in the lower right
panel of Fig. 4 that the unfolded results collapse back to the distribution of the prior MC sim-
ulation. The learned reweighting will barely correct the MC simulation, which is confirmed
when looking at the learned classifier weights in Fig. 16. They are sharply centered around
unity, so we do not gain from the iterations as the MC simulation from the fist iteration matches
the MC simulation from the second iteration.

OmniFold [4] learns a classifier-based reweighting between the pseudo-data and the MC
simulation on reco-level. In a second step, the OmniFold algorithms pulls the learned reco-
level weights to gen-level, event by event, and learns a second classifier-reweighting between
the reweighted gen-level distribution and the initial MC gen-level distribution. The procedure
can be repeated iteratively. However, for shifted resonances such as the triple jet mass the
correction is not learned correctly. This can be confirmed when looking at Fig. 17. Here,
we train OmniFold on the 4-dimensional parametrization plus the triple jet mass. The first
step correctly reweights the reco-level kinematical distribution of the triple jet mass of the MC

10%
unfolded (173.5 GeV)
10' —— gen (172.5 GeV)
< 10°
|
w101
g
1S
Z 1072
1073
107*
0.9 1.0 1.1 1.2

weights
Figure 16: Classifier weights to reweight MC gen-level simulation to unfolded pseudo-data in

the 4-dimensional parametrization, as part of the second step in iterative generative unfolding.
The top masses are given in parentheses.
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Figure 17: Kinematical distributions from (4+1)-dimensional unfolding. On the left
panel, we compare the reco-level M;;; distribution for m, = 172.5GeV to pseudo-data for
m; = 173.5GeV and the reweighted version computed with the first step of the omnifold al-
gorithm. On the right panel, we make the same comparison on gen-level where unfolded is
now the reweighted MC simulation on gen-level.

simulation (m, = 172.5 GeV) to our pseudo-data (m, = 173.5 GeV). When we pull the learned
weights to gen-level, they are not sufficient to reweight the peaked distributions of the gen-
level triple jet mass. The reweighted distribution collapses back to the prior MC distribution,
indicating again that we cannot remove the prior using iterations. These findings motivate the
use of our novel unfolding strategy resulting in Fig. 8.

Although the standard OmniFold approach fails in our unfolding tasks, it does not mean
that similar adaptions to the algorithm could not lead to unbiased results. However, we leave
a concrete investigation of the matter to the OmniFold authors.

B Hyperparameters

Parameter

LR sched. cosine
Max LR 1073
Optimizer Adam
Batch size 16384
Network Resnet

Dim embedding 64
Intermediate dim 512
Num layers 8

Table 1: Parameters for the 4-dimensional and 6-dimensional networks in Sec. 3.1.
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Parameter 4D 6D
Epochs 800 500(+1000)
LR sched. cosine cosine
Max LR 1073 1073
Optimizer Adam Adam
Train batch size 10000 10000
Inference batch size 50000 50000
Dropout 0.1 0.1
Network Transfusion Transfusion
Dim embedding 64 64
Intermediate dim 512 512
Num layers 4 4
Num heads 4 4

Table 2: Parameters for the 4-dimensional and 6-dimensional networks in Sec. 3.2.

Parameter 12D
Epochs 500
LR sched. cosine
Max LR 1073
Optimizer Adam
Batch size 16384
Dropout 0.1
Network Transfusion
Dim embedding 128
Intermediate dim 512
Num layers 6
Num heads 4

Table 3: Parameters for the 12-dimensional network in Sec. 3.4.
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