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Abstract

We introduce TensorMixedStates, a Julia library built on top of ITensor which allows the
simulation of quantum systems in presence of dissipation using matrix product states
(MPS). It offers three key features: i) it implements the MPS representation for mixed
states along with associated operations, in particular the time evolution according to
a Lindblad equation or discrete time evolution using non-unitary gates (quantum chan-
nels), ii) it is based on ITensor, which has proven its effectiveness and which gives access
to efficient low-level tensor manipulation as well state-of-the-art algorithms (like DMRG
or TDVP), finally iii) it presents a user-friendly interface allowing writing sophisticated
simulations for pure and mixed quantum states in a few lines of code.
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1 Introduction

The field of open quantum many-body problems is a very active area of research in Physics [1].
In the last two decades, there has been huge experimental progress in the manipulation and
in the control of quantum systems such as cold atoms [2], Rydberg atoms [3-5], trapped
ions [6-8], coupled light-matter systems or superconducting circuits and processors [9,10] to
name a few. Quantum technologies and the development of devices that are able to perform
quantum information tasks [11] has clearly been a major driving force in this domain. These
systems are never perfectly isolated from their environment, and the presence of noise, dis-
sipation and decoherence is often important [1,12]. In some situations the presence of the
environment can give rise to interesting new phenomena and new dynamical regimes. The
environment can even be exploited to engineer useful quantum many-body states [13]. Sim-
ulating a quantum many-body problem on a classical computer is a notoriously difficult task
because the computational cost is in general exponential in the number of constituents and
open quantum systems are generally not simpler [14]. Nevertheless, numerical algorithms
where the many-body states are represented (and compressed) using tensor networks have
established themselves as among the most powerful for this type of problems [15,16]. Among
these methods, those based on matrix-product states (MPS) have proven to be very success-
ful in many situations, and for low-dimensional systems in particular [17,18]. In the field of
quantum computing, calculations based on MPS have raised the bar concerning the perfor-
mance that quantum processors must exceed in order to offer a quantum advantage [19-23].
In fact, an external environment tends to decrease the amount of entanglement among the
degrees of freedom inside the system, and it often results in a decrease of correlations. This
can be a favorable situation for tensor network representations which can exploit the reduced
correlations to achieve a better compression of the state.

While there exist several powerful libraries for manipulating pure states with MPS (like
[Tensor [24] or TenPy [25]), the software offering for the simulation of open/dissipative sys-
tems with MPS is much more limited.! We attempt here to fill this gap by presenting the
TensorMixedStates library [29] (TMS) which allows manipulating mixed many-body quantum
states in the form of MPS. It is based on the ITensor [24] library in Julia and offers a solver for
studying the time evolution of open quantum system described by a Lindblad master equation
for the density operator [1,30,31]. It also permits constructing and manipulating density ma-
trices using gates or user-defined quantum channels. Note that the library does not implement
the unraveling of Lindblad master equations into ensembles of quantum trajectories.

The rest of the paper is organized as follows. We begin in Section 2 by recalling a few basic
notions concerning quantum states and their MPS representation. The end of this section also
summarizes the functionalities offered by TMS. Section 3 presents the main features of the
TMS library. This section describes the general design of the library (3.1), the installation

1See for instance [26-28].
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procedure (3.2), the way to define the Hilbert space (3.3), the states (3.4) and the operators
(3.5). It also presents the main operations that can be performed on these objects: continuous
time evolution or discrete gates (3.6) and measurements (3.7). Section (3.8) presents some
functions which help monitoring the precision of the simulations, and Section (3.9) illustrates
the high-level interface of TMS.

Section 4 illustrates the use of TMS with several physical models: a fermionic chain with
dephasing in the bulk (4.1), a spin chain with boundary dissipation (4.2), a bosonic chain with
incoherent particle injection (4.3), a fermionic chain with incoherent particle injection (4.4),
a model describing the decoherence of a graph state, and a brick wall quantum circuit with
noisy gates (4.6). Finally, Section 5 presents conclusions.

2 Context

In this section, we recall a few basic properties and a few notations concerning quantum (pure
and mixed) states and their representations with MPS.

2.1 Pure and mixed quantum states

The (pure) states of a closed system form a Hilbert space #, so that a state |¢) € H is a
vector. Given an operator acting on H there are essentially three basic operations that we may
consider: i) measuring the expectation value of an observable O (with O hermitian)

(0) = (yI01p), (D
ii) doing some discrete evolution by applying a gate U (with U unitary)
) = Ulo), (2)
or iii) doing continuous-time evolution with the Hamiltonian H (H hermitian)
Oc|p) = —iH ). 3

For an open system, this formulation is no longer sufficient, and a state must be represented
as a density matrix p which must be Hermitian, positive semidefinite with unit trace [1]. When
the state is pure, p is simply a projector

p = Y)Yl 4)

but for general mixed states we have Tr [pz] < 1. The three operations mentioned above for
pure states become

(0) =Tr(0p), (5)
p=UpeUT, (6)

Where [A, B] = AB— BA is the commutator. For a mixed state, a general discrete evolution is a
linear and completely positive map (also called quantum operation, or quantum channel) and
takes the form [32]

p = Eipok], (8)
i
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with Kraus operators {E;} satisfying Zi ElTEi = 1. In a continuous-time context, the evolution,
if Markovian, can instead be modelled by the Gorini-Kossakowski-Sudarshan-Lindblad master
equation [30,31]

op = L(p), 9
where L is the Lindbladian

E(P)=—1[H,P]+Z(LkPL,L—E{L;{Lk,P}), (10)
k
with no particular constraints on the L, and {A, B} = AB + BA is the anti-commutator.

2.2 Matrix product states and operators

In quantum many-body problems the dimension d of H grows exponentially with the system
size and this severely limits the sizes accessible to numerically exact calculations. A possible
option is then to use approximate representations of the states, and MPS [17] provide such
approximate representations. Suppose H is a tensor product of N finite-dimensional local
Hilbert spaces #; of dimension d;: H =H,®H,®---® Hy (thus d = d;d, -+ -dy). The system
consists of N sites, each associated with a local Hilbert space of dimension d;. In the pure case,
any state |¢) can be written

)= D Ty T Isisp e+ sw), an
{s}

where T l.s" is a y;_1 x yx; matrix and s; runs over all single site basis states of H; (y, and yy
are set to 1). T; as a whole can be seen as a 3-index tensor of dimension y;_; x y; X d; or
alternatively as a y;_; x y; matrix whose elements are quantum states belonging to H;, in
which case we can simply write.

[Y) =TTy Ty, (12)

hence the name matrix product state.

For large systems, the exact representation of a generic state as an MPS requires most of
the bond dimensions y; to grow exponentially with N. MPS are particularly useful when there
exist matrices T; of size much smaller than d which provide a good approximation of the target
state [1). In practice, we set a maximum bond dimension y, and we numerically approximate
the states of interest by a MPS with y; < y. The larger is y, the larger is the precision of the
approximation.

To operate on a MPS, we can build a matrix-product operator (MPO)

O=0102---ON, (13)

where the O; are matrices whose elements are operators acting on H;, that is the O; are tensors
with four indices (two of which having dimension d;) and we then have

Ol¢) =(0; - T1)(Oy - T5)-+-(Oy - Ty). (14)

Simple operators, like single site operators, do not need to be represented as MPOs. They
can be directly applied to the corresponding T;, this is very useful to compute mean values of
operators. All this can be nicely represented by tensor diagrams as shown on Fig. 1

What about mixed states? We can see the density matrix p of a mixed state as a vectorized
state |p)) in a larger space of dimension d? [1] and apply the same process as before and write

p = Z R‘511,51R522»52 . .R‘;\I}”SN |5152 .. 'SN><S;_5; .o .SNli (15)
{s}h{s"}
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Figure 1: Tensor diagrams for pure states: tensors are represented by circles and
indices by lines. A contraction is represented by a line (index) connecting two circles
(tensors). (a) MPS with five sites. (b) MPO with five sites. (c) application of a MPO
to a MPS. (d) Application of a single site operator. (e) Mean value of a single site
operator (MPS represented with downward indices are complex conjugated).

/
S1557 . . . .
where Rl.1 "isa y;_; x y; matrix and s; and s; run over all single site basis states of ;. R; as

a whole is then a 4-index tensor of dimensions y;_; X y; X d; x d;. In the vectorization process
H; ® H; is seen as the space of dimension dl.2 of the operators acting on 7{;, and we can also
write
Ip)) = D> RJ'RZ -+ R 0105 - 0x)), (16)
{o}

where o; runs over all single site operator basis of ; % and R; can be seen as a 3-index tensor
of dimension y;_; X y; X diz. We can finally see R; as y;_; X y; matrix whose elements belong
to ‘H; ® H; and simply write

lp)) =RiR;y-**Ry. a7

Note that, contrary to the matrix-product density operator representation [33], the rep-
resentation of Eq. 15 does not guaranty that p is positive. In practice, this is not an issue as
long as the bond dimension can be taken large enough to ensure a sufficient accuracy for the
observables of interest. , ,

For a pure state |), we have p = [¢)(y| and thus R‘z"’s" = Tisi ® Tisi‘r or correspondingly
R, =T;® Ti.". Note that in this operation y; for R is the square of y; for T.

If one needs to represent an operator acting on a density matrix p, one may use the above
strategy with an MPO acting on the vectorized state |p)). The O; are then matrices whose
elements are operators acting on the “doubled” Hilbert space. The O; can also be viewed as
tensors with four indices, two of which having dimension (di)z. Tensor diagrams for mixed
states are shown on Fig. 2.

An important question is the size of the matrices that are required to represent accurately
a given state as an MPS. For a pure state [¢), it is well known that the dimension y of the
bond which separates the left region A from the right region B> has to be scaled as the expo-
nential of the bipartite von Neumann entropy S"?I;B’lw) associated to the bipartition. In other

words In y ~ S‘//‘I\_IB. For a mixed state p and a given bipartition A— B of the system, one can

B,lp))

consider the (vectorized) pure state |p)) and the von Neumann entropy Ség associated

2In the simplest case where the system is made of qubits (d; = 2), the o, can be chosen as the identity and the
three Pauli matrices.
3In an MPS a given matrix index naturally separates the system in two subsystems.
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Figure 2: Tensor diagrams for mixed states: two lines surrounded by a circle repre-
sent combined indices, that is two indices combined as one. (a) Density matrix p
with five sites represented as a MPO. (b) Vectorized density matrix |p)) represented
as a MPS. (c¢) Vectorized density matrix |p)) of a pure state. (d) Application of a
single site operator O. (e) Mean value Tr[pO] of a single site operator.

to the bipartition. The operator space entanglement entropy (OSEE) associated to the A— B
partition is, by definition, equal to this entanglement entropy [34]: SéggE = ngB’lp . When
approximating p by a MPS as in Eq. 15, the required bond dimension y must then scale as the

: A—B
exponential of the OSEE, In y ~ Sqcp.

2.3 Functionalities offered by TensorMixedStates

The ITensor library provides tools for constructing and manipulating MPSs and MPOs. In par-
ticular, it provides the following four main operations: (i) creation of a MPS state representing
a pure product state, (ii) creation of a MPO representing an operator acting on pure states,
(iii) measurement of the mean value of an operator on a pure state, (iv) powerful algorithms
for evolving a state with an operator: in particular applying the operator on the state (MPO /
MPS contraction), computing the ground state of an operator (DMRG [17,35]), and solving a
continuous equation of the form J,[y) = O|y) (TDVP [36]).

Unfortunately, ITensor has not been developed with mixed states in mind and while the
evolution algorithms (point (iv)) are quite general and can be used in the mixed case, the
other three components are not (points (i), (ii) and (iii)). Moreover, even if ITensor is largely
extendable, using this expendability to accommodate the new needs was at best awkward, in
particular it would have been complicated to use the operator framework of ITensor.

TMS thus rely on the powerful core algorithms of ITensor (tensor contractions, DMRG and
TDVP) and reimplement from scratch all the rest to accommodate mixed state representions.
Namely, it provides (i) the creation of a MPS representing a mixed product state, (ii) the
creation of a MPO representing an operator acting on a mixed state, (iii) measurement of the
mean value of an operator on a mixed state.

Recall that in the mixed-state setting there is a wider variety of operator actions to consider.
In the pure-state case, an operator O is naturally applied to a state |¢) by computing O|y)). By
contrast, when working with a density matrix p, an operator O can act in several distinct ways,
namely Op, OpO', [0, p] and {070, p}. It is this richness that led us to develop a complete
and flexible operator framework.

Finally, TMS also provides algorithms not present in ITensor, namely the W! and W' ap-
proximations [37] that build a MPO for approximately representing exp(tO) at small t. These
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time-evolution algorithms are complementary to TDVE in particular for non Hermitian evolu-
tions where TDVP is sometimes less efficient (See for instance Sec. 4.4). TMS also provide an
algorithm to compute the steady state of a Lindbladian £, simply computing the ground state
of £ £ with DMRG.

3 Features

3.1 Design choices

TMS is the successor of the Lindbladmpo library [38, 39]. Lindbladmpo was based on the
C++ version of the ITensor library and since the ITensor library has migrated to the Julia
language, Lindbladmpo could not benefit from the recent developments of ITensor. In addition,
Lindbladmpo was limited to qubits (two-dimensional local Hilbert space on each site) while
TMS is much more general.

In this context, we decided to create a more general and more flexible software to address
the simulation of open quantum systems with non-unitary evolution. The choice of the Julia
language was then natural to ease the interactions with ITensor. Moreover, using Julia helped
us develop a more flexible and more user-friendly interface. Finally, the combined use of Julia
and ITensor brings multithreading for free.

The main decision concerned the use of the operator and state framework of ITensor. As
stressed in the previous section, the difficulty lies in the fact that, for a given operator, one has
four different possible actions on p. It proved challenging to use ITensor’s native structures
for that, and we decided to write from scratch a new state and operator framework. This also
required writing new functions for creating MPS and MPO from states and operators. While
this amounted to a substantial and bookkeeping-heavy implementation effort, it did not in-
volve any choice of nontrivial algorithm or any decision concerning approximation schemes.
All algorithmic decisions are delegated to ITensor itself: TMS primarily acts as a wrapper that
formats data appropriately for ITensor and forwards the user-specified parameters. Likewise
for W! and W' approximations, we implemented the algorithms as described in [37,40]. Fi-
nally, the steady-state computation routine is simply a three-line wrapper around an ITensor
DMRG call.

We finally decided for a double interface: (i) a high-level interface allows designing state of
state-of-the-art simulations in a few lines of code as demonstrated in Sec. 3.9. (ii) a low-level
interface gives access to all the features of the library as we now explain.

3.2 Installation and usage

To use the TMS library, one must first add it to the Julia environment. This is done the usual
way in Julia by

ladd TensorMixedStates
Then, to use it in a script, one has to add a "using" clause at the top of the file
using TensorMixedStates

Note that the examples shown in this article, together with other examples are available
with the source on GitHub [29]. Moreover, a full documentation is also available online (see
the README.md file [29]).



SciPost Physics Codebases Submission

3.3 Hilbert space

The first step in a quantum simulation consists in describing the Hilbert space. In our case,
the Hilbert space must be a finite product over N local finite-dimensional Hilbert subspaces.
Those local subspaces can be chosen independently among the "site types" proposed by TMS.
At the moment, there are seven possible choices: qubit, boson, fermion, spin, electron, tJ and
g-boson. This set is easily extendable (see TMS online documentation for details).

In TMS, the Hilbert space is described with a System object

# a system with 10 qubits
sysl = System(10, Qubit())

# an hybrid system with 3 sites
sys2 = System([Qubit(), Boson(4), Fermion()])

Note that for bosons it is necessary to truncate the Fock space and the dimension d of the local
Hilbert space must be provided as a parameter. In the example above, the second site has
d = 4, which corresponds to a maximal occupation boson number equal to d —1 = 3.

3.4 States and representations

The starting point for building states are single site states. For each kind of site, predefined
states designated by their names are defined. For example, for qubits one has "Up" or "0",
"Dn" or "1" and "+" and "-" and more (for a list of all predefined state names, see the online
documentation). A state which is not predefined can be represented by a vector of complex
numbers such as [1, 0]. For mixed representations, there is one predefined state for all site
types called "FullyMixed" which corresponds to the infinite temperature state (with p = 1/d
proportional to the identity matrix). A general local mixed state can be represented by a matrix
of complex numbers such as [[0.5 0]; [0 0.5]].

In TMS, both pure and mixed representations are hold by State objects. All operations on
State objects will work in the same way, with the same syntax independently of the nature,
pure or mixed, of the state (as long as such operations make sense for this representation).

We can build a product state (i.e. [¢) = |¢;) - - - |y y)) with the State constructor parametrized
by Pure or Mixed and two arguments: the system and a vector of single site states (either
defined by their names or explicitly given as vectors or matrices), for the usual case where all
single site states are the same, we can simply give that state. For example

# an all up pure state for a 10 qubit system
stl = State{Pure}(sys1l, "Up")

# a mixed state for a hybrid system
st2 = State{Mixed}(sys2, [[1, im]/sqrt(2), "1", "FullyMixed"])

As a shortcut, one can define both system and state in one call, for example

# an up and down state for a 5 qubit system
stl = State{Pure}(5, Qubit(), ["Up", "Dn", "Up", "Dn", "Up"l)

# an infinite temperature state for a hybrid system
st2 = State{Mixed}([Qubit(), Boson(4), Fermion()], "FullyMixed")

In this case the system can be retrieved from the state by accessing the system field of the
state.
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To build more complicated states, one can form linear combinations of states. For example,
one can build the GHZ state on the 10 qubit system with

ghz = (State{Pure}(sys1,"Up") + State{Pure}(sys1,"Dn")) / sqrt(2)

Many functions are defined for simple tasks on State objects, for example to get some
information on the state: length to get the number of sites, maxlinkdim to get the maximum
bond dimension, trace and trace?2 to get Tr(p) and Tr(0?) and so on. To obtain the mixed
state representation of a pure state one can use

mixed_state = mix(pure_state)

3.5 Operators

In TMS, operators are a key feature. They allow the user to represent any kind of quantum
operator to operate on the state. They come in two flavors, generic (like X) or indexed (like
X (3)). The main difference is that indexed operators are applied on specific sites of the system
whereas generic operators are not. For example, Z is the Pauli operator o* and Z(3) is the
Pauli operator o* applied on site number 3.

For each site type several commonly used operators are predefined. For example, for the
qubit space, X, Y, and Z are the Pauli operators, Sp is the raising operator S*, H is the
Hadamard gate, Swap is the Swap gate, Id is the identity operator. For the boson space, A is
the annihilation operator, dag(A) is the creation operator and N is the number operator. See
the online documentation for an exhaustive list of predefined operators.

Suppose that A and B are operators and that x is a real or complex number and i and
j integers. Then the following operations are defined: x*A, A/x: multiplication by a scalar,
A+B, A-B: sum of operators, A*B: product of operators, A~x: power, exp (A) : exponentiation,
dag(A): dagger, AsB, tensor (A, B): tensorial product (the symbol ® is usually obtained
by typing \otimes in a Julia aware editor), A(i), A(i, j): indexation, controlled(A):
controlled gates for qubits (see below), Dissipator (A): Lindblad dissipator operator (see
below) and Gate (A): the gate operator (see below).

Hamiltonians can thus be written in one line, for example

n—1
H==J Y XX + YV, (18)
i=1

is build by
hamiltonian = -j * sum(X(i)X(i+1)+Y(i)Y(i+1) for i in 1:n-1).

Here we have used the julia sum function that adds the given iterator using + and the compact
julia product syntax (we can omit "*" in some cases).

One can define Lindblad dissipators with the Dissipator function. For example, Dissipator (Sp)
represents the jump operator toward up for a qubit and

dissipators = gamma * (Dissipator(Sp) (1) + Dissipator(Sp) (N))

is the sum of two jump operators. It can describe incoherent spin flips on the boundary sites
of a qubit chain, at a rate y. By convention the Linbladian is written

lindbladian = -im * hamiltonian + dissipators.
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The hamiltonian term in the above Lindbladian definition represents the (super)operator
p — [H,p]and eachterm L; indissipators represents the (super)operator p — Lkali—%{L;{Lk, p}.

In the example above, the two dissipators correspond to p — )/(SIr pSy — %{S;Sf s p}) and

p =1 (SteS, — 35,55, p})-
One can define noisy gates (quantum channels) with the Gate function, for example

K = 0.9 x Gate(Id) + 0.1 * Gate(X)
defines an operator which acts as follows on a mixed state p:
Kp =0.9p +0.1XpX. (19)

One can define more complex operators such as
ny(qb):exp[—i%(X ®X+Y®Y)], (20)

by simply typing the following
Rxy(t) = exp(-im *x t / 4 * X e X + Y o Y)).
Another example is the Toffoli gate, which can be constructed by
toffoli = controlled(controlled (X))
Finally, one can also define new operators by giving their matrix with

Iswap = Operator{2}("Iswap", [1 O 0 O

00 im O
0im 0 O
00 01D).

In the instruction above {2} is the number of sites on which the operator acts.

3.6 Algorithms

There are four main algorithms that one can use in TMS. First, one can apply an operator
O as a quantum gate: |1)) — O|1p) for pure states and p — OpO' for mixed states. This is
implemented by

new_state = apply(my_gate, old_state; optiomns...),

One can also perform time-evolutions. This can be done with a Schrodinger evolution
o,|y) = —iH|y) for pure state, or a with Lindblad evolution for mixed states. The library
provides two algorithms to do this, one using TDVP (called tdvp) [36] and one using the
W! or W (called approx_W) MPO approximation (see Zaletel et al. [37]). The syntax is as
follows:

lindbladian = -im * hamiltonian + dissipators

new_state = tdvp(-im * hamiltonian, t, old_state; optiomns...)
new_state = tdvp(lindbladian, t, old_state; options...)

new_state = approx_W(-im * hamiltonian, t, old_state; optiomns...)
new_state approx_W(lindbladian, t, old_state; options...)

10
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where t is the integration time and the options allow one to set parameters such as the
integration time step, the level of truncation, or the definition of intermediate measurements
(via objects called observers similar to those of ITensor).

Note that tdvp and approx_W can be used with time-dependent Hamiltonians and/or
dissipators and that the approx_W schemes are available up to the order 4 in the time step 7
(leading to a Trotter error which scales as O(7°) [40]).

Another algorithm is the computation of the ground state using DMRG [17, 35]. It is
essentially the algorithm from the ITensor library:

energy, ground_state = dmrg(hamiltonian, start_state; options...)

Finally, it is also possible to use DMRG for mixed states in order to minimize the "square"
L'L of the Lindbladian. This allows one to compute directly the steady-state of the system
without the need to perform a long time evolution.* This is achieved by

energy, s_state = steady_state(lindbladian, start_state; optiomns...)
A more thorough explanations of the available options for the different algorithms can be
found in the online documentation [29].
3.7 Measurements

Finally, we describe how to obtain the expectation value of an observable on a State. For
example, one writes

measure (state, X(1))
A more complicated example would be
measure(state, 0.5X(1)Z(3)-im*X(2)Y(4))

One can also ask for the set of expectation values (X(1))---(X(N)) of an operator X on all
sites

measure(state, X)
or even a correlation matrix
measure(state, (X, Y))

One can also use predefined functions on State like Trace for the trace or Linkdim for the
bond dimension (this set of functions is extendable by the user). One can also make several
measures in a single call

measure(state, [X(1), X, (X, Y), Purity, Linkdim])

3.8 Following computation precision

As with any simulation software, it is important to assess the precision of a computation. Here
in TMS, the representation of mixed states does not guaranty that the density matrix stays
Hermitian positive with trace one. While this allows more computational deviations to happen
(due to truncations or Trotter errors for instance), it is possible to monitor such deviations.
Even if we do not have access to the eigenvalues of the density matrix to check the positivity,

“The steady state is the eigenstate of £ associated to the eigenvalue 0, hence it is the zero-energy ground state
of the Hermitian operator £LL.

11
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we can monitor its trace and its hermiticity. These quantities can in turn be used to adjust the
parameters of the simulation (time step, truncation threshold and maximal bond dimension).

There are four predefined observables to do this: Trace, TraceError, Hermiticity
and HermiticityError. The hermiticity is between 0 and 1, O for anti Hermitian and 1 for
Hermitian. The error versions measure the deviation from the correct value (which is 1).

TMS also provides the Trace2 observable which computes Tr(p?), the purity of the state.
Note that if the accumulated errors become really important the presence of spurious negative
eigenvalues in p can lead to a purity that is apparently larger than 1.

Note that TMS works perfectly with non normalized density matrices, observables are then
correctly normalized using the actual trace.

3.9 High-level interface

The high-level interface of the TMS library is accessed via the function runTMS. It can be used
alone or together with the low-level interface for finer control. The goal of the high-level
interface is to be able to design fully fledged simulation with minimal code. All the examples
presented in the next section were created using this interface.

The principle is the following: define a sequence of actions to be applied on a state and
pass it to runTMS. As a first example, consider the following complete script

using TensorMixedStates, .Fermions

hamiltonian(n) = -sum(dag(C) (i)C(i+1)+dag(C) (i+1)C(i) for i in 1:n-1)
dissipators(n, gamma) = sum(Dissipator(sqrt(4gamma) * N) (i) for i in 1:n)

sim_data(n, gamma, step) = SimData(

name = "Fermion tight-binding chain with dephasing noise",
phases = [
CreateState(

type = Mixed(),

sytem = System(n, Fermion()),

state = [ iseven(i) 7 "Occ" : "Emp" for i in 1:n ]),
Evolve(

duration = 4,

time_step = step,

algo = Tdvp(),

evolver = -im¥hamiltonian(n) + dissipators(n, gamma),
limits = Limits(cutoff = 1e-30, maxdim = 100),
measures = [

"density.dat" => N,
"OSEE.dat" => EE(div(n, 2))

)

runTMS (sim_data(40, 1., 0.05))

The first line brings our library in scope and the definitions for the fermion site type. The
next two lines define the evolution operator (more details on the model in Sec. 4.1). Then
we have a function definition for sim_data to build a SimData object corresponding to the
parameters of the simulation. The name field in SimData sets the name of the directory

12
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where the output will be stored. The phases field describes the simulation. Here there are
two phases: first create a state, second compute the time evolution. The fields names are
self-explanatory. The measures field describes the data files created by the simulation (here
there are two files density.dat and OSEE.dat) and what quantities to be written in each
of them (here the mean fermion occupancy measured on each site and the operator-space
entanglement entropy (OSEE) at the middle point of the chain). Note that one can put more
than one observable per file. The last line calls runTMS with the chosen parameters.

In this case, runTMS will create a directory with the given name, run the simulation and
put the results in the corresponding files. In addition to the data files, it will also create a "log"
file to follow the progress of the simulation and register information and warnings, it will also
copy the program script to prog. j1 for information and reproducibility.

In addition to CreateState and Evolve there are other available phases: ToMixed to
turn a pure representation into a mixed representation, Dmrg to use the DMRG algorithm,
Gates to apply gates, PartialTrace to trace out some sites and finally SteadyState to
compute the steady state of a Lindbladian.

As already stated, more detailed information on the syntax and options can be found in
the online documentation [29].

4 Examples

This section illustrates the use of the TMS library to study several dissipative quantum problems
evolving according to a Lindblad equation. The examples are chosen because they have been
the focus of recent studies in the literature and because an exact solution is available.® These
solutions allow checking quantitatively the numerical results. The first example is a fermionic
chain with dephasing noise (Sec. 4.1), the second example is a spin chain with boundary dis-
sipation (Sec. 4.2), the third example is a one-dimensional bosonic model with an incoherent
particle source in the center of the chain (Sec. 4.3) and the fourth example (Sec. 4.4) is the
fermionic version of the previous bosonic model. The fifth example (Sec. 4.5) describes the
dissipation of a complete-graph state in a qubit system. Finally, the model of Sec. 4.6 is a deep
quantum circuit with unitary 2-qubit gates as well as dissipative channels which model qubit
errors.

A runnable and well commented version of the code of these examples is available in the
examples/article section of the repository on GitHub [29].

4.1 Fermion tight-binding chain with dephasing noise

We consider here the one-dimensional spinless fermion model studied in [41]. The initial state
is a pure state where the even sites are occupied, and the odd ones are empty. The system then
evolves under the action of a nearest-neighbor hopping Hamiltonian

N—1

H=— Z (cfciva+clqc) (21)

i=1
as well as under the following "dephasing” jump operators:
L; = v/4yn;, (22)

where n; = c;"cl- is the fermion number operator on site i. Using the high-level interface, we
combine the Hamiltonian and the jump operators into an evolver (see Sec. 3.9 for the full
listing)

SExcept for the model in Sec. 4.6.

13



SciPost Physics Codebases Submission

+

14 - 1 W order 4, 7=0.1, x=200, y=0.75
W order 4, 7=0.1, x=200, y=1 X
W order 4, 7=0.1, x=200, y=1.25
TDVP, 7=0.1, x=200, y=0.75 &
Eq. 23 of Ishiyama et al. y=0.75
Eq. 23 of Ishiyama et al. y=1 ——
Eq. 23 of Ishiyama et al. y=1.25

(<ngyen>-1/2)exp(4yt)

0.9 S w w . W order 4, 7=0.1, x=200, y=0.75  +

W order 4, 7=0.1, x=200, y=1 ¥
W order 4, 7=0.1, x=200, y=1.25

TDVP, r=0.1, x=200, y=0.75 2

B
2
2
B
I
L2

OSEE

yt

Figure 3: Top: fermion density (n;)(t) on even sites i as a function of time in a
tight binding chain with dephasing noise and three different strengths of the noise
(y =0.75,1.0,1.25). The density is evaluated by averaging over 4 sites in the center
of the system. Solid lines indicate the exact asymptotic results of Ref. [41]. Bottom:
OSEE as a function of time, computed for the bipartition in the middle of the chain.
The simulations have been carried out with the W' algorithm at order 4 and with
TDVP (see legend).

hamiltonian(n) = -sum(dag(C) (i)C(i+1)+dag(C) (i+1)C(i) for i in 1:n-1)
dissipators(n, gamma) = sum(Dissipator(sqrt(4gamma)*N) (i) for i in 1:n)

Dissipative problems where the Hamiltonian and the Lindbladian are quadratic in the creation
and annihilation operators can be solved exactly [42-45]. The present model was recently
studied in the limit of an infinite chain [41]. The authors of this study demonstrated that
the system displays oscillatory decay or over-damped decay, depending on the strength y of
the dissipation. In Fig. 3, numerical results for the fermion density, obtained with the present
library, are compared to the exact asymptotic results derived from [41]. The fermion density
converges to 1/2 at long times. To magnify how such convergence occurs the vertical axis
represents deviation from 1/2 multiplied by an exponential factor exp(4yt). We observe a
good agreement between the simulations and the analytical behavior derived in [41].

The bottom panel of Fig. 3 represents the evolution of the OSEE [34,46] associated with
the central bipartition of the chain. The OSEE quantifies the total amount of correlations
between the two subsystems. This quantity is very useful in the context of MPS since the bond
dimension y (on the bond associated to the bipartition) required to represent p faithfully is
expected to obey a scaling of the form In(y ) ~ OSEE.

14
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4.2 XX spin chain with boundary dissipation

We illustrate here the use of the TMS library to simulate the dynamics of an open spin-% chain

with Lindblad terms acting at its boundaries. The Hamiltonian is the so-called XX model

N-1
H= Z (‘7;{0;11 + ‘7?/‘71?;1) ) (23)
i—1

and the dissipation is due to four Lindblad operators acting and both ends of the chain:

1+‘U/L + 1+‘LLR +
Li=\|¢ o7, Ly=\l¢ oINS 24
1 \ L 2 1 3 \ R 2 N ( )
1— _ 1— _
L, = \ £, ZMLal , Li= \ €R 2‘uRoN,. (25)

ot =(o*xioY)/2, err are the strengths of the coupling between the spin chain and the
reservoirs at both ends. uy  are the magnetization of each reservoir. Coding such model with
TMS can be done by defining the following evolver:

hamiltonian(n) = sum(X(i)*X(i+1)+Y(i)*Y(i+1) for i in 1:n-1)
dissipators(n, eL, mulL, eR, muR) =
Dissipator(sqrt (eL*(1+muL)/2)*Sp) (1) +
Dissipator(sqrt(eL*(1-muL)/2)*Sm) (1) +
Dissipator(sqrt(eR*(1+muR)/2)*Sp) (n) +
Dissipator(sqrt(eR*(1-muR)/2)*Sm) (n)

Via the Jordan-Wigner transformation the Hamiltonian above maps to a quadratic fermionic
Hamiltonian and the Lindblad terms become linear in the fermionic creation and annihilation
operators. This model is thus said to be quasi-free [45,47] and can be solved exactly. The dy-
namics of this model was studied in Ref. [48] (see also [42] for the exact steady-state). Fig. 4
displays the time evolution of two observables: the mean magnetization (o)) on the first spin
and the mean spin current (0703 — 07 03) on the first bond. The data is in agreement with

the results of Ref. [48].

4.3 Free bosons with a localized source

We show here how the library can be used to simulate a dissipative system with bosonic de-
grees of freedom. The unitary part of the dynamics is generated by a free (quadratic) boson

Hamiltonian on a chain:
N/2—1

H= > (blbu+bl, b) (26)

i=—N/2+1

The model contains a single Lindblad term which acts as a particle source at center (site i = 0)
of the chain, at a rate parameterized by I':®

Lo=v2I'b]. 27)

Coding such model can be done by defining the following evolver:

®Compared with Eq. 2 of Ref. [49], the factor 2 in the equation below comes from a different normalization
used in their Lindblad equation.
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Figure 4: XX spin chain with boundary dissipation (Egs. 23-25) Top: mean mag-
netization (oy) on the first spin as a function of time. Bottom: mean spin current

(o} 0’2/ —o7 0%’ ) on the first bond. Physical parameters: infinite-temperature initial
state, system size N = 30, u;, = —ug = 1.0, eg = 1.0. Green curves: g, = 5.0, red

curves: g = 1.0. Simulation parameters: maximum bond dimension y = 300, time
step T = 0.1, algorithm: W' at order 4. These curves should be compared with Fig. 4
of [48].
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hamiltonian(n) = sum(A(i)dag(A) (i+1)+dag(A) (i)A(i+1) for i in 1:n-1)
dissipators(n, Gamma) = Dissipator(sqrt(2Gamma) * dag(A)) (div(n, 2))

This model is quasi-free and has been studied analytically by Krapivsky et al. [49] in the case
where the chain is empty at t = 0. In dimension one, the model displays a phase transi-
tion separating a regime (I' < 2) where the total number of bosons N(t) = Zi(bjbi) grows
quadratically and a regime (I' > 2) where N(t) grows exponentially. We illustrate here the use
of the TMS library to study the small I" regime. To perform the simulation of this model one
has to specify the maximum boson occupation of the sites. To set the maximum occupation to
4 throughout the system and to start with an empty state in a mixed state representation, one
can write:

CreateState(
type = Mixed(),
system = System(n, Boson(5))
state = "O"

)

In Fig. 5 the simulation results are compared with the exact solution of the model. The
exact solution is obtained by solving a set of N2 linear differential equations for the quantities
(b;.i'bj). These equations are given in Eq. 10 of [49]. Two quantities are displayed in Fig. 5:
the density profile (b;.i'bi) (top panel) at time t =1 and t = 5, and the mean number of boson
N(t) (bottom panel). This simulation carried is out using the wi algorithm at order 4 with
a time step T = 0.1 and a maximum bond dimension y = 200, and it appears to accurately
describe the dynamics up to time t ~ 5. Due to the large local Hilbert space dimension of such
a bosonic system is however not straightforward to obtain accurate results at longer times. For
this reason, checking the asymptotic results derived analytically in [49] would require much
longer simulations (the present calculation for the bosonic model, up to time T = 5, with
x = 200 and dim = 5 already required 100 hours on CPU time with 8 threads running in
parallel).

4.4 Free fermions with a localized source

The model considered in this section is the fermionic analog of the previous model. The Hamil-
tonian describes spinless fermions hopping on the chain

N/2—-1
H= Z (c/ciz1+c ) (28)
i=—N/2+1

and the particle injection in the center of the chain is due to the following jump operators
Ly=v2Ic). (29)

As for the model of Sec. 4.3, the model is quasi-free, and it has been studied analyti-
cally [49]. The figure 6 displays the density profile at three different times, the time evolution
of the OSEE (for a bipartition in the center of the system), and the error on the trace of p(t).
The density profiles {n;(t)) are compared with the exact solution.”

The middle and the bottom panels of Fig. 6 allow to compare the precision of the TDVP and
W and to see the influence of time step T and maximum bond dimension y. In this example

7This solution was obtained by solving numerically the set of N 2 differential equations describing the evolution
of the two-point correlations Tr [ Ie) cli"cj], see Egs. 17 of Ref. [50]. Up to signs these equations are very similar to
those describing the dynamics of the 2-point correlations in the boson model of Sec. 4.3.
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Figure 5: Free boson model with a localized source (Egs. 26-27). Top: density pro-
file (bjbi) Bottom: mean total number of bosons N(t), numerics versus exact result.
Physical parameters: system size N = 50, I' = 0.2. Simulation parameters: maxi-
mum bond dimension y = 200, local dimension: dim=5 (boson occupancy < 4),
time step T = 0.1, algorithm: W' at order 4.

where the particle injection rate is I' = 0.2 the all simulations are quantitatively accurate up to
t ~ 5. Beyond that time errors begin to be visible. Among the different simulations, the most
accurate one is the one corresponding to y = 200 with TDVP (blue squares in Fig. 6). Using
an even larger bond dimension would allow to describe the dynamics of the model at longer
times.

Note that when an exact solution is not available, the error on the trace of p (deviations
from Tr[p] = 1) can be used to estimate at which time the simulations are no longer accurate
enough. For this particular problem the algorithms W' at order 4 and TDVP turn out to offer
a similar precision. It should be noted however that the execution time is much longer in the
case of TDVP: the simulation up to time T = 8 with W' at order 4, 7 = 0.2 and y = 200
took 20 minutes on a CPU with 10 threads running in parallel, while the TDVP simulation
with T = 0.1 (giving a similar precision as W with © = 0.2) took 340 minutes on the same
processor.

4.5 Decoherence of a complete-graph state

The model presented in this section involves N qubits that are initialized in a complete graph
state and which evolution is defined by a Lindblad equation only with dissipators (no Hamil-
tonian). For this model the time-dependence of numerous observables is known analytically,
as discussed in Ref. [51].

A graph state [52,53] is a pure and entangled state that is constructed by the application
of controlled-Z (CZ) two-qubit gates to a product state:

ge)= [ | czai. nl++---+), (30)

(i.j)€E

where |+) = %(lO) +|1)) and the product runs over the edges of a graph E. Here we are deal-
ing with the complete graph case where all possible edges are present in E. The construction
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Figure 6: Free fermion model with a localized source (Egs. 28-29). Top: density
profile (n;(t)) at three different times (¢t = 1, 5 and 8). The full lines are exact results
and the symbols have been obtained with TDVP with Trotter time step T = 0.1,
maximum bond dimension y = 200. System size: N = 50. Att =1landt =75
the simulation reproduces almost perfectly the exact profiles. At time t = 8 some
discrepancy starts to be visible in the center of the profile and at the injection sitei = 0
in particular. Middle: linear growth of the OSEE taken in the middle bipartition. The
different symbols correspond to simulations with different parameters or different
algorithms (W' at order 4 and TDVP). 7 is the Trotter time step and y the maximum
bond dimension. Bottom: accumulated trace error as a function to time for different
simulation parameters.

19



SciPost Physics Codebases Submission

03 |
theory
— =g N=8 + |
0. 25 I//7. T \7:'\ N=64
02 r 7 \”K\ A —
/\ . N
' 0.15 [ \ |
d I\N.f
- 0 1 B \+\ —
0.05 g |
0 | | | "‘+~~i«~»:—-»:~~-:~--:-—~k
0 1 ? ’ 4 5

Figure 7: Time evolution of (Y;Y,Z3) in a model describing the decoherence of a
complete-graph state for sizes 8, 64 and 512. The strength of the dissipation cor-
responds to g, = 1.0 in the notation of [51]. The solid line shows the exact result
(Eq. 31 of [51]). Due to the permutation symmetry of this model the expectation
value (Y;Y;Z;) does not depend on i, j and k as long as they are different.

of such initial state (in pure representation) can be implemented as follows:
state = create_graph_state(complete_graph(n))
In the present model the dynamics is generated by the following dissipators
Li=of, i=1-N (31)

which are operators bringing the individual spins toward the state | T). For this problem
correlations turn out to be relatively low and the density matrix p(t) can be represented by
an MPS of bond dimension at most equal to 4 [51]. TMS is thus able to manage very large
systems (here we went up to N = 512). Moreover, as the Lindbladian is only composed of
single-site operators, the W approximation is exact and arbitrarily large time steps can be
used without any Trotter error.® Comparisons of numerical results produced by TMS to exact
results from Ref. [51] are shown on Fig. 7 for a 3-site observable (Y;Y5Z5).

4.6 Noisy quantum circuit

We present here an example which illustrates how the library can be used to perform calcu-
lations on quantum circuits. This example is different from the previous ones since it is not
associated to a continuous-time evolution. The circuit we consider for this example has a
brick wall structure and is similar to the circuits encountered when dealing with a Trotterized
(discretized) Hamiltonian evolution.

Let us consider an even number of qubits N and a quantum circuit that is built from suc-
cessive layers of unitary two-qubit gates as well as layers representing dissipative processes (or
qubit errors). The first circuit layer, Lyy, is unitary and is defined as a product of (commuting)
2-qubit gates:

Lyx = UL, (1,2)U%,(3,4)--- UL, (N—1,N) (32)

8Note that since here the Lindbladian is a sum of single-site operators only, one could in principle construct the
exact propagator exp(tL£) as a product of local operators. The use of TMS with the W' algorithm implements this
automatically.
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Figure 8: Brick wall quantum circuit made from layers of U;fx(i, i+1) gates (Eq. 32),

from layers of Ug)z(i,i + 1) gates (Eq. 34) and from layers of depolarization gates
(Eq. 36).

where U;fx(i, j) acts on the qubits i and j and is defined by

U, (i,j) = exp(ipX;X;). (33)
The next layer, L, is also defined by a product of (commuting) 2-qubit gates:
Lyz =Up,(N, 1)UL, (2,3) - UL, (N —2,N — 1) (34)

where U;’Z(i, j) is defined by
U, (i, ) = exp(i$ Z,Z)). (35)

The layers Lyx and L;, do not commute with each other and create entanglement. After that
we apply the gates that model qubit errors. Consider the depolarization channel:

4

where the parameter 0 < p < 1 represents an error probability. The third layer of the circuit
is the product of the depolarization channels for all qubits:

Le=[]p, (37)
i

3 1 1 1
Dip:p—|1— 2P P + —pX;pX; + ZpYipYi + szipzi (36)

Finally, the full circuit is a repetition (L.L;;Lxx)(L¢LzzLxx) - (LcLz;Lxx) and the initial
state is all qubits in state |0). The circuit as a brick wall structure, as illustrated in Fig. 8.
With TMS the needed operators are easily defined by

# Depolarization channel
DPL(p) = (1 - 0.75p) * Gate(Id) +
0.25p * Gate(X) + 0.25p * Gate(Y) + 0.25p * Gate(Z)
# Ising coupling gates
Rxx(¢) = exp(-im * ¢ * X o X)
Rzz(¢) exp(-im * ¢ * Z o Z)
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Figure 9: Circuit simulation. Top: OSEE as a function of the number t of layers
(LcL;;Lxx counts as one complete layer). Bottom panel: second Rényi entropy S,
normalized by its maximum value N In2. System size: N = 20. Error rate p = 0.02
and gate angle ¢ = 0.5. Simulations with bond dimension y = 1000, 1400 and
2000.

And the gate sequence can be described by

[[Gates(
name = "Applying exp(I*XXx¢) gates on qubits [1,2],[3,4],...",
gates = prod(Rxx(¢) (2i-1,2i) for i in 1:div(n, 2)),
limits = limits,
),
Gates(
name = "Applying exp(I*ZZx¢) on qubits [N,1],[2,3],[4,5],...",
gates = Rzz(¢) (1,n) *
prod(Rzz(¢) (2i, 2i+1) for i in 1:(div(n,2))-1),
limits = limits,
),
Gates(
name = "Depolarization channel on all qubits",
final_measures = output(n),
gates = prod(DPL(p) (i) for i in 1:n),
limits = limits,
)
] for _ in 1:stepsl]

The top panel of Fig. 9 represents the evolution of the OSEE for a partition in the center of
the system as a function of the number of layers in the circuit. After an initial growth, due to
the spread of correlations, the effect of the noise takes over when the number of layers become
large. The state of the system then approaches an uncorrelated product state (with maximum
Rényi-2 entropy). Due to the large amount of correlations generated by the initial layers of
the circuit a relatively large bond dimension y ~ 2000 is required to get converged results.
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5 Conclusion

We have presented TensorMixedStates, a Julia library for manipulating pure and mixed quan-
tum states using matrix product state representations. This library allows in particular to ap-
ply unitary or non-unitary gates, as well as solving continuous evolution equations such as the
Schrodinger or the Lindblad equation. Based on ITensor, this library gives access to state-of-
the-art algorithms such as TDVP or DMRG and MPS compression. Moreover, the particularly
flexible and user-friendly interface allows simulations to be set up in a few lines of code. We
provided six examples to show the versatility and correctness of the software. Five of the ex-
amples involved solving the Lindblad equation: two on fermions, one on bosons and two on
spin 1/2. The last example demonstrated the use of non-unitary gates in a noisy quantum
circuit calculation.

In the near future, we intend to work on several further developments. These include in
particular: (i) the use of conserved quantum number (QNS) capabilities of ITensor to improve
the efficiency and precision of certain simulations by taking into account conserved quantities
of operators, and (ii) use automated MPO compression to improve the performance.
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