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Abstract

Axial vectors, such as current or magnetization, are commonly used order
parameters in time-reversal symmetry breaking systems. These vectors also
break isotropy in three dimensional systems, lowering the spatial symmetry.
We demonstrate that it is possible to construct a three-dimensional medium
with average isotropy and inversion symmetry where time-reversal symmetry
is systematically broken. We devise a model of an amorphous material with
scalar time-reversal symmetry breaking, implemented by hopping through chi-
ral magnetic clusters along the bonds. The presence of only average spatial
symmetries—continuous rotation and inversion—is sufficient to protect a topo-
logical phase, yielding a statistical topological insulator. We demonstrate the
topological nature of our model by constructing a bulk integer topological in-
variant for the effective continuum model, which guarantees gapless surface
spectrum on any surface with an odd number of Dirac nodes, analogous to
crystalline mirror Chern insulators. We also show the expected transport
properties of a three-dimensional statistical topological insulator, which re-
mains critical on the surface for odd values of the invariant.

1 Introduction

A three-dimensional (3D) isotropic medium has the highest degree of spatial symmetry,
invariant under all rotations and inversion. Unless they are explicitly broken, non-spatial
symmetries like time-reversal symmetry (TRS) are also present in isotropic systems. Re-
moving TRS typically also breaks isotropy, for example ferromagnets break TRS but also
break rotation symmetry along the axes which are not parallel to the magnetization. An-
tiferromagnets restore some spatial symmetries such as the product of inversion and TRS,
but also break rotation symmetry [1]. The spatial symmetries are partially restored in
altermagnets [2]—a recently proposed class of materials combining lack of net magnetiza-
tion with a spin splitting away from away from high-symmetry momenta, however even
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in these materials the magnetic order is incompatible with full isotropy. Related ques-
tions also have been studied in the context of symmetry classification of non-collinear
antiferromagnetic orders, identifying toroidal magnetic monopoles as time-reversal break-
ing configurations compatible with a high level of magnetic space group symmetry [3,4],
however, the question of spatial isotropy was not addressed.

The spatial symmetries of a system are relevant both for defining and protecting topo-
logical phases [5-8]. While initially considered to be susceptible to disorder, topological
systems relying on spatial symmetries were later shown to be protected from localization
as long as the disordered ensemble respects the spatial symmetries [9-11]. Interacting
symmetry-protected topological phases protected by a combination of average and ex-
act symmetries have also been found in recent studies [12,13]. The protection by an
average symmetry, a hallmark of statistical topological insulators, is especially powerful
in amorphous media that naturally possess isotropy on average. In an earlier work we
demonstrated that unlike their crystalline counterparts—where the spatial symmetry is
only preserved by certain crystal terminations—it is possible to utilize the isotropy of a 2D
amorphous medium to extend the topological protection to any edge of the system [14].

Motivated by the two above considerations, we ask whether it is possible to find a
model hosting a non-interacting topological phase protected only by average continuous
spatial symmetries. Because both TRS and average TRS protect topological phases, we
additionally require that the desired model also breaks TRS on average. By designing a
scalar, rather than a vector TRS breaking order using a random assembly of chiral mag-
netic molecules, we answer positively to the above question. Specifically we demonstrate
that the average spatial symmetries present in 3D isotropic media protect topological
phases even when TRS is systematically broken, and that the amorphous realization of
such a system is a statistical topological insulator. This topological phase is analogous to
crystalline mirror-Chern insulators, except that the isotropic system hosts gapless modes
on any flat surface regardless of orientation. Furthermore, we identify a bulk higher-order
electromagnetic response which distinguishes isotropic media with or without scalar TRS
breaking.

The organization of the manuscript is as follows. In Sec. 2 we formulate an isotropic
continuum model where TRS is systematically broken. We present a microscopic Hamilto-
nian originating from an amorphous network of chiral magnetic molecules that replicates
this model. In Sec. 3 we demonstrate the topological nature of our model by formulating
bulk invariants, examining surface dispersions, and analyzing transport of the topologically
protected surface modes. As established in the study of statistical topological insulator
phases, we show that the model localizes when its degrees of freedom are doubled. We
conclude in Sec. 4.

2 Symmetry analysis

2.1 Continuum model

In order to guide the construction of a microscopic model, we begin by developing a
minimal continuum (k - p) model respecting the desired symmetries. We use the method
of invariants [15], a systematic approach to construct k-p Hamiltonians respecting a set of
symmetry constraints. While this method can be carried out by hand, it becomes involved
for a large number of bands and high orders in k, so we automate this process using the
software package Qsymm [16]. A generic spatial symmetry group element g imposes a
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constraint on the continuum Hamiltonian H (k) of the form
UyH (k)U) = H(Ryk), (1)

where R, is the orthogonal spatial transformation matrix of real and k-space, and U, is
its representation on the internal Hilbert space. The specific form of U, depends on the
underlying degrees of freedom, (e.g. the spin and orbital character of the bands included
in the k - p Hamiltonian), the only restriction being that they form a consistent (double)
representation of the symmetry group.

We specifically want to examine systems invariant under all continuous rotations and
inversion, a group isomorphic to O(3), which also includes all mirrors as combinations of
a twofold rotation and inversion. A generic pure rotation is characterized by a rotation
vector n, and its real-space and unitary action can be written as

R, = exp(—in- L), Up = exp(—in - S), (2)

where S is a vector of internal angular momentum operators, and L the a vector of
3D spatial rotation generators, both obeying angular momentum commutation relations.
Substituting these into the symmetry constraint, and taking the derivative with respect
to n; yields

[H(K), Si] = (?Z)TLik. (3)

Inversion symmetry imposes the constraint
UrH(k)US = H(—k), (4)

where U% = 1 and [Uz, S;] = 0 in order to form a consistent representation. For a given
symmetry representation characterized by a set of S and Uz, we search for H (k) in the form
of a power series with unknown matrix coefficients, and solve the above equations order-
by-order to find the most generic parametric family of symmetry-allowed Hamiltonians.
The inverse problem can also be solved: given a family of Hamiltonians, it is possible to
find a complete set of symmetry generators of the above form, as well as time-reversal and
particle-hole type symmetries. [16]

We follow the procedure outlined in Ref. [14]: We systematically construct inequiva-
lent nontrivial representations of the symmetry group with increasing matrix dimensions,
generate 3D k-linear (Dirac) Hamiltonians, and check whether the bulk is gappable, i.e.
whether a k-independent constant term is allowed. We find that the smallest such Hamil-
tonian has 4-bands with the form

Hpirac(k) = pooomo + Woor, —too - k1, — tio - kr,, (5)

with symmetry representations

Uz = og1s, Sy = %O'IT(), Sy = %Uym, S, = %O'ZT[), (6)
where o and T are two sets of Pauli matrices, corresponding to spin and orbital degrees of
freedom. The two types of orbitals both transform under a spin-1/2 irreducible represen-
tation, but have different parity under inversion. Bands with such symmetry characters
can arise for example from a spinful s-orbital, and the J = 1/2 subspace of a spin-orbit
split p-orbital.

In the next step we make sure that the model has no symmetries beyond the spatial
isotropy, because additional symmetries would make it impossible to assign topological
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protection to the spatial symmetries only. We find that the Dirac Hamiltonian above does
have an additional time-reversal symmetry 7 = o, exp(—i7.¢)K where tan ¢ = t/to and
K is complex conjugation. In order to break this symmetry, we allow higher-order terms,
including up to cubic momentum dependence, resulting in a continuum model of the form

Hysa(k) = (1 + t2k?)oo (o + 72) /2 + (2 + t3k*)oo (1o — ) /2

7
+ (—t1 + tsk?*)o - kT, + (—to + tsk?)o - kT, @)

where we interpret p; as chemical potentials, and ¢; as normal and spin-orbit hopping
amplitudes. We demand that t4/t; # t5/tp, otherwise a momentum-dependent time-
reversal symmetry of the form 7 = o, exp(—iT,¢(k))K would still exist. This ensures
that the phase of the spin-orbit terms connecting the two types of orbitals is momentum-
dependent, such terms originate from distance-dependent hopping phases in the tight-
binding models.

Despite lacking TRS, the high degree of spatial symmetry of this model protects the
twofold spin degeneracy of all bands. For a fixed k, the eigenstates of (7) are eigenstates
of the angular momentum operator k- .S in the direction parallel to k. Mirror symmetries
that leave k invariant exchange states with opposite angular momentum, thereby ensuring
the degeneracy of the spin bands.

Finally we check that the symmetry is capable of protecting gapless surface states.
We restrict the symmetry group to the subgroup that leaves a flat surface invariant. In
the case of a surface with normal Z, this group is generated by rotations around Z and a
mirror with normal perpendicular to Z, for example M,. Considering a 2-band model in
2D with symmetry representations for rotation by angle ¢ as Uy = exp(—i¢o.) and for
M, as Upq, = 105, we find the symmetry-allowed massless Dirac Hamiltonian

HQD(]C$, ky) = MO + t(k}$0y + k?yO'z). (8)

The combination of continuous rotation and mirror symmetries is sufficient to forbid a
k-independent mass term from opening a gap in single surface Dirac cone. We emphasize
the role of the mirror symmetries originating from the bulk inversion symmetry, rotation
invariance alone would allow for a mass term proportional to o, to open a gap.

2.2 Amorphous realization

Amorphous systems typically possess average continuous rotation symmetry, average re-
flection and average inversion, unless symmetry-breaking external fields are present. This
symmetry is not only manifest in the structure, but also in the Hamiltonian as we argue
below. We construct short-range correlated amorphous structures using the same pro-
cedure as in Ref. [14], treating sites as hard spheres, and connecting nearby sites with
hoppings, resulting in a graph embedded in 3D space to host the tight-binding Hamilto-
nian. We treat this amorphous structure as a quenched background disorder, and do not
concern ourselves with its origin.

In gapped solids the effective tight-binding Hamiltonian is in general a local and sym-
metric function of the disorder configuration [8,17]. For simplicity, we further assume
that there is only one type of atom in the system, the onsite terms are constant, while
the hopping terms only depend on the hopping vector d, allowing to write the amorphous
tight-binding Hamiltonian in the form

nsi h
H=3 HF™ep e+ 3o HPr—r)e e 9)

T7i7j <T7Tl>7i7j
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Figure 1: The (a) bulk and (b)-(e) surface spectral functions of the amorphous tight-
binding models. (b)-(c) The surface spectral functions of the 4 x 4 model (11) and the
doubled 8 x 8 model (A.8). (d)-(e) the same models as (b)-(c) but with broken spatial
(mirror and rotation) symmetries. Plot details are in App. B.

where the sums run over sites r and bonds (r,7’) in the system, and on-site (spin and
orbital) degrees of freedom i and j. The assumption of spatial isotropy and locality imposes
symmetry constraints on the tight-binding terms [14]

U,H"P(d) U;f = H"P(R,d), (10)

for any symmetry group element g. This is also valid for onsite terms, treating them
as hoppings with d = 0. These constraints are formally identical to the constraints
on the k - p models derived earlier, the only difference is that the hopping terms are
generally nonhermitian, instead they obey the condition HPP(d) = H"P(—d)!. Hence
the d-dependence of the symmetry-allowed hoppings has a similar structure to the k-
dependence of the symmetry-allowed k - p models. For the explicit form of the minimal
tight-binding model obtained this way, see Appendix A. A compact form of the tight-
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binding Hamiltonian is given by

HYS = pyoo (1o + 72) /2 + paoo(1o — 72) /2, (11)
HI(d) = ti(|d])oo(ro + 72) /2 + ta(|d])oo(ro — 75) /2
+t3(|d|)o - dry + t5(|d|)o - dT—,

where ¢; and t9 are arbitrary real, and t3 is an arbitrary complex functions of |d|. If
the complex phase of ¢3 is constant, an on-site time-revesal symmetry of the form 7 =
oy exp(—iT,¢)K where ¢ = argt3 would still exist, hence we demand a distance-dependent
hopping phase in the spin-orbit hopping. We address question whether such a hopping
term can arise in a realistic microscopic system in Sec. 2.3.

We examine the spectral functions of the minimal model, and confirm the joint presence
of a spectral gap and the lack of spin splitting in the bulk [Fig. 1(a)], as expected from the
symmetry analysis of the continuum model. The surface spectral function confirms the
presence of gapless surface modes within the bulk gap [Fig. 1(b)]. For details see Sec. 3.2.

To further examine the extent of topological protection, we also define a model with
twice the degrees of freedom and two Dirac cones on the surface in the continuum limit.
We follow the same procedure as before, starting with two copies of the symmetry repre-
sentation. This results in the k- p model Hgys(k), and the associated tight-binding model
H;‘gg(d), which include generic coupling terms between the two copies, see Appendix A
for details.

2.3 Microscopic implementation

Based on the symmetry-allowed terms of the amorphous tight-binding model (11), we
now construct a microscopic hopping term that preserves isotropy while breaking TRS.
The requirement to break TRS for the spin-orbit hopping connecting two orbitals with
opposite inversion eigenvalues is that it has a distance-dependent phase in its amplitude.
For simplicity, in the following we use the minimal model for a single bond connecting two
different atoms that host spinful s and p, , . orbitals respectively, as illustrated in Fig. 2(a).
For the purpose of obtaining a minimal model, we separate the p orbitals into p3/, and
P12 orbitals with an atomic spin-orbit coupling, and consider only the lower-energy p /2 1|
subspace.

In order to break TRS, we introduce magnetic atoms between the s and p orbitals, a
plausible setup in an amorphous structure formed form chiral magnetic molecules. Hop-
ping between the two atoms occurs through a virtual process via four s orbitals on a plane
perpendicular to the s—p bond axis, located on the middle of the bond [Fig. 2(a)]. These
intermediate s orbitals each host a magnetic moment, such that together they form a
chiral magnetic texture in the plane that contains them. The circulating magnetic tex-
ture defines a TRS-odd vector, that combined with the hopping vector d, defines a scalar
quantity (>, My x ry,) - d. This is the desired source of scalar TRS breaking. Such a
magnetization configuration is also known in the literature as a toroidal moment [3,18], a
time-reversal odd, polar vector order parameter T' = )" M, X 7, (the summation runs
over the localized magnetic moments on the mid-bond plane). Tiling the space with such
s—p bonds restores spatial symmetries, while keeping TRS broken. The resulting structure
can be viewed as collection of alternating sign magnetic toroidal monopoles [3,4]: the net
toroidal moment of the bonds connected to each s or p site vanishes as ) ;Tq < > ,d =0
(summing over all bonds d connected to a given site), which is also true on average for
an isotropic amorphous structure. The localized toroidal monopole charge Tp = ;T4 -d
is on the other hand nonzero, and takes opposite sign values on the s and p sublattices,
providing a scalar, time-reversal odd order parameter. Such a magnetic texture may arise
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Figure 2: Time-reversal symmetry breaking in a microscopic system with inversion and
rotation symmetry. (a) A bond between s and p orbitals hosting four mid-bond s orbitals
(on plane shown in green) that host magnetic moments. (b) A section of a rock salt
crystal structure made from the bond shown in (a). Red lines indicate nearest-neighbor
hopping between s and p orbitals, dashed lines indicate second neighbor hopping between
s (purple) and p (blue) orbitals, green lines indicate third neighbor hopping between s
and p orbitals. (c¢) The bulk dispersion relation obtained from the crystal structure shown
in (b) along the high-symmetry points of the face-centered cubic Brillouin zone. Different
colors indicate different bands. (d) Bulk and surface dispersion of a 3D slab of the crystal.
Darker color indicates a larger participation ratio. Plot details are in App. B.

in the presence of strong easy-axis anisotropy and Dzyaloshinskii—-Moriya interaction be-
tween neighbouring magnetic moments on every bond. For a systematic breaking of TRS,
all bonds must host the same toroidal moment, investigating the possible origin of such
an ordered phase is beyond the scope of this manuscript.

The Hamiltonian of an z-aligned s—p bond is:

Hy = By Y 150) (S0l + By 3 pio) (pio + 3 (Alsna) (sn0] + s Is6) (sn0] + i)
o 1,0 n,o
+ Z (tin |pi0'> <5n0'| + hC) + OéLp . &p + ZBn < Op,
,n,c n

(12)
where o € {1,1}, i € {x,y,2}, n € {1,2,3,4}, |s,) are the spinful s orbital states, |s,s)
are the mid-bond magnetic s,, orbitals, |p;,) are the p,, . orbitals, Ej /p are the onsite
energies of the s and p orbitals, A is the onsite energy of the mid-bond s,, orbitals, « is
the magnitude of the atomic spin-orbit coupling splitting on the p orbitals, ,/, are the
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spin operators on the p and s, orbitals, ip are the orbital angular momentum operators
on the p-orbitals, B, are the magnetic moments of the s, orbitals. Finally, ¢;, are the
amplitudes of the s,—p; hopping, determined by whether the hopping between the p; , .
orbitals and the s, orbitals takes place via the positive or negative lobes of the p orbitals:

tin = t20iz + tyz5iysgn(yn) + tyzéizsgn(zn) (13)

where y,, and z, are the y and z coordinates of the s, orbitals and sgn(0) = 0. In general
the hopping parameters depend on the length of the bond, and because they come from
overlap integrals of differently oriented p-orbitals, this dependence is different for ¢, and
ty.

We use second-order quasi-degenerate perturbation theory (assisted by the Python
software package Pymablock [19]) to obtain the effective hopping ts, between the s and
p1/2 orbitals. We treat the decoupled atoms as the unperturbed Hamiltonian Hy, and
all hopping terms as perturbations H’ with the t’s as small parameters. We divide the
Hilbert-space into the low-energy subspace A only containing the s and p;/, subspaces
on the two end atoms, and group all other degrees of freedom in the B subspace. The
second-order correction to the effective Hamiltonian for the A subspace is given by [20]:

1 1 1
22, =N ", H,, 14
mm 2 L ml=m Em—El+E,C,L—El ’ (14)

where |m) and |I) are orthonormal eigenstates of Hy in the A and B subspaces respectively,
and E; and H, , denote eigenenergies and matrix elements in this basis. The zeroth order
term in the effective Hamiltonian is given by the on-site energies, and the first-order term
vanishes, so this is the only term of interest. In particular, we extract the off-diagonal
block of the 4 x 4 effective Hamiltonian, and interpret it as the effective hopping matrix
elements between the two end atoms.

We find that the resulting terms have the desired symmetries of the bond (rotations
around the bond axis and mirrors including the bond axis) for arbitrary parameters. We
demonstrate this result in a limiting case defined by the set of inequalities o > A + B >
A—-B> FEs, E,—a,ts, tg,., which holds when the atomic spin-orbit coupling and
the local magnetic moments are large, so we only take into account hopping via the lower-
energy virtual level A — B. The resulting expression for the effective hopping is:

hop __ ts<2t:c — Z‘tyz)ia
s—p \/E(A B B) x-
This hopping has a complex hopping phase, which breaks TRS. The hopping phase is
distance dependent due to the different distance dependence of the microscopic hopping
amplitudes from the p, and p, . orbitals. This ensures that the hopping phase cannot be
removed by a global basis-transformation introducing a relative phase between the s and
p wavefunctions, resulting in an effective time-reversal symmetry. Hopping terms along
directions other than z follow from applying rotation operators, resulting in hopping terms
of the form Hffg(d) = tgp (|d]) d - o where d is the hopping vector, and tg, is a complex
function of the hopping distance given by the prefactor in (15). This has the same struc-
ture as the off-diagonal blocks of the hoppings in the minimal tight-binding model found
in section 2.2 providing a proof-of-concept realization of the symmetry-allowed, scalar
TRS-breaking hopping. For simplicity and without loss of generality, in the amorphous
calculations we use the minimal tight-binding model with one type of atom with four
degrees of freedom per atom, rather than a system with two families of atoms and two
degrees of freedom per atom.
Before discussing the amorphous case, we demonstrate scalar TRS-breaking, by cal-
culating the dispersion of a cubic rocksalt crystal endowed with this hopping term on

(15)
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Figure 3: Topological phase transitions of the doubled class A amorphous tight-binding
model (A.8) as a function of chemical potentials ©y = —pg, using parameters t3(d) =
1.2exp(—d) + iexp(—0.3d), t1(d) = —2exp(—d), ta(d) = 2exp(—d). Top panel: Bulk
density of states, showing gap closings and gapped phases as a function of the chemical
potential. Brighter colors denote higher density of states in arbitrary units. Bottom panel:
Topological invariants Cs (defined in (17) and vy (E.1). Plots are offset for clarity.

the nearest neighbour and third neighbor s—p bonds [Fig. 2(b), for details see App. D].
The dispersion relation shows that the bands are spin-split away from high-symmetry
points and lines, demonstrating that TRS is systematically broken, while all space-group
symmetries are preserved [Fig. 2(c)]. The surface dispersion shows gapless, propagating
surface modes within the bulk gap, consistent with a crystalline mirror-Chern insulator
state [Fig. 2(d)].

3 Topological properties

3.1 Bulk invariants

In order to establish connection between the continuum and tight-binding models, we
use an effective k-space continuum Hamiltonian H.g that we obtain by inverting the
single-particle Green’s function that we project onto the plane wave basis, as described in
Refs. [8,14,21,22]:

(Heff(k)_l)lm = Geﬁ(Ev k)lm = <k7 l| G(E) |k7 m> > (16)
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Figure 4: Topological phase transitions of the doubled class A amorphous tight-binding
model (A.8) as a function of chemical potentials p; = —ps = ug = —p4, see Appendix B
for the other parameters used. Top panel: Bulk density of states, showing several gap
closings and gapped phases as a function of the chemical potential. Brighter colors denote
higher density of states in arbitrary units. Bottom panel: Topological invariants Cj; and
vr. Plots are offset for clarity.

A N\ 1 )N
where G(F) = (E - H ) is the Green’s function of the full real-space Hamiltonian H.

The inverse is well defined if F is in the spectral gap of H, in the following we fix £ =0
and choose the chemical potentials, such that the gap is centered around zero energy. In
the thermodynamic limit, due to self-averaging, Geg converges to the disorder-averaged
Green’s function. As a result, Geg, as well as Hog inherit the average symmetries of the
tight-binding model, and obey same symmetry constraints as the continuum models dis-
cussed in sec. 2.1. This also means, that the long-wavelength expansion of H.g(k) has the
same functional form as the generic symmetry-allowed k-p model we found. In earlier work
we argued that topological invariants of the compactified effective k- p models (extending
k-space with the point at infinity [14,21]) provides at least a partial classification of the
underlying amorphous systems, we will also follow this route here. We emphasize that
the bulk invariants defined in the following rely on the possibility of defining an effective
continuum Hamiltonian that is gapped and bounded for all momenta, which is not nec-
essarily true if the self-energy has poles [23]. These invariants are valid and protected for
continuum Hamiltonians with exact rotation symmetry, however, the classification might
collapse in the presence of strong disorder, e.g. average rotation preserving dimerization.

The topological invariants of crystalline 3D mirror-Chern insulators are mirror Chern
numbers, given by the difference in Chern numbers of opposite mirror sectors on mirror-

10
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invariant 2D planes of the Brillouin-zone [5] In the presence of disorder, invariants of 3D
statistical topological insulators are also constructed from the strong topological invariants
of 2D subsystems [11]. Our 3D class A amorphous model relies on mirror symmetry to
protect its surface modes, so motivated by the above results we find that the topological
phase is characterized by a nontrivial value of the mirror-Chern invariant adapted to the
amorphous continuum model:

Cy = %(c; —C.), Ci= #Fi(k:)dzk, (17)

where the integral runs over a compactified mirror-invariant plane R? U {oo}(e.g. k, = 0,
invariant under the mirror operator k, — —k, with Uy, = Zexp(inS,)), and Fy is
the Berry curvature of the even/odd (+i eigenvalue) mirror sub-blocks of the effective
Hamiltonian. Because the system has inversion and rotation symmetries, the mirror Chern
number can also be expressed in terms of rotation and inversion eigenvalues at high-
symmetry momenta, Cyy = —vg, for details see App. E. We numerically evaluate both
invariants for the 4 x 4 tight-binding model (11) using the parameters po = —u1, t3(d) =
1.2exp(—d) + iexp(—0.3d), t; = —2, to = 2, on an amorphous sample with 14895 sites,
the resulting topological phase transitions are shown in Fig. 3.

We also evaluated the invariants for the doubled model, see Fig. 4. We observe several
topological phase transitions, with a large region corresponding to Cj; = 2. The two
invariants agree for most of the parameter range that we investigated, and we attribute
the disagreement to the numerical instability of the mirror Chern number calculation in
regions where the spectral gap is small.

3.2 Surface spectrum

As demonstrated in Fig. 2(d) for the crystalline system, the high-symmetry surface of
the Cy = 1 model hosts a single Dirac cone, and multiple Dirac cones remain protected
for Cy > 1. We expect that the high degree of ensemble averaged spatial symmetry of
the amorphous Hamiltonian prevents surface states from being gapped out on any surface
both for the single and doubled model (Cj; = 1 and 2 respectively). We confirm this by
numerically computing the surface spectral function

A(E,k) = (k,1|0(H — E) |k,1), (18)
l

using the Kernel polynomial method [24], specifically an implementation for computing
the surface spectral functions in disordered systems [14,25]. Here H is the real-space
Hamiltonian of a finite slab, [ runs over the internal degrees of freedom, and |k,[) is a
plane-wave state localized on one surface.

We find that both the original and doubled amorphous models have a nonzero surface
density of states in the bulk gap, with one or two Dirac nodes located at zero momentum.
[Fig. 1(b,c)]. This is a consequence of the nontrivial topology of the continuum system
described by the bulk effective Hamiltonian. The surface spectral function in the k,
direction probes the topology of the k, = 0 cut of the bulk effective Hamiltonian, which
is invariant under M, in the thermodynamic limit. This allows decomposition into two
mirror sectors, each of which is a Chern insulator, resulting in an edge spectrum with
C)r pairs of counter-propagating chiral edge states crossing the bulk gap. The modes
with different chirality correspond to different mirror sectors, hence they are protected
from gapping out by mirror-symmetric terms in the continuum model. We demonstrate
that the surface states gap out when the symmetries protecting the topological phase

11
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(rotations and mirrors normal to the surface) are broken on average [Fig. 1(d,e)]. It is
not clear, however, whether disorder that respects the mirror symmetry on average is
capable of opening a spectral gap in the amorphous system with even C;. The transport
calculations in the next section show that the surface of the even phase localizes, which
suggests that a local surface perturbation compatible with the average symmetry is capable
of opening a spectral gap.

3.3 Surface transport

Reference [11] conjectures that only the Zs part of the invariant provides topological
protection, or in other words, that only the surface states of systems with odd Cj; are
protected from localization. In a crystalline system, the surface has an ensemble point
group symmetry, and its localization properties are therefore equivalent to a doubled
Chalker-Coddington network model, which has a localized phase with an anomalously
large localization length [26,27]. The conjecture, however, was not confirmed for 3D
phases with continuous rotation symmetries, such as our amorphous model. To confirm
the conjecture, we simulate the surface transport properties using amorphous network
models.

We first simulate the transport properties of the regular network model as a baseline
for the comparison. In the presence of disorder that preserves the spatial symmetries on
average, the surface of the crystalline phase is equivalent to a critical Chern insulator.
We simulate its transport properties with the Chalker-Coddington network model on the
square lattice [28]. We fix the aspect ratio of the network to 1 and impose periodic
boundary conditions along the y direction [Fig. 5(a)]. The scattering matrices at each
node of the network are random 2 x 2 matrices sampled from a Haar-distributed U(2)
ensemble. The conductance through the system is:

2
e

where T; are the transmission probabilities from the modes entering one side of the network
to the modes exiting on the other side. Since the aspect ratio equals to 1, the system
conductivity g = G. We calculate the average conductivity (g) as a function of system size
L and reproduce the known result (g) ~ 0.5-0.6e2/h [29] [Fig. 5(d)], with the slow increase
as a function of L due to finite-size effects. We investigate the localization properties of
the double Dirac cone model by doubling the number of modes on each link, as shown
schematically in Fig. 5(c). This system is expected to localize, based on both numerical [26]
and analytical [27] studies. We draw the 4 x 4 scattering matrices of the doubled networks
from the circular unitary ensemble and confirm localization at system sizes of several
thousand sites [Fig. 5(d)].

We now simulate the conductance of our amorphous model, in order to determine
whether the average continuous rotation symmetry has an effect on the conductance prop-
erties of the system. We define an amorphous 2D network model in order to simulate the
average rotation symmetry using a fourfold coordinated random graph [21,30], for details
of the construction of the amorphous network see App. F. We use an annulus geometry
in order to avoid issues constructing the network with periodic boundary conditions, and
numerically calculate the conductance through the bulk from the modes entering the outer
edge to the modes exiting the inner edge of the annulus [Fig. 5(b)]. The conductance G
is calculated using (19), and the conductivity of the annulus equals:

1 R
g= %Glog <r> , (20)
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Figure 5: Conductivity of translationally invariant and amorphous networks. (a)

Schematic of the Chalker-Coddington model. Dashed links loop in the vertical direction
to indicate periodic boundary conditions. Circular nodes indicate external nodes where
modes enter and exit the network. Internal nodes are located at all solid line crossings.
(b) Schematic of the amorphous network. Circular nodes indicate external nodes where
modes enter and exit the network. Nodes internal to the network are located at all line
crossings. (c¢) Schematic of modes in the doubled model. (d) Average conductivity of the
networks as a function of network length and width L and fits (dashed lines). Results are
shown for the Chalker-Coddington (CC) network and amorphous network, with 1 mode
per link (crosses) and 2 modes per link (diamonds). Plot details are in App. B.

where R and r are the outer and inner radii of the annulus respectively. The results
for the amorphous network closely follow the results for the regular network: the single
Dirac cone conductivity falls within the 0.5 — 0.6e/h range for small L and increases
due to finite-size effects, and the double Dirac cone network localizes [Fig. 5(d)]. These
observations confirm that a doubled phase transition is not protected from localization,
even in the presence of average isotropy.

4 Discussion

In this work, we found that three-dimensional amorphous matter with average isotropy,
but breaking all non-spatial symmetries host topologically protected phases of matter. We
devised a rotation- and inversion-symmetric continuum model with broken time-reversal
symmetry, and presented a microscopic realization of this model in amorphous matter
with average isotropy. The feasibility of amorphous magnetic structures assembled from
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chiral magnetic molecules or nanoparticles [31] is supported by experimental studies on
Prussian blue analogues [32-34] and single-molecule magnets [35,36], exhibiting magnetic
interactions leading to ferrimagnetic and non-collinear antiferromagnetic ordering. We
constructed a bulk Z invariant for the effective continuum model—expressible both in
terms of symmetry eigenvalues and mirror Chern numbers— indicating the presence of
a protected ungappable surface Dirac cone for odd values, which we numerically demon-
strated.

We simulated the transport of our models using both regular and amorphous network
models with random scattering at each node. We found critical conductance scaling for
a single copy of the network (corresponding to the surface of a bulk with mirror Chern
number Cjy = 1), deviations from which are likely due to finite-size effects. Upon doubling
the degrees of freedom in both the regular and amorphous networks, the modes localize
as conjectured in Refs. [11,26,27]. Even though the numerics does not indicate a spectral
gap forming for any higher number of surface Dirac cones, we expect that only an odd
number are protected from localization and gapping out. We leave further investigation
of the surface spectral properties in the even phases to future work.

Regardless of whether the surface states are protected, the question remains whether
the bulk is topological for even values of the invariant. For example, in the case of
topological crystalline phases protected by inversion symmetry only, it is known that
clean systems do have bulk topological phases with fully gapped surfaces [37,38]. Recent
results show that in the presence of strong disorder the topological classification with
average mirror symmetry collapses to Zg [39], which supports our conclusion that the
odd phase is topological, but suggests that the even phases might also be trivial in the
bulk. We emphasize that the bulk invariants we define rely on the possibility of defining
an effective continuum Hamiltonian (or equivalently, disorder-averaged Green’s function)
that is gapped and bounded for all momenta. This is not necessarily true if the self-
energy diverges at certain momenta [23], which might be the case in the presence of
strong disorder, e.g. dimerization. These considerations suggest that phases that differ by
an even value of the bulk invariant may be topologically equivalent, but further work is
needed to reach a definitive conclusion.

Due to the combination of average continuous rotation symmetry and inversion sym-
metry, the spin bands in the bulk of the amorphous system are doubly degenerate. This
raises the question whether the systematic breaking of TRS leads to a macroscopic change
in the material properties. Enumerating the possible non-dissipative electromagnetic re-
sponses compatible with isotropy and inversion-symmetry, but forbidden by TRS, we find
P x E X B, electrical polarization parallel to the Poynting vector. This second-order
response is distinct from the circular photogalvanic effect [40,41], which only manifests
in systems with broken inversion symmetry, and should therefore be absent in our sys-
tem. The combination of these two responses therefore serve as a probe of the scalar TRS
breaking.

A natural further question is, what is the classification of isotropic three-dimensional
media with or without inversion symmetry in the other Altland-Zirnbauer symmetry
classes [42]. The topological invariants outlined in this work remain valid if we also include
TRS besides isotropy and inversion symmetry. Our models are compatible with prescrib-
ing TRS with the usual representation 7 = exp(imSy)KC, which fixes some parameters,
but does not forbid any topological phases. In this case odd values of Cj; correspond to
an amorphous strong topological insulator [43], however, the gapless surface Dirac cones
remain protected by mirror symmetry for even values as well. To our knowledge, TRS
does not enrich the classification in the presence of isotropy and inversion symmetry; and
the classification with isotropy, broken inversion and unbroken TRS is the same as the
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strong Zo classification with TRS only. There is, however an interesting possibility that
isotropy and the protection of the surface density of states in a doubled phase prevents
the surface conductivity from going below the metal-insulator critical point, and because
of that guaranteeing that the surface stays metallic. We leave an investigation of these
properties to future work.

Our microscopic model—relying on orbital-selective hoppings through chiral magnetic
molecules—demonstrates the difficulty of constructing a time-reversal odd, inversion even,
scalar order parameter. In our case the order parameter is P - (V X M), electric po-
larization times bound current, which is equivalent to the toroidal magnetic monopole
density [3,18]. Analyzing an effective field-theory displaying such order paramater with-
out other symmetry breaking would shed further light on the properties of this class of
isotropic magnetic materials.
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A Model Hamiltonians

We use Qsymm to generate 3D class A models that respect inversion symmetry and
isotropic continuous rotation symmetry, whose symmetry representations are:
1 1 1

Uz = og1s, Sy = 505,;7'0, Sy, = §O'y7'0, S, = §O'z7'0, (A.1)
where Uz is the unitary part of the inversion operator, S, , . are the generators of contin-
uous spin rotations around the z, y, and z axes, and the unitary part of the corresponding
rotation operator is given by U = exp(in - S) with n the axis and angle of rotation, and
7, o are the Pauli matrices. 7 represents the orbital component, and ¢ the spin component
of the Hilbert space. The resulting model also has reflection symmetry on any 2D plane,

UM, = 10272, Upm, = i0yT,, U, = 10,72, (A.2)

where Uy, , . is the unitary part of the reflection operators on the planes perpendicular
to the x, y and z axes, or in general,

Um,, = exp(irn - ST, (A.3)

where 7 is a unit vector defining the mirror normal. Because of the full rotation invariance,
prescribing one mirror symmetry results in mirror symmetry with respect to any plane.

The generated k-space model is listed in the main text in Eq. (7). In real-space, the
model is of the form:

HEY™ = moo(1o + 72) /2 + paoo(0 — 72) /2, (A.4)
HY%(d) = (tng + tad®)oo (1o + 72) /2 + (tng + t3d®)oo (1o — 72) /2
+ (to — tsd?)o - dry + (t1 + t4d?)o - dry, (A.5)

where tn; are normal hopping terms, d = (d, dy, d.), with d; the bond lengths along axis
i € {x,vy, 2} that connect neighboring sites, and d*> = d-d. In general, the symmetry is still
preserved if the hopping parameters have arbitrary dependence on the bond length d, so
in certain calculations we set t4 = t5 = 0 and make ty and ¢; depend exponentially on the

19


https://doi.org/10.1038/s41563-022-01458-0
1910.13412
https://doi.org/10.1038/s41467-017-00133-2
https://doi.org/10.1038/s41467-017-00133-2
https://doi.org/10.1038/nature23268
1703.02050
https://doi.org/10.1103/PhysRevA.98.023842

A MODEL HAMILTONIANS

bond length with different scaling, see Appendix B. When demonstrating that symmetry-
breaking gaps out the surface Dirac-nodes, we introduce a mass term that breaks all
symmetries except for continuous rotation around the x axis:

A= (00 + 0)7y. (A.6)

We also construct a doubled model by doubling the number of degrees of freedom. The
new symmetry representation is two copies of the one above, obtained by the replacement
Uy — po ® Uy, where pg is the 2 x 2 identity matrix acting on the space of the two copies.
The generic symmetry-allowed k - p model takes the form:

Hsxs(k) = 1/2(po + pz)oo(pi (10 + 72) /2 + p2(70 — 72)/2) (A7)
+1/2(po — pz)oo(ps(to + 72)/2 + pa(ro — 72)/2)
+ p1o0(A1(To + 72) /2 + Xa(70 — 72)/2)
+ p—00(A3(10 + 72)/2 + Aa(70 — 72)/2)
+ (to(po + p2)/2 + t3(po — p2)/2)0 - ks
— (ta(po + p2)/2 + t7(po — p2)/2)o - kT,
+ (t1 +its)p—o - kt— + (t1 — its)pyo - kTy
+ (to +itg)p—o - k1 + (to —itg)pro - k7_

where pu; are chemical potential terms, A\; are symmetry-allowed onsite mixing between
states with the same symmetry character in the two copies, ¢; are the hopping terms, p, o
and 7 are the Pauli matrices, k = (kg, ky, k-), and k? = k - k. The onsite terms that are
off-diagonal in p can be removed by a symmetry-preserving basis transformation without
changing the structure of the k-dependent terms which couple the two copies, however,
we include them in the numerics for generality. We do not include higher-order terms,
because this k-linear model already breaks all other symmetries.
In real space, the model takes the form:

HEE' = 1/2(po + p2)oo(u (1o + 72) /2 + pa(10 = 72)/2), (A.8)
+1/2(po — pz)oo(ps(to + 72)/2 + palro — 72)/2)
+ proo(A1(10 +72) /2 + Aa(70 — 72)/2)
+ p—00(A3(T0 + 72)/2 + Aa(70 — 72)/2)
Hg 2R (d) = 1/2(po + p=)oo(tni (o + 7) /2 + tna (10 — 72) /2)
+1/2(po — pz)oo(tng(mo + 72)/2 + tna(mo — 72)/2)
+ (ito(po + p2)/2 + its(po — pz)/2)o - dTy
ita(po + p2)/2 + it7(po — p2)/2)o - d7y
ts +ita)p_o - dr_ + (t5 + it2)
te +it1)p_o - dry + (t2 + its)

— (
+ (— py0 - dry

+ (_ p+0O - dT—v

where ¢n; are normal hopping terms, d = (d;, dy, d.), with d; the bond lengths along axis
i € {x,y,2} that connect neighboring sites, and d*> =d - d.

When examining the effect of explicit symmetry-breaking in the doubled model, we

use the term
/ 1 1 1 1
A= <1 1) ® (1 1> ® Ty. (A.9)
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B Model and plotting parameters

In this section additional details of the plots are listed in order of appearance.

For panel (c) of Fig. 2 the Hamiltonian (D.1) was simulated using kwant [45] on
a translationally invariant 3D face-centered cubic (FCC) lattice. Its eigenvalues were
obtained along the high-symmetry points of the FCC lattice, using the parameters p; =
0.1, pu2 = 0.2, t;1 = 0.3, toa = —0.4, t3 = exp(0.3i), t4 = 0.2iexp(0.37). For the dispersion
shown in panel (d), a slab was simulated, periodic along the vectors [1,0,0] and [0, 1, 0],
and with a width of 20 sites in the [0, 0, 1] direction. The parameters used are the same
as for panel (c).

For panel (a) of Fig. 5, the Chalker-Coddington network is composed of four unit cells
in both  and y. For panel (b), the amorphous network was created with an outer radius
of R = 20, an inner radius of r = 4, and a density of 1. The positions of the nodes
of the network underwent a relaxation step where the position of each node is sequen-
tially averaged over the position of all neighboring nodes. For panel (d), the results for
single-mode Chalker-Coddington network were obtained for 249 different random scatter-
ing matrix configurations, for network sizes of 36, 72, 144, 288, 576, 1152, 2304 and 4608
unit cells, with an aspect ratio of 1. The results for the two-mode Chalker-Coddington
network were obtained for the same network sizes and aspect ratio, and for 269 different
scattering matrix configurations. For the amorphous network, the results were obtained
for 50 outer radii sizes between 10™° and 10%°, with a fixed outer radius over inner radius
ratio of 1.5, and a density of 0.7. Results for the single mode network were obtained for
500 different amorphous network and scattering matrix configurations, and 300 different
configurations for the two-mode amorphous network. Additional results for the single
mode network were obtained for 5 outer radii sizes between 102 and 103, for 100 different
network configurations and scattering matrices.

For Fig. 1(a), single-Dirac cone model as defined in Eq. (A.4) was used. Its parameters
were set to H1 = —1, Ho = 1, tnl = O, tn2 == O, to == 05, tl = 04, t2 = 1, t3 == —]_7 t4 ==
0.3, t5 = 0.8, A = 0. For panels (b) and (d) the same model as panel (a) was used with
parameters py =1, po = -1, tn1 = =2, tno =2, tg =1, t; =1, to =11, t3 =12, t4 =
1.3, t5 = 1.25. The amorphous slab was generated in a box of dimensions 200 x 50 x 50
and density 0.4. For panels (a) and (b) the additional symmetry-breaking term A from
Eq. (A.6) is set to 0, and in panel (d), A = 0.3.

For the doubled model shown in Fig. 1 panels (c) and (e) and Fig. 4 as defined in
Eq. (A.8), the parameters were set to u; = 1, po = —1, pug = 1, pug = —1, tng =
—2, tng = 2, tng = —2, tny = 2, t; = 0.9, )\1 = 0.1, /\2 = 0.11, )\3 = 0.12, )\4 = 0.123,
and all hopping terms are multiplied by a distance-dependent factor exp(—d), except for
to where the factor exp(—0.3d) was used to achieve a distance-dependent hopping phase.
For Fig. 1 The amorphous slab was generated in a box of dimensions 200 x 50 x 50 and
density 0.4. For panel (¢) the additional symmetry-breaking term A from Eq. (A.9) is set
to 0, and in panel (e), A = 0.3.

For Fig. 3, the model (A.4) was used. For all results, the hopping parameters were set
toto=1,1t1 =12t =0, t3=0, t4, =0, t5 =0, tn] = —2, tny = 2 (terms proportional
to d to the power of 2 and higher are set to 0). Since the only hopping terms are linear in
d, in order to ensure that TRS is broken for this model, a different distance dependence is
given for the ty and ¢1: tgexp(—0.3d) and t; exp(—d), where d = Vd? is the bond length.
The amorphous samples are all contained within a cube of 30 x 30 x 30 sites, with a density
of 0.5. For the invariant Cjs (17) the numerical integration of the Berry curvature over
the k-space sphere was done over a grid of 10 x 10 points.

For Fig. 4, we used the same doubled model and parameters as for Fig. 1 panels (c)
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and (d). The amorphous samples are all contained within a cube of 20 x 20 x 20 sites,
with a density of 0.5. For the invariant Cps (17) the numerical integration of the Berry
curvature over the k-space sphere was done over a grid of 10 x 10 points.

For panel (b) of Fig. E.1, the model (D.1) was used. The parameters were set to
t1 = 0.3, to2 = —0.4, t3 = exp(0.37), t4 = iexp(0.37). The I' and X points of the model
are (0,0,0) and (0,27, 0).

C Isotropy of the amorphous model

In this appendix we confirm that the amorphous tight-binding model produces an isotropic
electronic structure up to random fluctuations. The underlying amorphous structure was
obtained by the same method as in Ref. [46], where we also confirmed the isotropy of its
two-point correlation function, hence here we focus only on the isotropy of the electronic
spectral function.

We generated amorphous structures in a box of dimensions 50 x 50 x 50 with density
0.4, and calculated the spectral function by sampling a ball of radius 20 in the middle of
the sample, with an average N = 13400 lattice sites. Same as Fig. 1(a), single-Dirac cone
model as defined in Eq. (A.4) was used with parameters set to 3 = —1, pe =1, tny =
0, tng =0, to =0.5, t;1 =04, t3 =1, t3 = —1, t4 = 0.3, t5 = 0.8. For the rest of this
analysis, we fixed |k| = 1 in inverse length units, and took 500 samples for the spectral
function A(E, |k| = 1) (with E sampled at 400 values) from the following three random
ensembles:

e Fixed disorder realization, random k with |k| = 1,
e Random disorder realization, fixed k = (0,0,1),
e Random disorder realization, random k with |k| = 1.

We plot the resulting distributions of A(FE, |k| = 1) in Fig. C.1 top panel. The expectation
values of the three distributions are indistinguishable, as illustrated in Fig. C.1 middle
panel. When comparing the standard deviations, we find that the case with fixed disorder
realization has significantly lower variance, while the other two are very similar, see Fig. C.1
bottom panel. It is is expected that a fixed disorder realization results in lower variance,
as the samples from nearby k-points are correlated, as illustrated in Fig. C.2. The relative
fluctuation of the spectral function amplitude is in the range of 1 —2% in all cases, a value
expected from statistical fluctuations in a finite sample of this size, scaling with v/N.

We further compare the two cases with random disorder realizations, by calculating
the statistical p-value and the Kolmogorov—Smirnov statistic D for every F, see Fig. C.3.
These both measure the similarity of the random distributions given a finite sample, high
p values and low D values indicate high similarity, with p = 1 and D = 0 corresponding to
identical samples. We find that at most E values the distributions are sufficiently similar,
and there are only a few outliers where we should reject the null hypothesis that the
underlying distributions are identical with 95% confidence. Such outliers are, however,
expected to occur in a set of 400 random distributions. Hence we conclude, that the
electronic structures obtained in our numerics are isotropic up to random fluctuations.
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Figure C.1: Spectral function statistical properties of the amorphous model. Top panel:
Probability density of the spectral function as the function of energy E at |k| = 1 for three
different ensembles. The plots are offset for visibility, and more saturated colors denote
higher probability density. Middle panel: Expectation value of the spectral function. The
three graphs completely overlap at this scale. Bottom panel: Standard deviation of the
probability distributions.

D Spin splitting in a crystal

Because the scalar TRS breaking is insufficient to cause a spin splitting in an isotropic
medium, we demonstrate the spin splitting in a crystal structure. We use the s and
p atoms as the basis of the rock salt crystal structure [Fig. 2(b)] with full cubic (Op)
symmetry. In this model, orbitals of the same type are connected by normal hopping,
and orbitals of different types are connected by the complex spin-orbit hopping of (15),
resulting in terms off-diagonal in the orbital (7) space. Because the symmetry-breaking
mechanism relies on the nontrivial distance-dependence of the hopping phase, we include
both nearest-neighbor as well as third neighbor s—p hopping [Fig. 2(b)]. We emphasize
that this is a minimal model used as a sanity-check, hence we ignore the problem with
microscopic realization posed by the third-nearest-neighbour bonds crossing each other.
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Figure C.2: Spectral function amplitude at £ = 5.8 and |k| = 1 for a fixed disorder
realization as a function of the polar angles of k. The results are interpolated, the red
dots mark the sampled points.
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Figure C.3: Comparison of the probability distributions with random disorder realization
with fixed or random k. Top panel: statistical p values. The blue line denotes p = 0.05,
for lower p the null hypothesis of the distributions being identical is rejected with 95%
confidence. Bottom panel: Two-sample Kolmogorov—Smirnov statistic with 500 samples
each. The blue line denotes the value over which the null hypothesis is rejected with 95%
confidence.

The tight-binding Hamiltonian thus takes the form:

Hypo = |+t Yy ™2 ) og(ro+7)/2+ | pa+ 12y e % | og(rg — 7)/2

d d
’ ’ (D.1)

+ p Z ekdhid o | (tsry +t5 ) + ’ Z ekdsds . o | (tymy +t57),
d1 d3
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where a is the cubic cell lattice constant, o4 = %(O‘x + ioy), and similarly for 74. dy
runs over the six nearest-neighbor bonds symmetry-equivalent to §(1,0,0), d2 over the
twelve second neighbor bonds symmetry-equivalent to §(1,1,0), and d3 over the eight third
neighbor bonds symmetry-equivalent to §(1,1,1). The terms of Eq. (D.1) proportional to
t; and ty are the second neighbor s — s and p — p normal hoppings respectively [dashed
lines of Fig. 2(b)], where ¢; and t2 are both real. The terms proportional to t3 and ¢4 are
the nearest and third neighbor s—p hoppings respectively [solid lines of Fig. 2(b)], with ¢3
and t4 complex. This Bloch Hamiltonian reproduces the symmetry-allowed terms of the
continuum model (7) in the long-wavelength limit up to third order in k, aside from an
additional cubic anisotropy term and a slight change of parametrization.

The tight-binding model (D.1) preserves the space group of the rock salt crystal
structure [see App. A]. The spin-orbit-like s—p hopping terms alternate in sign along
the hopping axes in order to preserve inversion symmetry. We select the parameters
1 = 0.1, pe = 0.2, t; = 0.3, to = —0.4, t3 = exp(0.37), t4 = 0.2iexp(0.37). The dis-
persion relation shows that the spin bands are split away from high-symmetry points and
lines that have at least a rotation and a mirror symmetry, demonstrating that TRS is
broken [Fig. 2(c)]. The TRS-breaking is a result of the different k-dependence of the first
and third neighbor hopping terms after a series expansion around k = 0. A generic choice
of the complex hopping amplitudes t3 and t4 leads to a k-dependent phase in the Bloch
Hamiltonian, preventing the existence of a k-dependent effective TRS operator discussed
in Sec. 2.1. The surface dispersion shows gapless, propagating surface modes within the
bulk gap [Fig. 2(d)].

E Alternative bulk invariants

In addition to the bulk invariant given in Sec. 3.1, we identify two alternative expressions.

E.1 Inversion eigenvalues

The inversion operator commutes with the spins at the rotation-invariant points k = 0
and k = oco. Since the SU(2) rotation symmetry commutes with the inversion operator,
the inversion eigenvalues come in degenerate pairs in the case of a spin-1/2 representation,
and in degenerate groups of 2s+1 for spin-s representations. The difference in parity of the
inversion eigenvalue pairs at these rotation-invariant points characterizes the topological
phase:

v =3 li-(00) ~1-(0)], (B1)
(k) = iy (n(k)| T m(K)))

where [n(k)) are the occupied states of the effective Hamiltonian Heg, and p)(A) indicates
the multiplicity of the eigenvalue A in the spectrum of A. We note that in the case of
an operator that only has £1 eigenvalues, the multiplicity can be expressed through the
trace as Tr A = N — 2u_1(A), allowing to rewrite the invariant as

vy = —% Y ((n(c0)| T |n(o0)) — (n(0)| T n(0))), (E.2)

neoce

where we used that the total number of occupied bands is the same at k = 0 and oo.
While we only consider spin-1/2 representations in the main text, in the general case
it is possible to resolve the eigenstates at k = 0 and oo based on the spin-representation
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Figure E.1:  (a) The topological invariants of the class A model (A.4) for amorphous
systems (Cjs defined in (17) and vy in (E.1)) as a function of chemical potentials fi 2.
Plots are offset for clarity. (b) The invariant oy of the crystal system as a function of
chemical potentials 12 (D.1). Plot details are in App. B.

S. All states along a line nk connecting 0 and oo have continuous rotation symmetry
along the n axis, hence the eigenvalues of n - S in the occupied subspace are well-defined
throughout, and the total number of various spin representations cannot change. The
inversion eigenvalues, however, can change in the process, so we can define the set of
invariants

13 (00) — 2(0)] (E.3)
Ls_(k) = H-1 ((ns(k)|I |ms(k)>) y

where we restrict the inversion operator to the subspace corresponding to the spin-s rep-
resentation spanned by the states |n (k)). This results in a ZN classification, of which the
invariant (E.1) only probes a Z subset,

vi=)Y_ (s + ;) vs. (E.4)

s

This relation also shows that, depending on the spin representation content of the model,
not all values of v; may be realizable. A remaining question is, whether for general s, vy
or the set of v§ has a bulk-boundary correspondence in amorphous systems. As we show
in the next section (see (E.9)), it is a different combination of v§ that the mirror Chern
invariant probes, nontrivial values of which we expect to protect robust surface states. The
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simplest continuum model with trivial v; (or Cjs) and nontrivial v§ has 16 on-site degrees
of freedom (4 spin-1/2 and 2 spin-3/2 representations, half of which is inversion-odd), we
leave analysis of the surface physics to future work.
For the crystalline system described in Sec. D we calculate the analogous eigenvalue

parity invariant given by:

. 1

=y [t—(T") + ¢—(X)] mod 4, (E.5)
where ¢ is the same as in (E.1). The mod 4 results from factoring out atomic insulators
located at other Wyckoff positions. We note that (E.5) does not give the full symmetry
indicator classification in space group 225 [47,48], and the Z invariant given by the mirror
Chern number also remains well defined and contains additional information.

E.2 Rotation eigenvalues

Another way to formulate the bulk invariant relies on the Chern-number being expressible
through the difference in the occupied rotation eigenvalues at the rotation-invariant points
k=0 and k = oo [21,49]:

C= " ((n(co)| S: [n(o0)) — (n(0)] S [n(0))), (E.6)

where S, is the generator of rotations around the z axis and the Chern-number is calculated
in the k, = 0 plane (other orientations give equivalent results). To formulate the mirror
Chern number, we insert —iM,, which adds a 1 prefactor to the mirror-even/odd states:

Cor = =2 3 (n(00)|iMLS. [n(00)) — (@) iM.5. [n(0)).  (ET)

In general M, = Zexp(inS,), in the spin-1/2 case this simplifies to M, = iZo,, hence
—iM,S, = %I. Substituting this, we find

Cu =7 Y ((n(00)| I [n(00)) — (n(0)| I |n(0))) = —vr. (E-8)

neocc

For general spin, using that Z commutes with the spin operators, after some algebra we
find

O =1 (175 Y ((n(00)| Zina(o0)) — {ns(0)] Z |ny(0)))

nsEOCCs
1
=3 (-1)*tz (s + 2) vi. (E.9)
S
As we saw, in the spin-1/2 case studied in detail, Egs. (17, (E.7), and (E.1)) are all
equivalent formulations of the same invariant, as demonstrated by their equivalence for
different values of the chemical potential [Fig. E.1(a)].

F  Amorphous network model

In order to ensure four-fold coordination of each node of the amorphous network, we
generate the network following the method described in Refs. [21,30], which creates a

27



F AMORPHOUS NETWORK MODEL

graph by generating N random lines on a plane, with IV chosen from a Poisson distribution
whose mean is set to 2R,/7p, with p the chosen density of the graph and R the outer radius
of the network. The angle and offset of the lines is uniformly distributed in [0, 27) and
[0, R] respectively. We define the intersections of each pair of lines as a network node.
We ensure the two-in-two-out pattern of propagating modes at each node by orienting the
links in an alternating fashion along each of the straight lines. There is no dependence of
the scattering matrices on the length of the network links.

The graph is cut into an annulus shape by removing all of the nodes beyond the outer
radius R and within the inner radius r. This ensures periodic boundary conditions along
the polar angle coordinate. In order to maintain four-fold connectivity in the bulk of
the graph, the nodes outside of the network that are connected to nodes inside of the
network are changed into sinks or sources, that either absorb modes from the network
or emit modes to the network. The conductivity of the amorphous network is calculated
by g = GIn(R/r)/2n, with G = (e2/h) D S;j|%, Si; being the matrix element of the
scattering matrix that connects the incoming modes originating from external sources
beyond the network’s outer edge to the outgoing modes exiting the network from its inner
edge. A relaxation of the graph for visual clarity is optionally performed by averaging
each node position to the center of its neighbors’ positions.
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