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AEmail: tomas.ortin[at]csic.es
PEmail: zatti[at]mpp.mpg.de



Conserved charges can be used to characterize the states and the evolution of physical
systems. In this short note we describe how to compute the generalized Komar charge
of any exactly gauge- and diffeomorphism-invariant theory. Our goal is to provide a
simple algorithm which can be easily applied to spacetime configurations with Killing
isometries (cf. Eq. (18)). This is particularly useful to determine efficiently fundamen-
tal identities in black hole thermodynamics and to prove non-existence theorems for
gravitational solitons and boson stars (see for instance Refs. [1-12]).

In d-dimensional General Relativity, for each of the Killing vectors k of the metric
of a given vacuum solution one can construct a (d — 2)-form charge K[k], the so-called
Komar charge [13], which is closed on-shell*

dK[k] = 0. (1)

In asymptotically-flat spacetimes, the integral of this charge at spatial infinity (S%2)
gives, up to normalization, the value of the conserved charge of the spacetime cor-
responding to the Killing vector: total mass/energy if k is a Killing vector that gen-
erates time translations, etc. In General Relativity, the Komar charge coincides with
the Noether—Wald charge associated with the invariance under diffeomorphisms gen-
erated by vector fields ¢, Q[¢], evaluated over the Killing vector k, Q[k]. This fact
suggests that, in more general theories (with matter or with terms of higher order
in the curvature) the Komar charge may also be given by the Noether-Wald charge
evaluated on k, Q[k], since Q[¢] can be constructed in any theory invariant under dif-
feomorphisms. This naive expectation turns out to be false in general. In order to
understand why and what has to be done to construct an on-shell-closed 2-form (a
generalized Komar charge), it is convenient to review the algorithm that leads to Q[¢].

Let us consider a theory of gravity, described by the Vierbein ¢?, coupled to a num-
ber of matter fields denoted generically by ¢, whose dynamics is dictated by the action
Sle, ¢]. Under a generic infinitesimal variation of the fields

5Sle, ¢] = /{Ea/\ée +E, Ao+ dO(e, ¢,0e,69)} , (2)

where, by definition, E, are the Einstein equations, E, are the equations of motion of
the matter fields and ©(e, ¢, de, dp) is the symplectic prepotential. If the theory is exactly
invariant under diffeomorphisms and any other kind of gauge transformations,?

0zSle, @] = /dzCL (3)

where 1zL indicates the interior product of the vector field ¢ with the d-form L.3 On the
other hand, if we use, instead, the general infinitesimal variation Eq. (2) particularized

We indicate with = those identities which are only satisfied on-shell.

2We exclude Chern-Simons and any other terms which are invariant up to total derivatives we do
not want to deal with. We must take into account that isometries induce gauge transformations, as
explained in Refs. [14-16].

3We are using differential-form notation. the rest of our conventions and notation can be found in
Refs. [14, 17].



for infinitesimal diffeomorphisms, we get

5:Sle, ¢] = / {Eq A dze® + By A Sz +dO(e, ¢, 06,0:9) ) . @)
Comparing these two expressions we conclude that
E; A\ dge" +Ep Aoz = dN, (5)

for some (d — 1)-form N that vanishes on-shell. This is the content of Noether’s second
theorem. Then,

5:Sle, g] = / 10, (6a)

0’ ' =0(e, ¢ 6z0,6:¢) + N, (6b)
and, comparing again this expression with Eq. (3) one concludes that the (d — 1)-form

JZ1=0"+¢L, 7)

is closed off-shell for any vector field ¢

dj[¢] = 0. (8)

This implies the local existence of Noether-Wald (d — 2)-form Q[k| defined, up to total
derivatives, by

dQ[Z] = JI¢].- (9)

Let us examine the right-hand side of this equation using the definition of J[&], Egs. (7),
and that of ®', Eq. (6b)

dQ[¢] = O(e, ¢,0ze,0z¢) + N 4 1¢L. (10)

The second term in the right-hand side vanishes on-shell while the first vanishes if we
tind Killing (or reducibility [18]) parameters* k such that

Se" =09 =0, (11)

because the symplectic prepotential is linear on Jdze” and dz¢. The third term only
vanishes in some simple theories like General Relativity with no matter or with free,
massless scalars, and, in general, we have to deal with the equation

d (0;Qlk]) = OsyL, (12)

where we have introduced the on-shell-setting operator Os that evaluates the expres-
sion on its right over the solution s. Smarr formulas can be computed integrating this

#In general, the transformations Jz depend on the vector field § and other gauge parameters.
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identity over hypersurfaces with boundary on the horizon and spatial infinity [19—22].
In Refs. [1,2] it was argued that the right-hand side of Eq. (12) is always a total deriva-
tive

Osi L = dwy, (13)

and we can define the generalized Komar (d — 2)-form charge
K[k] = —O;QJk] + wy, (14)

which is closed on-shell
dK[k] = 0. (15)

At first sight, this construction may give a trivial K[k], but the explicit calculations
performed in Refs. [1-12] proof otherwise. However, a closer inspection of the way in
which those explicit calculations have been performed shows that what was computed
in those references is, actually, and more precisely,

1 OsL = dwy, (16)

where O;L is typically obtained from the trace of the Einstein equations. The difference
between this definition of wy and the former is a total derivative that vanished on-shell

14 OsL — Osi L = d (wr — Q[k]) =0, (17)

and it is, precisely, the total derivative of the generalized Komar charge. Thus, we
arrive at the following prescription:

dK[K] = [, Os]L. (18)

Let us see how the prescription works in the simple example of the Einstein—
Maxwell theory in d dimensions. Its action is

()

Sle?, A] =
167‘[GZ(\?)

/ [*(e“ AeP) ARy — ir /\*F] = /L, (19)

and its equations of motion and symplectic prepotential, defined by

55 = /{EaAéeﬂ+EAaA+d®(e,A,5e,5A)}, (20)

are given by
Ea=za*(ec/\ed)/\Rcd+%(zuF/\*F—F/\za*F), (21a)
E=—-dxF, (21b)



O(e, A, de,6A) = —* (e" NeP) A bwy, ++F NSA, (210)

where 1. stands for 7., where e. = e.#d,, and where we are ignoring the factor (167‘(GI(\‘]1 ))_1

for the moment in order to get simpler expressions. A straightforward calculation us-
ing the explicit expression of the Einstein equation Eq. (21a) gives

(=) 1yl = g (e Ae") ARy 4 (—=1)% (e Ae?) A xRy — %sz N *F — %F At x F

= KBy — tuF AF + (=) T (" Aeb) ARy -
(22)
The assumption of invariance under the diffeomorphism generated by k implies the
existence of the Maxwell and Lorentz momentum maps P, and P satisfying the
momentum map equations

4 R? = —DP", (23a)

1 F = —dPy. (23b)

The first equation is always solved by the Killing bivector D?k". Using these equations
and integrating by parts, we find

(=)' L = k"B 4+ dP A*F 4+ (—=1)7 1 5 (e A e?) ADPy

=d [— * (" NeP)Peap + Pk*P} + P.E + k“E,,

so that
OgteL = d(~1) [+(e" A e") Pegy — P+ F| = (O4QIK) - (24)
On the other hand, taking the trace of the Einstein equation Eq. (21a)
" NEg = (d—2)x (e Ne?) ARy — (d;4)P/\*F
= (@=2) [(=1)" L+ JF A +F] —(CZT_LL)F/\*F, (25)
= (d—2)(=1)*" 'L+ F A %F,
SO ; ;
- U F/\*F+(_1) ¢’ NE. (26)

d—2 d—2



Then,

d—2

(=1)*
=55 [ixF ANxF +F Ay« F] .
We can use Eq. (23b) in the first term. In the second, profiting from the fact that we are
working on-shell, we can use the dual Maxwell momentum-map equation®

—1)4
ZkOSL:Zk [( ) F N xF

(27)

lk*F = —dpk, (28)

and, integrating by parts and using the equations of motion and Bianchi identities, we
have
(-1

[dpk ANxF +F A dpk}
(29)

:d{% [Pk*F—i-PkF]} .

Now,
d—3)
d—2

(1, Os]L = d(—1)4"1 {*(e“ A e") Py, — ( Py xF + %Pkl-“} , (30)

d—2
which coincides with the result found in Ref. [4].
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