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Abstract

Ballistic Macroscopic Fluctuation Theory (BMFT) captures the evolution of
fluctuations and correlations in systems where transport is strictly ballistic.
We show that, for generic integrable particle models, BMFT can be constructed
through a direct mapping onto ensembles of classical or quantum point parti-
cles. This mapping generalises the well-known correspondence between hard
spheres and point particles: the two-body scattering shift now plays the role
of an effective rod length for arbitrary interactions. Within this framework
we re-derive both the full-counting statistics and the long-range correlation
functions previously obtained by other means, thereby providing a unified
derivation. Our results corroborate the general picture that all late-time fluc-
tuations and correlations stem from the initial noise, subsequently convected
by Euler-scale hydrodynamics.
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1 Introduction and main results

Emergent dynamical properties in many-body systems pose a central challenge in
physics due to the complex interplay between microscopic interactions and macroscopic
behaviours. Hydrodynamics provides a powerful coarse-grained description: microscopic
complexity is replaced by macroscopic equations of motion. By separating fast micro-
scopic time scales from the slow evolution of conserved densities (and the modes coupled
to them) and assuming local equilibrium, one derives hydrodynamic equations, typically
partial differential equations, that govern the expectation values of those conserved-charge
densities. Although conventional hydrodynamics can predict the time evolution of mean
local observables, many other questions require information beyond simple averages,
such as full-counting statistics of transported charge or multi-point connected correlation
functions. The charge transport is computed by counting the amount of charge crossing
a specific point, say the origin, in time [0, T ]. For a system of particles with 1-particle
phase space density at time t, it can be expressed as

Q̃T =

∫ ∞

−∞
dθ

∫ ∞

0
dx h(θ)

{
ρT (x, θ)− ρ0(x, θ)

}
, (1)

where h(θ) determines the nature of the transported charge. For instance, h(θ) = 1 is
for mass transport, h(θ) = θ corresponds to momentum transport, etc. Similarly, the
multi-point connected correlation functions, such as the 2-point function, given by

Ct1,t2(x1, θ1, x2, θ2) =
〈
ρt1(x1, θ1)ρt2(x2, θ2)

〉c
, (2)

rely on both thermodynamic fluctuations and hydrodynamic evolution. To capture such
non-linear observables, one must restore these thermodynamic fluctuations and understand
how they interact with the hydrodynamic evolution.

For diffusive systems, this program is realised by the macroscopic fluctuation theory
(MFT) [1–5], which is valid for systems whose hydrodynamic current is proportional to the
gradient of the charge density. Fluctuations are incorporated into the to hydrodynamics by
(i) adding a stochastic noise term to the hydrodynamic current and (ii) sampling the initial
hydrodynamic fields from a thermal fluctuating distribution. Exponentiating the noise
via the Martin–Siggia–Rose-Janssen-De-Dominicis functional formalism and writing the
corresponding initial action yields a path-integral description whose long-time behaviour
can be evaluated by saddle-point methods [6–8]. MFT has been highly successful in
characterising diffusive transport, generic correlations, and the full distribution of current
fluctuations, see for example [9–23]. Ballistic systems, however, where the current is
proportional to the charge density itself and not only to their derivatives, lie outside its
scope.

This gap is filled by ballistic macroscopic fluctuation theory (BMFT) [24, 25]. The
natural arena for BMFT is provided by generic integrable models, whose hydrodynamics

2



SciPost Physics Submission

Figure 1: Cartoonish figure demonstrating the construction of the coordinates for a generic
integrable model from the configuration of the free particle gas using the mapping in
Eq. (5). Here we present two cases, (i) hard rods (red) with aij = −a and (ii) Lieb-
Liniger gas (blue) with aij = 2/

(
(θi − θj)

2 + 1
)
. The mapping from the free particles

trajectories Xi(t) (evolving via Ẋi = θi) to interacting coordinates xi(t) requires inverting
Eq. (5), which is a non-trivial task for generic ai,j , and inversion is performed numerically.
While the free particles have straight line trajectories, due to the mapping, the interacting
coordinates acquire scattering shifts. Moreover, the distribution used for sampling the
initial configurations determines the nature of the particles (i.e. Poissonian sampling for
classical particles and Bernoulli sampling for Fermi-Dirac quantum particles).

is described by generalised hydrodynamics (GHD) [26, 27], see also [28–43, 43–57]. GHD
involves an infinite family of conserved densities that can be interpreted as quasiparticles.
Each quasiparticle moves ballistically, and two-body scattering merely renormalises its
velocity; no bulk noise arises. The latter is indeed at the source of different anomalous
fluctuations in integrable systems, see, for example, [58–63]. Therefore, BMFT requires
only an accurate characterisation of the initial fluctuations, which then propagate ballisti-
cally under the non-linear Euler equations, producing non-trivial mesoscopic correlations.
A transparent example is the one-dimensional gas of hard rods [33, 64–66] of length a.
Because every collision is elastic and exchanges only momentum, the model is integrable.
The position of the i-th rod, xi(t), can be mapped, at all times, to that of an auxiliary
free particle, Xi(t), through

xi(t) = Xi(t) +
a

2

∑

k ̸=i

sgn(Xi(t)−Xk(t)) (3)

with Xi(t) = Xi(0) + θit at any time t, describing free particles (i.e. with a = 0) mo-
tion with velocities θi. The initial velocities are therefore conserved, giving a set of N
conserved quantities of motion, and thus the hard rods represents the simplest integrable
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exp
(
µ(λ)

)
=
〈
exp

(
λQ̃T

)〉
ρ̄0

(x, θ)→ (X(θ), θ) [see Eq. (15)]
ρt(x, θ)→ rt(X, θ) [see Eq. (17)]

exp
(
µ(λ)

)
=
〈
exp

(
λQ̃T

)〉
r̄0

exp(µ(λ)) =
∫
D[rt]D[r̂t] exp

(
S̃[rt, r̂t]

)

Free energy F̃ [r0]
from Eq. (30)

X(θ) = x− 1
2

∫∞
−∞ dθ′

∫∞
−∞ dxa(θ − θ′)sgn(x− x′)ρt(x′, θ′)

exp
(
µ(λ)

)
=
〈
exp

(
λQ̃T

)〉
{
β̄i

}

µ(λ)

This article

TBA to find
{
β̄i(x, 0)

}

from ρ̃0(x, θ) see Ref. [31]

Mapping:
Recasting the observables

in the free particle coordinates
using Eq. (15) & (17)

Eq. (15) BMFT
Ref. [24, 25]

BMFT with the
free particle description

Saddle point analysis [see Eq. (70)]

Figure 2: Schematic figure illustrating our modified BMFT approach for computing full
counting statistics and correlation functions in integrable systems. In the standard BMFT
framework introduced in Ref. [24,25], the conserved charges are studied using the typical
generalised temperatures {β̄i(x, 0)} characterising the initial state. These temperatures
can be obtained from the typical phase space density, ρ̄0(x, θ), using the thermodynamic
Bethe ansatz (TBA) (see Ref. [31]). Here, we instead map the observable Q̃T [Eq. (1)] to
the free particle coordinates via Eqs. (15) and (17). This allows us to apply the BMFT
formalism, but now for the free particles and exploit its inherent simplicity. For example,
the free energy of a free particle system is expressed in Eq. (30) and the system-specific
details are hidden in r0(X, θ)← ρ0(x, θ).

model captured by GHD. In more general integrable models, the constant shift a is re-
placed by a two-body scattering phase φ(θ, θ′) that depends on the incoming rapidities.
Generic integrable systems can be viewed as deformations of the hard-rod gas in which
the geometric shift a is replaced by the model-dependent phase shift φ. In this article,
we study the probability distribution of the net charge transport Q̃T [Eq. (1)] and the
2-point connected correlations [Eq. (2)] in a generic interacting integrable system. Our
approach involves two main steps as described by the schematic flow diagram Fig. 2. First,
we map the interacting system to a free particle system [via a generalisation of Eq. (3)]
and recast these observables as functionals of the free particle coordinates. After the re-
casting, we use the BMFT formalism, but now for the free particles. Here, the typical
equilibrium profile r̄0(X, θ) denotes the phase space density associated with the general
Gibbs ensemble (GGE) used to prepare the system. It is obtained by fixing the general-
ized temperature {β̄i(x, 0)} defining the GGE which determines the quasi-particle phase
space density ρ̄0(X, θ) using the thermodynamic Bethe ansatz (TBA) (See Ref. [31]). This
quasi particle density is then mapped to the free-particle coordinates using the generalised
mapping in Eq. (17). This construction can be schematically as

{β̄i(x)} TBA Ref. 32←−−−−−−−→ ρ̄0(x, θ)
Mapping Eq.16←−−−−−−−−→ r̄0(X, θ). (4)
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1.1 GHD and its notation

Generic integrable systems are characterised by an extensive number of conserved modes,
and therefore its large-scale hydrodynamics contains an infinite number of hydrodynamic
density modes qi(x, t). On the other hand, as also pointed out in these past years by
several recent works [44, 67–70], GHD can be reformulated (and explicitly derived from
the semi-classical limit of Bethe wave functions) as a course grained dynamic of a gas
of interacting wave packets (WPG), where a configuration of the particles’ position and
their moments (xi, θi)

N
i=1 can be mapped from that of the configurations of a free gas with

coordinates (Xi, θi)
N
i=1 by using the mapping, see also Fig. 1,

xi(t) = Xi(t)−
1

2

∑

k ̸=i

aik sgn(xi(t)− xk(t)), Ẋi(t) = vbare(θi), (5)

with aij a generic (two-body) scattering amplitude. This mapping is merely a generalisa-
tion of the hard rods mapping of Eq. (3), where the effective rod length is replaced by the
scattering shift as

a→ −a(θi − θj). (6)

Replacing the hard rods length by the effective rod lengths for generic integrable models
has so far been established only for the classical Toda model in Ref. [70]. For quantum
integrable models, a heuristic derivation has been provided in Ref. [44]. More generally,
it can be shown that any system of particles with coordinates xi, such that at any time t
they can be mapped to the coordinates of free evolving particles Xi

1 have a large-scale
description given by the GHD equation. This procedure is: first introduce the 1-particle
phase space density of quasiparticles, see also [69],

ρt(x, θ) =

N∑

i=1

δ(x− xi)δ(θ − θi). (7)

and derive its equation of motion. Using Eq. (5) we obtain the evolution equation for
ρt(x, θ) as [see Appendix A]

∂tρt(x, θ) + ∂x
(
ρt(x, θ)v

eff
[ρt(x,·)](θ)

)
= 0. (8)

This equation is exact, and the effective velocity veff [ρt](x, θ) is given in terms of the
integral equation

veff[ρt(xi,·)](θi) = vbare(θi)−
∫

dθ′a(θ − θ′)ρt(xi, θ′)(veff[ρt(xi,·)](θi)− v
eff
[ρt(xi,·)](θ

′)). (9)

Here vbare(θ) is the bare velocity of the quasiparticles (which in the case of the hard rods
is given simply by vbare(θ) = θ). In the following, we shall focus on Galilean invariant
models, where vbare(θ) = θ and with bare momentum k(θ) = θ, and generalisations to a
generic case are immediate.

The effective rod length aij is generally given by the scattering shift of the underlying
microscopic model. For example, for a Bethe ansatz integrable model, this is given by [36,
44,67–69]

aij ≡ a(θi − θj) =
2πφ(θi − θj)

k′(θi)
. (10)

1Such a dynamical condition could be considered an alternative definition of integrability.
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where φ(θ−θ′) denotes the derivative (divided by 2π) of the scattering phase shift between
particles of velocities (rapidities) θ and θ′. Finally, it is convenient to express Eq. (8) in
the normal modes density

nt(x, θ) =
2πρt(x, θ)(
1
)dr

[nt](x, θ)
, with (11)

(
1
)dr

[nt](x, θ) ≡
(
1
)dr
t
(x, θ) = 1 +

∫ ∞

−∞
dθ′φ(θ − θ′)nt(x, θ′)

(
1
)dr
t
(x, θ′).

Here the notation
(
h
)dr

[ρt](x, θ) denote the dressing of a generic function h(θ), which is
also given in terms of an integral equation

(
h
)dr

[nt](x, θ) ≡
(
h
)dr
t
(x, θ) = h(θ) +

∫ ∞

−∞
dθ′φ(θ − θ′)nt(x, θ′)

(
h
)dr
t
(x, θ′). (12)

The normal mode density effectively diagonalises the flux Jacobian in Eq. (8), which then
factorises as a convective equation for each mode

∂tnt(x, θ) + vefft (x, θ)∂xnt(x, θ) = 0. (13)

While GHD at the Euler scale captures ballistic transport of conserved quantities in inte-
grable systems, higher-order corrections, such as the diffusive term, are important for their
relaxation. GHD with diffusive contributions, often called the Navier-Stokes GHD [29,71],
can be derived using the cumulant expansion as described in Ref. [72,73]. In this approach,
the average current is expressed as a function of the average density and its higher-order
correlations. For integrable models, these correlations arise from the fluctuations in the
initial state, which are deterministically propagated via Euler GHD Eq. (13) with a non-
linear effective velocity. This non-linearity is necessary, as integrable systems do not
possess conventional scattering mechanisms. Instead, diffusion emerges from the coupling
of different modes (quasi-particles) via the non-linear dependence of the effective velocity
on the density of particles [see Eq. (9)]. In this work, we also study such correlations
necessary for computing the diffusive correction to Euler GHD.

1.2 Interacting wave packet gas and mapping to point particles

The central idea of this paper is that all hydrodynamic fluctuations in interacting inte-
grable models can be obtained by mapping their dynamics to that of point particles. In
the phase space (x, θ), the position of the particles located in the region [x − ∆x/2, x +
∆x/2] ∪ [θ − ∆θ/2, θ + ∆θ/2] centered around (x, θ) can be mapped to that of the free
particles with rapidity θ, using Eq. (5) as

X(θ) = x+
1

2

∑

x′ ̸=x

∑

θ′ ̸=θ

∆x∆θρt(x
′, θ′)a(θ − θ′)sgn(x− x′), (14)

Here we note that the sum over the dummy index j in Eq. (5) can be expressed as a sum
over the coarse-grained x′ and θ′ with the additional weight due to the particles at the
coarse-grained location x′ and θ′ i.e.,

∑
j =

∑
x′
∑

θ′ ∆x∆θρt(x
′, θ′), where ρt(x, θ) is the

phase space density of the interacting particles at (x, θ). In the large-N limit, the Eq. (14)
becomes

X(θ) = x+
1

2

∫ ∞

−∞
dθ′
∫ ∞

−∞
dx′ρt(x

′, θ′)a(θ − θ′)sgn(x− x′). (15)
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Consider free coordinates (X, k), where k is the momenta which is parameterised by ra-
pidity θ, hereafter referred to as bare coordinates, and contrast these with the interacting
coordinates (x, θ). By imposing this mapping and requiring that the number of particles
be conserved

∫
dX dk

2π rt(X, k) = N =
∫
dxdθ ρt(x, θ) it follows that

rt(X(θ), k(θ))
(k′(θ))dr(x, θ)

2π
= ρt(x, θ) (16)

Here
(
k′(θ)

)dr
t
(x, θ) is the Jacobian of the transformation (x, θ) → (X(θ), k(θ)). Hence-

forth, bare particle densities rt(X, θ) are to be understood as being evaluated at the
location (X, k(θ)). In the case of a Galilean invariant model, k(θ) = θ, this yields a
particularly convenient relation between the bare and interacting densities

rt(X(θ), θ) = nt(x, θ). (17)

Using Eq. (17), we can re-express the mapping in Eq. (15) as

x = X(θ)− 1

2

∫ ∞

−∞
dθ′
∫ ∞

−∞
dX ′ rt(X

′, θ′)a(θ − θ′)sgn(X(θ′)−X ′). (18)

Note that X(θ) depends on rt(X, θ), x and θ i.e., X(θ) ≡ X[rt](x, θ).
The hydrodynamic equation for the free particle density rt(X, θ) can be obtained using

Eq. (17) and Eq. (13), which gives

∂trt(X, θ) + vt(θ)∂Xrt(X, θ) = 0 with (19)

vt(θ) =

(
θ
)dr
t
(x→ −∞, θ) +

(
θ
)dr
t
(x→∞, θ)

2
. (20)

Here, the phase-space density rt(X, θ) propagates with velocity vt(θ), itself depending
on the density at the boundaries. When the boundaries are time independent nt(x →
±∞, θ) = n±(θ) and carry no net current i.e., satisfies n±(−θ) = n±(θ) or when it
vanishes (n±(θ) = 0) the propagation velocity becomes that of the bare velocity vt(θ) = θ.
For such boundaries, Eq. (19) describes the free point particles. In the rest of the article,
we assume that the density at the boundaries (x → ±∞) is not driven and set to zero,
which makes vt(θ) = θ. Using the Galilean invariance of Eq. (19), we can express its
solution as

rt(X, θ) = r0
(
X − tθ, θ

)
. (21)

Applying the mapping in Eq. (18), we conjecture that, by analysing the mesoscopic observ-
ables of the point particle system via the BMFT framework, one can infer the statistical
behaviour of the appropriately modified observables in interacting integrable models.

1.3 Main results and organisation of the paper

The main result of this article is the reformulation of BMFT for integrable systems through
mapping [see Eq. (5)] their configuration to that of the point particles. Using our approach,
we study the following two quantities

1. The full counting statistics corresponding to Q̃T defined in Eq. (1) by computing
the generating function [see Eq. (45) for (non-interacting) point particles system and
Eq. (78) for interacting system]

FCS: µ(λ) = log
[〈

exp
(
λQ̃T

)〉
r̄0

]
, (22)

where the average is over fluctuations in the initial state characterised by average
phase space density r̄0(Z, θ) in the point particle coordinates.
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2. The 2-point normal mode density correlation [see Eq. (108)]

correlations: ⟨nt1(x1, θ1)nt2(x2, θ2)⟩c. (23)

is obtained by studying the generating function

Generating function :
〈
exp

(
Tλ1nt1

(
x1, θ1

)
+ Tλ2nt2

(
x2, θ2

))〉
n̄0

. (24)

This paper is organised as follows: in section 2 we introduce the BMFT for point
particles, showing how it can also be done for generic particle statistics, and in particular
quantum statistics. In section 3 we use the BMFT for generic classical and quantum
interacting systems to compute the full counting statistics. In section 4, we study the
2-point normal mode correlations for these systems. Finally in section 5 we conclude with
an outlook and potential directions for this approach.

2 BMFT for point particles

A useful quantity for studying transport is the net charge transferred across the origin
during a finite but long time T as defined in Eq. (1). As this quantity depends on the
initial configuration, it is a random variable whose statistics are known as the full counting
statistics (FCS). Although computing FCS can be challenging in general, the formalism of
MFT for diffusive systems and BMFT for ballistic systems offers a systematic framework.
To illustrate BMFT, consider the simplest example, free point particles. At Euler scale
their phase space density rt(X, θ) obeys

∂trt(X, θ) + θ∂Xrt(X, θ) = 0. (25)

The net charge transfer over a time interval T from left to right of the origin can be
expressed as [using Eq. (1)]

Q̃T =

∫ ∞

−∞
dθ

∫ ∞

0
dX h(θ)

(
rT (X, θ)− r0(X, θ)

)
, (26)

where the function h(θ) is an arbitrary function. This is exactly the difference between the
total charge on the right of the origin at time T and at time 0. Here, to obtain Eq. (26)
from Eq. (1) we used rt(X, θ) = ρt(x, θ) and X = x, which can be easily obtained by
setting a(θ − θ′) = 0 in Eqs. (15) and (17).

Clearly, the observable Q̃T is deterministic for any given initial configuration r0(X, θ)
once it evolves via Eq. (25). Its randomness originates solely from the stochastic nature of
the initial configuration r0(X, θ), which is determined by the preparation of our system.
A natural choice is when all the particles are independently sampled to have a

typical equilibrium profile : r̄0(X, θ), (27)

so that the realized profile r0(X, θ) fluctuates around r̄0(X, θ). The probability of observing
the initial phase-space density is then given by the large deviation principle with the free
energy cost of creating r0(X, θ) from r̄0(X, θ), see Fig. 3 and Appendix B for the explicit
calculations. The probability density functional denoted by P0[r0(X, θ)] is given by

P0 [r0(X, θ)] ≍ exp
(
−F̃ [r0(X, θ)]

)
, where (28)

F̃ [r0(X, θ)] =
∫ ∞

−∞
dθ

∫ ∞

−∞
dY

[
f(r0)− f(r̄0)− (r0 − r̄0)f ′(r̄0)

]
.
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r(Xi, ✓j)

Figure 3: Schematic plot of the (X, θ) phase space, partitioned into R strips of size ∆X
which are labeled by index i ∈ {1, 2, ..., R} and centered around position Xi as shown by
the pink strip. Each of these strips are further partitioned into M smaller subsystems
of size ∆θ which are labeled by index (., j) and have particles with velocities between
[θj − ∆θ/2, θj + ∆θ/2]. The subsystem labeled by (i, j) centered around (Xi, θj) has
ni,j ≡ r(Xi, θj)∆X∆θ number of particles and its typical value is n̄i,j ≡ r̄(Xi, θj)∆X∆θ.

Here, the free energy per unit phase-space volume is given by

f(r0) =

{
r0 log r0 − r0 for Classical particles,

r0 log r0 + η
(
1− ηr0

)
log
(
1− ηr0

)
for Quantum particles

(29)

where η = ±1 are for Fermions and Bosons, respectively. Using the Eq. (29) in Eq. (28)
we obtain the free energy cost as

F̃ [r0] =
∫ ∞

−∞
dθ

∫ ∞

−∞
dX G(r0, r̄0) with (30)

G(r0, r̄0) =





r0 log
(
r0
r̄0

)
−
(
r0 − r̄0

)
for Classical particles,

r0 log
(
r0
r̄0

)
+ (1− r0) log

(
1−r0
1−r̄0

)
for Fermions,

r0 log
(
r0
r̄0

)
− (1 + r0) log

(
1+r0
1+r̄0

)
for Bosons.

For the case of radiative modes and solitons
The statistical properties of Q̃T can be understood by computing the generating func-

tion

〈
exp
(
λQ̃T

)〉
r̄0

=

∫
D [rt(X, θ)]Pt[rt(X, θ)] exp

(
λQ̃T

)
, (31)

where the angular brackets ⟨ ∗ ⟩r̄0 with the subscript r̄0 represents an average over the
initial density profile. Here, the probability density function of any profile rt(x, θ) can be
obtained using the propagator that evolves the initial density profile, which is given by

Pt[rt(X, θ)] = δ [∂trt(X, θ) + ∂Xθrt(X, θ)] exp
(
−F̃ [r0]

)
. (32)
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In Eq. (32), the delta functional ensures that the phase space density satisfies the hydrody-
namic evolution equation Eq. (25). Substituting Eq. (32) into the expression of generating
function in Eq. (31), we get

〈
exp
(
λQ̃T

)〉
r̄0

=

∫
D [rt(X, θ)] δ [∂trt(X, θ) + ∂Xθrt(X, θ)] exp

(
−F̃ [r0]

)
exp
(
λQ̃T

)
.

(33)

Using the Fourier representation for the delta-functional Eq. (33) can be expressed as

〈
exp
(
λQ̃T

)〉
r̄0

=

∫
D [rt(X, θ)]D [r̂t(X, θ)] exp

(
S̃[rt(X, θ), r̂t(X, θ)]

)
, (34)

where r̂t(X, θ) is the field conjugate to rt(X, θ) and the action S̃[rt(X, θ), r̂t(X, θ)] is given
by

S̃[rt(X, θ), r̂t(X, θ)] = −
∫ ∞

−∞
dθ

∫ ∞

−∞
dX

∫ T

0
dt r̂t(X, θ) [∂trt(X, θ) + ∂Xθrt(X, θ)]

− F̃ [r0(X, θ)] + λQ̃T , with Q̃T given in Eq. (26). (35)

To investigate ballistic transport the position and time is rescaled as X = T Z and
t = T τ , with Z and τ being the rescaled position and time variables. In these rescaled
variables, the action is

S̃[rt(X, θ), r̂t(X, θ)] = TS[qτ (Z, θ), pτ (Z, θ)] where

S[qτ (Z, θ), pτ (Z, θ)] = −
∫ ∞

−∞
dθ

∫ ∞

−∞
dZ

∫ 1

0
dτ pτ (Z, θ) [∂τqτ (Z, θ) + ∂Zθqτ (Z, θ)]

−F [q0(Z, θ)] + λQ1, (36)

where qτ (Z, θ) and pτ (Z, θ) are functions of the rescaled variables

qτ (Z, θ) = rt(X, θ), q̄τ (Z, θ) = r̄t(X, θ), pτ (Z, θ) = r̂t(X, θ) (37)

with τ =
t

T
and Z =

X

T
. (38)

In Eq. (36), the scaled charge and the scaled free energy cost are given, respectively, by

Q1 =
1

T
Q̃T =

∫ ∞

−∞
dθ

∫ ∞

0
dZ h(θ)

(
q1(Z, θ)− q0(Z, θ)

)
, (39)

F [q0(Z, θ)] =
1

T
F̃ [r0(X, θ)] =

∫ ∞

−∞
dθ

∫ ∞

−∞
dZ G

(
q0(Z, θ), q̄0(Z, θ)

)
, (40)

with G(q0, q̄0) given in Eq. (30). As the action in Eq. (36) scales linearly with time T ,
we use the saddle point calculation to compute the generating function in Eq. (34). We
obtain the following saddle point equations

δS[qτ , pτ ]
δpτ (Z, θ)

= ∂τq
∗
τ (Z, θ) + ∂Zθq

∗
τ (Z, θ) = 0, (41a)

δS[qτ , pτ ]
δqτ (Z, θ)

= ∂τp
∗
τ (Z, θ) + ∂Zθp

∗
τ (Z, θ) = 0, (41b)

δS[qτ , pτ ]
δq1(Z, θ)

= p∗1(Z, θ)− λΘ(z)h(θ) = 0, (41c)

δS[qτ , pτ ]
δq0(Z, θ)

= −p∗0(Z, θ) + λΘ(Z)h(θ)− δF [q0]
δq0(Z, θ)

= 0, (41d)
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where ·∗ denotes the saddle point value. Eqs. (41a) and (41b) are obtained from the
variation of action Eq. (36) due to the auxiliary field pτ (Z, θ) and qτ (Z, θ), respectively.
While Eq. (41c) and Eq. (41d) are obtained by variation due to the densities at time-
boundaries i.e., q1(Z, θ) and q0(Z, θ), respectively. Since Eq. (41a) and Eq. (41b) are
Galilean invariant, they can be solved as

q∗τ (Z, θ) = q∗0(Z − τθ, θ) and p∗τ (Z, θ) = p∗0(Z − τθ, θ). (42)

Using Eq. (42) in Eqs. (41d) and (41c) and substituting the free energy from Eq. (40), we
can obtain the saddle point initial density, q∗0(Z, θ), by solving

q∗0(Z, θ)

1− ηq∗0(Z, θ)
=

q̄0(Z, θ)

1− ηq̄0(Z, θ)
exp

(
λh(θ)

{
Θ(Z + θ)−Θ(Z)

})
, (43)

where Θ(Z) is Heavy-side step function and setting η = 0 we get the saddle point solution
for classical systems and η = ±1 for Bosons and Fermions, respectively. The scaled saddle
point action is obtained by substituting Eq. (42) in Eq. (36), which gives

S[q∗τ (Z, θ), p∗τ (Z, θ)] = −F [q∗0(Z, θ)] + λQ∗
1, (44)

where Q∗
1 is the scaled charge evaluated by substituting qτ (Z, θ) = q∗τ (Z, θ) in the expres-

sion of Q1, Eq. (39), which gives Q1 = Q∗
1. The cumulant generating function µ(λ) is then

obtained by substituting the saddle point initial condition (q∗0(Z, θ)) in Eq. (34) to get

exp
(
µ(λ)

)
=
〈
exp
(
λQ̃T

)〉
r̄0
≍ exp

(
TS[q∗τ (Z, θ), p∗τ (Z, θ)]

)
,

µ(λ) ≍ T
(
λQ∗

1 −F [q∗0(Z, θ)]
)
. (45)

By simplifying Eq. (45) for the classical systems, we get

µ(λ) =T

∫ ∞

0
dθ

∫ 0

−θ
dZ q̄0(Z, θ)

[
exp(λh(θ))− 1

]

+ T

∫ 0

−∞
dθ

∫ −θ

0
dZ q̄0(Z, θ)

[
exp(−λh(θ))− 1

]
. (46)

While for the Quantum system, it is given by

µ(λ) = Tη

∫ ∞

0
dθ

∫ 0

−θ
dZ log

(
1 + ηq̄0(Z, θ)

[
exp

(
λh(θ)

)
− 1
])

(47)

+ Tη

∫ 0

−∞
dθ

∫ −θ

0
dZ log

(
1 + ηq̄0(Z, θ)

[
exp

(
− λh(θ)

)
− 1
])
.

Here, we recall that η = ±1 is for Fermions and Bosons, respectively. Also recall that the
typical profile q̄0(Z, θ) = r̄0(TZ, θ) as given in Eq. (37). We can compute all the cumulants
by taking derivatives of µ(λ), and find that as µ(λ) ∝ T Eq. (45), all the cumulants must
grow linearly with T . We note that for the classical systems with h(θ) = 1 i.e. for mass
transport, the expression of nth cumulant is much simple and given by

κn = T
(
Q+ + (−1)nQ−

)
, (48)

where

Q− =

∫ 0

−∞
dθ

∫ −θ

0
dZ q̄0(Z, θ), and Q+ =

∫ ∞

0
dθ

∫ 0

−θ
dZ q̄0(Z, θ). (49)
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A derivation based on the microscopic approach also gives the same result as shown in the
Appendix C.

Using the Legendre duality between the cumulant generating function µ(λ) and the
rate function I(Q1), we can compute the expression of the rate function corresponding to
the probability distribution of Q1 as

P(Q1) ≍ exp
(
− TI(Q1)

)
with I(Q1) = λ∗Q1 −

µ(λ∗)

T
, (50)

where λ∗ is obtained by solving

d

dλ
µ(λ)

∣∣∣
λ=λ∗

= TQ1 for any Q1. (51)

The expression of the rate function in Eq. (50) can be simplified by substituting the
expression of the µ(λ) given in Eq. (44) to get

I(Q1) = F [q∗0(Z, θ)], (52)

where q∗0(Z, θ) is obtained from solving Eq. (43) and setting λ = λ∗ with λ∗ obtained from
Eq. (51).

2.1 FCS in partitioning protocol

The partitioning protocol constitutes an ideal setting to study transport in ballistic sys-
tems, see for example [26, 27, 74]. This protocol involves initialising the system into two
semi-infinite domains characterised by a homogeneous particle density r±(θ), which are
joined at the origin. Inside the light-cone generated by the dynamics, the phase-space
density is given by (see also [26,27,36,74]),

r̄0(X, θ) = r̄+(θ)Θ(X) + r̄−(θ)Θ(−X), (53)

where Θ(X) is Heaviside step function. To understand its evolution consider the dynamics
along a ray ξ = X/t. With these ray coordinates eq. (25) can be expressed as

(
ξ − θ

)
∂ξ r̃(ξ, θ) = 0 where r̃(ξ, θ) = rt(X, θ). (54)

So starting from the initial condition Eq. (53), the free point particle density evolves as

r̃(ξ, θ) = r̄−(θ)Θ
(
θ − ξ

)
+ r̄+(θ)Θ

(
ξ − θ

)
. (55)

In this setup, we can simplify the expressions of the cumulant generating function given
in Eq. (46) and Eq. (47) to get

µ(λ) = T

∫ ∞

−∞
dθ |θ|r̃0(θ)

[
exp

(
λh(θ)sgn(θ)

)
− 1
]
, for Classical, (56)

µ(λ) = ηT

∫ ∞

−∞
dθ |θ| log

(
1 + ηr̃0(θ)

[
exp

(
λh(θ)sgn(θ)

)
− 1
])
, for Quantum, (57)

where we defined r̃0(θ) = r̃(ξ = 0, θ) and it is given by Eq. (55). Using Eq. (56) and (57),
we can compute the cumulants by taking their derivative with λ. The first four cumulants
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are then readily computed as

κ1 = T

∫ ∞

−∞
dθ θ h(θ)r̃0(θ), (58a)

κ2 = T

∫ ∞

−∞
dθ |θ|

(
h(θ)

)2
r̃0(θ)

(
1− ηr̃0(θ)

)
, (58b)

κ3 = T

∫ ∞

−∞
dθ θ

(
h(θ)

)3
r̃0(θ)

(
1− ηr̃0(θ)

)(
1− 2ηr̃0(θ))

)
, (58c)

κ4 = T

∫ ∞

−∞
dθ |θ|

(
h(θ)

)4
r̃0(θ)

(
1− ηr̃0(θ)

)(
1− 6ηr̃0(θ) + 6η2r̃0(θ)

2
)
. (58d)

3 BMFT for interacting systems via mapping to point par-
ticles

Equipped with the BMFT description of point particles, we proceed to the case of interact-
ing integrable models. Our approach involves working with the free particle coordinates
and making use of the transformation (15) to comment on the interacting case. In this
section, we study the full counting statistics for general integrable models by studying
the statistical properties of Q̃T defined in Eq. (1), which can be represented in the free
coordinates as

Q̃T =

∫ ∞

−∞
dθ

∫ ∞

LT (θ)
dX h(θ)rT (X, θ)−

∫ ∞

−∞
dθ

∫ ∞

L0(θ)
dX h(θ)r0(X, θ), (59)

where we have used Eq. (17) and the variable transformation Eq. (15) in Eq. (1). The
location of the origin in the free coordinates at any time t is denoted by Lt(θ) and obtained
by setting x = 0 in Eq. (15), which gives

Lt(θ) =
1

2

∫ ∞

−∞
dθ′
∫ ∞

−∞
dX rt(X, θ

′)a(θ − θ′)sgn
(
Lt(θ

′)−X
)
. (60)

Although the observable in Eq. (59) is deterministic and solely determined by the initial
condition, r0(X, θ), the fluctuations in the initial configuration cause it to behave like
a random variable. For studying the statistical properties of Q̃T , we use the approach
described in Section 2 and compute

〈
exp

(
λQ̃T

)〉
r̄0

=

∫
D[rt(X, θ)]D[r̂t(X, θ)] exp

(
S̃
[
rt(X, θ), r̂t(X, θ)

])
, (61)

where the action S̃
[
rt(X, θ), r̂t(X, θ)

]
is given by

S̃
[
rt(X, θ), r̂t(X, θ)

]
= −

∫ ∞

−∞
dθ

∫ ∞

−∞
dX

∫ T

0
dt r̂t(X, θ) [∂trt(X, θ) + θ∂Xrt(X, θ)]

− F̃ [r0(X, θ)] + λQ̃T , with Q̃T given in Eq. (59). (62)

Here, we have assumed that the statistical nature of the initial profile, when described
in the point particle density r0(x, θ), is governed by the probability density functional
with the large deviation function F̃ [r0] given in Eq. (28) along with Eq. (30). While a
general proof is not available, we present a combinatorial calculation in the Appendix B.2
to demonstrate that the free energy of the hard rods when expressed in terms of the
point particles is indeed described by Eq. (28) with the free energy per unit volume given
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by Eq. (30). This is a well motivated assumption, as the Hamiltonian governing the
mapped point particles is non-interacting (see Ref. [67]) and the equilibrium properties
are determined by the free energy of the non-interacting system. Hence, one expects that
the large deviation functional for the initial state coincides with the free energy of the
non-interacting system.

Since we are concerned with the ballistic scaling, we choose X = TZ and t = Tτ where
Z and τ are the rescaled position and time. In the rescaled variables, the action can be
expressed as

S̃
[
rt(X, θ), r̂t(X, θ)

]
= TS

[
qτ (Z, θ), pτ (Z, θ)

]
, where (63)

S
[
qt(Z, θ), pt(Z, θ)

]
= −

∫ ∞

−∞
dθ

∫ ∞

−∞
dZ

∫ T

0
dt pτ (Z, θ) [∂τqτ (Z, θ) + θ∂zqτ (Z, θ)]

−F [q0(Z, θ)] + λQ1. (64)

Here F [q0(Z, θ)] is rescaled free energy cost given in Eq. (40), the scaled charge Q1 is given
by

Q1 =
1

T
Q̃T =

∫ ∞

−∞
dθ

∫ ∞

l1(θ)
dz h(θ)q1(Z, θ)− λ

∫ ∞

−∞
dθ

∫ ∞

l0(θ)
dz h(θ)q0(Z, θ) (65)

and qτ (Z, θ), pτ (Z, θ) are the phase-space density and its conjugate in the rescaled variables

qτ (Z, θ) = rt(X, θ) with τ =
t

T
and z =

X

T
, (66)

q̄τ (Z, θ) = r̄τ (X, θ) (67)

pτ (Z, θ) = r̂t(X, θ). (68)

The lengths l0(θ) and l1(θ) in Eq. (65) are given by

lτ (θ) =
Lt(θ)

T
with t = τT and (69)

lτ (θ) ≡ lτ [qτ (Z, θ)] =
1

2

∫ ∞

−∞
dθ′
∫ ∞

−∞
dz′qτ (z

′, θ)a(θ − θ′)sgn
(
lτ (θ

′)− z′
)
.

As the action in Eq. (63) scales linearly with time T , for large T , we use the saddle point
calculation to compute the generating function in Eq. (61). By setting the variation of
S[qτ , pτ ] at q∗τ (Z, θ) and p∗τ (Z, θ) to zero the following saddle point equations are obtained

δS[qτ , pτ ]
δpτ (Z, θ)

= ∂τq
∗
τ (Z, θ) + θ∂zq

∗
τ (Z, θ) = 0, (70a)

δS[qτ , pτ ]
δqτ (Z, θ)

= ∂τp
∗
τ (Z, θ) + θ∂zp

∗
τ (Z, θ) = 0, (70b)

δS[qτ , pτ ]
δq1(Z, θ)

=
λ

2

(
h(θ)− sgn

(
l∗1(θ)− z

)
c∗1(θ)

)
− p∗1(Z, θ) = 0, (70c)

δS[qτ , pτ ]
δq0(Z, θ)

= p∗0(Z, θ)−
λ

2

(
h(θ)− sgn

(
l∗0(θ)− z

)
c∗0(θ)

)
− δF [q∗0(Z, θ)]

δq0(Z, θ)
= 0, (70d)

where c∗0(θ) and c
∗
1(θ) are

c∗0[q
∗
0](x = 0, θ) ≡ c∗0(θ) =

(
h
)dr
0
(x = 0, θ) dressing with n∗0(0, θ) = q∗0(l

∗
0(θ), θ) (71)

c∗1[q
∗
1](x = 0, θ) ≡ c∗1(θ) =

(
h
)dr
T
(x = 0, θ) dressing with n∗T (0, θ) = q∗1(l

∗
1(θ), θ). (72)
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To obtain these saddle point equations, we also assumed that the density at the boundary
is fixed and vanishes. The main task is now to solve the saddle point equation Eqs. (70a)-
(70d). Since Eq. (70a) and Eq. (70b) are Galilean invariant Euler equations of a free
system, the solution is given by

q∗τ (Z, θ) = q∗0
(
z − τθ, θ

)
, p∗τ (Z, θ) = p∗0

(
z − τθ, θ

)
. (73)

In Eq. (70d), we use Eq. (70c) which is back propagated using Eq. (73) and substitute the
expression of the scaled free energy, Eq. (40), to find

q∗0(Z, θ)

1− ηq∗0(Z, θ)
=

q̄0(Z, θ)

1− ηq̄0(Z, θ)
exp

(
λ

2

[
c∗0(θ)sgn(l

∗
0(θ)− z)− c∗1(θ)sgn(l∗1(θ)− θ − z

)])
,

(74)

where l∗0(θ), l
∗
1(θ), c

∗
0(θ) and c

∗
1(θ) are given by

l∗0(θ) =
1

2

∫ ∞

−∞
dθ′
∫ ∞

−∞
dz′q∗0(z

′, θ′)a(θ − θ′)sgn(l0(θ′)− z′), (75a)

l∗1(θ) =
1

2

∫ ∞

−∞
dθ′
∫ ∞

−∞
dz′q∗1(z

′, θ′)a(θ − θ′)sgn(l1(θ′)− z′), (75b)

c∗0(θ) =
(
h
)dr
0
(x = 0, θ) dressing with n∗0(0, θ) = q∗0(l

∗
0(θ), θ),

c∗0(θ) = h(θ) +

∫ ∞

−∞
dθ′φ(θ − θ′)q∗0(l∗0(θ′), θ′)c∗0(θ′), (75c)

c∗1(θ) =
(
h
)dr
T
(x = 0, θ) dressing with n∗T (0, θ) = q∗1(l

∗
1(θ), θ),

c∗1(θ) = h(θ) +

∫ ∞

−∞
dθ′φ(θ − θ′)q∗1(l∗1(θ′), θ′)c∗1(θ′). (75d)

Note that all the functions are implicitly dependent on λ. Substituting the saddle point
density profile, obtained by solving Eq. (74) and Eq. (75), in Eq. (64) we find that the
saddle point action is given by

S
[
q∗t (Z, θ), p

∗
t (Z, θ)

]
= −F [q∗0(Z, θ)] + λQ∗

1. (76)

where the scaled charge at the saddle point density is obtained by substituting q∗0(Z, θ)
obtained from solving Eq. (74) in Eq. (65), which gives

Q∗
1 =

∫ ∞

−∞
dθ

∫ ∞

l∗1(θ)
dz h(θ)q∗1(Z, θ)−

∫ ∞

−∞
dθ

∫ ∞

l∗0(θ)
dz h(θ)q∗0(Z, θ) (77)

We can now compute the cumulant generating function given in Eq. (61) by using Eq. (63)
and Eq. (76) which gives

µ(λ) = T
(
λQ∗

1 −F [q∗0(Z, θ)]
)

where q∗0(Z, θ) is obtained from Eqs. (74). (78)

Here recall that F [q] is the free energy cost given in Eq. (40). Using the Legendre duality,
we can express the rate function as [see Eq. (50)]

I(Q1) = F [q∗0(Z, θ)], (79)

where q∗0(Z, θ) is obtained from solving Eq. (74) at λ = λ∗ and λ∗ is obtained by solving

d

dλ
µ(λ)

∣∣∣
λ=λ∗

= TQ1 for any Q1. (80)
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Consequently, we obtain the charge at the saddle point (governed by λ) using

d

dλ
µ(λ) = TQ∗

1 where Q∗
1 is given in Eq. (77). (81)

Hence, the first cumulant is obtained by setting λ = 0 in Eq. (81) to get

κ1 = T

∫ ∞

−∞
dθ

∫ ∞

l̄1(θ)
dZ h(θ)q̄1(Z, θ)− T

∫ ∞

−∞
dθ

∫ ∞

l̄0(θ)
dZ h(θ)q̄0(Z, θ). (82)

Here l̄τ (θ) is obtained from Eq. (69) by replacing qτ (Z, θ) with q̄τ (Z, θ). To compute the
second cumulant, we take a derivative with respect to λ on both sides of Eq. (81) and then
set λ = 0 to get

κ2 =

[
d2

dλ2
µ(λ)

]

λ=0

(83)

= T
1

4

∫ ∞

−∞
dθ

∫ ∞

−∞
dZ
(
c̄0(θ)− c̄1(θ)

)2
q̄1(Z, θ)

(
1− ηq̄1(Z, θ)

)
(84)

+ T

∫ ∞

θc

dθ

∫ l̄0(θ)+θ

l̄1(θ)
dZ c̄0(θ)c̄1(θ)q̄1(Z, θ)

(
1− ηq̄1(Z, θ)

)

+ T

∫ θc

−∞
dθ

∫ l̄1(θ)

l̄0(θ)+θ
dZ c̄0(θ)c̄1(θ)q̄1(Z, θ)

(
1− ηq̄1(Z, θ)

)
,

where θc solves θc = l̄1(θc) − l̄0(θc) and c̄0/1(θ) are given in Eq. (75c) and Eq. (75d)
with q∗0/1(Z, θ) replaced by q̄0/1(Z, θ). Calculating the cumulant generating function, or
equivalently rate function for arbitrary typical profiles, becomes increasingly complex. We
therefore focus on two cases: (i) homogeneous and (ii) partitioning protocol (inhomoge-
neous).

For homogeneous initial conditions, the phase space density is given by

ρ̄0(x, θ) = ϱ̄ p̄(θ). (85)

In the normal mode coordinates, we get

n̄0(x, θ) =
2πρ̄0(x, θ)(
1
)dr
0
(x, θ)

with
(
1
)dr
0
(x, θ) = 1 + ϱ ⟨φ(θ − θ′)⟩p̄(θ), (86)

where ⟨∗⟩p̄(θ) represents average with p̄(θ). Expressing the density in the point particle
coordinate, and after scaling, we get

q̄0(Z(θ), θ) = n0(x, θ) =
2πρ̄0(x, θ)(
1
)dr
0
(x, θ)

with Z(θ) =
X(θ)

T
, (87)

where X(θ) is given in Eq. (18). The rate function is obtained by substituting Eq. (73)
with q̄0(Z, θ) from Eq. (87) in Eq. (79). In the Fig. 4, we show a plot of the rate function
given in Eq. (79) for the hard rods that is obtained by solving Eq. (75) iteratively. We
compare them with our numerical simulations. The plot shows that the distribution is
non-Gaussian. We next compute the cumulants for the inhomogeneous profile with the
partitioning protocol setup.

16



SciPost Physics Submission

−6 −4 −2 0 2 4 6

Q1

0

5

10

15

20

25

I(
Q

1)

0

1

2

3

4

5

T

Figure 4: Plot showing the rate function [Eq. (79) with q̄0(Z, θ) given by Eq. (87)] for
the density observable Q1 = Q̃T /T , with h(θ) = 1, in a system of hard rods of length
a = 1

4 and mean number of particles ⟨N⟩ = 214 for T ∈ [0.5, 5]. Initial momenta are
sampled from a Gaussian distribution with zero mean and variance set by the temperature
1/β = 1. These configurations are mapped to interacting coordinates using the mapping
in Eq. (5). The point particles evolve freely (Ẋi = θi) and the interacting coordinates are
computed at later times T using the mapping Eq. (5). The observable Q1 is evaluated
from 108 independent trajectories to construct the rate function. The typical part of the
distribution aligns with the Gaussian distribution (green dashed line) with variance set by
κ2 [Eq. (83) with q̄1(Z, θ) from Eq. (87)]. However, the tails i.e., the atypical fluctuations
behave differently from Gaussian as shown by the theoretical rate function (red solid lines).
These highlight the non-Gaussian nature of the FCS.

3.1 Charge fluctuations in the partitioning protocol

For the partitioning protocol, the phase space density is described by [26,27,36,74]

ρ̄0(x, θ) = ρ̄+(θ)Θ(x) + ρ̄−(θ)Θ(−x), (88)

where Θ(x) is Heavy-side step function. In the normal mode coordinates [see Eq. (11)],
we get

n̄0(x, θ) =
2πρ̄0(x, θ)(
1
)dr
0
(x, θ)

= n̄+(θ)Θ(x) + n̄−(θ)Θ(−x), (89)

where the functions

n̄±(θ) =
2πρ̄±(θ)
(
1
)d̄r
± (θ)

with
(
1
)d̄r
± (θ) = 1 +

∫ ∞

−∞
dθ′φ(θ − θ′)n̄±(θ′)

(
1
)d̄r
± (θ′). (90)

To study the charge fluctuations in the partitioning protocol, analysing the evolution of
normal mode densities in the ray coordinates is convenient. In these coordinates, we track
the evolution of the density along the ray ξ = x/t, and Eq. (13) in the ray coordinates
becomes

∂ξñ(ξ, θ)
(
ξ − ṽeff(ξ, θ)

)
= 0 where ñ(ξ, θ) = nt(x, θ). (91)
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So starting from the initial condition Eq. (89), the normal mode density evolves as

ñ(ξ, θ) = n−(θ)Θ
(
veff(ξ, θ)− ξ

)
+ n+(θ)Θ

(
ξ − veff(ξ, θ)

)
and equivalently as

ñ(ξ, θ) = n−(θ)Θ
(
θ − θ∗(ξ)

)
+ n+(θ)Θ

(
θ∗(ξ)− θ

)
, where veff(ξ, θ∗) = ξ. (92)

This suggests that the density along the ray ξ = 0 (x = 0, t > 0) does not evolve. Hence

for this protocol, c̄0(θ) = c̄1(θ) =
(
h
)dr
t
(x = 0, θ) [see Eqs. (75c) and (75d)].

We can express the phase space density in Eq. (89) in the point particle coordinates
as

q̄0(Z, θ) = n̄+(θ)1
(
Z > l̄0(θ)

)
+ n̄−(θ)1

(
Z < l̄0(θ)

)
. (93)

The density at the point corresponding to the origin x = 0 evolves as q̄τ (l̄τ (θ), θ) =
q̄0(l̄τ (θ)− τθ, θ) and we obtain

q̄τ (l̄τ (θ), θ) = n̄+(θ)1
(
l̄τ (θ) > l̄0(θ) + τθ

)
+ n̄−(θ)1

(
l̄τ (θ) < l̄0(θ) + τθ

)
. (94)

Here note that (l̄τ (θ), θ) is the location in the point particle’s coordinates corresponding
to the point (x = 0, θ).

For this protocol, we can compute the cumulants by taking the derivative of the cu-
mulant generating µ(λ) function with λ and setting λ = 0. Here we present the expression
for the first three cumulants:

κ1 = T

∫ ∞

−∞
dθ
(
l̄0(θ) + θ − l̄1(θ)

)
h(θ)q̄1(l̄1(θ), θ). (95a)

κ2 = T

∫ ∞

−∞
dθ
∣∣l̄1(θ)− l̄0(θ)− θ

∣∣ (c̄1(θ)
)2
q̄1(l̄1(θ), θ)

(
1− ηq̄1(l̄1(θ), θ)

)
. (95b)

κ3 =

[
d3

dλ3h
µ
(h)
I (λh)

]

λh=0

= T

∫ ∞

−∞
dθ
(
c̄0(θ)

)3(
θ + l̄0(θ)− l̄1(θ)

)
q̄1(l̄1(θ), θ)(1− ηq̄1(l̄1(θ), θ))(1− 2ηq̄1(l̄1(θ), θ))

+ T

∫ ∞

−∞
dθq̄1(l̄1(θ), θ)(1− ηq̄1(l̄1(θ), θ))c̄0(θ)

∣∣θ + l̄0(θ)− l̄1(θ)
∣∣× (95c)

×
∫ ∞

−∞
dψφdr

0 (θ − ψ)
[
3
(
c̄1(ψ)

)2]
q̄1(l̄1(ψ), ψ)(1− ηq̄1(l̄1(ψ), ψ))sgn

(
ψ + l̄0(ψ)− l̄1(ψ)

)

Note that by setting φ(θ− θ′) = 0 in Eq. (95), we obtain the result for the point particles
given in Eq (58).

In the ray coordinates [Eq. (92)], the expression of the first three cumulants is given by

κ1 =

∫ ∞

−∞
dθ veff[ρ̃(0,.)](θ) h(θ)ρ̃(0, θ), (96a)

κ2 =

∫ ∞

−∞
dθ
∣∣veff[ρ̃(0,.)](θ)

∣∣ [c̄1(θ)
]2
ρ̃(0, θ)

(
1− ηñ(0, θ)

)
, (96b)

κ3 =

∫ ∞

−∞
dθ veff[ρ̃(0,.)](θ)

(
c̄1(θ)

)3
ρ̃(0, θ)(1− ηñ(0, θ))(1− 2ηñ(0, θ)) (96c)

+

∫ ∞

−∞
dθρ̃(0, θ)(1− ηñ(0, θ))c̄1(θ)

∣∣veff[ρ̃(0,.)](θ)
∣∣×

×
∫ ∞

−∞
dψφdr

0 (θ − ψ)
[
3
(
c̄1(ψ)

)2]
ñ(0, ψ)(1− ηñ(0, ψ))sgn

(
veff[ρ̃(0,.)](ψ)

)
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where the effective velocity veff[ρ̃(0,.)](θ) is given in Eq. (9), c̄1(θ) =
(
h
)dr

(ξ = 0, θ) and

ρ̃(0, θ) = ñ(0, θ)
(
1
)dr

(ξ = 0, θ). Here we also used the relation

(
θ
)dr

(ξ = 0, θ) = θ + l̄0(θ)− l̄1(θ). (97)

This can be obtained by computing l̄0(θ) + θ − l̄1(θ) and it satisfies

l̄1(θ)− l̄0(θ)− θ =
∫ ∞

−∞
dθ′
[
l̄1(θ

′)− l̄0(θ′)− θ′
]
ñ(0, θ′)a(θ − θ′)− θ. (98)

Using the dressing operation on Eq. (98), we obtain Eq. (97). The expression of the
first three cumulants in Eq. (96) agrees with the result obtained in Ref. [24, 25]. Here
we note that identifying the cumulants with derivatives of the scaled generating function
in Eqs. (82), (83) and (96) requires sufficient regularity of the latter. In particular, if
the finite-time generating functions are uniformly bounded in a complex neighborhood
of the origin, Bryc’s regularity condition applies [75]. This condition ensures analyticity
of the scaled cumulant generating function and implies the validity of the central limit
theorem as a consequence of finite scaled cumulants. When Bryc’s condition is violated,
non-analytic behavior may arise, and both the standard identification of cumulants via
derivatives and the central limit theorem may fail. It is known to be violated in some
integrable models see Ref. [61]. Therefore, our results should be understood as applying
to regimes where the scaled cumulant generating function is regular.

4 Two-point normal modes correlations

In this section, we compute the correlation of the normal-mode phase-space density at
(x1, θ1, t1) with (x2, θ2, t2) i.e.,

Correlation : Ct1,t2(x1, θ1, x2, θ2) = ⟨nt1(x1, θ1)nt2(x2, θ2)⟩c. (99)

The correlation can be computed using BMFT formalism by studying the generating
function

exp
(
TG(λ1, λ2)

)
=
〈
exp

(
Tλ1nt1

(
x1, θ1

)
+ Tλ2nt2

(
x2, θ2

))〉
n̄0

, (100)

where 0 < t1, t2 < T and n̄0(x, θ) defines the typical initial state of the system. To compute
Eq. (100) using our formalism, we first map the observable nt1(x1, θ1) and nt2(x2, θ2) to
the bare coordinates using Eq. (17) to get

nt1(x1, θ1) = rt1(L1(θ1), θ1) and nt2(x2, θ2) = rt2(L2(θ2), θ2). (101)

Here, the L1(θ1) ≡ L[rt1 ](x1, θ) and L2(θ2) ≡ L[rt2 ](x2, θ) denote the position in the
free particle coordinate corresponding to the point (x1, θ1, t1) and (x2, θ2, t2), respectively.
They can be obtained from Eq. (18) as

L1(θ) = x1 +
1

2

∫ ∞

−∞
dθ′
∫ ∞

−∞
dX ′ a(θ − θ′)sgn

(
L1(θ

′)−X ′)rt1(X ′, θ′), (102)

L2(θ) = x2 +
1

2

∫ ∞

−∞
dθ′
∫ ∞

−∞
dX ′ a(θ − θ′)sgn

(
L2(θ

′)−X ′)rt2(X ′, θ′). (103)
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The generating function in Eq. (100) can be reexpressed in terms of the free particle BMFT
as

exp

(
TG(λ1, λ2)

)
=

〈
exp

(
Tλ1rt1

(
L1(θ1), θ1

)
+ Tλ2rt2

(
L2(θ2), θ2

))
〉

r̄0

, (104)

where r̄0(Z, θ) is the typical phase-space density in the free coordinates. This is evaluated
in Appendix D where we show the generating function is given by

G(λ1, λ2) = S
[
q∗τ , p

∗
τ ] with (105)

S
[
q∗τ , p

∗
τ ] = −F [q∗0] + λ1q

∗
τ1

(
l∗1(θ1), θ1

)
+ λ2q

∗
τ2

(
l∗2(θ2), θ2

)
.

Here q∗τ (Z, θ) = q∗0(Z− θτ, θ) is given in Eq. (167) of Appendix D. To compute the 2-point
normal-mode correlation, we use the Legendre duality i.e.,

d

dλ1
G(λ1, λ2)

∣∣∣
λ1=0

= q∗τ1
(
l∗1(θ1), θ1

)∣∣∣
λ1=0

. (106)

Taking the derivative of Eq. (106) with respect to λ2 and setting λ2 = 0, we get the 2-point
correlation as

Ct1,t2(x1, θ1, x2, θ2) =
d

dλ2

[
q∗τ1
(
l∗1(θ1), θ1

)∣∣∣
λ1=0

]∣∣∣
λ2=0

. (107)

Performing the derivative with λ2 and setting λ = 0 we obtain the correlation and by
expressing them in the unscaled point particle density, we get

Ct1,t2(x1, θ1, x2, θ2) (108)

= r̄t1(L̄1(θ1), θ1)δ(L̄2(θ2)− L̄1(θ2)− (t2 − t1)θ2)δ(θ1 − θ2)

+ r̄t1(L̄1(θ1), θ1)
(
a
)dr
t2
(L̄2(θ2), θ2 − θ1)

[
∂X r̄t2(L̄2(θ2), θ2)

]sgn
(
L̄2(θ1)− L̄1(θ1)− (t2 − t1)θ1

)

2

− r̄t2(L̄2(θ2), θ2)
(
a
)dr
t1
(L̄1(θ1), θ2 − θ1)

[
∂X r̄t1(L̄1(θ1), θ1)

]sgn
(
L̄2(θ2)− L̄1(θ2)− (t2 − t1)θ2

)

2

+
[
∂X r̄t1(L̄1(θ1), θ1)

][
∂X r̄t2(L̄2(θ2), θ2)

] ∫ ∞

−∞
dθ′

(
a
)dr
t1
(L̄1(θ1), θ1 − θ′)

(
a
)dr
t2
(L̄2(θ2), θ2 − θ′)

×
[∫ ∞

−∞
dX ′r̄0(X

′, θ′)
sgn
(
L̄1(θ

′)− t1θ′ −X ′)

2

sgn
(
L̄2(θ

′)− t2θ′ −X ′)

2

]
,

Here the derivative is defined as
[
∂X r̄t1(L̄1(θ1), θ1)

]
=
[
∂X r̄t1(X, θ1)

]
X=L̄1(θ1)

.

We can find equal time correlation by setting τ1 = τ2 = t in Eq. (108) which gives

Ctt(x1, θ1,x2, θ2) = r̄t(L̄1(θ1), θ1)δ(L̄1(θ1)− L̄2(θ2))δ(θ1 − θ2) (109)

+ r̄t(L̄1(θ1), θ1)
(
a
)dr
τ
(L̄2(θ2), θ2 − θ1)

[
∂X r̄t(L̄2(θ2), θ2)

]sgn
(
L̄2(θ1)− L̄1(θ1)

)

2

− r̄t(L̄2(θ2), θ2)
(
a
)dr
τ
(L̄1(θ1), θ1 − θ2)

[
∂X r̄τ (L̄1(θ1), θ1)

]sgn(L̄2(θ2)− L̄1(θ2))

2

+
[
∂X r̄t(L̄1(θ1), θ1)

][
∂X r̄t(L̄2(θ2), θ2)

]

×
∫ ∞

−∞
dθ′

(
a
)dr
τ
(L̄1(θ1), θ1 − θ′)

(
a
)dr
τ
(L̄2(θ2), θ2 − θ′)

×
[∫ ∞

−∞
dX ′r̄0(X

′, θ′)
sgn(L̄1(θ

′)− tθ′ −X ′)

2

sgn
(
L̄2(θ

′)− tθ′ −X ′)

2

]
.
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For the hard rods we note that
(
a
)dr
t
(L̄1(θ1), θ1−θ2) = −a

(
1
)dr
t
(x1) hence we can simplify

the expression as

Ct,t(x1, θ1, x2, θ2) =
2πn̄t(x1, θ1)(

1
)dr
t
(x1)

δ
(
x1 − x2

)
δ
(
θ1 − θ2

)
(110)

+ a
sgn
(
x2 − x1

)

2

[
n̄t(x2, θ2)

[
∂xn̄t(x, θ1)

]
x=x1

− n̄t(x1, θ1)
[
∂xn̄t(x, θ2)

]
x=x2

]

+
a2

4

[
∂xn̄t(x, θ1)

]
x=x1

[
∂xn̄t(x, θ2)

]
x=x2

(
1− sgn

(
x2 − x1

) ∫ x2

x1

dx′ ρ̄t(x
′)
)
.

When x1 ≈ x2 = x we get

Ct,t(x1, θ1, x2, θ2)|x1≈x2 =
(2π)2ρ̄t(x, θ1)[(

1
)dr
t
(x)
]2 δ

(
x1 − x2

)
δ
(
θ1 − θ2

)
(111)

+ a
(2π)2sgn

(
x2 − x1

)

2
[(
1
)dr
t
(x)
]2

(
ρ̄t(x, θ2)

[
∂xρ̄t(x, θ1)

]
− ρ̄t(x, θ1)

[
∂xρ̄t(x, θ2)

])

+
a2

4

[
∂xn̄t(x, θ1)

][
∂xn̄t(x, θ2)

]
.

The two-point correlation in Eq. (111) agrees with the result derived in Ref. [73] [see their
Eq. (D.18)]. In the final stage of preparing this article we came across Ref. [76] which
arrives at similar findings for the case of hards rods and uses a similar formulation in
terms of the quasi particle phase space density.

5 Conclusions

We have derived the BMFT action for generic integrable, interacting particle models
through a direct mapping to point-particle dynamics. Unlike previous approaches [24,
25, 61], our formulation is expressed in terms of the quasiparticle phase space densities ρ
rather than their charge contents. The key advantage is that the action can be written
entirely with quantities that are standard in the MFT framework.

At the saddle point, the resulting expression for the full-counting statistics is remark-
ably compact and can be evaluated for arbitrary integrable particle models.

Extending the present analysis beyond purely ballistic fluctuations– to include diffusive
or dispersive corrections– will grant access to sub-ballistic contributions in the higher-order
cumulants. Moreover, the explicit mapping to point particles makes it straightforward to
deform the theory, for example by introducing external force fields or by promoting the
particles from ballistic to Brownian motion. These extensions are technically feasible and
physically compelling, and we leave their exploration to future work.
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A Euler GHD as a microscopic equation of motion

We shall present here a fully microscopic derivation of the Euler GHD equation, which
shows how the latter is the equation of motion of the microscopic density of the quasipar-
ticles

ρ(x, θ) ≡
∑

i

δ(x− xi)δ(θ − θi) . (112)

Whenever their coordinates evolve according to the mapping of Eq. (5)

xi = Xi −
1

2

∑

j ̸=i

aijsgn(xi − xj). (113)

where we used the notation for the generic effective rod length

aij =
2πφ(θi − θj)

k′(θi)
, (114)

and where the time derivative of the free positions is given by the bare velocities Ẋi = θi
and the motion of the interacting particles by the dressed velocity ẋi = veff[ρ(xi,·)](θi)

Taking the time derivative of eq. 113 we get

ẋi = Ẋi −
∑

j ̸=i

aijδ(xi − xj)(ẋi − ẋj) , (115)

with Ẋi = v(θi). The time derivative ẋi will be instead in general, a function of all
the particles’ coordinates defined by Eq. (115). Notice that veff[ρ] can have a generic x-
dependence via ρ but not directly. Taking the time derivative of the density of particles,
we can get

∂tρ(x, θ) =
∑

i

∂t(δ(x− xi)δ(θ − θi))

=
∑

i

∂xi(δ(x− xi)δ(θ − θi))veff[ρ(xi,·)](θi)

= −
∑

i

∂x(δ(x− xi)δ(θ − θi))veff[ρ(x,·)](θ)−
∑

i

(δ(x− xi)δ(θ − θi))∂xveff[ρ(x,·)](θ)

= −∂x
(∑

i

(δ(x− xi)δ(θ − θi))veff[ρ(x,·)](θ)
)
.

(116)

We therefore obtain
∂tρ(x, θ) + ∂x

(
ρ(x, θ)veff[ρ(x,·)](θ)

)
= 0 (117)

where we used the following delta function property ∂xδ(x − y)f(y) = ∂x(δ(x − y)f(x)).
Also, we have introduced the effective velocity

veff[ρ(xi,·)](θi) = ẋ(xi, θi) = v(θi)−
∑

j ̸=i

aijδ(xi − xj)(ẋ(xi, θi)− ẋ(xj , θj))

= v(θi)−
∑

j ̸=i

aij(ẋ(xi, θi)− ẋ(xi, θj)),
(118)
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which, therefore, can be expressed in terms of the usual integral equation

veff[ρ(xi,·)](θi) = v(θi)−
∫

dθ′a(θi − θ′)ρ(xi, θ′)(veff[ρ(xi,·)](θi)− v
eff
[ρ(xi,·)](θ

′)). (119)

Equations (117) and (119) are true at the microscopic level, namely, they are exact for
any single realisation.

B Probability distributions of initial fluctuations

In this appendix, we compute the probability distribution functional for finding the density
of (non-interacting) point particles. Let us consider a box of size L containing N particles
in equilibrium. The system is divided into R spatial cells of size ℓ, indexed by i =
1, 2, 3....R, with the ith cell containing riℓ particles where ri is the number density in of
the cell. There are several possible density profiled {ri} subjected to the global constraint
ℓ
∑R

i=1 ri = N . For large ℓ, assuming statistical independence of each box, the probability
of a density profile {ri} is [77]

P ({ri}) ≃
∏R

i=1 Zℓ(riℓ)

ZL(N)
δN,ℓ

∑R
i=1 ri

= exp

(
− ℓ

R∑

i=1

[f(ri)− f(r̄)]
)
δN,ℓ

∑R
i=1 ri

, (120)

where ZL(N) is the canonical partition function, δa,b is the Kronecker delta, r̄ = N/L is
the bulk density, and

f(r) = −1

ℓ
log [Zℓ(rℓ)] (121)

is the free energy density.
In the grand canonical ensemble, the Kronecker delta is replaced with the fugacity,

and we find that the distribution is given by

P ({ri}) ≍ exp

(
− ℓ

R∑

i=1

[
f(ri)− f(r̄)− (ri − r̄)f ′(r̄)

]
)
, (122)

where f ′(r̄) is the chemical potential. For inhomogeneous systems with typical density
profile r̄i, this generalises to

P ({ri}) ≍ exp

(
− ℓ

R∑

i=1

[
f(ri)− f(r̄i)− (ri − r̄i)f ′(r̄i)

]
)
. (123)

Taking the continuum limit
∑

i ℓ→
∫
dX, we get

P [r(X)] ≍ exp

(
−
∫
dX

[
f(r)− f(r̄)− (r − r̄)f ′(r̄)

]
)

(124)

for fluctuations of the density profile r(X) around the average profile r̄(X) subject to
constraint

∫
dX r(X) = N .

For our work the relevant quantity is the probability distribution of the phase space
density r(X, θ). For this the above argument can be straightforwardly extended using
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independence of (X, θ) coordinates for point particles, which gives the probability of a
phase space density fluctuation r(X, θ),

P [r(X, θ)] ≍ exp
(
−F̃ [r(x, θ)]

)
, (125)

F̃ [r] =
∫
dθ

∫
dX

[
f(r)− f(r̄)− (r − r̄)f ′(r̄)

]
. (126)

Here, F̃ [r] is the free energy cost of finding a profile r(X, θ) different from the average
profile r̄(X, θ). The free energy density f(r(X, θ)) depends on the particle statistics and
is obtained from the partition function

f(r) =

{
r log(r)− r for classical particles

r log r + η
(
1− ηr

)
log
(
1− ηr

)
for Quantum systems

, (127)

with η = ±1 for Fermions and Bosons respectively. Substituting the Eq. (127) in Eq. (126)
we obtain the free energy cost as

F̃ [r] =
∫ ∞

−∞
dX

∫ ∞

−∞
dθG(r, r̄) with (128)

G(r, r̄) =





r log
(
r
r̄

)
−
(
r − r̄

)
for Classical particles,

r log
(
r
r̄

)
+ (1− r) log

(
1−r
1−r̄

)
for Fermions,

r log
(
r
r̄

)
− (1 + r) log

(
1+r
1+r̄

)
for Bosons.

In the next section we derive these results from first principles based on combinatorial
arguments for the classical free particles.

B.1 Probability of the initial profile: classical free particles

The phase space density r(X, θ) represents the number of particles, r(X, θ)∆X∆θ, within
a region of size ∆X∆θ centred at (X, θ) on the phase space. For computing the probability
(125), we partition the phase space (see Fig. 3) along X-axis into R strips of width ∆X
containing {ni}Ri=1 particles with ni = ∆X

∫
dθ r(Xi, θ). Within each strip, the particles

are further distributed into M sub-partitions based on their momentum, {ni,j}Mj=1 ∀ i =
1 · · ·M with ni,j = ∆X∆θ r(Xi, θj) being the number of particles in the box ∆X∆θ
centred at (Xi, θj) on the phase space.

For independently distributed particles (or point particles), the probability of a con-
figuration {ni} across all strips is the product of individual probabilities expressed as

P({ni}Ri=1) =
R∏

i=1

P ({ni,j}Mj=1), (129)

where P ({ni,j}Mj=1) is the probability of observing the occupation {ni,j}Mj=1, which typically

contains {n̄i,j}Mj=1 with n̄i,j = ∆Xdθr̄(Xi, θ). This probability can be obtained using the
conditional probability as follows:

P ({ni,j}j) = P
(
{ni,j}j

∣∣∣ni =
∑

j

ni,j

)
P (ni), (130)

where P ({ni,j}j |ni) is the conditional probability of finding {ni,j}j number of particles in
theM boxes of the strip and P (ni) is the probability of finding ni particles in the ith strip.
The conditional probability follows the multinomial distribution, since the particles are
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distributed independently in the momentum space with probability pi,j = n̄i,j/n̄i where
n̄i =

∑
j n̄i,j . Expressing the multinomial in the large deviation form simplifies to

P ({ni,j}j |ni) ≍ exp

(
−

M∑

j=1

ni,j log

(
ni,j
ni

n̄i
n̄i,j

))
. (131)

On the other hand, the probability of finding ni particles in the ith strip follows a binomial
distribution. We can express it in the large deviation form by using ni ≪ N and ∆X ≪ L
to get

P (ni) ≍ exp

(
−ni log

(ni
N

)
+ ni log

(
∆X

L

)
+ ni −∆X

N

L

)
. (132)

Substituting Eq. (131) and Eq. (132) in Eq. (130) we find

P ({ni,j}j = {r(Xi, θj)∆X∆θ}j) ≍

exp

(
−∆X

(∫
dθr(Xi, θ) log

(
r(Xi, θ)

r̄(Xi, θ)

)
−
∫
dθ(r(Xi, θ)− r̄(Xi, θ))

))
, (133)

where ni,j = ∆X∆θ r(Xi, θj) and n̄i,j = ∆X∆θ r̄(Xi, θj). Finally, substituting Eq. (133)
in Eq. (129) yields the

P[r] ≍ exp

(
−
∫
dθ

∫
dX
[
r log

(r
r̄

)
− (r − r̄)

])
, (134)

recovering the result for the classical particles in Eq. (128). A similar approach is used in
the next section to compute the probability distribution for the phase space density of the
hard rods.

B.2 Probability distribution of initial fluctuations for hard rods

We follow similar arguments as in the previous sections for hard rods of size a. Namely, we
compute the probability distribution function of observing a phase space density ρ(x, θ)
relative to a typical profile ρ̄(x, θ), by adapting the combinatorial approach used for point
particles described in Appendix B.1. The main difference from the point particles case is
the finite size of the rods, which introduces correlations. As a result, the rods inside the
strip and outside are no longer independent. Nevertheless we handle this correlation by
mapping the hard rods to point particles using a coordinate transformation

Xi = xi −
N − i
2

a, (135)

where xi denotes the position of the rods and Xi the mapped point particles. As a
consequence of mapping, a strip of width ∆x containing ni = dx

∫
dθρ(xi, θ) rods now

corresponds to an effective width ∆X = ∆x − nia, while the system size contracts to
L → L − Na. Hence, the probability P (ni) of finding ni rods in the ith strip follows a
binomial distribution with contracted widths i.e. ∆x→ ∆X = ∆x−nia and L→ L−Na,
which gives

P (ni) =
N !

(ni)!(N − ni)!

(
∆x− nia
L−Na

)ni
(
1− ∆x− nia

L−Na

)N−ni

. (136)
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In the large deviation form, it can be expressed as

P (ni) ≍ exp
(
− ni log

(ni
N

)
+ ni log

(
∆x− nia
L−Na

)
+
ni −∆xN

L

1− aN
L

)
, (137)

where we used the approximation that ni ≪ N and ∆x≪ L. Substituting the multinomial
distribution in Eq. (131) and Eq. (137) in Eq. (130) we find

P ({ni,j}j = {ρ(xi, θj)∆x∆θ}j) (138)

≍ exp

(
−∆x

(∫
dθρ(xi, θ) log

(
ρ(xi, θ)

1− aρ(xi)
1− aρ̄(xi)
ρ̄(xi, θ)

))
+∆x

(
ρ(xi)− ρ̄(xi)
1− aρ̄(xi)

))
.

Here, we used the relations

(a) ni = ρ(xi)∆x, (b) n̄i = ρ̄(xi)∆x, (c) ni,j = ρ(xi, θj)∆x∆θ, (139)

(d) n̄i,j = ρ̄(xi, θj)∆x∆θ, (e) N = ρ̄L, (140)

where ρ̄(x, θ) and ρ̄(x) =
∫
dθρ̄(x, θ) are the typical phase-space density and number

density, respectively. We express Eq. (138) as a function of the point particle coordinates
by using the relation Eq. (17), which for hard rods is given by

r(X, θ) =
ρ(x, θ)

1− aρ(x) and r̄(X, θ) =
ρ̄(x, θ)

1− aρ̄(x) . (141)

Using the relation Eq. (141) in Eq. (138) we recast the distribution in the point particle
density r(X, θ) as

P ({ni,j}j = {ρ(xi, θj)∆x∆θ}j)

≍ exp

(
−∆X

∫
dθ
[
r(Xi, θ) log

(
r(Xi, θ)

r̄(Xi, θ)

)
−
(
r(Xi)− r̄(Xi)

)])
, (142)

where ∆X = ∆x/(1− aρ(x)). Finally, substituting Eq. (142) in Eq. (129) we obtain

P[ρ] ≍ exp

(
−
∫
dθ

∫
dX
[
r log

(r
r̄

)
− (r − r̄)

])
, (143)

where r(X, θ) and r̄(X, θ) are obtained from Eq. (141). Strikingly, this matches with the
case of free particle Eq. (134), with r(X, θ) and r̄(X, θ) now representing the mapped
observed and typical densities.

This suggests a general principle: for interacting systems admitting a free-particle
mapping via transformations like Eq. (5), their large deviation functionals can be expressed
as Eq. (128), provided the density is the mapped to point particle density obtained from
Eq. (17).

C Microscopic calculation for point particles

Integrated mass current through the origin during time T is defined by

Q̃T = RT −R′
T , (144)

where RT is the number of particles which start at any position ≤ 0 and reach a position
> 0 at time T . Similarly, R′

T is the number of particles which start at any position > 0
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and reach a position ≤ 0 at time T . The cumulant generating function of Q̃T is defined
by

µ(λ) = ln ⟨eλQ̃T ⟩ (145)

where the angular brackets denote the average over the initial position and velocity dis-
tribution of the particles.

We shall consider the case of hard point particles with equal mass (m = 1). The hard-
core interaction is imposed by the non-crossing condition of the trajectories. Particles
follow straight line trajectories between collisions, and in each binary collision, particles
exchange their momentum.

An important realisation is that for each history of hard-core point particles, there is
an associated history of non-interacting point particles, obtained by swapping the particle
identity in each collision event. This implies that the distribution of particle positions
at time T , independent of their identity, is the same for interacting and non-interacting
particles. The current Q̃T is independent of the particle’s identity and only depends on the
distribution of their position at time T . Consequently, the cumulant generating function
Eq. (145) for hard point rods is the same as for non-interacting point particles, which is
straightforward to determine.

For the non-interacting case, we use the independence of the particles to write

〈
eλQT

〉
=
〈
eλRT

〉〈
e−λR′

T

〉
=

〈∏

i

F λ(Xi(0), T )

〉

X(0)

(146)

where index i denotes the index of particles, located initially at position Xi(0). The
angular bracket ⟨⟩X(0) denotes average over initial particle arrangements. The average
over initial velocity of particles is contained in the single-particle function

F λ(Y, T ) =

{
1 + (eλ − 1) Θ(X(T ))|X(0)=Y for Y ≤ 0,

1 + (e−λ − 1) Θ(−X(T ))|X(0)=Y for Y > 0,
(147)

with Θ(X) being the Heaviside theta function and the overline denoting average over
initial velocity of the particle initially at position X(0) = Y .

The velocity average θ(X(T ))|X(0)=Y is simple to evaluate using the probability for
a single point particle to be at position X at time T , starting at Y , irrespective of its
velocity

gT (X|Y ) =

∫
dθ p(θ)δ(X − Y − θT ) =

(
2π

β

)−1/2

exp

(
− β

2T 2
(X − Y )2

)
(148)

where initial velocity distribution is chosen to be Maxwellian p(θ) =
(
2π
β

)−1/2
exp

(
−β

2 θ
2
)

with inverse temperature β.
We find that F λ(Y, T ) has a scaling form

F λ(Y, T ) =





fλ

(
−Y
√

β
2T 2

)
for Y ≤ 0,

f−λ

(
Y
√

β
2T 2

)
for Y > 0,

(149)

with

fλ(η) = 1 +
(
eλ − 1

) 1

2
Erfc (η) (150)
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where the Erfc(X) is the complimentary error function.
For the average over initial particle positions in (146), we use that initially, the particles

are uniformly distributed in position with average density profile r(X). This leads to the
generating function

〈
eλQ̃T

〉
=
∏

X

{
(1− r(X)dX) + r(X)dX F λ(X,T )

}
(151)

which yields the cumulant generating function Eq. (145):

µ(λ) =

∫ ∞

−∞
dX r(X)

(
F λ(X,T )− 1

)
. (152)

Substituting Eqs. (149) and (150) we arrive at an explicit expression for the cumulant
generating function.

µ(λ) = T

√
2

β

∫ ∞

0
dη {r̃(−η) (fλ(η)− 1) + r̃(η) (f−λ(η)− 1)} (153)

where we defined r(X) = r̃

(
X
√

β
2T 2

)
. This expression simplifies for the domain wall

initial density profile r(x) = r−θ(−x) + r+θ(x), leading to an explicit expression

µ(λ) =
T√
2πβ

(
r−(e

λ − 1) + r+(e
−λ − 1)

)
(154)

which is reproduced using the BMFT in (46) by setting q̄0(X, θ) = r(X)p(θ) with the
Maxwellian p(θ) given in Eq. (148).

D Two-point normal modes correlations

In this appendix, we provide the details of computing the 2-point normal mode corre-
lations. We compute the generating function given in Eq. (104) using the path integral
formulation described in section 2 as

exp

(
TG(λ1, λ2)

)
=

∫
D[rt(X, θ)]

∫
D[r̂t(X, θ)] exp

(
S̃[rt(X, θ), r̂t(X, θ)]

)
, with (155)

S̃[rt(X, θ), r̂t(X, θ)] = −F̃ [r0(X, θ)] + Tλ1rt1
(
L1(θ1), θ1

)
+ Tλ2rt2

(
L2(θ2), θ2

)
(156)

−
∫ ∞

−∞
dθ

∫ ∞

−∞
dX

∫ T

0
dt r̂t(X, θ)

[
∂trt(X, θ) + u(θ)∂yrt(X, θ)

]
,

where r̂t(X, θ) is the auxiliary field that enforces the GHD for free particles [Eq. (25)] as
a constraint. To compute the generating function at large T , we apply Euler scaling by
defining

Z =
X

T
, τ =

t

T
, qτ (Z, θ) = rt(X, θ), pτ (Z, θ) = r̂t(X, θ). (157)

The action in Eq. (156) rescales as

S̃[rt(X, θ),r̂t(X, θ)] = TS[qτ (Z, θ), pτ (Z, θ)] (158)

S[qτ (Z, θ),pτ (Z, θ)] = −F [q0(Z, θ)] + λ1qτ1
(
l1(θ1), θ1

)
+ λ2qτ2

(
l2(θ2), θ2

)

−
∫ ∞

−∞
dθ

∫ ∞

−∞
dZ

∫ 1

0
dτ pτ (Z, θ)

[
∂τqτ (Z, θ) + θ∂zqτ (Z, θ)

]
, (159)
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where F [q0] = F̃ [r0]/T and the scaled coordinates l1/2(θ) = L1/2(θ)/T [ Eqs. (102)
and (103)] are

l1(θ) =
x1
T

+
1

2

∫ ∞

−∞
dθ′
∫ ∞

−∞
dZ ′ a(θ − θ′)sgn

(
l1(θ

′)− Z ′)qτ1(Z ′, θ′), (160)

l2(θ) =
x2
T

+
1

2

∫ ∞

−∞
dθ′
∫ ∞

−∞
dZ ′ a(θ − θ′)sgn

(
l2(θ

′)− Z ′)qτ2(Z ′, θ′). (161)

For large T , the path integral in Eq. (155) is dominated by the saddle point configuration
p∗0(Z, θ) and q

∗
0(Z, θ) and they satisfy the following variational saddle point equations

δS
δq0(Z, θ)

= p∗0(Z, θ)−
δF [q∗0(Z, θ)]
δq0(Z, θ)

= 0, (162a)

δS
δq1(Z, θ)

= p∗1(Z, θ) = 0, (162b)

δS
δpτ (Z, θ)

= ∂τq
∗
τ (Z, θ) + θ∂z q

∗
τ (Z, θ) = 0, (162c)

δS
δqτ (Z, θ)

= ∂τp
∗
τ (Z, θ) + θ∂z p

∗
τ (Z, θ) = −hτ (Z, θ). (162d)

Here, the source term in Eq. (162d) for the auxiliary fields is given by

hτ (Z, θ) =

2∑

i=1

h(i)τ (Z, θ) where (163)

h(i)τ (Z, θ) = λiδ(τ − τi)δ(Z − l∗i (θi))δ(θ − θi) (164)

+ λiδ(τ − τi)
(
a
)dr
τi
(l∗i (θi), θi − θ)

sgn
(
l∗i (θ)− Z

)

2
[∂Z′q∗τi

(
Z ′, θi

)
]Z′=l∗i (θi)

.

Here, the first term on the right-hand side is due to the variation of the density at the
location (l∗i (θi), θi) while the second term is due to the variation of l∗i (θi) for both i = 1, 2.

In Eq. (164), the dressing operation is,
(
h
)dr
τi

(
l∗i (θ), θ

)
≡
(
h
)dr

[q∗τi ]
(
l∗i (θ), θ

)
, defined as

(
h
)dr
τi

(
l∗i (θ), θ

)
= h(θ) + 2π

∫ ∞

−∞
dθ′φ(θ − θ′)qτi

(
l∗i (θ

′), θ′
)(
h
)dr
τi

(
l∗i (θ

′), θ′
)
. (165)

Note that this matches the dressing in the interacting coordinates
(
h
)dr

[q∗τi ]
(
l∗i (θ), θ

)
=
(
h
)dr

[n∗t1 ](x1, θ) (166)

since n∗ti(xi, θ) = q∗τi(l
∗
i (θ), θ). Using Eq. (162a) and the scaled free energy cost given in

Eq. (40), we can find the initial condition for the phase space density q∗0(Z, θ) by solving

q∗0(Z, θ)

1− ηq∗0(Z, θ)
=

q̄0(Z, θ)

1− ηq̄0(Z, θ)
exp(p∗0(Z, θ)). (167)

To obtain p∗0(Z, θ), we solve Eq. (162d) using the method of characteristics (basically
travelling along the field), which gives

d

ds
p∗τ+s

(
Z + sθ, θ

)
= −hτ+s(z + sθ, θ), (168)

Integrating from s = −τ to 0 and applying the boundary condition p∗1(Z, θ) = 0
[Eq. (162b)], yields

p∗0
(
Z, θ

)
=

∫ 1

0
dr hr(Z + rθ, θ). (169)
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Substituting the expression of the source term [Eq. (163)] in Eq. (169) we get

p∗0(Z, θ) = λ1δ(Z + τ1θ − l∗1(θ1))δ(θ − θ1) (170)

+ λ1
(
a
)dr
τ1
(l∗1(θ1), θ1 − θ)

sgn
(
l∗1(θ)− τ1θ − Z

)

2
[∂Z′q∗τ1

(
Z ′, θ1

)
]Z′=l∗1(θ1)

+ λ2δ(Z + τ2θ − l∗2(θ))δ(θ − θ2)

+ λ2
(
a
)dr
τ2
(l∗2(θ2), θ2 − θ)

sgn
(
l∗2(θ)− τ2θ − Z

)

2
[∂Z′q∗τ2

(
Z ′, θ2

)
]Z′=l∗2(θ2)

.

Using the saddle point solutions computed in Eqs. (167) and (170) in Eq. (155) we get
the generating function given in Eq. (105).
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