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1 Introduction

The idea of constructing a field theory that could give rise to string amplitudes dates back to
Siegel [1]. For various string theories it is known how to associate a perturbative BV-action in the
form of an L∞ structure for off-shell strings [2], [3]. Likewise for the string B-model, whose target
space field content are the deformations of complex structures, there is a well established history:
[4, 5, 6], to cite just a few of the many important contributions. The field theory resulting from the
seminal work of Bershadsky–Cecotti–Ooguri–Vafa [4] is a celebrated result and it has been named
BCOV after the authors.

Moreover the complex modulus is related by mirror symmetry [7] to the Kähler modulus, which
also admits a field theory capturing its deformations [8]. Coincidentally, a powerful framework
to deal with mirror symmetry happens to be what is commonly referred to as topological string
theory, that is a sigma model on maps(Σ,M) with a globalN = (2, 2) supersymmetry on the source
space [9], twisted to decouple local super reparametrizations of the worldsheet [10]. Depending on
the twist of the supercharges (A or B), this sigma model is then sensitive either to the complex
structure, or to the Kähler modulus for the target space. In particular, in the B-twist, (part
of) the BRST cohomology is isomorphic to the space of equivalence classes of linear deformation
of complex structures of a Calabi–Yau manifold. Linear deformations are parametrized by the
Beltrami differentials as antiholomorphic 1-forms, with values in the holomorphic tangent bundle.
While the original Kodaira–Spencer theory of deformations of complex structures (e.g. [11]) is
well defined on any complex manifold, the more restrictive CY-structure is required to formulate
a topological string theory with such a target space.

Regarding the off-shell formulation, the tricky business is usually in the identification of a
bilinear form that builds up the kinetic term in the action functional in Lagrangian formalism. In
BCOV, an extra complication comes from the fact that there is no degree-preserving pairing for
holomorphic vector fields. Instead the minimal model to the cohomology (quasi-isomorphic L∞
algebra) was recently worked out in [12].

Combining these two approaches (on-shell vs off-shell) suggests that the Kodaira–Spencer the-
ory of complex structure deformations could be a natural playground to explore string field theory
in this setting and this was indeed discussed in the original BCOV description of Kodaira–Spencer
gravity [4]. On the other hand, one could reverse the question and ask if string field theory could
help us sharpen our understanding of BCOV and, in particular, the complication with the pres-
ence of a non-local kinetic term in the aforementioned reference. In this note we point out a close
relation with the problem of pictures in the Ramond sector of string theory. We will therefore
mimic the solution from string field theory by adding auxiliary fields of picture shifted by -1.
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In fact, as we will point out, a worldline (rather than a worldsheet) sigma-model is sufficient
to construct such an action4. Indeed, since in the B-model Maps(Σ,M) localize on constant
maps in the target space M , one should also be able to capture the field theory from the first
quantized worldline. This leads to some technical simplifications for the super ghost sector which
has a different representation in worldsheet conformal field theory. Below, in section 3, we will
construct a BV-action for KS-gravity theory starting from the spinning worldline with N = (2; 2)
supersymmetry5 on the source space, where, in contrast to the standard construction, one of
the supersymmetries is gauged. This results in a picture changing operator that is equivalent to
the divergence operator on polyvector fields whose inverse enters in the kinetic term of BCOV.
Then, introducing an auxiliary field of picture shifted by −1, this results in BV-theory for complex
structure deformation with auxiliary fields and a local kinetic term where, however, only the
auxiliary fields enjoy a non-linear gauge redundancy. Upon elimination of the auxiliary fields this
reproduces the BV-extension of the Kontsevich–Barannikov action [5]. The construction is fairly
closely related to that in the Ramond sector of string field theory although the gauge sector looks
different. An additional feature, common in string field theory, is that the existence of such an
action functional implies a natural pairing of odd degree together with the complete BV spectrum
of fields and anti-fields.

There exists an extension of BCOV with the inclusion of an extra scalar field (function) g that
plays the role of a compensator to ensure the holomorphicity of the Calabi–Yau 3-form [6]. This
function is not accounted for in the discussion just described. We will then consider an alternative
formulation in section 4, which is reminiscent of the “large” Hilbert space in string theory [13, 14],
where the superghost sector is represented by a Laurent series rather than a polynomial (or δ-
function representations) with a novel degenerate inner product on the super ghost sector. This
allows us to include the compensator g in the multiplet (with an even differential!) at the price of
redefining the relation between fields and antifields. Concretely, the inner product entering in the
definition of the kinetic terms differs from the symplectic form that defines the pairing of fields with
anti-fields. The result complements the BV-formulations of [6] with a local kinetic term. However,
as in [4, 6] the BV-bracket involves a constrained variation of the anti fields.

Another feature of the worldline, in contrast to the string, is that it can be quantized on any
complex manifold. So one may wonder if we can formulate a target space field theory on a generic
Kähler manifold that is not necessarily Calabi–Yau. In section 5 we will argue that this can indeed
be done, however in a different formulation which is often referred to as a “theory of background
fields” (e.g. [15]). Here, the integrability conditions for complex structure deformations are implied
by the nilpotency of the BRST differential. This is then a background independent formulation of
BCOV. However, the operator state correspondence between deformation of the BRST differential
and perturbative states in BCOV still requires a holomorphic 3-form defined at least locally.

Two appendices are attached to this manuscript. In the first one, some fundamentals on the
deformation theory of complex structures are recalled, while appendix B discusses, for the curious
reader, a generalization of the worldline model of section 3.2.

2 Set-up

Kodaira–Spencer or BCOV is the field theory on the target space of closed topological strings
(for the open string case in the A-model, the target space field theory is Chern–Simons theory
instead). The worldsheet theory is known as B-model, see [10] and [16]. However, since Maps(Σ,M)
localize on points in the target manifold [17], it is feasible to directly construct a particle model
with superdiffeomorphism invariance (though strictly speaking invariance under diffeomorphisms
is trivialised/removed) on the N = (2; 2) superline and still obtain the very same field theory [18].
This is the perspective that we adopt in this article, and we illustrate several variants of it in section
3. For the moment being, we would like to give a non-exhaustive review on Kodaira–Spencer theory
(while Appendix A refreshes the reader on the topic of complex structure deformations and at the
same time collects useful formulas and identities for multivector fields).

2.1 Review

We begin with a brief review of BCOV theory [4] and its extension in [5] and [19], [6]. The
objective is an action functional whose linearized field equations modulo gauge symmetries capture

4Note that we will not address mirror symmetry here.
5We use the semicolon in order to epmphasize that these are not left- and right moving SUSY’s
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the cohomology
H•

∂̄(ker div ⊂ PV •,•),

where the differential operators ∂̄ and div, act on PV •,• := Ω(0,•)(M,Λ•TM(1,0)) (see Appendix
A). The interactions arise from a 2-product given by the Schouten–Nijenhuis bracket

[−,−]SN : PV i,j ∧ PV k,m → PV i+k−1,j+m.

Tian [20] showed that the Schouten-Nijenhuis bracket is a derived bracket with the divergence
operator (A.4). Therefore, if α, β ∈ ker div ⊂ PV •,•, this boils down to

[α, β] = div(α ∧ β).

In addition we require a trace on polyvectors defined by
ˆ
CY 3

α :=

ˆ
CY 3

Υ ∧ ιαΥ, α ∈ PV 3,3, Υ ∈ Ω3,0
hol(CY

3),

with the properties (if the CY manifold has no boundary):
´
α∂̄β = −(−1)|α|

´
∂̄α ∧ β, and´

α ∧ divβ = −(−1)|α|
´
divα ∧ β. The latter is due to the linearity and graded symmetry of the

inner derivation ια∧β = ιαιβ = ±ιβια, and the defining property that relates div to ∂ (see (A.3)
in appendix A).

Consider now µ ∈ ker div ⊂ PV 1,1 a Beltrami differential and Â ∈ H its harmonic component.
Kodaira–Spencer theory, as described in the seminal work [4], is then described by the action
functional

SBCOV [µ] =
1

2

ˆ
CY 3

µ ∧ 1

div
∂̄µ+

1

3
(µ+ Â)∧

3

. (2.1)

Because of the ∂∂̄-lemma, ι∂̄µΥ = ∂ι∂̄vΥ = ιdiv∂̄vΥ. So

1

div
∂̄µ = ∂̄v + divρ+ z ∈ im ∂̄ ⊕ im div⊕H, (2.2)

which implies that the action is well-defined despite its manifestly non-local kinetic term. Another
feature to stress is that BCOV requires a holomorphic volume form so that Kähler geometry is not
sufficient (see, however, section 5 for considerations on general Kähler geometries). SBCOV has
gauge symmetries given by

δµ = ∂̄ϵ+ [ϵ, µ]SN , ϵ ∈ ker div ⊂ PV 1,0,

which can be verified using the derivation property of ∂̄ and div and Jacobi identity for [−,−]SN .
In [4], the BV formulation of the theory was also presented. We comment only on the classical
part of it —the antifields and the odd BV bracket. One way to achieve a BV formulation on a CY
3-fold is by considering PV 0≤i≤3,0≤j≤3 and determine that{

⊕i+k≤2PV
i,k are fields,

⊕m+n>2PV
m,n ∩m ̸= 3 are antifields.

(2.3)

Note that this assignment returns precisely an even dimensional manifold (cotangent manifold to
the space of fields). Then the BV bracket on functionals F,L (whose arguments are elements of
PV 3,3 and appear on the RHS of the expression below denoted with the same symbol) is

{F,L} =
∑
Φ

ˆ
CY 3

Υ ∧
(
⟨⟨divδRF

δΦ
,Υ⟩, δLL

δΦ∗ ⟩ − ⟨⟨divδRF
δΦ∗ ,Υ⟩, δLL

δΦ
⟩
)
. (2.4)

Here pointed brackets refer to the canonical contraction of polyvectors with complex forms.
Let us now take the Beltrami differential µ = divA ∈ im div ⊂ PV 1,1. Then, Kodaira–Spencer

theory as found in Barannikov–Kontsevich [5] is given by

SBCOV [A] =
1

2

ˆ
∂̄A ∧ divA+

1

3
(divA+ Â)∧

3

. (2.5)

Both of the functionals for the classical fields (2.5) and the BV functional (obtained by considering
the set of polyvectors in (2.3)) capture only deformations of complex structures. Instead, there is
no room for a function that could play the role of the scalar compensator required to ensure that
the new volume form is again holomorphic, see eq. (A.6).
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An observation due to Costello and Li [6] fixes this gap, at least on-shell and in an elegant,
unified framework. The clue is to consider a parameter u of ghost degree 2, and to shift the
polyvectors in degree 2. This means we should look at the module C[[u]] ⊗ PV •,•[2] where the
total ghost number of a generic element unω(i,j) is:

gh(unω(i,j)) = 2− (i+ j + 2n).

Therefore it is possible to combine the differentials into an equivariant operator of ghost degree −1

∂̄ + udiv =: Q,

for which, at order u0, (2.4) becomes the derived bracket of Q with exterior multiplication of
polyvectors. Then the following Maurer-Cartan equation encompasses both the equation for the
deformation of complex structures and that for the preservation of the holomorphic volume form

Qa+
1

2
[a, a] = 0, gh(a) = 0. (2.6)

Indeed, when a has ghost degree zero and a = µ+ ug, the equation splits into

∂̄µ+
1

2
[µ, µ] = 0, (2.7)

u(∂̄g + divµ+ [µ, g]) = 0. (2.8)

The form (2.6) is particularly nice because the gauge symmetries can be found right away in ghost
degree +1. However it was not possible to come up with an action functional that has the above
MC equations as e.o.m.’s. Instead Costello and Li suggested a cubic interaction term Sint that
satisfies the BV master equation with Q and the bracket given in (2.4)

QSint +
1

2
{Sint, Sint} = 0.

The expression for Sint is (αi ∈ PV •,•)

Sint =
∑
n≥3

1

n!

ˆ PV

M

⟨uk1α1 ⊗ · · · ⊗ uknαn⟩0, ⟨uk1α1 ⊗ · · · ⊗ uknαn⟩0 :=

(
n− 3
k1 · · · kn

)
α1 ∧ · · · ∧ αn .

Thus the cubic term agrees with BCOV’s cubic term. Costello–Li also pointed out that BCOV
theory can be formulated in any Calabi–Yau n-fold. Unless explicitly mentioned, for simplicity we
will always specialize our description to n = 3 in the remainder of this article.

3 The Model

Mimicking the realization of Kodaira–Spencer theory as a target space theory for the topological
string, the worldline description is based on the isomorphism

T : C∞(U)[θ̄1, . . . , θ̄n|ψ̄1, . . . , ψ̄n]
∼−→ PV •,•(U) , U ⊂M, (3.1)

with the former represented as a Fock module of the operator formulation of the spinning relativistic
point particle with global N = (2; 2) supersymmetry, described by the canonical pairs

{θ, θ̄} = {ψ, ψ̄} = [x, p] = 1 . (3.2)

where x is a local coordinate on U ⊂ M .6 On this module, the supercharges q̄ = ψ̄p̄ and q = θp
represent the Dolbeault differential and divergence on PV •,• with

{q, q̄} = 0 = {q, q} = {q̄, q̄}, q ∼ div, q̄ ∼ ∂̄. (3.3)

Following the procedure of the topological string one may then declare q̄ to be the linear BV-
differential (implementing holomorphic reparametrizations in the target space) and construct an
appropriate complex for q̄. The unconventional feature of this construction is the well-known
non-local kinetic term in the action7,

S = (µ,
q̄

∂
µ) + (µ, µ · µ) , (3.4)

6This realization is quasi-isomorphic to the traditional description of the B-model.
7Recalling that µ takes values in TM the presence of 1

∂̄
can be understood form the fact that in 3 dimensions

the natural paring is between 1- and 2-vector fields, rather than two 1-vector fields.
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as described in [4]. This is in contrast with the general expectation [3] for any string field action
where the action is of the form

S = (ψ,Qψ) + (ψ, [ψ,ψ]) + · · · , (3.5)

where Q implements some linear gauge transformation in target space and [·, ·] is a bilinear map
on the space of string fields. The origin of this discrepancy is easily traced back to the fact that
the worldline/worldsheet model (3.3) is not a string theory because the worldsheet reparametriza-
tions are not gauged. Therefore, the structure of the target space action is not implied by the
BV-structure of the underlying super-moduli space of Riemann surfaces/worldliness. The key
motivation of the present paper is to provide such a connection.

However, let us begin by presenting a way to “localize” the kinetic term in (3.4) with the help
of auxiliary fields.

3.1 A local action with global SUSY

We choose the ghost degree of an element of PV i,j , locally isomorphic to C∞(U)[θ̄1, . . . , θ̄n|ψ̄1, . . . , ψ̄n],
as

gh(v(i,j)) = j − i . (3.6)

Furthermore, both q̄ ∼ ∂̄ and q ∼ div increase this degree. We consider a Calabi–Yau (n = 3)-fold
as our underlying manifold M and perform a decomposition in subspaces of definite ghost degree.
Take

Ṽ ∋ ã = (µ(1,0) + µ(2,1) + µ(3,2)), (3.7)

which forms a multiplet for the non-local and even-parity differential d = q̄q−1 entering in the
kinetic term of (3.4). Upon acting with q on (3.7) this produces a second “string field”8

V ∋ a = g(0,0) + µ(1,1) + µ(2,2) , (3.8)

which, in addition to the Beltrami differential, also contains the compensator g(0,0). Now we would
like to write down a classical action functional S with a kinetic term given by q̄. For this we first
choose a pairing

(a, b) =

ˆ
CY 3

dvolCY 3

ˆ
⟨⟨ab,Υ(θ∧3)Υ(ψ∧3)⟩⟩, a, b ∈ V, Ṽ . (3.9)

In the above, the double pointed brackets means “normal ordering”, i.e. complete contraction of
the θ̄’s and ψ̄’s. This pairing has ghost number 0. Moreover, q = θ · p and q̄ = ψ̄ · p̄ are self-adjoint
w.r.t. the pairing. We then consider the bilinear term

S1 = (ã, q̄a) . (3.10)

To display this in component fields, we switch to the isomorphic representation in the polyvectors,
denoted as ⟨−,−⟩ :

⟨µ, ν⟩ :=
ˆ
CY 3

Υ ∧ ιµ∧νΥ =

ˆ
CY 3

Υ ∧ ιµ(ινΥ) .

Then S1 becomes9

S1 = ⟨µ(2,1), ∂̄µ(1,1)⟩+ ⟨µ(3,2), ∂̄g(0,0)⟩+ ⟨µ(1,0), ∂̄µ(2,2)⟩ (3.11)

We then add the term

S2 =
1

2
(ã, q̄qã) =

1

2
⟨µ(2,1), ∂̄divµ(2,1)⟩+ ⟨µ(2,1), ∂̄µ(1,1)⟩ , (3.12)

together with the cubic interaction

1

3!
(a, a · a) = 1

6
⟨µ(1,1), µ(1,1) ∧ µ(1,1)⟩+ ⟨µ(2,2), µ(1,1) ∧ g(0,0)⟩ . (3.13)

Summing up (3.11), (3.12) and (3.13) yields Kodaira–Spencer theory. Since this will be extensively
analyzed in a related context in section 4.2, we will keep the discussion concise here: Half of the

8Note that this does not form a multiplet for d but we won’t need such a structure below.
9Due to the isomorphism in (B.3) we use the same symbol to denote the component polyvector fields.
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E-L equations imply the divergence-less condition for the mutiplet a. Acting with the div operator
on the other half and substituting the solution of the first half of the set yields

∂̄g(0,0) + div(µ(1,1)g(0,0)) = 0, (3.14)

∂̄µ(1,1) + div(
1

2
µ(1,1)µ(1,1) + µ(2,2)g(0,0)) = 0, (3.15)

∂̄µ(2,2) + div(µ(2,2)µ(1,1)) = 0 . (3.16)

These are integrability conditions for the Beltrami differential µ(1,1), for the compensator g(0,0)

and for a higher polyvector µ(2,2).

3.2 A model with local SUSY

In order to obtain a string field theory understanding of the non-locality of the action in the last
section we will now consider a worldline model with N = (2; 2) symmetry where, however, one of
the supersymmetries is gauged. A way to describe it is to begin with a supersymmetric version of
a Baulieu–Singer type topological σ-model [21]. That is, we start with the topological action for
parametrized holomorphic curves

I =

ˆ
π̄(z) · dz̄ , (3.17)

where π̄(z)dz̄ is a closed one form on the curve. I has a local invariance δz̄(t) = ϵ̄(t) so there is a
corresponding BRST-differential q̄ = ψ̄ · p̄, with sz̄ = ψ̄, sψ̄ = 0. If we then add the trivial pair
ψ, p̄, with sψ = p̄ together with the gauge fixing fermion

Ψ =

ˆ
ψ · dz̄, (3.18)

one sees that

I ∼ I + sΨ = I +

ˆ
p̄ · dz̄ + ψ · dψ̄ . (3.19)

To continue we set π̄ ≡ 0. We then extend this model to one with a local odd symmetry on the
worldline. That is, we replace I by

sΨ+

ˆ
p · (dz + χ · θ) + θ̄ · θ̇ + βγ̇ . (3.20)

Here χ is a worldline gravitino, geometrically a super Beltrami differential on the worldline. The
canonical pair [β, γ] = 1 represent the Faddeev-Popov ghosts arising form the gauge fixing of χ.
We should note that the additional term in (3.20) is not topological. After gauge fixing, the BRST
algebra for this system is summarized in the commuting differentials

q̄ and γq = γp · θ , (3.21)

and the module is thus
C∞(M)[θ̄1, . . . , θ̄n|ψ̄1, . . . , ψ̄n]⊗ C[[γ]] , (3.22)

on which we define a pairing by

(a, b) =

ˆ
CY 3

dvolCY 3

ˆ
dγ ⟨⟨ab,Υ(θ∧3)Υ(ψ∧3)⟩⟩ . (3.23)

The integral over γ means that our pairing has “picture 1”. This means that alongside with
polynomials in γ, we have to include a dual multiplet which is distributional (Dirac delta) in
γ. Furthermore, the path-integral evaluation with the locally symmetric action (3.20) involves
integration over an odd subbundle of super moduli space M = J /D of χ’s modulo globally
defined odd reparamerizations (see e.g. [22, 23] for details). On distributions, this is realized as
a nilpotent, even-parity picture changing operator X = δ(β)q with δ(β)δ(γ) ∼ 1. This picture
changing operator is generally not unique but this choice arises naturally in the worldline path
integral [23] and furthermore happens to match precisely ∂ ∼ div. So, the observation here is
then that integration over the odd moduli space of the locally symmetric action (3.20) naturally
provides the extra nilpotent operator entering in (3.4). In fact, for a worldline with just two
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punctures, relevant for the kinetic term, the moduli space is just a point [23]. Then γ and δ(γ) are
the Faddeev–Popov ghosts for setting to zero the global odd transformations in (3.20).

A minimal set of fields10 containing the Beltrami differential, is

a(0) = µaθ̄a + µb
aψ̄

aθ̄b ≡ µ(1,0) + µ(1,1) , (3.24)

where µ(1,0) is a gauge symmetry for the Beltrami differential µ(1,1) with the differential q̄ of degree
−1 for our definition of the ghost degree,

gh := −#ψ̄ + (#θ̄ +#γ) . (3.25)

It is clear that (3.24) in itself does not complete a multiplet for q̄. However the remaining fields
will be accounted for by antifields below, as is common in BV quantization.

We will see that it is possible to obtain the q̄ cohomology from the field equations without
restricting the fields to the image of the divergence operator, im q ∼ im div. Furthermore, our odd
symplectic pairing (3.23) already determines the anti-field of a(0) as (gh δ(γ) = −1)

a(0)∗ = µ∗(2,2)δ(γ) + µ∗(2,3)δ(γ) . (3.26)

Another option would be to have the Beltrami differential in a picture −1 multiplet, based on the
δ(γ). In that case the interaction term would make up an integral form on M instead, e.g. [23].

Let us now explain how the problem of the non-local quadratic term in the BCOV action is
naturally mapped to the problem of pictures in the Ramond sector of open super string theory
[24]. The natural kinetic term of the BV-action

S2 = (a(0), q̄a(0)) (3.27)

is not admissible since the picture does not add up to 0, i.e. the integration over γ is not well
defined11. This is precisely what happens in the Ramond sector of string theory. In that theory
there is a solution to this problem by introducing an auxiliary field with picture shifted by −1 [25].
This then suggests a solution in our case as well. We add to a(0) a set of auxiliary fields in picture
−1,

a(−1) = µ(2,0)δ(γ) + µ(2,1)δ(γ) , (3.28)

together with its anti-field,

a(−1)∗ = µ∗(1,2) + µ∗(1,3) . (3.29)

The BV-multiplets ((3.28) ⊕ (3.26)) and ((3.24) ⊕ (3.29)) are related to each other by the picture
raising operator

X = δ(β)q , ghX = 0 , (3.30)

which commutes with q̄. We thus have two complexes related by the non-invertible cochain map
X

1 0 −1 −2

µ(1,0) µ(1,1) µ∗(1,2) µ∗(1,3)

δ(γ)µ(2,0) δ(γ)µ(2,1) δ(γ)µ∗(2,2) δ(γ)µ∗(2,3) ,

q̄ q̄ q̄

X

q̄

X

q̄

X

q̄

X

(3.31)

on which we have a well defined kinetic term

S2 =
1

2
(a(−1), q̄Xa(−1)) + (a(−1), q̄a(0))

=
1

2
⟨µ(2,1), ∂̄divµ(2,1)⟩+ ⟨µ(2,1), ∂̄µ(1,1)⟩ , (3.32)

where, in the second line we used the isomorphic representation in the polyvectors as before.
We thus recover the local kinetic term from the last subsection, however without the field g and

10We opt for coloring the fields so to track and assemble them more easily.
11If we were to insert a δ(γ) in the pairing (B.5), then (3.27) would be well defined and would instead result in

the appropriate kinetic term for Chern–Simons theory.
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without the coupling to µ(1,0). The latter will naturally appear paired with anti-fields in the BV-
extension given below. The fact that the compensator g is absent, while not an inconsistency, is
a shortcoming that will be addressed in the large Hilbert space description below. On the other
hand, the div operator appears naturally in this description in the form of picture changing as a
consequence of working on super moduli space. An alternative way to match the picture without
introducing auxiliary fields would be to insert the inverse X−1 of the picture raising operator into
(3.27). However, the inverse is not well defined since X has a non-vanishing (co)-kernel. This is
just the same problem of the 1

∂ operator in the BCOV-kinetic term, which we propose to address
in this paper.

Furthermore, the BV-extension is already at hand —as usually happens in string theory—,
by simply including the antifield with respect to the natural pairing on super moduli space M.
Indeed, the BV-extension of the quadratic action is simply

S2,BV =
1

2
(a(−1), q̄Xa(−1)) + (a(−1), q̄a(0)) + (a(0)∗, q̄a(0)) + (a(−1)∗, q̄a(−1)) (3.33)

=
1

2
⟨µ(2,1), ∂̄divµ(2,1)⟩+ ⟨µ(2,1), ∂̄µ(1,1)⟩+ ⟨µ∗(2,2), ∂̄µ(1,0)⟩+ ⟨µ∗(1,2), ∂̄µ(2,0)⟩ .

This makes the role of µ(1,0) and µ(2,0) as gauge parameters for µ(1,1) and µ(2,1) manifest. Geo-
metrically, µ(1,0) represents holomorphic reparametrizations.

Before moving on to the next part, we should perhaps emphasize that the algebra generated
by q does not close into a translation and is thus not a supersymmetry but rather a nilpotent
symmetry on R0|1. We can promote this to a N = 2 SUSY by adding the terms p̄ · χ̄(θ̄) − e

2 p̄ · p
to the worldline action. We will comment on this point in appendix B. In that case, one needs to
go to a reduced module Vred and refer to a different presymplectic pairing.

3.3 Interacting theory and its BV formulation

Let us now turn to the cubic interaction. For the 3-punctured line the moduli space M ≃ R0|1

is (0|1)-dimensional [23]. To eliminate any dependence of this contribution on M one inserts
the Poincaré dual Y = ηδ(dη) in the path integral, thus eliminating all dependence on the odd
coordinates. Then the 3-point correlator representing the cubic term should produce a function,
rather than a pseudoform on M. This means that the insertions must have picture zero. In
addition, we insert a δ(γ) (anywhere on the line) to provide the Jacobian for isolating the global
odd transformation12, as described below Eqn. (3.23). Adding this to S2,BV we end up with

SBV =
1

2
(a(−1), q̄Xa(−1)) + (a(−1), q̄a(0)) +

1

3!
(a(0), δ(γ)a(0) ∧ a(0)) + (a(−1)∗, q̄a(−1)) (3.34)

=
1

2
⟨µ(2,1), ∂̄divµ(2,1)⟩+ ⟨µ(2,1), ∂̄µ(1,1)⟩+ 1

3!
⟨µ(1,1), µ(1,1) ∧ µ(1,1)⟩+ ⟨µ∗(1,2), ∂̄µ(2,0)⟩ .

Note that we have removed the term (a(0)∗, q̄a(0)) = ⟨µ∗(2,2), ∂̄µ(1,0)⟩ compared to (3.33), because
it does not relate to a symmetry of the cubic term. Equation (3.34) is then the action for BCOV
with a local kinetic term. Indeed the E-L equations for the fields are

q̄(qµ(2,1) + µ(1,1)) = 0 , (3.35)

q̄µ(2,1) +
1

2
µ(1,1) ∧ µ(1,1) = 0 , (3.36)

If µ(1,1) has no projection on the cohomology of q, the first equation can be solved to express
µ(1,1) = −qµ(2,1), implying, in particular, that µ(1,1) is divergence free. If, on the other hand,
µ(1,1) ∈ H∂̄(PV ) then it follows from the ∂∂̄-lemma that µ(1,1) can be assumed to be divergence-
free (there is a quasi-iso between H∂̄(PV ) and (ker div, ∂̄), see [5]). Upon left action by q on the
second equation and by using the first equation, we get

q̄µ(1,1) +
1

2
q(µ(1,1) ∧ µ(1,1)) = 0 , (3.37)

which is equivalent to the KS-equation for µ(1,1) or, in other words to the integrability condition of
the Beltrami differential, where Tian’s lemma [20] is used (reviewed also in the Appendix (A.5)).

12Alternatively we could have one insertion in picture −1 and two insertion in picture 0. However, consulting
(3.31) we can see that there is a non-vanishing contraction of that kind.
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Focusing on polyvectors for ease,13 let us follow what happens when, using (3.35), we express the
divergence-free µ(1,1) in terms of µ(2,1) and the harmonic part h, taken to be compactly supported
so that ∂̄h = 0. Then

SBV [µ] =− 1

2
⟨µ(2,1), ∂̄divµ(2,1)⟩ − 1

3!
⟨divµ(2,1) + h, (divµ(2,1) + h) ∧ (divµ(2,1) + h)⟩

+ ⟨µ∗(1,2), ∂̄µ(2,0) + divµ(2,0) ∧ (divµ(2,1) + h)⟩+ 1

2
⟨µ∗(1,3),divµ(2,0) ∧ divµ(2,0)⟩ (3.38)

provides the BV formulation of Barannikov–Kontsevich action for BCOV. If the antifields µ∗(1,2)

and µ∗(1,3) are div-exact, the action functional is invariant under the BV-transformations

δµ(2,1) = ∂̄µ(2,0) + divµ(2,0) ∧ (divµ(2,1) + h),

δµ∗(1,2) = −∂̄divµ(2,1) − 1

2
div((divµ(2,1) + h) ∧ (divµ(2,1) + h)) + div(µ∗(1,2) ∧ divµ(2,0)),

δµ(2,0) =
1

2
divµ(2,0) ∧ divµ(2,0),

δµ∗(1,3) = ∂̄µ∗(1,2) + div(µ∗(1,2) ∧ (divµ(2,1) + h)) + div(µ∗(1,3) ∧ divµ(2,0)), (3.39)

as can be checked using integration by parts, ∂̄2 = 0, the derivation property of ∂̄ w.r.t. the
alternating product ∧, the relation

´
diva ∧ b = bdry − (−1)|a|

´
a ∧ divb and that div yields the

Schouten bracket on a product of div-free polyvectors, which satisfies Jacobi identity.
For the same reasons, (3.38) satisfies the classical BV-master equation. Until now, we have

overlooked the degree of ghost field, antifield and antighost field but at this point it becomes
important to assess it. Given the ghost degree of the “vacuum” δ(γ),

gh(µ(2,0)) = 1, gh(µ∗(1,2)) = −1, gh(µ∗(1,3)) = −2. (3.40)

As customary, the parity is the ghost degree mod 2. Then, letting F,L ∈ Λ3(TM(1,0) ⊕ T ∗M(0,1)),
our odd BV bracket induced by the pairing is:

{F,L} =
∑
Φ

ˆ
CY 3

Υ ∧
(
ι δRL

δΦ

ι δLF

δΦ∗
− ι δRL

δΦ∗
ι δLF

δΦ

)
Υ =

∑
Φ

〈
δRL

δΦ
,
δLF

δΦ∗

〉
−
〈
δRL

δΦ∗ ,
δLF

δΦ

〉
. (3.41)

Then

{SBV , SBV } =−
〈
∂̄divµ(2,1) +

1

2
div((divµ(2,1) + h) ∧ (divµ(2,1) + h)), ∂̄µ(2,0) + divµ(2,0) ∧ (divµ(2,1) + h)

〉
+ ⟨div(µ∗(1,2) ∧ divµ(2,0)), ∂̄µ(2,0) + divµ(2,0) ∧ (divµ(2,1) + h)⟩

+
1

2
⟨div(µ∗(1,3) ∧ divµ(2,0)),divµ(2,0) ∧ divµ(2,0)⟩

+
1

2
⟨∂̄µ∗(1,2) + div((divµ(2,1) + h) ∧ µ∗(1,2)),divµ(2,0) ∧ divµ(2,0)⟩ (3.42)

is zero after the aforementioned algebraic massaging. Note that although SBV is a functional, we
are effectively taking derivatives of the arguments of the BV action and shoving them in.

4 Large Hilbert space

A shortcoming of the formulation in the last section is that g is not included in the BV-multiplet14.
In this section we attempt to get around this by formulating the theory in the large Hilbert space
for the γ-ghost, which is achieved by allowing for negative powers of γ in the multiplet instead of
pictures. Expanding the setup to the large Hilbert space has proven fruitful in string field theory
literature, see for instance [26]. In this formulation one loses the connection to super moduli space
seen before. On the other hand, it allows to combine multiplets that were of different pictures into
a single multiplet.

13Of course all our considerations also hold for graded functions of picture 0 and−1and canonical operators
entering in the first line of (3.34).

14In fact it could be included but simply drops out in the action.
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4.1 Long multiplet

For instance, we can combine a(0) and a(−1) in section 3.2 into one multiplet of fields as

a =
1

γ2
g(3,0) +

1

γ2
g(3,1) +

1

γ
µ(2,0) +

1

γ
µ(2,1) + µ(1,0) + µ(1,1) + γg(0,0) + γg(0,1) , (4.1)

where g(3,0), µ(1,0), µ(2,0) and g(0,0) are ghosts. The differential q̄ = ψ̄ap̄a, of ghost number -1, is
represented as before, while the “picture changing operator” is represented as

X = γθapa , (4.2)

which has a closed action on (4.1) and is now odd as well but of ghost number 0. We note in passing
that g(•,•) could have been included also in the small Hilbert space in Section 3.2. However, such
a field is not generated by X as indicated in (3.31).

Since we do not have pictures (i.e. δ-function for the ghosts) we need to reconsider the definition
of the symplectic form in the large Hilbert space. For this we will represent the delta function as
a residue:

(a, b) =
1

2πi

ˆ
CY 3

dvolCY 3

˛
dγ ⟨⟨a, bΥ(ψ∧3)Υ(θ∧3)⟩⟩. (4.3)

Notice that, unlike in the previous section, this pairing is even and pairs (4.3) with

a∗ =
1

γ2
g∗(3,2) +

1

γ2
g∗(3,3) +

1

γ
µ∗(2,2) +

1

γ
µ∗(2,3) + µ∗(1,2) + µ∗(1,3) + γg∗(0,2) + γg∗(0,3) (4.4)

where now µ∗(2,2) is of even parity. We can display the complex built out of a and a∗ schematically
as

1 0 −1 −2

1
γ2 g

(3,0) 1
γ2 g

(3,1) γg∗(0,2) γg∗(0,3)

1
γµ

(2,0) 1
γµ

(2,1) µ∗(1,2) µ∗(1,3)

µ(1,0) µ(1,1) 1
γµ

∗(2,2) 1
γµ

∗(2,3)

γg(0,0) γg(0,1) 1
γ2 g

∗(3,2) 1
γ2 g

∗(3,3)

q̄

X

q̄

X

q̄

q̄

X X

q̄

X X

q̄

X X

q̄

X X

q̄ q̄

X X

, (4.5)

where it is transparent which fields are gauge fields and all the roles are assigned accordingly to the
prescription that the antighost degree of a is equal to −gh(a)−1. We have chosen a representation
in which the fields and their respective duals are on the same line.

A free action for the multiplet a is easily found to be:

1

2
(a, q̄Xa) +

1

2
(a, q̄a) + (a∗, q̄a) = ⟨g(3,1), ∂̄divµ(1,1)⟩+ ⟨g(3,1), ∂̄g(0,1)⟩+ ⟨µ(2,1), ∂̄divµ(2,1)⟩

+ ⟨µ(2,1), ∂̄µ(1,1)⟩+ ⟨g∗(3,2), ∂̄g(0,0)⟩+ ⟨µ∗(1,2), ∂̄µ(2,0)⟩+ ⟨µ∗(2,2), ∂̄µ(1,0)⟩+ ⟨g∗(0,2), ∂̄g(3,0)⟩ .
(4.6)

However, now we cannot add a cubic interaction term preserving any of the gauge symmetries.
The reason for this is the rigidity introduced by unifying both the picture 1 and −1 multiplets in
the “long” multiplet (4.1).

4.2 A non-local differential

Alternatively, we may consider a short multiplet starting with the ghost µ(1,0) as

Ã =
1

γ2
g(3,2) +

1

γ
µ(2,1) + µ(1,0). (4.7)
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This forms a complex15 for the non-local and even-parity differential d = q̄X(−1), which is well
defined only in imX. However, d will not appear in the action, so that the variation of the action
functional will be free. Upon acting with X as in (3.31) we obtain a second multiplet

A =
1

γ
µ(2,2) + µ(1,1) + γg(0,0) (4.8)

which combines µ(1,1) with what previously was its anti-field µ(2,2). These two multiplets are parity
odd and even, and have homogeneous BV-degree 0 and 1 respectively, if we define the latter as

deg = 2− (#ψ +#θ + 2#γ) , (4.9)

in agreement with [6]. Given that Ã contains the auxiliary field µ(2,1) we then choose the action

S(Ã, A) =
1

2

(
Ã, q̄ XÃ

)
+
(
A, q̄Ã

)
+

1

6

(
A,

1

γ
A ∧A

)
=

1

2
⟨µ(2,1), q̄ qµ(2,1)⟩+ ⟨g(3,2), q̄ qµ(1,0)⟩+ ⟨µ(2,1), q̄µ(1,1)⟩+ ⟨g(3,2), q̄g(0,0)⟩

+ ⟨µ(2,2), q̄µ(1,0)⟩+ 1

6
⟨µ(1,1), µ(1,1) ∧ µ(1,1)⟩+ ⟨µ(2,2), µ(1,1) ∧ g(0,0)⟩ . (4.10)

The equations of motion following from (4.10) are then

q̄qµ(2,1) + q̄µ(1,1) = 0 , (4.11)

q̄qµ(1,0) + q̄g(0,0) = 0 , (4.12)

q̄qg(3,2) + q̄µ(2,2) = 0 , (4.13)

q̄µ(2,1) +
1

2
µ(1,1) ∧ µ(1,1) + µ(2,2) ∧ g(0,0) = 0 , (4.14)

q̄µ(1,0) + µ(1,1) ∧ g(0,0) = 0 , (4.15)

q̄g(3,2) + µ(2,2) ∧ µ(1,1) = 0 . (4.16)

We can now repeat the discussion below (3.35): If A has no projection on the cohomology of q, the
equation for A can be solved to express A = −XÃ, implying, in particular, that A is divergence-
free. If, on the other hand, A ∈ H∂̄(PV ) then it follows (existence of a quasi-iso to (ker div, ∂̄)
guaranteed by the ∂∂̄-lemma) that A can be assumed to be divergence free. Upon left action by q
on eq. (4.14) and using eq. (4.11) (and similarly for the last two equations), we find

q̄µ(1,1) +
1

2
q(µ(1,1) ∧ µ(1,1)) + q(µ(2,2) ∧ g(0,0)) = 0 , q̄µ(2,2) + q(µ(2,2) ∧ µ(1,1)) = 0, (4.17)

q̄g(0,0) + q(µ(1,1) ∧ g(0,0)) = 0 , (4.18)

which agrees with (2.7), (2.8) obtained by Costello and Li [6] for divergence free µ.
Let us now consider the gauge symmetries: S(A, Ã) is invariant under the non-linear transfor-

mations of µ(1,1) and µ(2,2)

δµ(1,1) = −q̄µ(1,0) − µ(1,1) ∧ g(0,0), (4.19)

δµ(2,2) = q̄µ(2,1) +
1

2
µ(1,1) ∧ µ(1,1) + µ(2,2) ∧ g(0,0). (4.20)

The remaining fields do not transform. These symmetries are rather strange, their structure almost
suggesting that we should take g(0,0) and µ(1,1) as gauge fields so to have linear/quadratic gauge
transformations (or else there would be terms that do not depend on gauge fields). We will not
delve more into that.

Now we would like to make contact with section 3.3 and [5, 19, 6]. Hence we use eq. (4.11),
(4.12) and (4.13), that follow from variation w.r.t. to the auxiliary fields in Ã and substitute A in
S(A, Ã) as A = −qÃ+ h, with h a compactly-supported harmonic term, to get:

S(Ã) =− 1

2
⟨µ(2,1), q̄qµ(2,1)⟩+ ⟨g(3,2), q̄g(0,0)⟩+ ⟨qg(3,2)+k(2,2), (qµ(2,1) + h(1,1)) ∧ g(0,0)⟩

− 1

6
⟨qµ(2,1) + h(1,1), (qµ(2,1) + h(1,1)) ∧ (qµ(2,1) + h(1,1))⟩. (4.21)

15The anti fields for Ã are contained in Ã∗ = γg(0,1) + µ(1,2) + 1
γ
µ(2,3) which will, however, not appear in the

action functional below.
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This is then the extension of the action in [5] to include the compensator field g. It is invariant
under the gauge transformations

δµ(2,1) = q̄µ(2,0) + qµ(2,0) ∧ (qµ(2,1) + h(1,1)),

δµ(1,0) = g ∧ qµ(2,0), (4.22)

δg(3,2) = (qg(3,2) + k(2,2)) ∧ qµ(2,0) .

Upon left action by q and using eq. (4.11), (4.12) and (4.13) these take the more intuitive form

δµ(1,1) = −q̄λ(1,0) − [λ(1,0), µ(1,1)],

δg(0,0) = −[g(0,0), λ(1,0)], (4.23)

δµ(2,2) = −[µ(2,2), λ(1,0)] .

where we defined λ(1,0) ≡ −qµ(2,0). Notably, there is just one gauge parameter: we cannot change
g(3,2) by a q̄-exact contribution. This fact is reminiscent of the discussion around (3.34) in the
small Hilbert space: only one gauge parameter could remain a symmetry of the interacting theory
(whereas there were two for the linear theory).

The gauge invariant theory described by (4.21), (4.23) admits a minimal BV extension. Cru-
cially for that, the (odd) ghost field 1

γµ
(2,0) must transform in the adjoint:

δµ(2,0) = −1

2
qµ(2,0)qµ(2,0). (4.24)

We shall now take the following pairs of fields-antifields, where the antifields are q-exact :(
1

γ
µ(2,1), µ∗(1,2)

)
,

(
1

γ2
g(3,2), γg∗(0,1)

)
,

(
µ(1,0),

1

γ
µ∗(2,3)

)
(4.25)

and for the ghost field 1
γµ

(2,0) we require the antighost field to be µ∗(1,3). Then we can define an
odd BV bracket between two functionals as:

{F,L} =
∑
Φ

˛
dγ

ˆ
CY 3

Υ ∧
〈〈

δRF

δΦ
,Υ

〉
,
δLL

δΦ∗

〉
−

〈〈
δRF

δΦ∗ ,Υ

〉
,
δLL

δΦ

〉
.

Eventually

S = S(Ã) + ⟨µ∗(1,2), δµ(2,1)⟩+ ⟨g∗(0,1), δg(3,2)⟩+ ⟨µ∗(2,3), δµ(1,0)⟩ − ⟨µ∗(1,3), δµ(2,0)⟩ (4.26)

satisfies the CME, 1
2{S, S} = 0. The calculation is straightforward and the conclusion follows

from q-exactness of the antifield, ⟨qa, b⟩ = −(−1)|a|⟨a, qb⟩ and the usual compatibility conditions
of the differential q̄ with the Schouten bracket (the latter expressed in Tian’s version), as well as
its Jacobi identity.

5 Theory of background fields

In the previous section we derived a local and polynomial BV-action for the Kodaira–Spencer the-
ory of complex structure deformations on a Calabi–Yau complex 3-fold. However, since Kodaira–
Spencer theory is well posed for any complex manifold, one may wonder why the additional CY-
structure is needed for the worldline. In this section we present an alternative, background indepen-
dent formulation, where we absorb the Beltrami differential into a deformation of the differential
Q. The obvious deformation is the “minimal coupling”

p̄a → p̄a + µb
apb ≡ (p̄µ)a (5.1)

with pa, p̄a ∼ ∂za , ∂z̄a on the representation space V . Now, what is the correct condition we
should impose on the deformed q̄ for the background to be Maurer–Cartan? We will say that a
deformation of an almost complex structure is MC if the problem of infinitesimal deformations
around that background is well-defined, i.e. it can be formulated as a cohomology problem to
distinguish between fake (reparametrizations) and actual infinitesimal deformations. For this q̄
needs to be nilpotent on the relevant vector space spanned by infinitesimal deformations, which is
tantamount to

[(p̄µ)a, (p̄µ)b] = 0, (5.2)
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which is just the KS-equation for integrable deformations of complex structures on a complex
manifold. See also [8] for an earlier discussion. Note that the Calabi–Yau condition is not required
here. However, a locally invertible holomorphic 3-form is required to establish an “operator-state-
correspondence” between states in V and infinitesimal deformations of q̄ (see e.g. [27]). Indeed,
we need to make use of the local isomorphism Υ in order to identify a state (3.24) with δµq̄.

6 Outlook and conclusions

In this paper we gave a construction of a BV action for BCOV starting from a spinning worldline
with local supersymmetry instead of a topological sigma-model, mimicking familiar constructions
from string field theory. Working in the small Hilbert space this gives a direct construction of
the BV-extension of the action of Barannikov and Kontsevich [5]. In the large Hilbert space
formulation there is a multiplet that includes the scalar compensator for the holomorphic 3-form.
Compared to Costello–Li’s on-shell formulation [28], the off-shell action constructed here includes
a local kinetic term at the price of having a parity even inner product which does not pair with
anti fields. Furthermore, instead of the equivariant differential ∂̄+udiv in [6] this multiplet has an
even differential d = ∂̄X−1 involving the inverse picture changing operator which represents the
divergence operator dressed with the ghosts.

As for the question of the gauge symmetries, in the non-linear theory with the local kinetic
term (either in the large or small Hilbert space) we observe only linear gauge symmetries (q̄-
coboundaries). Instead, after using the field equations to project the field onto its div-exact and
harmonic part, more complicated symmetries (adjoint action of the vector field for holomorphic
diffeos) emerge. We have also been able to find a short multiplet in the large Hilbert space com-
prising the Beltrami differential and its conjugated antifield with the presence of some additional
BV-transformations.

We note that in the small Hilbert space formulation, with an arguably more geometric inter-
pretation in terms of pictures, we are able to formulate Kodaira–Spencer theory just for complex
structure deformations without inclusion of the compensator for the holomorphic 3-form. For that
we needed to resort to the large Hilbert space with the drawbacks just described. However, it is
not obvious that the compensator could be included in the small Hilbert space as well if one were
to consider reducible representations (BV-multiplets).

While geometrizing the non-standard kinetic term of BCOV, we believe that our description
also highlights Kodaira–Spencer gravity as a valuable toy model to explore and geometrize peculiar
features of super string field theory such as picture changing and transition between the small and
large Hilbert spaces. In particular, we gave a new interpretation of the pairing in the large Hilbert
space. Also, it would be interesting to explore the relation between picture changing and the
equivariant differential in [28].

The worldline description has the advantage that the superghost sector which plays a central
role in our investigation, is readily included in the operator formulation while in a worldsheet
sigma-model its implementation is less direct, in terms of bosonized ghost, which obscures its
geometric interpretation. It may thus be instructive to revisit our construction for the worldsheet
sigma-model with topological twist.
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A Deformation problem of complex structures

We present a short reminder about the deformation problem of complex structures following [11].
Given a complex structure J on a manifold M , a splitting between holomorphic and antiholo-
morphic vector fields is in place. If we are provided with a new (almost) complex structure J ′,
sufficiently close to J , then the projection of TM ′ to its antiholomorphic component will induce
an isomorphism and thus we end up with the chain of isomorphisms:

TM(1,0)

π−1
(0,1)−−−→ TM ′

(1,0)

π(1,0)−−−→ TM(0,1) .

In the second slot, we must think of TM ′
(1,0) as TM

′
(1,0) ⊂ TM ′⊗C. Therefore, there exists a global

antiholomorphic 1-form, with values in holomorphic tangent vectors, the Beltrami differential :

µ ∈ Ω(0,1)(M,TM(1,0)) . (A.1)

We then seek the conditions on µ so to promote the new almost complex structure to a complex
structure. Newlander–Nirenberg theorem states that an almost complex structure is fully-fledged
complex if it is integrable:

[X,Y ] + J ′([J ′X,Y ] + [X, J ′Y ])− [J ′X, J ′Y ] = 0, ∀X,Y ∈ X(M).

Equivalently, TM ′
(0,1) is an involutive distribution. This reflects in the following Maurer–Cartan

equation for µ:

∂̄µ+
1

2
[µ, µ] = 0 , (A.2)

where [−,−] is the Lie bracket of vector fields (the reader should be reminded that it extends on
multivector fields as the Schouten–Nijenhuis bracket). There is another equivalent expression to
(A.2) based on Tian’s lemma [20] (see also [29] for a review), which we will display later. First let
us recall that the holomorphic Dolbeault differential on forms induces a differential operator ∂Υ
on polyvector fields. The latter are forms that take values in multivector fields, i.e.

PV •,•(M) := Ω0,•(M,Λ•TM(1,0)) .

The differential operator ∂Υ is then defined by the commutative diagram:

PV •,• PV •−1,•

Ωd−•,• Ωd+1−•,•

∂Υ

Υ∼ Υ∼

∂

. (A.3)

Here ∂ is the holomorphic Dolbeault differential and Υ is the non-degenerate holomorphic volume
form thanks to which PV k,m ∼= Ωd−k,m. Such an element exists only for the case of Calabi–
Yau manifolds. Note that it is possible to define a boundary operator on PV •,• without explicit
dependence on Υ. Therefore we also refer to ∂Υ as div because it extends the divergence operator
to multivector fields. So [20]:

[α, β]SN ≡ ∂Υ(α ∧ β)− (∂Υα) ∧ β − (−1)|α|α ∧ ∂Υβ, (A.4)

where the wedge product is intended to be taken on both the form part and the multivector fields.
Eventually, on div-free Beltrami differentials, (A.2) can be rewritten as:

∂̄µ+
1

2
div(µ ∧ µ) = 0, µ ∈ PV 1,1(M) . (A.5)

Complex structure deformations of Calabi–Yau manifolds may or may not preserve the volume
form. If g ∈ PV (0,0) parametrizes the freedom in choosing a global factor for Υ, then to preserve
the holomorphic volume form one has to ask that ιexp g expµΥ is closed. This yields:

0 = d(ιexp g expµΥ) =d(ιexp gιexpµΥ) = dιgΥ+ dιµΥ− ιµd(ιgΥ) + ιgd(ιµΥ) + d(ιgιµΥ) +O(3)

=
(
ι∂̄g + ιdivµ + ι[g,µ]

)
Υ+O(3).

In conclusion, complex structure deformations that also preserve the holomorphic volume form on
a Calabi–Yau manifold are ought to satisfy:

∂̄g + divµ+ [g, µ] = 0. (A.6)
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B A fully gauged (2; 2)-worldline

Alternatively, we could motivate our choice for the operator algebra (3.3) for BCOV theory by
starting with the spinning particle whose worldline has N = (2; 2)-supersymmetry. Then BRST
quantization gives rise to the differential

Q = cH + γq + γ†q† + γ̄q̄ + γ̄†q̄† + b(γγ† + γ̄γ̄†). (B.1)

Written in Darboux coordinates, the 2 + 2 supercharges in (B.1) take the form

q̄† = ψ · p, q̄ = ψ̄ · p̄, q = θ · p, q† = θ̄ · p̄ .

with
{ψa, ψ̄b̄} = hab̄ = {θa, θ̄b̄} =⇒ {q̄, q̄†} = H = {q, q†}, (B.2)

provided the target space is Kähler.16 All other brackets are zero. H is the worldline Hamiltonian
whose explicit form will not be relevant here, as it relates to diffeomorphism invariance, a non-
topological feature that we are going to lift. Indeed, in order to make contact with the topological
string, we shall project out all information about the punctures on super moduli space M of the
N = (2; 2) worldline. For this, we choose the path integral measure to produce a constant function
(rather than a top form) on M. Essentially, one does not want to know where the punctures are.

This is reasonable, because there is a canonical way to write interaction terms on the worldsheet
(or worldline) whereas the kinetic terms involve some choices. Our choices will be as follows. We
first eliminate the Hamiltonian constraint in Q by going from

V = C∞(U)[θ̄1, . . . θ̄n|ψ̄1, . . . ψ̄n]⊗ C[[c, γ, γ̄, γ†, γ̄†]] ∼= Λ•(TU(1,0)[1]⊕ T ∗U(0,1))⊗ C[[c, γ, γ̄, γ†, γ̄†]]
(B.3)

where U ⊂M , to the reduced module

Vred := Hbγγ† ∩Hbγ̄γ̄† = V/{γγ†, γ̄γ̄†} , (B.4)

where H is exact. This reduction does not yet delete all dependence on supermoduli but this can
be achieved by a presymplectic formulation with a suitable degenerate symplectic form.

After this kick-starter, we shall now suggest a pairing. One possible presymplectic formulation
amounts to simply insert δ-functions for all the ghosts which would be the canonical procedure for
the interaction term. However, this completely trivalizes Q inside expectation values. Therefore
we define the pairing by

(a, b) =

ˆ
CY 3

dvolCY 3

ˆ
dγdγ̄dγ†dγ̄†⟨⟨ab,Υ(θ∧3)Υ(ψ∧3)⟩⟩ δ(γ̄†)δ(γ†)δ′(γ̄), a, b ∈ Vred (B.5)

in the path integral measure. The lack of δ(γ) implies that our pairing has “picture 1”. Note how
this pairing has total ghost number given by gh(δ(γ)), i.e. the choice of the ghost number of the
vacuum. Moreover, q = θ · p and q̄ = ψ̄ · p̄ are self-adjoint w.r.t. the pairing (one way to see this is
to use the existing isomorphisms with the module of PV •,• and integration thereof, and note that
q̄ ∼ ∂̄ as well as q ∼ div, which are self-adjoint w.r.t. the integral.).

That done we can easily describe the structure states in Vred, modulo terms that will not con-
tribute due to the degeneracy in the symplectic structure. We just need to choose a representation
for the remaining ghost algebra [β, γ] = 1. There are two inequivalent representations, given by
polynomials in γ and derivatives of δ(γ). In the polynomial representation of Vred we have

Φ(0) = ⊕p,q

(
ϕ
a1···ap

0 b1···bq (z)θ̄a1
· · · θ̄ap

ψ̄b1 · · · ψ̄bq + γ̄ϕ
a1···ap

1̄† b1···bq (z)θ̄a1
· · · θ̄ap

ψ̄b1 · · · ψ̄bq
)
+O(γ). (B.6)

Now, again due to the missing delta function δ(γ) in the pairing (B.5), this representation pairs
with the “picture −1”,

Φ(−1) = ⊕p,q

(
φ
a1···ap

1̄† b1···bq (z)θ̄a1
· · · θ̄ap

ψ̄b1 · · · ψ̄bq γ̄δ(γ) + φ
a1···ap

0 b1···bq (z)θ̄a1
· · · θ̄ap

ψ̄b1 · · · ψ̄bq δ(γ)
)
+O(∂γ)δ(γ).

(B.7)
This module and its dual are quite large and eventually we can focus only on (3.24), (3.26), (3.28)
and (3.29) in the body of this article. An attentive eye has certainly already caught that the γ̄

16As matter of fact, it would be appropriate to deploy covariant momenta and thus Christoffel symbols in the
supercharges, but we will not need their explicit expressions in the following therefore we spare the effort.
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dependence of Φ(−1) has disappeared from a∗(0) and a∗(−1). The correspondence to that half-
gauged sigma model is clear if one notes that there is an equivalent formulation to (B.5) where we
absorb γ̄ in the component fields, thus stripping away the γ̄-dependence of the states (3.26) and
(3.29), and work with the pairing

(a, b) =

ˆ
CY 3

dvolCY 3

ˆ
dγdγ̄dγ†dγ̄†⟨⟨ab,Υ(θ∧3)Υ(ψ∧3)⟩⟩ δ(γ̄†)δ(γ†)δ(γ̄)) (B.8)

with an un-differentiated δ(γ̄) and γ̄q̄ → q̄ ∼ ∂̄.
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