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We revisit axion monodromy inflation in the context of UV-inspired models and point out that its
cosmological observables are sensitive to heavy fields with masses far above the Hubble scale, such
as the moduli of flux compactifications. By studying a string-inspired two-field extension of axion
monodromy with a small turning rate, we reveal that the oscillatory modulation of the axion poten-
tial leads to continuous excitation of heavy fields during inflation when the modulation frequency
exceeds the field masses. This finding challenges the conventional single-field description, heavy
moduli cannot be simply integrated out. Using a full bootstrap analysis, we demonstrate that this
mechanism produces cosmological collider signals that bypass the usual Boltzmann suppression for
heavy masses. Specifically, we identify detectably large signatures of heavy moduli in the primor-
dial bispectrum, offering a promising avenue for probing high-energy physics through cosmological
observations.

Introduction– How sensitive are inflationary correla-
tors to UV physics? The answer might be discouraging
if we take a look at most of the UV-complete theories
of inflation. For decades, one main focus of string cos-
mology has been to achieve inflation with a single active
degree of freedom in 4D [1? ]. In most constructions,
a large number of moduli fields arise from (flux) com-
pactification. These moduli carry information about the
UV theory, for example by encoding the geometry of ex-
tra dimensions. However, after moduli stabilization, they
are supposed to be decoupled from the low-energy the-
ory. Only in certain circumstances, integrating out these
heavy states can lead to reduced sound speed and siz-
able self-interaction of the inflaton, which generate the
equilateral-type non-Gaussianity in cosmological correla-
tors [2–5].

Another perspective towards the UV sensitivity of in-
flation is provided by the cosmological collider physics
[6–9]. In that setup, signatures of massive particles dur-
ing inflation appear as squeezed-limit oscillations of the
scalar bispectrum. For heavy particles with m ≫ H, the
signals are suppressed by a Boltzmann factor e−πm/H ,
and so this channel is sensitive only to extra fields with
masses of O(H). An additional mechanism is needed to
enhance these signals. Two possibilities are the chemical
potential proposal [10–12] and the effective field theory
(EFT) with small sound speeds [13–16] or both [17]. A
third possibility, which will be realized in our model, is
the presence of features in the potential [18].

In this letter, we re-examine the UV sensitivity in one
class of models arising from stringy embeddings – the
axion monodromy inflation [19–23]. As one of the most
successful examples of string inflation, this model breaks
the discrete shift symmetry of an axion by introducing a
monodromy, namely the axion potential becomes multi-
valued. Thus in a controllable way, the 4D effective the-
ory provides a successful realization of large field inflation
with a sub-Planckian axion decay constant. Meanwhile,
the discrete symmetry of the axion allows periodic modu-

lations of the slow-roll potential which lead to oscillations
in the background evolution. Within single field inflation,
the oscillatory behaviour generates characteristic signals,
namely oscillatory corrections to the power spectrum and
also resonant non-Gaussianity in the primordial bispec-
trum [21, 24–29] (also see [30, 31] for recent discussions).
Like any other string model, the full description of ax-

ion monodromy contains many heavy fields, such as the
moduli of the compactification. Naively, these can be sta-
bilised and should not affect the low-energy single-clock
effective theory because they are heavy and we have a
small turning rate. However, for axion monodromy, this
is more subtle because background oscillations introduce
a new energy scale (see [18, 32–36] for previous studies
on the effects of heavy physics). Can we still integrate
out these heavy fields? Or in other words, what is the
regime of validity for the single field EFT? Are there
UV-sensitive signatures of heavy fields in cosmological
correlators?
In this work we attempt to answer these questions by

studying minimal but realistic UV-inspired models of ax-
ion monodromy. As expected from the general analysis
of [18], we find that due to the resonance between the
oscillatory couplings and quantum field fluctuations, the
system can become sensitive to heavy moduli when the
axion oscillates at a sufficiently high frequency. As a con-
sequence, the adiabaticity condition for effective single
field descriptions in [37, 38] can be violated, which leads
to a continuous production of heavy moduli. All the in-
flationary trajectories we consider have a small turning
rate. We compute the full primordial bispectrum using
the bootstrap method, and show that the resonance re-
moves the familiar Boltzmann suppression of the cosmo-
logical collider signals for heavy masses. This enhance-
ment is unrelated to the turning rate and had been no-
ticed previously in the squeezed limit in [18, 39, 40].

Axion monodromy revisited– Let’s consider a concrete
construction of string inflation by highlighting generic
features of compactifications. The standard starting
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point is the dimensional reduction of 10D supergravity,
M10 → M4 × X6. The compact extra dimensions X6

give rise to a large number of fields in the 4D effective
theory, including axions and moduli. An axion θ arises
from the integration of a gauge potential over nontrivial
cycles in X6. The continuous shift symmetry of θ is bro-
ken into a discrete one by non-perturbative effects. The
kinetic term is given by 1

2f
2
θ (∂µθ)

2, with fθ the axion de-
cay constant. Moduli fields include the radion modulus,
which controls the volume of the extra dimensions V. For
an isotropic X6 with characteristic length L, V ∝ L6 ∝
exp (

√
3ρ/MPl), where ρ is the canonically normalized

field describing volume fluctuations. After dimensional
reduction, constants of the 4D theory, such as the Planck
mass, are functions of the radion modulus. This is true
also for the axion decay constant. A specific example is
given as f2

θ ∝ V/L4 = f2 exp (ρ/
√
3MPl) [19, 20], where

f is the stabilised value at ρ = 0. Thus the kinetic term
from the UV provides a universal coupling between axion
and moduli fields. 1

To write down the 4D effective theory, we introduce the
canonically normalized axion field ϕ ≡ fθ. The following
simple Lagrangian captures the important features of the
string construction of axion monodromy

L = −1

2
eρ/Λ(∂ϕ)2 − 1

2
(∂ρ)2 − V (ϕ, ρ), (1)

where we have introduced Λ ≲ MPl to control the cou-
pling strength. When Λ ∼ MPl we return to the spe-
cific example above. This axion-modulus coupling can
become stronger, e.g. in geometries with hierarchically
different volumes [41]. The potential takes the form

V (ϕ, ρ) = Vsr(ϕ) +A4 cos

(
ϕ

f

)
+W (ρ). (2)

Here Vsr is a potential for the axion ϕ coming from
monodromy, which we assume satisfies the usual slow-
roll conditions. The periodic term arises from the non-
perturbative instanton effects. This makes it natural for
A to be smaller than Vsr. We also assume that ρ is the
lightest modulus, and that it is stabilised around ρ = 0,
with a mass m2 ≡ W ′′(ρ) ≫ H2. One example of this
potential is shown in Figure 1. We emphasize that the
Lagrangian (1) is expected in any UV-completions of ax-
ion monodromy. The common lore is that the modulus
field can be seen as decoupled, and the low-energy theory
reduces to single field inflation. In the following, we shall
re-examine this expectation.

1 In general, other types of interactions may arise in the potential,
which can generate oscillating corrections to moduli masses [32–
35]. We neglect their effects for simplicity and highlight the role
of kinetic mixings in this work.

FIG. 1. A sketch of the axion monodromy potential with a
heavy modulus field. The orange curve corresponds to the
background trajectory of the inflaton with oscillations driven
by the axion periodic modulation (the wiggles have been en-
hanced for visibility).

As the axion field develops a time-dependent back-
ground ϕ̇0 ̸= 0, the frequency of axion oscillation nat-
urally arises, ω ≡ ϕ̇0/f . For later convenience, let us
specify the parametric regime of interest

α ≡ ϕ̇0

Hf
≫ 1 , b∗ ≡ A4

V ′
srf

≪ 1 , Λ ≫ ϕ̇0√
αH

. (3)

The first two conditions are inherited from the single field
axion monodromy and correspond to a superHubble fre-
quency of oscillations and the monotonicity of the po-
tential. The last condition is peculiar to our two-field
extension and restricts the oscillations in the modulus
direction. It is needed for a controlled computation. Fi-
nally, the stability of the modulus requires W ′′ ≫ ϕ̇2

0/Λ
2.

The wiggly trajectory– Next, we take a look at the
background dynamics of the two-field system (1). As
the oscillatory modulation is assumed to be small, it
can be seen as a perturbation of the slow-roll evolution2

ϕB = ϕ0 + ϕ1 and ρB = ρ0 + ρ1. The 0th order solution
of the background equations is simply given by the slow-
roll result ϕ̇0 = −V ′

sr/3H, with 3H2M2
Pl = Vsr(ϕ0), and

we introduce the slow-roll parameter ϵ0 ≡ ϕ̇2
0/(2H

2M2
Pl).

Meanwhile we also have the centrifugal force equation
ϕ̇2
0/(2Λ) = W ′(ρ0) that stabilises the modulus at ρ0 = 0.
The first order quantities ϕ1 and ρ1 can be obtained

by imposing the conditions in (3). The trick is to notice
that we are interested in high-frequency oscillations with
α ≫ 1, so that terms with higher time derivatives are
more dominant. The equation for ϕ1 becomes the one
for a driven oscillator ϕ̈1 ≃ b∗V

′
sr sin (ϕ0(t)/f), which is

2 We also expect oscillatory modulation of the Hubble parameter
H = H0 +H1, but including H1 does not affect our analysis, so
we simply use the constant piece. See [42] for more details.
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the same as in single field axion monodromy with

ϕ̇1 =
3b∗
α

ϕ̇0 cos

(
ϕ0(t)

f

)
. (4)

This is the (small) oscillating part of the axion field veloc-
ity in addition to its constant slow rolling. The equation
of ρ1 becomes

ρ̈1 + 3Hρ̇1 +

(
m2 − 1

2

ϕ̇2
0

Λ2

)
ρ1 =

ϕ̇0

Λ
ϕ̇1 . (5)

The ϕ̇2
0/Λ

2 term is subleading compared to the mass as
required by the moduli stability. With the solution of
ϕ1 in (4), the source term on the right-hand side plays
the role as an oscillating driving force. The solution of
(5) contains two parts: the homogeneous solution corre-
sponds to the oscillatory decay of a heavy scalar in de
Sitter spacetime; the particular solution captures the pe-
riodic modulation by the axion. Neglecting the damped
heavy field oscillation, we find the following result

ρ1 = B cos

(
ϕ0(t)

f
+ δ

)
, (6)

where B = −A4/(ΛΞ2) and δ = arcsin
(
(m2 − ω2)/Ξ2

)
with Ξ4 = 9ω2H2 +(ω2 −m2)2. To estimate the relative
size of oscillations in the ρ direction, we find B ≃ b∗f

2/Λ
in the regime ω ≳ m ≫ H. For ω ≫ m, B ≃ 3b∗f

2/(αΛ)
is more suppressed. Meanwhile, we notice that the size
of the ρ oscillation depends on the specific model. For in-
stance, our choice here neglects the coupling between ax-
ion and modulus field in potential, which can lead to fur-
ther enhancement of B. In the rest of the paper, we will
show that the size of B directly determines the magni-
tude of mixing between curvature and isocurvature fields.
Therefore, our results can be understood as a minimum
estimation.

In summary, through controlled computation, we de-
rived the background evolution of the two-field model (1),
which displays oscillations in both the axion and modulus
field directions with the same frequency ω.3 For illustra-
tion, we plot one curved trajectory with wiggles in Figure
1. The intuitive explanation goes as follows: when the
axion velocity acquires small oscillations on the top of its
slow-roll motion, the centrifugal force due to the kinetic
mixing drives oscillatory deviations from the stabilised
position of the heavy field. This background behaviour
is generally expected in axion monodromy models with
periodically modulated potentials (see [35, 36] for exam-
ples of rapid/sharp-turn trajectories with heavy fields).

3 Note that this type of trajectories with constant wiggles differ
from the ones with damped oscillations, which are normally gen-
erated by sharp turns and heavy masses [43–46].

Subtleties of mixings– For inflationary fluctuations,
nontrivial consequences are expected for the wiggly tra-
jectories. At first thought, interactions of fluctuations in
this two-field system can be directly read off from the
original Lagrangian (1). By expanding the kinetic func-
tion exp (ρ/Λ) = 1 + ρ/Λ + ..., we see the mixings come
from a dimension-five operator ρ(∂ϕ)2/Λ. In flat gauge
ϕ = ϕB + δϕ and ρ = ρB + δρ, the two interactions
are given by (ϕ̇B/Λ) ˙δϕδρ and δρ(∂δϕ)2/Λ. Thus with
the background solution ϕ̇1, one can get oscillatory cou-
plings for the linear mixing but not for the cubic vertex
[18]. However, this simple consideration is not suited for
computing the inflationary observable, i.e. primordial
curvature perturbation ζ. Normally we use a field redef-
inition to build the connection δϕ = (ϕ̇B/H)ζ. Here due
to the oscillating piece of ϕ̇B , this simple relation misses
the resonance effects of field interactions. Another sub-
tlety concerns the oscillating trajectory: inflation does
not take place exclusively in the ϕ direction, and thus
the fluctuations δϕ do not directly determine ζ.
In this work, we take a more cautious approach to

these subtleties. As preparation, let’s first introduce
the covariant formalism of multi-field inflation [3, 47].
The kinetic term in (1) corresponds to a 2D hyper-
bolic field space with the coordinate Φa = (ρ, ϕ) and
the metric Gab = diag{1, exp (ρ/Λ)}. For the back-
ground solution Φa

B(t) = (ρ1, ϕ0 + ϕ1), we introduce a
new basis at each point of the trajectory by defining
the tangent and normal unit vectors T a ≡ Φ̇a

B/Φ̇t and

Na ≡
√
detGϵabTb, where the total field velocity is given

by Φ̇2
t ≡ ρ̇21 + exp (ρ1/Λ)(ϕ̇0 + ϕ̇1)

2. Then the turning
rate of the trajectory can be defined in a covariant way

Ω ≡ TaDtN
a ≃ 1

2Λ
ϕ̇0 +

1

2Λ
ϕ̇1 −

ρ̈1

2ϕ̇0

+ ... (7)

≃ ϕ̇0

2Λ

{
1 +

(
3
b∗
α

+ b∗

)
cos

(
ϕ0(t)

f

)
+ ...

}
where in the last step we have used the background so-
lution and applied the conditions in (3). This parame-
ter describes the deviation from the geodesic motion in a
curved manifold. The first term describes a constant turn
given by the 0th order background, while the last two are
the leading oscillating contributions. By using the back-
ground solutions, one can check that a small turning rate
Ω ≪ H is ensured as long as Λ ≫ ϕ̇0/H. Thus the
turning-rate correction to the isocurvature mass, which
plays an important role in other multi-field models, is
negligible here. (The effect of an oscillatory isocurva-
ture mass on the cosmological collider signals has been
systematically investigated in [48].)
To identify the leading interactions between the curva-

ture and isocurvature perturbations, we adopt the EFT
of inflation approach [49] and extend it to multi-field sce-
narios. The starting point is the unitary gauge where
field fluctuations along the trajectory vanish, and thus
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the perturbed scalar field can be written as Φa(t,x) =
Φa

B(t) + σNa. Furthermore, as we are interested in the
resonance effects, which occur deep inside the horizon,
we take the decoupling limit and neglect the mixing with
gravity [27]. This simplification allows us to focus on field
interactions, and then in unitary gauge we find that the
mixing mainly comes from the kinetic term. Specifically,
using ∂µΦ

a = δ0µΦ̇
a
B+∂µ(σN

a), we obtain the interaction
operator linear in σ as

−1

2
gµνGab∂µΦ

a∂νΦ
b ⊂ −Φ̇tGabg

0µT a∂µ(σN
b)

⊂ λ(t)δg00σ , (8)

where λ(t) = −Φ̇tΩ ≃ − ϕ̇2
0

2Λ

[
1 + b∗ cos

(
ϕ0(t)
f + δ

)]
and

in the last step we have used the definition of the turn-
ing rate in (7) and T aNa = 0. The EFT operator in
(8) gives us the dominant mixing between adiabatic and
isocurvature perturbations. Next, we perform the gauge
transformation to bring back the Goldstone π of time
diffeomorphism breaking, δg00 → −2π̇ + (∂µπ)

2. Now
we see that both the linear mixing −2λπ̇σ and the cubic
interaction λ(∂µπ)

2σ acquire oscillatory couplings pro-
portional to the turning rate Ω. Meanwhile, when we
move to the Goldstone gauge, because of the strong time-
dependence of λ(t+π), in the EFT another cubic vertex
appears as −2λ̇ππ̇σ. Considering that time derivatives
on highly oscillating functions lead to large prefactors
λ̇ ∼ ωλosc ∼ ωb∗λ, this vertex is more significant than
λ(∂µπ)

2σ for αb∗ > 1. In terms of curvature perturba-
tions ζ = Hπ, the leading mixing interactions with the
isocurvature mode σ are

Lmix = (ḡ + g2)ζ̇σ + g3ζζ̇σ + (g̃ + g̃3)(∂µζ)
2σ , (9)

where ḡ = ϕ̇2
0/(HΛ) and the other couplings are given

by

g2 ≃ ḡb∗ cos

(
ϕ0(t)

f
+ δ

)
, g3 ≃ ḡαb∗ sin

(
ϕ0(t)

f
+ δ

)
,

g̃ =
ḡ

2H
, g̃3 = g̃b∗ cos

(
ϕ0(t)

f
+ δ

)
. (10)

The cubic vertex g3 ≃ ḡαb∗ sin
(

ϕ0(t)
f + δ

)
can be seen

as an analogy of ϵη̇ζ2ζ̇ in single field axion monodromy,
which gives the leading contribution for resonant non-
Gaussianity [25]. As a consistency check, we notice
that (9) agrees with the full result of quadratic and cu-
bic actions of multi-field inflation [50] when we consider
a highly oscillatory trajectory. Also, taking the limit
b∗ → 0, all oscillatory coupling coefficients vanish. The
model then smoothly reduces to the standard cosmolog-
ical collider scenario without oscillatory features.

The moduli strike back– With the above knowledge, we
briefly examine the validity of the single field effective
description of axion monodromy. The wiggly trajectory

FIG. 2. The Feynman diagrams with leading resonance con-
tributions to the ζ power spectrum and bispectrum. The
purple dots denote vertices with oscillating couplings.

threatens to generate interesting multi-field effects. Now
we show under which conditions we can no longer inte-
grate out the modulus to achieve a single field EFT.
We follow the EFT approach of [3–5] and focus on the

regime of large moduli masses. The equation of motion of
the heavy isocurvature field with the linear mixing π̇σ is
given by σ̈+3Hσ̇− 1

a2 ∂
2
i σ+m2σ = 2λπ̇. When k2/a2 ≪

m2, the isocurvature modes have the approximate solu-
tion σ0 = (2λ/m2)π̇. Substituting this into the perturba-
tion action, we find that the reduction of the Goldstone’s
sound speed is negligible c−2

s − 1 = Φ̇2
t/(Λm)2 → 0 for

sufficiently large Λ. Naively this would suggest that the
single field description can be recovered and the moduli
fields are decoupled.
However, the wiggly inflaton trajectory invalidates the

analysis above. In deriving the approximate solution σ0,
one underlying assumption is σ̈ ≪ m2σ.4 But for ax-
ion monodromy models we can check that σ̈0 ≃ ω2σ0

due to the oscillatory coupling λ(t). Thus the proce-
dure of integrating out σ field is valid only for ω ≪ m.5

In the parameter regime ω ≳ m, the moduli fields get
continuously excited by the background oscillations and
a full treatment with multiple fields is required. As a
result, axion monodromy inflation becomes sensitive to
UV physics much above the Hubble scale. It is worth
noting that even in the most conservative scenario with
Λ = MPl, we still expect significantly large λ̈ to render
the single field EFT invalid.

Cosmological collider, amplified– Now let’s study new
signatures of heavy moduli in cosmological correlators.
We leave the detailed computation using the bootstrap
method to [42], where we follow the methodology in [14],
and start with constructing the three-point scalar seed
with two conformally coupled scalars, which can be fully
solved by using the boundary differential equations. Tak-
ing it as the building block, the full bispectrum can be
derived with weight-shifting operators corresponding to
ζζ̇σ and (∂µζ)

2σ. Here, we simply collect the final results

4 Note that in principle the full isocurvature mass receives contri-
butions from turning and field space curvature. These corrections
are negligible in our setup, and the mass can be approximated
by the Hessian of the potential m2 = W ′′.

5 This corresponds to the adiabaticity condition proposed in [37,
38], which is commonly used to examine the validity of single
field EFT for sharp-turn trajectories.
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with a focus on the phenomenology of non-Gaussianity.
See Ref. [18, 39, 40, 51] for related discussions on massive
fields with oscillatory couplings during inflation.

In our setup, three types of oscillations are present
for field fluctuations on sub-Hubble scales: the standard
Bunch-Davies vacuum of the inflaton δϕt ∼ eikη, the
massive oscillations of the isocurvature mode σ ∼ eimt,
and the couplings g2, g3 ∼ cos(ωt + δ). In single field
axion monodromy, sizable resonant non-Gaussianity is
generated by the interplay between Bunch-Davies and
oscillating couplings. For the two-field regime of axion
monodromy, in the computation of non-Gaussianity, we
encounter integrals of the schematic form∫

dη
ei(k1+k2)η

η2+iα
σ∗
k3
(η) ∼ eπ(α−µ)/2Γ

(
1

2
− iα+ iµ

)
, (11)

with µ =
√
m2/H2 − 9/4 ≫ 1. When α < µ, this time

integral leads to the familiar Boltzmann suppression fac-
tor e−πµ. In our regime of interest, α ≳ µ ≫ 1, the oscil-
latory coupling provides an extra resonance enhancement
that overcomes the suppression effect, as expected from
the general analysis of [18].

The price to pay is that we break scale invariance.
Thus we also expect oscillations in the primordial power
spectrum Pζ = P0[1 + δn cos(ω log(k/k∗))] with P0 =
H2/(4ϵ0M

2
Plk

3) being the featureless component. From
the left-hand Feynman diagram in Figure 2 we find

δncol. ≃ −2ϵ0
M2

Pl

Λ2
|EP

1 (µ, α)|b∗ , (12)

where EP
1 (µ, α) is a known prefactor of O(0.01), which

we omit for brevity. The single field results contain the
same type of correction with δns.f. = 3b∗

√
2π/α [21].

Thus with small Λ and/or large α, (12) can be more
dominant. Meanwhile, the Planck constraint on this type
of correction is δn ≲ 0.05 [52].

For the bispectrum, the dominant contribution corre-
sponds to the case that both the quadratic and the cubic
vertices oscillate (see the right-hand Feynman diagram in
Figure 2). In the companion paper [42] we derived the full
shape ⟨ζk1

ζk2
ζk3

⟩ = B(k1, k2, k3)(2π)
3δ(3)(k1 + k2 + k3)

using the boundary differential equation of the bootstrap
method. In this Letter, we focus on the squeezed limit
where the resonant cosmological collider is manifest

lim
k3≪k1

B(k1, k2, k3) = fcol.
NL Pζ(k1)Pζ(k3)

(
k3
k1

)3/2

(13)

×
{
cos

[
(α+ µ) log

(
k3
k1

)
− 2α log (k3) + δx

]
+∆f cos

[
(α− µ) log

(
k3
k1

)
+ δy

]}
,

where ∆f is a dimensionless factor of O(1), which only
appear if the cubic interaction is oscillatory. We find a
distinctive signature with both the resonant-type scale-
dependent non-Gaussianity and also the enhanced col-
lider signal with heavy masses. The oscillatory pattern

FIG. 3. Oscillatory pattern in the squeezed bispectrum for
α = 30 and µ = 10 (which has EP

1 = 0.016 and EB
1 = 0.128).

The shape has both the scale-invariant collider signals per-
pendicular to the k3/k1 = const. lines and scale-dependent
oscillations along the k3/k1 = const. lines, which is signifi-
cantly distinct from standard resonant/collider templates.

is shown in Fig. 3. The size of the signal is given by

f col.
NL ≃ −1

2
ϵ0
M2

Pl

Λ2
|EB

1 (µ, α)|α2b2∗ , (14)

where EB
1 from the bulk time integration is a combina-

tion of Gamma functions and hypergeometrics depend-
ing on µ and α. In the featureless case with α = 0, this
prefactor gives the Boltzmann suppression EB

1 ∼ e−πµ.
But for α ≳ µ ≫ 1 we find EB

1 ∼ 0.1 due to resonance
enhancement discussed in (11). The main effects of oscil-
latory couplings on the cosmological collider signal can
be summarised as follows

• The oscillation in the linear mixing plays the domi-
nant role in resonantly enhancing the cosmological
collider signal. If the linear mixing term is non-
oscillatory, the overall Boltzmann suppression re-
mains.

• If the linear mixing oscillates while the cubic mix-
ing does not, the leading term in full solution over-
comes Boltzmann suppression. This give rise to
the first term in (13), consistent with the findings
of [19].

• If both linear and cubic vertices oscillate, an addi-
tional unsuppressed conbribution appears (the sec-
ond term in (13)), which further enhances the re-
sulting bispectrum and leads to a more intricate
oscillatory pattern. The model of this work falls in
this category.

Now let’s estimate the size of non-Gaussianity. There
are two effects that may amplify the cosmological collider
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signals. The first one is the resonance that overcomes the
Boltzmann suppression and is universal for α ≳ µ. The
second is the strength of couplings in (9), which is model-
dependent. For b∗ → 0 and Λ ∼ MPl, the couplings are
generally weak and we get small fNL. To achieve large
collider signals, here we consider b∗ ∼ 0.1 and roughly
set b∗|EB

1 /EP
1 | = 1, then f col.

NL ≃ δncol.α2/4. Thus if we
lower Λ to saturate the observational bound on δn, the
resonant collider signal can become larger than the single
field prediction f s.f.

NL = 3
√
2πα

3
2 b∗/8 = α2δns.f./8 [25].

Meanwhile, an EFT bound requires α ≪ 400 [27], within
which one can parametrically achieve f col.

NL of O(100).
We emphasise that our computation relies on the as-

sumption B ≃ b∗f
2/Λ, which is valid when ω ≳ m.

In the regime ω ≫ m, however, this assumption breaks
down, and the modulus oscillation is further suppressed
by a factor of H/ω. As a consequence, the oscillatory
cubic couplings in Eq. (10) are modified to

g3 ≃ 4ḡ b∗ sin

(
ϕ0(t)

f
+ δ

)
, g̃3 ≃ g̃

b∗
α

cos

(
ϕ0(t)

f
+ δ

)
,

(15)

while the constant cubic interaction remains unchanged.
It is then evident that the g̃3 term becomes negligible.
In this regime, the relative contributions to the final bis-
pectrum from the oscillatory interaction g3 ζζ̇σ and the
constant interaction g̃(∂µζ)

2σ depend sensitively on the
magnitude of b∗. If b∗ = O(0.01), the contribution from
the oscillatory cubic term is suppressed, and the system
effectively reduces to the scenario studied in Ref. [18]. On
the other hand, if b∗ is modestly enhanced to O(0.1), the
oscillatory and non-oscillatory contributions can become
comparable, leading to a more intricate phenomenology.
Since this regime obscures the underlying physical inter-
pretation, we do not pursue it further in this work.

Concluding remarks– Heavy moduli are generally ex-
pected in UV completions of inflation and they couple to
axions through the kinetic term. We investigate the two-
field regime of axion monodromy for both background
and perturbations, and identified a novel type of UV
sensitivity. Remarkably, due to the periodic modula-
tion of the axion potential, heavy moduli are contin-
uously excited by the oscillating background, realizing
the mechanism of [18] in a concrete and well-motivated
model. When the oscillation frequency becomes larger
than the lightest moduli mass, this phenomenon leads
to the breakdown of the effective single field description.
Furthermore, we find a new type of unsuppressed cosmo-
logical collider signals with heavy masses.

This concrete example from a string-inspired setup
points out an exciting direction to probe new physics
much heavier than the Hubble scale during inflation, as
anticipated in [18]. On the theory side, we expect impli-
cations on both cosmological correlators and string infla-
tion. While we take a field-theoretic approach here as-
suming a 4D EFT from string compactifications, it would
be interesting to consider a full 10D picture and examine

its UV sensitivity. For instance, the moduli have physical
meanings in the stringy description, such as the volume
of the compactified dimensions, the location of D-branes,
etc. How is this geometrical information imprinted in
late-time correlators? We leave this question for future
work.
Meanwhile, the new phenomenology deserves a closer

look. The scalar bispectrum here can be seen as a com-
bination of resonant non-Gaussianity and cosmological
collider, which contains rich oscillatory structure in the
squeezed limit and can potentially be large. With cur-
rent tools, we would be able to search for this new type
of non-Gaussianity signals in the Planck data as shown
in [53–56]. Certainly, our signal serves as an interesting
target for upcoming surveys such as Simons Observatory
and SphereX.
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