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In any extension of General Relativity (GR), extra fundamental degrees of freedom couple to grav-
ity. Besides deforming GR forecasts in a theory-dependent way, this coupling generically introduces
extra modes in the gravitational-wave signal. We propose a novel theory-agnostic test of gravity to
search for these nongravitational modes in black hole merger ringdown signals. To leading order in
the GR deviations, their frequencies and damping times match those of a test scalar or vector field
in a Kerr background, with only amplitudes and phases as free parameters. By applying this test
to GW150914, GW190521, and GW200129, we find no strong evidence for an extra mode; however,
its inclusion modifies the inferred distribution of the remnant spin. This test will be applicable for
future detectors, which will achieve signal-to-noise ratios higher than 100 (and as high as 1000 for
space-based detectors such as LISA). Such sensitivity will allow measurement of these modes with
amplitude ratios as low as 0.02 for ground-based detectors (and as low as 0.003 for LISA), relative to
the fundamental mode, enabling stringent agnostic constraints or detection of scalar/vector modes.

I. INTRODUCTION

The black hole (BH) spectroscopy program [1–4] plays
a prominent role in the landscape of strong-field tests
of General Relativity (GR) [5–8] and provides a unique
method for examining the nature of compact remnants
formed post-coalescence [9]. This program focuses on
extracting the remnant quasinormal modes (QNMs) [10–
13] during the ringdown phase of a binary merger. In
the context of linear perturbation theory, the signal h(t)
at intermediate times after the merger is represented by
a superposition of the QNMs of the remnant [14], as it
transitions towards a stationary configuration. Schemat-
ically,

h(t) =
∑
i

Ai cos (2πfit+ ϕi) e
− t

τi , (1)

where Ai, ϕi, fi, τi are the amplitude, phase, frequency,
and damping time of the i-th QNM, whereas i ≡ (l,m, n)
collectively represents the multipolar, azimuthal, and
overtone index, respectively.

If the remnant is a BH, GR predicts that the infinite
spectrum of QNMs is uniquely determined by its mass
and spin (Mf , χf ). This provides opportunities for con-
ducting multiple null-hypothesis tests of gravity [15, 16]
and investigating the nature of the remnant [17–19].
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As suggested by Lovelock’s theorem [20, 21], an al-
most unavoidable ingredient of theories beyond GR
is the presence of extra degrees of freedom nonmini-
mally coupled to gravity [6, 22]. Examples are ubiqui-
tous and include scalar fields in scalar-tensor theories
and Horndeski’s gravity [23] (and their vector counter-
part [24]), high-curvature corrections to GR that predict
extra (pseudo)scalars and dilaton fields [25–27], Einstein-
Aether [28] and Hořava–Lifshitz [29] gravity that pos-
tulate an extra timelike vector field, and massive grav-
ity [30, 31] with both scalar and vector dynamical degrees
of freedom (see [6] for a review of GR extensions and
their field content). Effective extra degrees of freedom
are also unavoidable in any approach that treats GR as
the leading order term in an effective-field-theory expan-
sion (e.g., [27]) and in low-energy effective string theories.
These nonminimally coupled fields may modify the sta-
tionary BH solutions, leading to deviations from the Kerr
metric, and/or modify the dynamics of the theory. In ei-
ther case, two generic predictions are: i) a deformation
of the Kerr QNMs,

fi = fKerr
i (1 + δfi) , τi = τKerr

i (1 + δτi) , (2)

and ii) the existence of extra modes in the gravitational
signal, that can be excited during the ringdown. This
second option is due to the fact that the nonminimal
coupling between new degrees of freedom and gravity
results in coupled systems of linear perturbation equa-
tions, which act as a coupled set of oscillators [32–35]. It
is therefore natural to split the ringdown signal (1) into

mailto:francesco.crescimbeni@uniroma1.it
mailto:f.jimenez@uib.es
mailto:s.bhagwat@bham.ac.uk
mailto:j.m.westerweck@bham.ac.uk
mailto:paolo.pani@uniroma1.it


2

two contributions,

h(t) =
∑
i

Ai cos
(
2πfKerr

i (1 + δfi)t+ ϕi

)
e
− t

τKerr
i

(1+δτi)

+
∑
i

Âi cos
(
2πf̂it+ ϕ̂i

)
e−t/τ̂i , (3)

where we use the hat to denote quantities related to the
extra modes.

Standard tests of gravity based on the ringdown are
rooted in the first line of Eq. (3). Namely, they are aimed
at measuring δfi and δτi and check whether they are
compatible with the null hypothesis [5]. This can be ac-
complished in two complementary ways, either through
a theory-agnostic or theory-dependent method. How-
ever, both approaches have their own limitations. In
the theory-agnostic approach one uses the parametriza-
tion (2), where fKerr

i and τKerr
i are known functions of the

BH mass and spin, while δfi and δτi depend on the mass,
spin, and all extra fundamental coupling constants of the
theory. It is convenient (and natural, from an effective-
field-theory perspective) to restrict to small GR devia-
tions that continuously deform the Kerr result1, in which
case δfi, δτi ≪ 1 and are proportional to some combina-
tion of the mass and coupling constants. However, even
in this case they are still generic functions of the spin χf .
Current parametrizations either neglect such spin depen-
dence [5, 36, 37] or consider a small spin expansion of each
deviation [38–40], which inevitably inflates the number of
free parameters in the model. In the theory-dependent
approach, the QNMs are computed in a given theory of
gravity. For most theories this can be done again only
in the small-coupling limit and very often perturbatively
in the spin [32, 41–50]. To reach good convergence, one
needs to push the spin expansion to very high order [49],
which is very challenging from the technical point of view.
Alternatively, one needs to solve intricate systems of cou-
pled partial differential equations [51–56]. This approach
has the benefit of limiting the number of free parameters
to the sole coupling constants and BH spin, but must be
performed on a case-by-case basis for every given theory.

Given the above limitations, it would be highly desir-
able to develop complementary ringdown tests which are
both theory-agnostic and accurate. In this work we ex-
plore a currently unbeaten path, related to the second
line of Eq. (3). Namely, we propose to look for extra
modes in the ringdown signal, which are not related to
deformations of the Kerr ones. Note that these extra
modes are unavoidably present in beyond-GR theories,
raising the important issue that current ringdown analy-
ses (based only on the first line of Eq. (3)) are incomplete.

1 This assumption is also theoretical justified by the absence of
pathologies, such as ghosts or ill-posedness of the initial-value
problem, and by observational constraints on the magnitude of
beyond-GR effects.

For concreteness, let us consider the case of an extra
scalar degree of freedom nonminimally coupled to grav-
ity (the same argument applies to other types of fields).
Due to the coupling, the gravitational perturbations will
contain also scalar modes (e.g., [32, 34, 42, 57] for two
concrete examples in theories with quadratic curvature
terms),

f̂i = fKerr, s=0
i (1 + δf̂i) , τ̂i = τKerr, s=0

i (1 + δτ̂i) ,
(4)

where fKerr, s=0
i and τKerr, s=0

i are the QNMs of a test

scalar field in the Kerr metric, and also in this case δf̂i
and δτ̂i are complicated, theory-dependent, functions of
the mass, spin, and coupling constants, which incorpo-
rate both deviations from the GR BH background and
modified dynamics. Crucially, in this case the amplitudes
Âi of these modes are proportional to (powers of) the cou-
pling constants [32, 34, 35, 42, 57], and they must vanish
in the GR limit. Therefore, to leading order in the correc-

tions, we can neglect δf̂i and δτ̂i, so that the GR devia-
tions are generically parametrized only by the amplitude
of the test-field modes on a GR BH background. This
is precisely what happens in so-called dynamical Chern-
Simons gravity [26, 32, 34] (see also Appendix VIA), al-
though it is a generic feature [35].
The above considerations suggest a novel ringdown test

of gravity based on the following waveform model

h(t) =
∑
i

Ai cos
(
2πfKerr

i t+ ϕi

)
e
− t

τKerr
i

+
∑
i

Âi cos
(
2πfKerr, s=0

i t+ ϕ̂i

)
e
− t

τ
Kerr, s=0
i (5)

where for simplicity we have neglected the GR devia-
tions in the first line, since those are very well studied
by standard ringdown tests (and subjected to the afore-
mentioned limitations). Notably, as explained below and
although our framework is generic, one of its advantages
is that it can be applied to a single multipole couple
(l,m), such that i → (l,m, n) with fixed l,m and only
varying n. If one includes only the dominant GR fun-
damental mode in the analysis (i → (2, 2, 0) in the first
line of Eq. (5)), as we will do below for the so-called
GR0+S or GR0+V models, the corrections δf220 and δτ220
to the fundamental gravitational QNM are degenerate
with the final mass and spin. Therefore, they can be ne-
glected without loss of generality. Instead, including also
gravitational overtones would require adding extra cor-
rections δfi and δτi (with i → (2, 2, n ≥ 1)) in the first
line of Eq. (5), as typically done in ordinary BH spec-
troscopy tests with overtones. In the models considered
here, the mentioned degeneracy is broken as we neglect
δfi, δτi (for i ̸→ (2, 2, 0)) but include at least two modes
through either an overtone (GR1 model) or an extra
scalar/vector mode (GR0+S/GR0+V) in addition to the
fundamental GR mode, determining the final mass and
spin uniquely. Explicitly, our models contain the modes:
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GR1 → (2, 2, 0), (2, 2, 1); GR0+S → (2, 2, 0), (2, 2, 0)scalar;
GR0+V → (2, 2, 0), (2, 2, 0)vector.

In practice, here we will focus on a standard GR ring-
down waveform (first line of Eq. (5)) augmented by new
extra modes. Remarkably, to leading order these extra
modes are known functions of the BH mass and spin,
since they are those of a free test (scalar, vector, etc) field
propagating on the Kerr metric (see, e.g., [58, 59] for tab-
ulated values). This allows searching for extra modes in
a theory-agnostic way, where the amplitudes and phases
of the extra modes are the only beyond-GR parameters.
In this sense, this test is reminiscent of searches for extra
(scalar, vector) polarizations in GW signals in a theory-
agnostic fashion [5, 60–62] and is complementary to or-
dinary ringdown tests (see, e.g., [5, 36, 37, 63–66]), or to
test with multiple free modes [5].

II. SEARCHING FOR EXTRA RINGDOWN
MODES

The ringdown signal comprises of two polarizations
and the modes are decomposed in a basis of spin-weighted
spheroidal harmonics that depend on the remnant spin
inclination angle [66]. In a non-precession quasicircu-
lar coalescence, (lmn) = (220) is the dominant mode.
For concreteness, here we focus on the most interesting
quadrupolar (l = 2) case and neglect spin precession of
the progenitor binary, but our test can be applied also
to higher-order modes and to the precessing case (see
Appendix VIB). In particular, our ringdown waveform
model has the following parameters:

θ = {Mf , χf , A22j , ϕ22j , Â
s=0,1
220 , ϕ̂s=0,1

220 } (6)

where j = 0, . . . , N , with N the total number of over-
tones, whereas Âs=0,1

220 and ϕs=0,1
220 are the amplitude and

phase of the extra scalar (s = 0) or vector (s = 1) (220)
mode. We will dub a model with N tones and no extra
mode GRN, whereas we will denote as GRN+S (GRN+V)
a model with N gravitational tones and an extra scalar
(vector) mode. In practice, we define the amplitude ra-
tio AR of a given mode relative to the gravitational fun-
damental one. We fix the luminosity distance dL, the
sky location of the system, and the inclination angle
as done standard ringdown analysis [5, 15, 39, 67]. Al-
though marginalization would be the ideal approach, it
involves its own challenges, like the accurate excision of
the pre-merger part to avoid the contamination of the
post-merger data. Failing on the accurate excision could
impact negatively on the accuracy of the no-hair theo-
rem tests performed using the post-merger data [68, 69].
Furthermore, the sky-marginalization has been shown to
introduce only mild differences for current GW events,
from [69, 70] where the results obtained, are still con-
sistent with those of [15, 39] which fixed the sky loca-
tion to the maximum likelihood values. However, the
scenario might be different for higher-SNR events and
with the inclusion of higher harmonics. Note that, for

small-redshift sources (including those detected so far
and presumably the loudest events detected in the fu-
ture) dL is degenerate with the overall ringdown ampli-
tude and can therefore be neglected without loss of gen-
erality. However, the possibility of neglecting inclination
angle is a prerogative of our test, since it can involve only
(l = m = 2) modes , which have the same pattern func-
tions and spheroidal-harmonic decomposition (similarly
to overtone-based tests but without the issues related to
overtones). Compared to common tests based on sub-
leading modes of different (l,m), this allows for the prac-
tical simplification of sampling in only one of these three
degenerate parameters. The test can be expanded to in-
clude higher harmonics, in which case one would have
also to include the inclination as an extra parameter.
The frequencies and damping times of the relevant

modes are shown in the Appendix VIC. At variance with
overtones, the frequency of the (220) scalar or vector
mode is always well separated from that of the fundamen-
tal gravitational mode (and hence more easily resolvable
from the latter), while the damping time is comparable
(and hence the mode survives longer than overtones in
the signal, almost as long as the fundamental gravita-
tional mode).

III. BAYESIAN ANALYSIS ON REAL DATA

We exemplify our test on real events by perform-
ing a Bayesian parameter estimation using the PyCBC
Inference code infrastructure [71]. The analysis
aims to compute the posterior distribution of the pa-
rameters (6). We apply this test to three events:
(i) GW150914 [72], the first GW event ever detected by
LIGO (and still so far the one with the largest ringdown
signal-to-noise ratio (SNR)), for which some debated ev-
idence of overtones has been reported [15, 36, 66, 70, 73–
80]; (ii) GW190521 [81], a peculiar event in the upper
mass gap for which a tentative detection of the (330)
and other modes (and possibly precession) has been ob-
tained [67, 82] and which is prone also to ringdown
amplitude-phase consistency tests [65]; (iii) GW200129,
a peculiar loud event showing some tension with GR in
some inspiral-merger-ringdown tests [5], tentatively as-
cribed to mismodelling of precession [83, 84]. As a proof
of principle for the test, our parametrization assumes
plane reflection symmetry, which is valid for spin-aligned
progenitor binaries. In the Appendix VIB, we show that
relaxing this assumption does not affect the results for
GW190521 and GW200129. For the luminosity distance,
inclination, and sky location we adopt the maximum like-
lihood values reported in [85].
We use a gated-and-inpainted Gaussian likelihood

noise model [67, 86, 87] to remove the influence of the
pre-peak/non-ringdown times. The strain data within
a time interval t ∈ [tc + toffset − 0.5s, tc + toffset] are
replaced/inpainted such that the filtered inverse power
spectral density is zero at all the times corresponding
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to the chosen interval [87]. Here, tc is the coalescence
time, while toffset defines the time in which we start our
ringdown analysis.
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FIG. 1. log10 Bayes factors for various ringdown models with
extra scalar or vector modes (labelled with ’A’) with respect
to the GR1model as a function of the offset time toffset. Differ-
ent colors and line styles denote different events, while differ-
ent markers show the chosen model. Note that each event has
a different mass thus, a different time scale toffset. Therefore,
the log10 Bayes factor trends, specially at negative times, are
expected to differ.

Our main results are summarized in Fig. 1, present-
ing the statistical evidence for different waveform models
for these events and for different choices of toffset. We
show log10 BA

GR1, where the Bayes factor BA
GR1 is the ra-

tio between the evidence of a given model (’A’) and that
of GR1 (i.e., a model containing only the fundamental
gravitational mode and the first overtone). According to
Jeffreys’ scale criterion [89], a log10 Bayes factor larger
than 1 (resp., 2) would imply a strong (resp., decisive)
Bayesian evidence in favor of a given model relative to
GR1. The small values of log10 BA

GR1 shown in Fig. 1 for
any toffset indicate that all models with extra scalar or
vector modes have the same evidence as the GR1 one,
presumably because the SNR in the ringdown for these
events is not sufficiently high to exclude the presence of
an extra scalar mode. This is consistent with what we
shall discuss below with synthetic data.

Model Mf (M⊙) χf A220 × 1020 AR,220

GR1 58+27
−22 0.35+0.49

−1.15 0.72+0.98
−0.50 -

GR0+S 52+35
−16 −0.18+0.94

−0.69 0.69+1.32
−0.57 0.80+2.74

−0.64

GR1+S 52+33
−16 −0.11+0.84

−0.76 0.72+1.30
−0.60 1.95+1.85

−1.75

TABLE I. 90% credible intervals for some of the parameters of
event GW150914, assuming toffset = 2ms (see Appendix VIC
for the posterior distributions). We denote the amplitude

ratio of the scalar-to-tensor mode as AR,220 = Âs=0
220 /A220.

Interestingly, despite Fig. 1 showing that there is no
statistical evidence for an extra scalar or vector mode,

its inclusion affects the posterior distributions of the
parameters. This is shown in Table I for a represen-
tative example of GW150914 analyzed with an extra
scalar mode. These results are also consistent with the
full inspiral-merger-ringdown constraints provided in [5].
However, as expected, our peak values are shifted com-
pared to those computed using a GR waveform approxi-
mant. Other events, different time offsets, or the vector
case show qualitatively similar results. While the pres-
ence of an extra mode does not affect the distribution of
the remnant mass significantly, it contributes to broaden-
ing that of the spin towards smaller values (see Appendix
VIC for the posterior distributions). This generic fea-
ture can be understood from the fact that an extra (220)
scalar/vector mode has a damping time comparable to
the fundamental gravitational mode (and the damping
time is only mildly sensitive to the spin for χf ≲ 0.8)
and also has a higher frequency than the (220) and (221)
gravitational modes. Thus, interpreting the overtone
frequency with an extra scalar/vector mode requires a
smaller remnant spin. Also, the amplitude of the funda-
mental gravitational mode is affected by the extra mode:
in the GR0+S and GR1+S models the peak of the A220

distribution is smaller because part of the information is
contained in the scalar mode. Consequently, the ampli-
tude ratio AR,220 between the (220) scalar mode and the
(220) gravitational mode peaks at some nonzero value.
Finally, we do not find strong support for the presence
of an additional mode for toffset > −2ms. As in pre-
vious related work [77, 90], we observe that the Bayes
factor tends to increase when the analysis is extended
to negative times, since the model begins to fit higher
overtones and nonlinear contributions. We interpret this
increase not as evidence for extra modes, but rather as
a consequence of model mismatch arising from applying
the ringdown model before the merger, which can yield
spurious results. Furthermore, for the event GW200129
– where we observe the largest values of log10 BA

GR1 – data
quality issues [91] and possible signatures of orbital ec-
centricity and/or precession [92, 93] are known to affect
the inference of physical parameters. These factors could
also contribute to the early-time rise of the Bayes factor
in support for additional modes. A detailed investigation
of these effects will be presented in future work.

IV. FORECASTS WITH FUTURE
OBSERVATIONS

In Fig. 2, we forecast the constraining power of this
test by computing the minimum ringdown SNR, ρdet,
for detectability of an extra scalar mode in the GR0+S
model, for different amplitude ratios, remnant spins, and

phase differences δϕ = ϕ220 − ϕ̂s=0
220 . (Hereafter we focus

on the scalar case, since the vector case gives qualita-
tively similar results, see Appendix VIC.) ρdet is defined
following Refs. [88, 94, 95], namely as the SNR such that
σAR

= AR,220, where the statistical error σAR
has been
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FIG. 2. Left panel: Minimum SNR necessary for detecting a scalar mode at 1−σ confidence level, according to the detectability
criterion outlined in [3, 88] using a Fisher matrix approximation, which makes our estimates approximately independent of the
sensitivity-curve profile. The blue and red dashed curves denote a different remnant spin χf with the phase difference between
the GR and scalar modes fixed to δϕ = 0. The dependence on δϕ ∈ [0, 2π] is bracketed by the corresponding colored bands. The
horizontal shaded bands represent the expected ringdown SNR for a GW150914-like event with a remnant mass of Mf = 62M⊙
as observed by ground-based detectors, including the LVK network (light blue), A+ (light green), and CE/ET (yellow). The
orange band corresponds to the expected ringdown SNR for a similar event with a remnant mass of Mf = 107 M⊙ observed by
LISA (orange). We consider the range of amplitude ratios AR,220 ∈ [0.001, 1]. Right: The same quantity shown in a contour
plot on the (AR,220, δϕ) plane for fixed χf = 0.67.

computed with a fully numerical Fisher information ma-
trix , also assuming that the relevant sensitivity curves
at the ringdown regime are approximately flat for the
two distinct final masses considered [94, 95]. In general,
beyond-GR theories can introduce up to six polarization
modes, by adding extra antenna-pattern response terms
to the signal h(t) [96]. Instead, we focus here on the
corrections to the standard h×, h+ GR polarizations,
which are already detectable with current GW networks.
Note that, in contrast to overtones [75, 88], resolving the
frequency of the scalar mode is relatively easy since it
is significantly different from the gravitational one. For
this reason, ρdet is always larger than the SNR thresh-
old required to resolve the extra scalar mode. The re-
quirements for the detectability and resolvability of a
mode are outlined in the Appendix VID. We perform
two variants of this analysis, either averaging over or fix-
ing the sky-location of the signal, with results shown in
the left and right panel of Fig. 2, respectively. Notice
that, since the SNR is fully correlated with the sky lo-
cation, both approaches should yield consistent results
(see Appendix VID). Therefore, the right panel simply
represents a phase-expanded version of the left-hand side
plot.

The left panel of Fig. 2 shows that ρdet decreases mono-
tonically as χf increases – so highly spinning remnants
favor this test – and that the phase difference δϕ has
a negligible impact for small amplitude ratios, while it
can significantly affect the SNR at large amplitudes, es-
pecially for slowly-spinning remnants. The dependence
on δϕ can be better appreciated from the right panel of
Fig. 2, showing a contour plot of the two-dimensional

function ρdet(AR,220, δϕ) for χf = 0.67. In the region
of small amplitude ratios, the minimum SNR has a very
simple scaling

ρdet ≈ 4.0
g(χf , δϕ,AR,220)

AR,220
. (7)

where g ≈ 1 + 0.25AR,220 − 0.40χf + 0.08 cos(δϕ+ 1.16),
and for AR,220 ≤ 0.12 and χf ≤ 0.9 the fit is accurate
within 10%.
In the left panel of Fig. 2 we also provide reference val-

ues of the ringdown SNR for current and future detec-
tors. In particular, third-generation ground-based detec-
tors [97] such as Cosmic Explorer [98–100] and the Ein-
stein Telescope [101–103] are expected to observe a few
events per year with ringdown SNR greater than 100 [95].
Likewise, GW space interferometers such as LISA [104]
are expected to detect up to a dozen of massive BH merg-
ers with ringdown SNR greater than 1000, depending on
the massive BH population [94, 105]. Our results show
that a ringdown SNR of 150 (resp., 1000) would yield a
constraint AR,220 ≲ 0.02 (resp., 0.003) for χf ≈ 0.9, with
only mild dependence on δϕ. Very similar results apply
to the detectability of an extra vector mode.
This plot also confirms that the constraining power of

the test is very limited when the ringdown SNR is around
10, which is a rough and even optimistic estimate for the
previously analyzed events GW150914, GW190521, and
GW200129.
While these results were obtained using a Fisher-

matrix approximation to explore the entire parameter
space, we have also compared individual points with syn-
thetic injections at zero noise using the same Bayesian
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analysis discussed above for real-data events. At SNRs of
1.25ρdet as given in Fig. 2, we find posteriors of AR peak-
ing away from the lower bound and σAR

≲ AR,220, al-
ready in agreement with the expectation from the Fisher
analysis for the high-SNR limit.

Discussion. Any theory predicting extra ringdown
modes should presumably also predict deviations from
the standard gravitational Kerr QNMs, in which case
one could argue that GW detectors are more sensitive
to phase differences (and hence to QNM shifts) rather
than amplitude differences, so that our test could have
less constraining power than ordinary ringdown tests.
However, there are known examples of theories predict-
ing zero or negligible QNM shifts but extra modes, in
which case our test can be superior to ordinary BH spec-
troscopy. An example is dynamical Chern-Simons grav-
ity, wherein for a Schwarzschild BH the polar GR QNMs
are unchanged, but the ordinary ringdown contains also
extra scalar modes [32]. In the Kerr case also all the GR
QNMs are modified, but the deviations are suppressed
by powers of the BH spin [46], so the convenience of our
method will likely depend on the remnant’s spin.

As future extensions, it would be interesting to con-
sider a specific theory and compare the constraints on
the coupling constant(s) placed by our test with those
of ordinary BH spectroscopy. This would require esti-
mates of both ordinary QNM shifts and excitation am-
plitudes of extra modes in a given theory, both of which
have recently become available for some theories [48–
50, 106–113]. As an order-of-magnitude estimate, for a
theory which adds quadratic curvature corrections to the
standard Einstein-Hilbert action, the coupling constant
α has the dimension of a length squared [6] In such a
case one would expect AR,220 = O(1)α2/M4

f . Our re-
sults suggest that future detectors will be able to probe
AR,220 = O(10−3), and hence a coupling constant as
small as α2/M4

f ∼ O(10−3).
A related extension is to include higher harmonics in

the test. Besides adding complexity to the mode, this
would also require including the inclination and the sky
localization as extra waveform parameters. Work in this
direction is underway.

Finally, another possible avenue of exploration is to use
the recently introduced QNM filtering technique [36, 37,
80] to search for extra (scalar, vector, etc) modes.

V. ACKNOWLEDGEMENTS

We thank Collin Capano and Alexander Nitz for clar-
ifications on PyCBC inference, and Gregorio Carullo,
Cecilia Chirenti, Gabriele Franciolini, Nico Yunes, and
the participants of the workshop Ringdown Inside and
Out for insightful comments and discussions. This

work is partially supported by the MUR PRIN Grant
2020KR4KN2 “String Theory as a bridge between Gauge
Theories and Quantum Gravity”, by the FARE pro-
gramme (GW-NEXT, CUP: B84I20000100001), and by
the INFN TEONGRAV initiative. X. Jimenez is sup-
ported by the Spanish Ministerio de Ciencia, Inno-
vación y Universidades (Beatriz Galindo, BG22-00034)
and cofinanced by UIB; the Spanish Agencia Estatal
de Investigación Grants No. PID2022-138626NB-I00,
No. RED2022- 134204-E, and No. RED2022-134411-T,
funded by MCIN/AEI/10.13039/501100011033/FEDER,
UE; the MCIN with funding from the European Union
NextGenerationEU/PRTR (No. PRTR-C17.I1); the Co-
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VI. APPENDIX

A. Explicit example: Dynamical Chern-Simons
gravity

We provide here a specific example of a nonminimal
coupling giving rise to extra scalar modes in the grav-
itational sector. We consider a theory with quadratic
curvature corrections, dynamical Chern-Simons gravity,
described by the action [26]

S =
1

16π

∫
d4x

√−gR− 1

2

∫
d4x

√−ggab∇aϑ∇bϑ

+
α

4

∫
d4x

√−gϑ ∗RR . (8)

where ϑ is the scalar field, ∗RR = 1
2Rabcdϵ

baefRcd
ef is an

odd-parity quadratic-curvature invariant, and α is the
coupling constant, with dimensions of a squared mass
(henceforth we adopt G = c = 1 units).
As in the GR case, the only stationary, spherically-

symmetric solution is the Schwarzschild metric. For sim-
plicity we consider perturbations of this solution, neglect-
ing the spin of the background. Axial perturbations of
the metric are coupled to those of the scalar field. Upon
a spherical harmonic decomposition and in the frequency
domain, they reduce to the following set of coupled ordi-
nary differential equations [32]

https://strong-gr.com/ringdown-inside-and-out/
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7
d2

dr2⋆
Ψ+

{
ω2 − f

[
l(l+1)
r2 − 6M

r3

]}
Ψ = 96πMf

r5 αΘ,

d2

dr2⋆
Θ+

{
ω2 − f

[
l(l+1)
r2

(
1 + 576πM2α2

r6

)
+ 2M

r3

]}
Θ = f (l+2)!

(l−2)!
6Mα
r5 Ψ

(9)

where f(r) = 1 − 2M/r and r⋆ ≡ r + 2M ln (r/2M − 1)
is the standard Schwarzschild tortoise coordinate. The
variables Ψ and Θ reduce to the standard metric and
scalar master functions, respectively, in the decoupling
limit, α → 0. Indeed, when α = 0 the two equations de-
couple and reduce to the standard Regge-Wheeler equa-
tion and scalar-perturbation equation of a Schwarzschild
BH, respectively. However, when α ̸= 0 the two pertur-
bations are coupled to each other and the scalar effective
potential acquires some corrections.

The coupling α gives rise to two features [32, 34]:

1. The above system of equations contains both
gravity-led and scalar-led modes, both displaying
O(α2) corrections with respect to GR:

ω = ωGR, grav
(
1 + γgrav α2

M4

)
, (10)

ω̂ = ωGR, scal
(
1 + γscal α2

M4

)
, (11)

where ω = 2πf − i/τ are the complex QNM fre-
quencies, ωGR, grav are the standard Schwarzschild
QNMs in GR, ωGR, scal are the test-scalar QNMs of
Schwarzschild, whereas γgrav and γscal are dimen-
sionless order-unity constants, the value of which
depends on the overtone number n.

2. The above system of equations is akin to a cou-
pled harmonic oscillator, so a scalar perturbation
would source scalar modes in the gravitational sec-
tor, and vice versa. In particular, in this the-
ory the scalar field is at least linear in α [26], in
which case the coupled perturbation equations im-
ply that, whether or not scalar perturbations are
present in the merger conditions (for example if the
progenitors are endowed with a scalar field [114]),
the amplitude of the scalar mode in the gravita-
tional sector would be O(α2). In the notation of
the main text, this would imply that, at the lead-
ing order, AR,220 ∝ α2/M4

f , which is the same order
of the usual leading-order corrections to the QNMs
in this theory [32, 46, 50].

These arguments show that the gravitational ringdown
in this theory can be schematically modelled as

h(t) =
∑
j

Aje
i(ωjt+ϕj) +

∑
j

Âje
i(ω̂jt+ϕ̂j) , (12)

where the sum runs over the overtones. The scalar modes
ω̂j contains O(α2) corrections, but Âj is at least O(α) or
higher. Therefore, to leading order in α we can approx-

imate ω̂j ≈ ωGR, scal
j in the second term of the above

equation, which is the crucial simplification of our test.
This is consistent with the finding of Ref. [32], where
the gravitational ringdown in the α ≪ M2 limit contains
both the unperturbed gravitational and scalar modes.

While we explicitly showed this for a specific theory, it
is in fact a very general properties of extended theories
of gravity with nonminimal couplings (see, e.g., [57] for
another example).

B. The effect of precession on GW190521 and
GW200129

There are well-founded arguments suggesting that
GW190521 and GW200129 could originate from precess-
ing binaries [82, 84]. As opposed to aligned-spin systems,
precession breaks the symmetry between m ↔ −m an-
gular modes, resulting in hlm ̸= (−1)lh∗

l−m. In the main
text, we searched for a scalar mode using a (lm) = (2,±2)
spin-aligned (non-precessing) waveform. Here, we extend
the parameter estimation on GW190521 and GW200129
including precession, and varying toffset = [−2, 0, 2]ms.
This is achieved by allowing the amplitude A22n ̸= A2−2n

and the phase ϕ22n ̸= −ϕ2−2n, for both the gravitational
and scalar mode. In Fig. 3, we show the corner plots for
GW200129 with toffset = 0, for both the GR1 and GR0+S
cases. Notice that, since only (lm) = (2,±2) modes are
used, accounting for precession in this case does not sig-
nificantly affect the values of the mass and the spin of
the remnant compared to the aligned-spin case. How-
ever, including precession affects the amplitude of the
fundamental mode, by increasing its uncertainty. We find
qualitatively similar results for the other offset times and
for GW190521.

C. Supplemental results

In Fig. 4 we show the frequencies and damping times
of some representative QNMs, including scalar, vector,
and gravitational modes as functions of the remnant’s
spin. Note that the frequency of the (220) scalar or vec-
tor mode is always well separated from that of the fun-
damental gravitational mode, while its damping time is
comparable. These are advantages with respect to over-
tones, which are instead harder to resolve and decay more
rapidly.

Figure 5 presents an example of posterior distribu-
tions of some waveform parameters obtained from our
Bayesian analysis on real data, namely the case of
GW150914 analyzed with various models. Although, as
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Kerr as a function of the spin. Results are normalized for a remnant mass compatible with GW150914, Mf = 62M⊙.

discussed in the main text, there is no statistical evi-
dence for extra scalar modes in the data, their inclusion
in the parameter estimation affects the posterior of χf

and A220.

Further, in Fig. 6, we compare some representative
posterior distributions obtained from the Bayesian infer-
ence on real data with forecasts using injections at higher
SNR (equal to 100). We consider a ringdown model with
an extra scalar mode (GR0+S, left panel) and with an ex-
tra vector mode (GR0+V, right panel). For the injection
simulations, we inject the values corresponding to the
maximum likelihood values of the real data. We notice

that, at higher SNRs, the precision of the parameters’ dis-
tribution improves, and the signal is well reconstructed.
This can be easily observed with the distributions of χf ,
which in the case of the real data is spread, due to the
effect of the gated Gaussian noise. Also in this case, we
note that the results for the scalar or vector case are very
similar.

Finally, we have searched for multi-modality in the am-
plitude of the scalar mode. This is supported by the fact
that, for some different choices of mass and spin, the
fundamental scalar/vector mode can mimic the funda-
mental gravitational QNM. In general, this effect is not
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evident due to the limited range of the prior on the ampli-
tude ratio Â220 ∈ [0, 10]. We have thus performed a new
run where we inject GR0 with GW150914-like parame-
ters (but in our case, we have SNR = 83), and recover
with GR0+S, but with a broader prior on the amplitudes
(A220, ÂR,220 ∈ [0, 100]), indeed finding bimodality. In-
cluding a secondary mode in the ringdown analysis, as
we did in certain cases, clearly breaks this degeneracy.

D. The detectability and resolvability criteria

A BH no-hair test is designed to check the consis-
tency of the mass and spin as observed from two dif-
ferent ringdown modes: the fundamental mode (l =
2,m = 2, n = 0), and a next-to-leading order mode
with either |l| = |m| ≠ 2 or n ̸= 0. Ideally, one would
have to infer to significant accuracy the tetrad of pa-
rameters {ω220, τ220, ωlmn, τlmn}. In practice, one just
needs to build a triad {ω220, τ220, qlmn} with qlmn =
ωlmn or qlmn = τlmn, and check the consistency on
the inferred mass and the spin from the following tuples
{(ω220, τ220), (ω220, qlmn), (τ220, q220)} [4]. Our ability to
indistinguishably observe a secondary mode depends crit-
ically on its SNR. This SNR can be defined as,

1. ρdet: The ringdown SNR at which the amplitude of
the mode is large enough compared to its statistical
uncertainty σAR

/AR
lmn ∼ 1.

2. ρres: The ringdown SNR at which the spectrum
qlmn subtracted to the spectrum q220 of fundamen-
tal mode is comparable to its statistical uncertainty
σqlmn

/|q220 − qlmn| ∼ 1 ,

where σAR
and σqlmn

are the 1− σ statistical errors on
AR and σqlmn

respectively [115]. A mode is measured if
conditions 1) and 2) are satisfied, which will occur for
ρ ≳ max {ρdet, ρres} [3, 115]. Using the Fisher Matrix
approach, the set {ρdet, ρres} can be estimated analyti-
cally, provided that the sensitivity curve in the ringdown
regime is sufficiently flat for a given total mass. The
statistical error σqlmn

and the SNR of a signal ρ are com-
puted as,

σ2
ij ∝

(∫ dh
dλi

( dh
dλj

)∗

Sn(f)
df

)−1

, ρ2 ∝
∫ |h|2

Sn(f)
df ,

(13)
where λi,j are each of the ringdown intrinsic parame-
ters, ∗ denotes the complex conjugate and −1 the matrix
inverse. Note that the dependence of the waveform on
the of extrinsic parameters f(Θ) will be the same for
both equations since one can replace h → h · f(Θ). The
GW ringdown spans over a relatively short frequency
range. For the scalar mode case, and for Mf = 62, no-
tice that the whole ringdown signal is approximately all
contained within [200, 300]Hz at af ∼ 0.7 (see Fig. 4).
Therefore, one can assume an effective Sn(f) ∼ Sn(f0)
where f0 is an appropriate frequency within the range
described above. The last approximation allows us to
define f(λij) ≡ ρ(det,res) · σij , which only depends on the
intrinsic parameters λij , and allows us to also describe
both the ρdet and ρres independent from the intrinsic pa-
rameters as

ρdet =
f(λAR

lmn
)

AR
lmn

, ρres =
f(λqlmn

)

|q220 − qlmn|
. (14)

For scalar and vector modes, we obtain that ρdet ≫ ρres
for AR

lmn ≲ 1. Therefore, ρ > ρdet is our determining
criterion for observing them. The above equation also
shows clearly the trend ρdet ∼ (AR)−1 displayed in Fig.
2 of the main text. Similarly, a Mf ∼ 107M⊙ binary will
cover a short frequency range at the mHz, in which cur-
rent estimates of the LISA sensitivity curve are rather
flat [104]. Finally, notice that both ρdet and ρres scale
with f ∝ ρ · σij . For a binary system considering only
the (ℓ,m) = (2, 2) mode, non-precessing, and analyzed in
the frequency domain, the gravitational wave strain can

be expressed as h̃ = H22(Θ⃗)h+(λ⃗)e
iϕ22(λ⃗) where H22 is

an amplitude factor that encodes the sky position, polar-

ization angle, and distance, h+(λ⃗) is the plus polarization

component, ϕ22 is the phase, and λ⃗ represents the intrin-
sic parameters of the system [116]. Therefore, it follows
that the product f ∝ ρ · σij is independent of the sys-
tem’s sky position, implying that both ρdet and ρres are

also independent of Θ⃗.
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rescaled by dL/M
(m)
f , where M

(m)
f is the final mass of the remnant expressed in meters.
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