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High-pressure polyhydrides are leading contenders for room temperature superconductivity. The
next frontier lies in stabilizing them at ambient pressure, which would allow their practical ap-
plications. In this �rst-principles computational study, we investigate the potential for record-low
pressure stabilization of binary superhydrides within the RbH12 system including lattice quantum
anharmonic e�ects in the calculations. We identify �ve competing phases for the pressure range
between 0 and 100 GPa. Incorporating anharmonic and quantum e�ects on ion dynamics, we �nd
the Immm and P63/mmc phases to be the most probable, potentially metastable even at pressures
as low as 10 GPa. Notably, all phases exhibit metallic properties, with critical temperatures be-
tween 59 and 111 K within the pressure range they are dynamically stable. These �ndings have the
potential to inspire future experimental exploration of high-temperature superconductivity at low
pressures in Rb-H binary compounds.

I. INTRODUCTION

Superconductivity is one of the most intriguing phe-
nomena in condensed matter physics. It is primarily
manifested as a complete absence of electrical resistance
below some critical temperature due to the pairing of
two electrons into bosonic quasiparticles, Cooper pairs.
This property of superconductors allows them to have al-
most unlimited technological utility. However, depending
on the microscopic pairing mechanism, most of the criti-
cal temperatures are at cryogenic temperatures, severely
limiting their technological application [1]. For example,
prior to recent developments, the highest critical tem-
perature for a conventional superconductor, where the
attractive interaction between electrons is mediated by
phonons, is measured for MgB2 at 39 K [2], well below
the temperature of liquid nitrogen (77 K).
In recent years, however, we have seen a rise of a

new material class of conventional superconductors, high-
pressure hydrides [3�7]. Originally, high-pressure metal-
lic hydrogen was predicted to be a high-temperature su-
perconductor [8]. Later on, this idea was revised in
the sense that compounds containing large amounts of
hydrogen could host high-temperature superconductiv-
ity at pressures lower than the one needed to synthe-
size metallic hydrogen [9]. Finally, several years ago,
an ab initio prediction of high-temperature supercon-
ductivity in H3S was reported [10]. Experimental con-
�rmation soon followed in the work of Eremets and co-
workers [11], who had independently been pursuing high-
pressure studies of hydrogen sul�de. This led to the ex-
plosion of the �eld, with a large number of synthesized
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high-temperature superconductors in the last ten years,
such as LaH10 [12, 13], YH9 [14], YH6 [15], CaH6 [16, 17],
CeH10 [18], and LaBeH8 [19] to name a few.

These high-temperature superconductors require large
pressures to be synthesized, in the order of megabars,
which signi�cantly limits their technological applications.
Hence, the focus of the �eld in the last few years has
shifted from searching for the highest possible critical
temperature to the possibility of �nding dynamically and
thermodynamically stable hydride materials at ambient
pressures [20]. While thermodynamic stability is un-
likely [20, 21], the hope is to �nd a metastable mate-
rial at ambient pressure. These metastable materials
would be formed at an elevated pressure at which they
are on the enthalpy convex hull, but remain dynamically
stable even after releasing pressure, as it happens with
the paradigmatic case of diamond. Remarkably, dynam-
ically stable ternary hydride perovskites at 0 GPa have
been predicted recently, with a critical superconducting
temperature above the temperature of liquid nitrogen
that sparked new hopes for the possibility of discovering
new high-temperature superconductors at normal condi-
tions [22�24].

One of the common properties of high-pressure hy-
drides is that quantum e�ects due to the zero-point mo-
tion of constituent ions have a large in�uence on the sta-
bility of the structure [6]. These e�ects are exception-
ally pronounced in hydrides due to the low mass and
consequent large mean square displacements of hydro-
gen atoms, meaning they can explore large areas of the
Born-Oppenheimer (BO) energy surface. As a conse-
quence, this leads to pronounced anharmonic e�ects in
the vibrational spectra of these materials, by changing
phonon frequencies, and the total free energy landscape,
renormalizing crystal structures. Both of these e�ects,
quantum zero-point motion and anharmonicity, can be
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captured by the stochastic self-consistent harmonic ap-
proximation (SSCHA) [25�29], which already proved its
utility in a large number of studies of high-pressure hy-
drides [30�39].
While the number of predicted potentially metastable

ternary hydrides at low pressures keeps increasing [22�
24, 40�44], there has not been any prediction of binary
hydrides that could be dynamically and thermodynami-
cally stable at low pressures. Rubidium hydrides are pos-
sible candidates, with recent experimental synthesis of
RbH9 and RbH5 at low pressures ∼ 10 GPa [45, 46]. Pre-
vious computational studies predicted metalic rubidium
superhydrides to be dynamically stable at a relatively low
pressure of 50 GPa [47, 48] and thermodynamically stable
at 100 GPa. They have also been predicted to be metallic
and thus possibly superconducting at high temperatures.
These calculations [47, 48] were done purely at a density
functional theory (DFT) level and did not consider the
in�uence of the zero point motion and anharmonicity on
their properties.
The goal of the present study is exactly to explore the

in�uence of quantum anharmonic e�ects on the struc-
tural and superconducting properties of RbH12 by uti-
lizing the SSCHA. We �nd that there are several com-
peting phases at a DFT level in the 0-100 GPa pressure
range. Quantum anharmonic e�ects do not signi�cantly
alter the energy landscape at 50 GPa, and the Immm
and Cmcm phases therefore remain the most probable
structures. On the other hand, these e�ects promote the
dynamical stability of these phases, extending the stabil-
ity of the Immm phase down to 25 GPa, and P63/mmc
phase down to 10 GPa. All of the low-energy phases are
metallic with the possibility of hosting high-temperature
superconductivity (up to 100 K). We conclude the study
with a presentation of possible structural and spectro-
scopic signatures of the competing phases in order to fa-
cilitate their identi�cation in experiments.

II. METHODS

DFT and density functional perturbation theory
(DFPT) calculations with the Perdew-Burke-Ernzerhof
parametrization [49] for the generalized gradient approxi-
mation were performed using the Quantum Espresso soft-
ware package [50�52]. Ions were represented using ul-
trasoft pseudopotentials generated by the �atomic� code.
Electronic-wave functions were de�ned in a plane-wave
basis with an energy cuto� of 70 Ry, while the energy cut-
o� for the charge density was 280 Ry. The k-point grid
used to sample the electronic states was 24× 24× 24 for
Immm and R3̄m phases, 21×21×14 for C2/m, 16×16×8
for Cmcm, and 16×16×11 for the P63/mmc phase. Due
to the metallic nature of these compounds, we used a
Marzari-Vanderbilt-DeVita-Payne cold smearing [53] for
electronic states of 0.02 Ry in the self-consistent calcu-
lations. The crystal structure prediction was conducted
using the CrySpy code [54].

SSCHA calculations were done on 2 × 2 × 1 super-
cells for the Cmcm phase and 2× 2× 2 supercell for all
other phases. We used 600, 800, 1200, and 1600 con�g-
urations of random atomic positions per population for
R3̄m, Immm,C2/m, and Cmcm and P63/mmc phases,
respectively. The third-order force constants and Hessian
of the free energy were calculated using 8000, 6000, 8000,
10000, and 6000 con�gurations for R3̄m, Immm,C2/m,
Cmcm, and P63/mmc phases, respectively.
The superconducting critical temperature was calcu-

lated solving isotropic Migdal-Eliashberg equations using
SSCHA auxiliary phonons. We computed the isotropic
Coulomb interaction for the Immm phase of RbH12 at
25 GPa. The details of the calculation are provided in
the Supplementary Material [55�62]. For the remain-
ing phases, we employed µ∗ = 0.118, estimated from
the results obtained for the Immm phase. The electron-
phonon coupling constants were calculated using DFPT
as implemented in Quantum Espresso. They were calcu-
lated on 5 × 5 × 5, 4 × 4 × 4, 10 × 10 × 10, 8 × 8 × 8
and 6× 6× 3 q-point grids for Immm, P63/mmc, R3̄m,
C2/m and Cmcm phases, respectively. The double delta
averaging on the Fermi surface was done using a Gaus-
sian smearing of 0.008 Ry for most phases (0.012 Ry for
R3̄m) with electronic states calculated on 42 × 42 × 42,
40× 40× 27, 48× 48× 48, 45× 45× 30 and 40× 40× 20
k-point grids for each mentioned phase.

III. RESULTS

Ref. [47] identi�ed three main competing phases of
RbH12 at 50 GPa: Immm, C2/m and Cmcm. Out of
these, the Cmcm phase was found to be on the convex
hull at 100 GPa, o�ering a viable route for its synthe-
sis. Our independent crystal structure prediction calcu-
lations con�rmed these results with the further identi�-
cation of two more phases that are below 10 meV/atom
from the lowest enthalpy structure at 50 GPa (Cmcm in
our crystal structure prediction): R3̄m and P63/mmc.
Both R3̄m and P63/mmc are found in Ref. [47] as being
competitive at lower pressures, approximately 25 GPa.
The enthalpy di�erences of these competitive structures
calculated at a DFT level in the 0-100 GPa pressure
range are given in Fig. 1 (a). Our results show that
R3̄m has the lowest enthalpy between 10 and 30 GPa,
while Cmcm phase is the lowest lying structure above
this presure. The enthalpy di�erences between all these
competing phases are very small, on the order of few meV
per atom. This would imply that the zero-point motion
energy, neglected so far, can easily change the energy
landscape of this material.
To check this, we performed a SSCHA structural mini-

mization for all these structures at 50 GPa. The SSCHA
method minimizes the total Gibbs free energy in contrast
to the BO potential energy V (R), where R represents the
position of all ions, as it is the case in standard DFT cal-
culations (with bold symbols we represent vectors and
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Figure 1. DFT enthalpies of competing phases of RbH12 with
respect to the Immm phase as a function of pressure. The
points represent the di�erences obtained with the SSCHA at
50 GPa and 0 K.

tensors). Besides the lattice vectors, the minimization
is performed with respect to two additional sets of pa-
rameters, the SSCHA centroids R, which represent the
average positions of the ions, and the SSCHA auxiliary
force constants Φ, which are related to the amplitude of
the displacements of the ions around the centroid posi-
tions. The SSCHA Gibbs free energy is given as

G = 〈K + V 〉ρR,Φ
− TS [ρR,Φ] + PΩ, (1)

where K is the ionic kinetic energy, V the BO potential,
T the absolute temperature, ρR,Φ the SSCHA density
matrix that is parametrized by R and Φ, S [ρR,Φ] the
ionic entropy calculated with ρR,Φ, P the target pres-
sure for the minimization, and Ω the volume. At 0 K,
the Gibbs free energy reduces to the enthalpy, and the
two terms are used interchangeably throughout the text.
Since the probability distribution de�ned by ρR,Φ is a
Gaussian, we can further partition the Gibbs free energy
as

G = Fh + Eanh + EBO + PΩ. (2)

We will name Fh as the phonon free energy. It has an
analytical expression as a function of the SSCHA auxil-
iary frequencies ωµ, which are obtained by diagonalizing
the Φab/

√
MaMb SSCHA auxiliary dynamical matrix (a

and b represent both an ion and a Cartesian index):

Fh =
∑
µ

{
~ωµ

2
− kBT ln [1 + nµ(T )]

}
, (3)

where nµ(T ) is the Bose-Einstein occupation of mode µ.
EBO is the value of BO energy surface for the equilibrium

Table I. Total Gibbs free energy at 50 GPa and 0 K of di�erent
RbH12 phases with respect to Immm phase. De�nition of
each contribution is given in the text. Energy di�erences are
given in meV/atom.

Phase P∆Ω ∆Fh ∆Eanh ∆EBO ∆G

SSCHA

Cmcm 2.12 1.46 -0.15 -4.71 -1.28

C2/m 1.46 0.13 0.77 -2.29 -0.20

R3̄m 13.27 3.26 0.50 -10.68 6.34

P63/mmc 11.49 3.27 0.37 -6.69 8.44

DFT

Cmcm -0.4 − − -1.8 -2.2

C2/m 0.0 − − 0.0 0.0

R3̄m 11.2 − − -8.2 3.0

P63/mmc 10.4 − − -5.1 5.3

centroid positions: EBO = V (Req). Finally, Eanh is

Eanh = 〈V − V〉ρR,Φ
(4)

where V = 1/2(R−R)Φ(R−R)(R−R) is the SSCHA
auxiliary potential. At the end of the SSCHA minimiza-
tion, the obtained lattice parameters and centroid po-
sitions determine the crystal structure renormalized by
anharmonicity and ionic quantum e�ects, Req. The ob-
tained Φ(Req), however, does not tell us anything about
the curvature of the total free energy at Req, which need
not be a local minimum of the total free energy. To
check whether it is an actual minimum and determine if
the structure is dynamically stable, one needs to calcu-
late the dynamical matrix de�ned by the Hessian of the
SSCHA free energy and check if the eigenvalues of this
matrix are positive [28].
Fig. 1 shows the Gibbs free energy (enthalpy) in the

SSCHA of four phases with respect to the Immm phase
at 50 GPa (∆G = G − GImmm, points) and in DFT in
a pressure range from 0 to 100 GPa (lines). Since the
plot shows only the relative enthalpy di�erences between
the various Immm phases, these values do not represent
distances from the convex hull. The enthalpy di�erences,
split into the di�erent contributions in Eq. (2), are sum-
marized in Table I both at the SSCHA and DFT levels.
The biggest contribution to the total di�erence in ev-

ery case is given by P∆Ω and ∆EBO terms. These are
also the only two terms that are considered in the DFT
minimization of the structure. However, these terms are
then renormalized during the SSCHA minimization by
an amount which is comparable to the total di�erences
in the DFT case. These renormalizations in this case
are of di�erent sign and in the end do not change signif-
icantly the enthalpy hierarchy. On the other hand, the
phonon free energy Fh has a much smaller e�ect on the
total di�erence, and is only relevant when the free en-
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Figure 2. The XRD di�raction pattern for the representative
phases in SSCHA at 50 GPa and 0 K. The crystal structure
cartoons are generated by VESTA [63].

ergy di�erences are on the meV/atom scale. Finally, the
smallest contribution comes from Eanh, which is usually
an order of magnitude smaller than the second smallest
contribution, Fh. Including all of these contribution does
not change the ordering of the structures in terms of sta-
bility, although it shifts the relative enthalpy somewhat.
For example, C2/m structure is degenerate with Immm
in the DFT case, while in the SSCHA case there is a
slight di�erence in the �nal enthalpies (0.2 meV/atom).
This di�erence comes from the stochastic sampling dur-
ing SSCHA procedure. This can be veri�ed by checking
the symmetry of C2/m structure with a lower tolerance
on determining the symmetry which yields the Immm
structure.

Fig. 2 shows the simulated x-ray di�raction (XRD)
patterns of P63/mmc, C2/m, Immm, Cmcm and R3̄m
phases calculated with VESTA [63]. XRD patterns
are calculated for SSCHA structures at 50 GPa and 0
K. C2/m phase has an almost indistinguishable XRD
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Figure 3. Phonon band structures for (a) Immm phase calcu-
lated at 25 and (b) P63/mmc phase calculated at 10 GPa and
100 K using SSCHA auxiliary and Hessian, and DFPT har-
monic force constants. The inset is a blown up region between
-80 and 140 cm−1 in order to show phonon instabilities.

di�raction pattern to Immm, which further con�rms
the previous claim that these two are the same struc-
tures. The other four phases should be easily recognized
and discriminated from the XRD pattern. In the side
plots, we are also showing the structure of these phases
in the conventional cell. Hydrogen forms molecules in
all phases, without obvious cage structures that are usu-
ally associated with high-temperature superconductivity.
The formation of hydrogen molecules instead is mostly
associated with lower superconducting critical tempera-
tures [5, 30].

Now that we have relaxed the structures within the
SSCHA, we can check their dynamical stability by ex-
amining the phonon band structure. In Fig. 3 (a) we
show the phonon band structure of the Immm phase at
25 GPa. Harmonic DFPT calculations show imaginary
phonon modes at the T point and on the Γ − Y0 line.
The softening of these modes is evidenced in the SSCHA
Hessian phonons as well at 25 GPa and 0 K. These modes
are mostly of hydrogen character despite being very low-
frequency modes. Increasing temperature up to 100 K at
25 GPa stabilizes the phonon at T , which is in the com-
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mensurate grid of the SSCHA supercell. The instability
on the Γ − Y0 persists still in this case. However, this
mode does not lie on a q-point commensurate with the
SSCHA supercell and may therefore arise from interpola-
tion artifacts. To verify this, we performed calculations
on larger SSCHA supercells using machine-learning in-
teratomic potentials [55] (see Supplementary Materials
for details). In the larger supercell, all Hessian phonon
frequencies�both at commensurate and interpolated q-
points�are found to be stable. This means that quantum
and temperature e�ects push the dynamical stability of
the RbH12 down to 25 GPa, one of the lowest for binary
hydride high-temperature superconductors. For the rest
of the phonon modes, 100 K does not make a large di�er-
ence. Finally, as observed in all hydrides, vibrons signif-
icantly soften in the SSCHA compared to the harmonic
case.

A similar discussion holds for the P63/mmc phase at
10 GPa. Here, DFPT shows an instability in the A high-
symmetry point, which is commensurate with the SS-
CHA supercell and is stabilized by anharmonicity at 100
K (see the inset of Fig. 3 (b)). SSCHA Hessian phonons
show instabilities around the Γ point and the Γ−M high
symmetry line similar to DFPT, but these are probably
interpolation issues since these instabilities are of simi-
lar size to the one in A, which is stabilized due to an-
harmonic and quantum e�ects. Similarly to other high-
pressure hydrides, we see a large renormalization of the
high-frequency hydrogen vibron modes. Worth noting
here is that there are 12 high-frequency vibron modes,
compared to only 6 for the Immm phase. The phonon
band structures of other phases at 50 GPa are shown in
the Supplementary Material (Supplementary Figure 2),
where in all cases a similar impact of anharmonicity is ob-
served, with a general tendency to stabilize dynamically
the crystal structures.

Fig. 4 shows the Raman active modes of the relevant
structures at 50 GPa and 100 K. Since the calculation of
the Raman tensor for metallic systems is not trivial [64],
we generated a random Raman tensor and symmetrized
it according to the space group symmetries of a par-
ticular structure. We then only picked the modes that
have a non-zero intensity. This means while the relative
intensities shown in Fig. 4 are wrong, the peak struc-
ture is still relevant. Since we calculated phonon spec-
tral functions within the dynamical bubble approxima-
tion at 100 K [28], the displayed broadenings of spectral
lines are also realistic and accurate. While all relevant
phases have similar global structures with three distinct
segments (low-frequency Rb modes, middle-frequency H
modes, and high-frequency H2 vibron modes), they dif-
fer signi�cantly in the Raman signatures. For example,
high-frequency vibron H2 modes are split into 4, 3, and 1
distinct bands for Cmcm, Immm and C2/m, and R3̄m
and P63/mmc phases, respectively. Immm and C2/m
phases, can not be properly di�erentiated in agreement
with the �ndings from XRD patterns. The �nal two
phases (R3̄m and P63/mmc) should also be easily dis-
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Figure 4. Phonon spectral function at Γ for di�erent phases
of RbH12 (shaded area) at 100 K and 50 GPa. The full line
shows only modes that are Raman active.

tinguished by the structure of the middle-frequency hy-
drogen modes. While all phases show a somewhat large
broadening of spectral lines due to phonon-phonon inter-
action even at 100 K for the middle-frequency phonon
modes, the spectral functions do not signi�cantly devi-
ate from the Lorentzian lineshape. This is at odds with
the �ndings for high pressure hydrogen [30, 65], where
the large broadening of the hydrogen modes is accom-
panied with a signi�cant deviation from the Lorentzian
lineshape and appearance of satellite peaks. Also, the
high-frequency vibron phonon modes do not show a large
broadening possibly due to the large gap between these
modes and the rest of the phonon spectra, which limits
the phonon-phonon interaction because the energy con-
servation cannot be satis�ed.

Electronic structure calculations reveal that all of
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the competing phases are metallic and thus could host
superconductivity. Fig. 5 (a) displays the electronic
band structures of the Immm phase at 25 and (b) the
P63/mmc phase at 10 GPa. Most of the states (>90%) at
the Fermi level are of hydrogen character, which is one of
the most reliable estimators of possible high-temperature
superconductivity [20, 66]. Despite the existence of Van
Hove singularities near the Fermi level, the electronic
density of states is more or less constant in this energy re-
gion for the Immm structure, while the P63/mmc phase
has a noticeable peak at about 500 meV above the Fermi
level. This is important because many of the approxi-
mations made for the calculation of the superconducting
critical temperature in the Migdal-Eliashberg formalism
rely on the assumption of a constant electronic density of
states [67, 68]. With increasing pressure, the electronic
density of states at the Fermi level in the Immm phase
decreases. Other phases show similar trends, speci�cally,
the electronic density of states does not vary a lot in the
vicinity of the Fermi level and it is mostly composed of
states with large hydrogen character. Electronic band
structures of other phases at 50 GPa are shown in the
Supplementary Material.

The superconducting critical temperatures of the com-
peting structures were estimated using the isotropic
Migdal�Eliashberg equations. The commonly adopted
value of the renormalized Coulomb interaction parame-
ter, µ∗ = 0.1, frequently used for high-pressure hydrides,
is likely underestimated [23, 24]. Therefore, we calculated
µ∗ directly from �rst principles for the Immm phase at
25 GPa. The details of this procedure are provided in

the Supplementary Material. The resulting value, corre-
sponding to a Matsubara frequency cuto� of ten times
the Debye frequency, is µ∗ = 0.118, which we subse-
quently used in the superconducting temperature calcu-
lations for all other phases. In Fig. 6 we are showing the
Eliashberg spectral function α2F (ω) of two structures
that are dynamically stable at low pressures and 100 K,
Immm at 25 GPa and P63/mmc at 10 GPa. The calcu-
lated Eliashberg spectral function (see Fig. 6) reveals that
the electron-phonon coupling is fairly evenly distributed
throughout the Brillouin zone, with the Eliashberg spec-
tral function and phonon density of states closely fol-
lowing each other. This is not, however, true for the
Rb-dominated modes and the high-frequency H phonon
modes (around 1100 cm−1), which show a lower electron-
phonon coupling strength. The high-frequency vibron
modes (∼ 3000 cm−1) in the Immm phase on the other
hand have a relatively higher electron-phonon coupling.
The �nal electron-phonon coupling constant is fairly low
in comparison to other superhydrides and is barely above
one for the Immm phase at 25 GPa, while it is below 1
for the P63/mmc phase at 10 GPa.

All competing phases (see Supplementary Material for
results for other phases) at 50 GPa have a critical tem-
perature of between 59 and 111 K. The Cmcm and
P63/mmc phases have a lower estimate of the critical
temperature of 67 K and 59 K respectively. Both Cmcm
and P63/mmc phases have two formula units per primi-
tive cell. The lower electron-phonon coupling and critical
temperature of the Cmcm phase can be explained by its
lower electronic density of states per atom at the Fermi
level. On the other hand, the P63/mmc phase actu-
ally has a higher density of states per atom at the Fermi
level compared to the Immm. Additionally, the average
phonon linewidth due to the electron-phonon interaction
is similar in magnitude between Immm and P63/mmc
phases. However, in the case of the Immm phase lower
frequency H phonon modes have larger phonon linewidth,
which is then re�ected in a higher electron-phonon cou-
pling strength and critical temperature. R3̄m phase has
an intermidiate estimate of TC of 78 K, while Immm
and C2/m phases show the largest superconducting crit-
ical temperature of above 100 K at 50 GPa.

Pressure has a limited in�uence on the superconduct-
ing critical temperature. In the Immm phase it increases
with pressure from 98 K at 25 GPa to 113 K at 100 GPa.
On the other hand, the electronic density of states at the
Fermi level follows the opposite trend, decreasing with
pressure, as well as the electron-phonon coupling con-
stant λ. This is a consequence of the hardening of low-
frequency phonon modes with applied pressure. The inte-
grated Eliashberg spectral function α2F =

∫
dωα2F (ω)

increases with pressure, which explains the increase of the
critical temperature estimate [69]. Finally, if we are using
SSCHA Hessian frequencies instead of auxiliary phonon
frequencies in the calculations for the Immm phase, the
estimate of the critical temperature increases up to 155
K at 50 GPa due to the softening of phonon modes due
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Figure 6. Eliashberg spectral function α2F (ω) of RbH12 in
the (a) Immm phase at 25 GPa and (b) the P63/mmc phase
at 10 GPa. The transparent �lled line represents the phonon
density of states scaled by the integral of α2F (ω). The cal-
culated critical temperature is marked in the �gures. For
the Immm phase, we calculated the superconducting critical
temperature using a Coulomb interaction obtained fully from
�rst-principles calculations, whereas for the P63/mmc phase
we employed the value µ∗ = 0.118 estimated from the Immm
phase.

to higher order phonon-phonon interaction. The actual
critical temperature should lie somewhere between these
two values since Hessian phonons consistently overesti-
mate the softening of phonon frequencies [30].

IV. CONCLUSIONS

In conclusion, we have investigated the thermodynamic
and dynamical stability of the RbH12 system at low-

pressure conditions. The crystal structure prediction
with ab initio energies and volumes suggests �ve com-
peting phases at 50 GPa. Including quantum and an-
harmonic e�ects in the estimation of the total free en-
ergy does not change the enthalpy hierarchy of phases
and only slightly modi�es the relative stabilities. At 50
GPa all of the studied systems appear to be dynamically
stable, with Immm and P63/mmc retaining dynamical
stability due to anharmonic e�ects even as low as 25 and
10 GPa, respectively. To aid the characterization of these
materials in the experimental conditions, we simulate the
XRD and Raman response of the competing phases and
show that they should be easily distinguishable. All of
the studied phases are metals with large hydrogen char-
acter of the electronic states at the Fermi level. Finally,
we estimated the critical temperatures of the studied
phases using isotropic Migdal-Eliashberg equations and
found that they should show superconductivity between
59 K(P63/mmc phase) and 111 K (Immm phase).
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50 GPa Immm C2/m Cmcm R3̄m P63/mmc

λ 1.36 1.33 0.78 0.89 0.84

ωlog (K) 879 848 1103 1134 1078

ω2 (K) 1600 1587 1930 2065 2141∫
dωα2F (ω) (K) 818 792 591 702 679

DOS(EF) (1/meV/atom) 20.8 20.7 16.1 19.6 19.4

TAD
C (K) 95 90 59 72 53

TE
C (K) 111 106 67 78 59

Supplementary Table I. Superconducting properties of di�erent phases of RbH12 at 50 GPa. The de�nitions of each property
is given in the text below. TAD

C and TE
C are estimates of superconducting critical temperature using Allen-Dynes formula and

solution of Migdal-Eliashberg equations 7 with µ∗ = 0.118.

VI. SUPPLEMENTARY MATERIAL FOR: SUPERCONDUCTIVITY IN RBH12 AT LOW PRESSURES:
AN AB INITIO STUDY

VII. SUPERCONDUCTING CRITICAL TEMPERATURE OF RBH12 AT 50 GPA
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Supplementary Figure 1. Electronic band structure and density of states for RbH12 at 50 GPa in (a) Immm, (b) C/2m, (c)
Cmcm, (d) R3̄m and (e) P63/mmc phase.

In Supp. Figure 1 we show electronic band structure and density of states for RbH12 for di�erent phases at 50 GPa.
All phases are metalic with large majority of states having H character.

Supp. Figure 2 reports phonon band structure of all phases of RbH12 at 50 GPa. Most of the phases are dynamically
stable even in harmonic approximation. Some instabilities that can be seen are consequence of the fact that these
DFPT phonon dispersions were calculated for structures that are minima of total free energy and not BOES. In all
cases there is a strong softening of high-frequency optical modes. The side plots show calculated Eliashberg spectral
function α2F and phonon density of states calculated for SSCHA auxiliary force constants. Most of the electron-
phonon coupling comes from hydrogen modes. The electrons are interacting more strongly with the high frequency
optical modes, however this does not have a large in�uence on λ.
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Supplementary Figure 2. Phonon band structure and Eliashberg spectral function for RbH12 at 50 GPa in (a) Immm, (b)
C/2m, (c) Cmcm, (d) R3̄m and (e) P63/mmc phase. The shaded regions in the side panel represent atom resolved auxiliary
SSCHA phonon density of states.

VIII. INTERPOLATION ISSUES OF HESSIAN OF FREE ENERGY

To further substantiate our interpretation that the imaginary frequencies of total free energy Hessian in Fig. 3 of
the main text are due to the interpolation issues, we have performed additional calculations beyond those presented
in the main part.

Given the high computational cost associated with evaluating the required number of atomic forces, energies, and
stresses, we employed the recently developed MatterSim machine learning potential [55]. Speci�cally, we �ne-tuned
the foundation model (�mattersim-v1.0.0-1M�) using our previously computed DFT data for smaller supercells to
accurately reproduce the relevant portions of the potential energy surface.

We then carried out SSCHA relaxations for the Immm phase of RbH12 at 25 GPa using a 3× 3× 3 supercell (see
Fig. 3). In this case, all Hessian phonon frequencies�both directly computed and interpolated�are positive. This
con�rms our earlier interpretation that the negative frequencies reported previously originated from interpolation
artifacts rather than true dynamical instabilities.

We also repeated the analysis for the P63/mmc phase. Since this structure contains two formula units per primitive
cell, the largest feasible supercell corresponds to 3×3×2 (468 atoms). Larger supercells are computationally prohibitive
because the calculation of third-order force constants scales as N3. In this system, we observe a clear renormalization
and hardening of the Hessian phonon frequencies. The residual small imaginary modes are con�ned near the Γ point,
consistent with remaining interpolation inaccuracies rather than genuine instabilities.

These additional results strengthen our conclusion that the previously reported imaginary frequencies were numerical
artifacts and that both Immm and P63/mmc phases are dynamically stable at the corresponding pressures.
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Supplementary Figure 3. Phonon band structures of Immm (10 GPa) and P63/mmc phases calculated from the Hessian of
the total free energy.

IX. MIGDAL-ELIASHBERG EQUATIONS WITH THE EXPLICT COULOMB INTERACTION

To estimate the superconducting critical temperature, we employed the isotropic approximation of the
Migdal�Eliashberg equations. The set of equations to be solved is [56, 57]:

Z(iωn) = 1 +
kBT

NFωn

∑
m

∫
dε′N(ε′)

ωmZ(iωm)

Θ(ε′, iωm)
λ(iωn, iωm),

χ(iωn) = −kBT
NF

∫
dε′N(ε′)

∑
m

ε′ − εF + χ(iωm)

Θ(ε′, iωm)
λ(iωn, iωm),

φph(iωn) =
kBT

NF

∫
dε′N(ε′)

∑
m

φ(ε′, iωm)

Θ(ε′, iωm)
λ(iωn, iωm), (5)

φc(ε) = −kBT
∫

dε′N(ε′)W (ε, ε′)
∑
m

φ(ε′, iωm)

Θ(ε′, iωm)
,

Ne =

∫
dε′N(ε′)

(
1− kBT

∑
m

ε′ − εF + χ(iωm)

Θ(ε′, iωm)

)
.

In these equations, iωn denotes the n-th Matsubara frequency, Z(iωn) is the electronic mass-renormalization function,
and χ(iωn) represents the Fermi-level shift. The denominator entering all equations is de�ned as:

Θ(ε, iωn) = [ωnZ(iωn)]2 + [ε− εF + χ(iωn)]2 + φ2(ε, iωn).

The superconducting order parameter φ(ε, iωn) is written as the sum of a Coulombic part φc(ε), which depends on
the electronic energy, and a phononic part φph(iωn), which depends on the Matsubara frequency. This separation
re�ects the fact that the electron�phonon interaction is only relevant near the Fermi surface, while the Coulomb term
extends over a broader energy range.

To make the numerical solution tractable, we introduce a cuto� ωc in the sum over Matsubara frequencies. For
|ωn| > ωc, we assume Z(iωn)− 1 = φph(iωn) = χ(iωn) = 0, which allows analytic evaluation of the Matsubara sums
in the equations for φc and Ne. The inclusion of Ne guarantees electron-number conservation by adjusting the Fermi
level self-consistently at each iteration.

The electron-phonon coupling is described via λ(iωn, iωm):

λ(iωn, iωm) = 2

∫ ∞
0

Ω

Ω2 + (ωn − ωm)2
α2F (Ω)dΩ.
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Elishberg spectral function α2F (Ω) is given by:

α2F (Ω) =
1

Nq

∑
a,b,q

∆ab(q)Bab(q,Ω),

where a, b are compact Cartesian and atom indices, q is the phonon wave vector, Bab(q,Ω) is the phonon spectral
function. Phonon spectral function Bab(q,Ω) is calculated using SSCHA auxiliary phonon frequencies and eigenvec-
tors [30]:

Bab(q,Ω) =
∑
ν

eaν(q)eb∗ν (q)δ(Ω− ων(q)).

∆ab(q) is the electron-phonon matrix element averaged over the Fermi surface:

∆ab(q) =
1

NFNk

∑
k

dank,n′k+qd
b
n′k+q,nk×

× δ(εnk − εF )δ(εn′k+q − εF ).

Here k is the wave vector of electronic state, NF is the electronic density of states at the Fermi level, εnk is the
energy of electronic state of wave vector k and band index n, and εF is the Fermi level as before. dank,n′k+q is the

deformation potential: dank,n′k+q = 〈nk| δV
δua(q) |n

′k + q〉.
The energy averaged Coulomb interaction (it is purely real since we assume it is taken for Ω = 0, see below) is

given by:

W (ε′, ε) =
1

N(ε′)N(ε)

∑
nk,n′q

Wnk,n′k+q(Ω = 0)δ(ε− εnk)δ(ε′ − εn′k+q).

Coulomb matrix elements Wnk,n′k+q(Ω) are then given by:

Wnk,n′k+q(Ω) = 4π
∑
G,G′

ε−1G,G′(q,Ω)
〈n′k + q|e−i(q+G)r|nk〉〈nk|e−i(q+G′)r|n′k + q〉

|q + G||q + G′|
.

Here dielectric function ε−1G,G′(q,Ω) is calculated in the RPA approximation:

ε−1G,G′(q,Ω) = δG,G′ +
4π

|q + G|2
χG,G′(q,Ω),

χ = (1− χ0K)−1χ0,

where:

KG,G′(q) =
4π

|q + G|2
δG,G′ and

χ0
G,G′(q,Ω) =

1

V

∑
k,n,n′

〈n′k + q|e−i(q+G)r|nk〉〈nk|e−i(q+G′)r|n′k + q〉 fnk − fn′k+q

εnk − εn′k+q + Ω + iη
.

The denominator in χ0
G,G′(q,Ω) is expressed using identity limη→0

1
x±iη = ∓iπδ(x) + P( 1

x ).

To calculate the dielectric function and Coulomb matrix elements, we employed a work�ow based on maximally
localized Wannier functions [58, 59, 70, 71]. First, we wannierized the electronic states of the Immm phase of RbH12

using an 8× 8× 8 coarse k-point grid [60]. The imaginary part of χ0
G,G′(q,Ω) was computed by approximating the

Dirac δ-function with a Gaussian of adaptive width [62], chosen according to the local density of the k-point sampling
involved in the summation. The real part of χ0

G,G′(q,Ω) was then obtained via the Kramers�Kronig relation. For

this reason, it is necessary to perform Wannierization over a wide energy window (here, ±30 eV around the Fermi
level). In this particular case, the disentanglement procedure [61] yielded 58 Wannier functions from a total of 100
calculated DFT bands. When solving the Migdal�Eliashberg equations [Eq. 5], we subsequently restricted the energy
window to the range of −20 to 20 eV.
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Electronic energies on dense grids were evaluated using Wannier interpolation, which is computationally e�cient.
However, direct Fourier interpolation of the plane-wave matrix elements

ρn,n′(k,q,G) = 〈n′k + q|e−i(q+G)r|nk〉

is not possible because these quantities are not periodic with respect to q and exhibit phase discontinuities arising from
the arbitrary phases of DFT wavefunctions [70]. To overcome this, we rotated the matrix elements to the Wannier
basis,

ρWmm′(k,q,G) =
∑
n,n′

V ∗mn ρnn′(k,q,G)Vn′m′ ,

where they become smooth functions of q and can thus be interpolated e�ciently using a linear interpolation scheme.
This interpolation is �rst applied over the q-dependence of the matrix elements, and subsequently, the Wannier-
interpolated quantities are used to evaluate the matrix elements on a dense k-point grid.
The energy-averaged Coulomb potentialW (ε′, ε) was calculated on a 36×36×36 k-point and 6×6×6 q-point grid,

including up to the ninth shell of G-vectors (37 in total). The result is shown in Fig. 4. As expected, W (ε, ε) exhibits
a pronounced peak for the core states and gradually decreases for higher-energy conduction states. The largest values
are observed along and near the diagonal ε′ = ε.
There are several further approximations one can make to the set of equation 5. Firstly, one could assume that the

density of states N(ε) is constant N(εF ) for Matsubara frequency dependent quantities. This means that χ(iωn) = 0
and thus we do not need equations for χ and Ne. Next the integration over energy in equations for Z and φph can be
done analytically:

Z(iωn) = 1 + π
kBT

ωn

∑
m

ωmZ(iωm)√
Θ(εF , iωm)

λ(iωn, iωm),

φph(iωn) = πkBT
∑
m

φ(εF , iωm)√
Θ(εF , iωm)

λ(iωn, iωm). (6)

Equation for the Coulombic part of the order parameter stays the same.
Finally, the Coulomb contribution can be incorporated into a single e�ective parameter, µ∗, which modi�es the

equation for φph as:

φph(iωn) = πkBT
∑
m

φph(iωm)√
Θ(εF , iωm)

(λ(iωn, iωm)− µ∗) . (7)

The parameter µ∗ is commonly interpreted as the renormalized, Fermi-surface-averaged Coulomb interaction,
µ = N(εF )W (εF , εF ). We determine µ∗ by solving the constant-DOS Eliashberg equations with the full Coulomb
interaction [Eq. 6] and matching the resulting critical temperature to that obtained from Eq. 7. For a Matsubara
frequency cuto� of 10ωD (ωD is the largest phonon frequency), this procedure yields µ∗ = 0.118. In the case of con-
stant DOS approximation 6, the critical temperature converges rapidly with increasing Matsubara frequency cuto�,
and identical values are obtained for cuto�s between 4 and 12 ωD.
The superconducting gap obtained within the three approximations discussed above is shown in Fig. 5. No dis-

cernible di�erence is observed between the full solution [Eq. 5] and the constant-DOS approximation [Eq. 6], re�ecting
the nearly �at electronic density of states near the Fermi level.
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Supplementary Figure 4. Electronic energy averaged Coulomb interaction in Immm phase of RbH12 at 25 GPa. The top panel
shows a line plot for the W (ε′, ε′) and W (εF , ε).
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Supplementary Figure 5. Superconducting gap as a function of temperature calculated with three di�erent approaches: variable
density of states DOS Eq. 5, constant density of states Eq. 6 and µ∗ approximation with µ∗ = 0.107 Eq. 7. This value is smaller
than the one mentioned in the text since here the Matsubara cuto� is 4ωD. All calculations were performed with Matsubara
cuto� of 4× Debye frequency. The inset shows the dependence of superconducting critical temperature in constant DOS
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