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Abstract

Compact binaries with large mass asymmetries - such as Extreme and Intermediate
Mass Ratio Inspirals - are unique probes of the astrophysical environments in which
they evolve. Their long-lived and intricate dynamics allow for precise inference of source
properties, provided waveform models are accurate enough to capture the full complex-
ity of their orbital evolution. In this work, we develop a multi-parameter formalism,
inspired by vacuum perturbation theory, to model asymmetric binaries embedded in
general matter distributions with both radial and tangential pressures. In the regime of
small deviations from the Schwarzschild metric, relevant to most astrophysical scenar-
ios, the system admits a simplified description, where both metric and fluid perturbations
can be cast into wave equations closely related to those of the vacuum case. This frame-
work offers a practical approach to modeling the dynamics and the gravitational wave
emission from binaries in realistic matter distributions, and can be modularly integrated
with existing results for vacuum sources.
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Coalescing binaries with large mass asymmetry, i.e., mass ratios q≪ 1, represent a novel24

class of gravitational wave (GW) sources for next-generation detectors, as they remain unde-25

tectable by current interferometers. These systems consist of a stellar or an intermediate-mass26

compact object (the secondary) orbiting a significantly more massive black hole (the primary).27

Among these, Extreme Mass Ratio Inspirals (EMRIs), where a primary of mass∼ (106−108)M⊙28

pairs with a companion of ∼ (10 − 102)M⊙, can be observed continuously for tens of thou-29

sands of orbits [1]. During this phase, the secondary evolves within a few gravitational radii30

of the primary before the final plunge, emitting GWs that peak in the millihertz regime—well31

within LISA’s [2] or TianQin’s [3] sensitivity range.1 Intermediate Mass Black Holes (IMBHs),32

with masses in the range (102 − 104)M⊙, can form Intermediate Mass Ratio Inspirals (IMRIs)33

when coupled with either stellar-mass or supermassive black holes (BHs), with mass ratios34

q ∼ 10−4 − 10−2 [6, 7]. IMRIs have shorter inspirals and less variability than EMRIs [8],35

emitting GWs across a broad frequency range, from 10−3 Hz to 10 Hz. This makes them36

multi-band sources, potentially detectable by mHz [9, 10], decihertz observatories [11], and37

3G detectors [12,13].38

As q decreases, the inspiral duration and the number of GW cycles followed by asymmetric39

binaries increase significantly [14]. These systems spend a substantial portion of their inspiral40

in a strong-field regime, tracing highly relativistic, eccentric, and off-equatorial trajectories41

before merging. The combination of such a large number of GW cycles and rich relativistic42

dynamics is crucial for achieving unprecedented precision in measuring source parameters [1],43

and advancing the fundamental physics science goals expected by GW observations of these44

systems [15–18].45

Asymmetric binaries have garnered increasing attention as prime sources for probing the46

astrophysical environments in which they evolve [15]. Indeed, BHs do not exist in isolation;47

they inhabit diverse environments where particles and fields, potentially of unknown or exotic48

nature, interact both with each other and with the compact objects. For instance, massive49

BHs are often surrounded by dark matter halos, which may consist of exotic fields or beyond-50

standard-model candidates [19]. These surrounding structures can redistribute in the pres-51

ence of a BH, forming overdensities that influence the binary’s orbital dynamics and imprint52

characteristic signatures on the emitted GW signals [20, 21]. Such signals carry valuable in-53

formation about changes in the galactic potential and local interactions, such as those arising54

from dynamical friction [22–32].55

Moreover, crowded galactic centers can induce tidal resonances that influence EMRI evolu-56

tion and reveal nearby stellar-mass object distributions [33]. IMRIs are also expected to form57

in dense, matter-dominated environments, such as the accretion disks of active galactic nu-58

1Exotic scenarios, such as those involving sub-solar black holes, could allow EMRIs with primaries as light as
103M⊙, making them potential targets for third-generation detectors, with GW emission frequencies below 10
Hz [4,5].
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clei [8]. These systems interact with the surrounding gas through effects such as density wakes,59

gap-opening processes, and tidal torques, leading to complex GW emission patterns [34]. Ob-60

serving such effects could constrain disk properties and enable multi-messenger analyses via61

electromagnetic counterparts [35].62

Modeling GW emission from asymmetric binaries requires, however, highly accurate wave-63

forms [36]. The self-force (SF) formalism provides the most precise framework to describe64

such systems, capturing their full evolutionary complexity [14,37]. In this approach, Einstein65

field equations are expanded in powers of the mass ratio q. The leading-order solution models66

the secondary as a point particle moving along the geodesics of the primary, while higher-67

order corrections account for self-interaction and finite-size effects. On the radiation-reaction68

timescale, the GW phase evolution in the SF expansion follows:69

ϕ =
ϕ(0)

q
+ϕ(1) + qϕ(2) + · · · , (1)

where ϕ(0) and ϕ(1) correspond to the adiabatic (0PA) and post-adiabatic (1PA) contributions,70

respectively [37]. Phase accuracy at sub-radian levels is needed for precise parameter estima-71

tion, requiring calculations up to at least the 1PA order. The leading dissipative effects govern72

the 0PA phase evolution, while2 first-order conservative SF and second-order dissipative SF ef-73

fects contribute to the 1PA phase component ϕ(1). After nearly three decades of effort, recent74

work has achieved the first implementation of a 1PA waveform [38–40].75

Moving beyond vacuum General Relativity presents significant challenges due to the lack76

of relativistic solutions describing BHs embedded in matter and the complexities introduced77

by metric-matter couplings. As a result, modeling environmental effects on EMRIs often relies78

on post-Newtonian approaches [24, 41–46], though fully relativistic descriptions remain key79

to confidently extract small deviation from vacuum predictions [26,30,47–56].80

Notable exceptions that provide ab initio background models incorporating non-vacuum81

contributions include studies investigating how ultra-light scalar fields surrounding massive82

primaries influence EMRI evolution at leading SF order [57, 58]. A recent study built a rel-83

ativistic perturbative framework for investigating EMRIs and IMRIs in dense environments,84

focusing on scalar clouds formed via superradiance around Kerr BHs [59, 60], emphasizing85

the relevance of spin effects in assessing matter contributions to GW signals86

Along with fundamental physics motivations, scalar fields likely provide the most accessible87

framework for modeling environmental effects. Efforts to model the interaction of asymmet-88

ric binaries with generic fluids remain limited due to the complexity of the calculations. A89

fully relativistic approach, recently developed to model GW emission from EMRIs embedded90

in spherically symmetric matter distributions [25, 61], using both semi-analytical and fully91

numerical methods [27, 62–65], revealed a rich and intricate phenomenology arising from a92

fully relativistic treatment. This model also underscored the significant increase in computa-93

tional complexity due to matter components and their perturbations. As a result, even at 0PA,94

generating accurate waveforms across a broad parameter space remains unfeasible.95

However, in most astrophysically relevant cases, and in the dynamical regimes of interest96

for GW detectors, environmental effects are expected to be “small”. In this regime, the back-97

ground geometry of asymmetric binaries is dominated by the BH vacuum spacetime, in which98

both the companion and the surrounding matter act as perturbations, leading to substantial99

simplifications.100

Following this path, we develop a multi-parameter framework to describe the evolution101

of asymmetric binaries embedded in generic, low-density environments, modeled via a fluid102

stress-energy tensor. We adopt a general anisotropic prescription that incorporates both radial103

2Orbital resonances introduce additional corrections at the 0.5PA order [37].
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and tangential pressure components. Focusing on non-spinning BHs, we solve Einstein equa-104

tions by computing axial and polar perturbations at first order in the mass ratio. We provide105

practical, ready-to-use formulas for computing both gravitational and fluid perturbations, as106

well as the resulting GW emission at the adiabatic order, expressed in terms of environmental107

parameters and the secondary’s orbital trajectory. Throughout this work, we use units in which108

G = c = 1, unless speficied otherwise.109

1 Field equations and the Multi-parameter expansion110

Our starting point is the action for generic environmental fields ϑ:111

S =

∫ p
−g

16π
d4 x R+ Se[gµν,ϑ] + Sp[gµν,ϕ] , (2)

where the action Sp describes the perturber secondary of mass mp and its internal matter fields112

ϕ, which can be treated using a skeletonized approach [66], R is the Ricci scalar, and g the113

metric determinant. The field equations for gµν, can be derived by varying the total action114

with respect to the metric, that yields115

Gµν = 8πT e
µν + 8πT p

µν , (3)

where Gµν is the Einstein operator, and T e,p
µν are the stress-energy tensors related to the envi-116

ronment and the secondary,117

T e,p
µν = −

16π
p
−g

δ
p
−gLe,p

δgµν
, (4)

where Le,p are the Lagrangian densities associated with the actions Se,p. The total energy-118

momentum tensor satisfies the covariant equation119

∇µTµν =∇µ(T eµ
ν + T pµ

ν) = 0 . (5)

We assume the primary is a BH of mass M dressed by a stationary distribution of matter,120

with a stress-energy tensor for a generic anisotropic fluid3:121

T e
µν = ρuµuν + pr kµkν + ptΠµν , (6)

where we call pt and pr as radial and tangential pressures, uµ is the fluid four velocity and122

kµ is a unit space-like radial vector orthogonal to the later, such that −uµu
µ = kµkµ = 1 and123

uµkµ = 0 [70–72]. The projector on the surface orthogonal to the 4-velocity and kµ is given124

by Πµν = gµν + uµuν − kµkν, with uµΠµνX
ν = kµΠµνX

ν = 0, for a generic vector X ν.125

The secondary BH can be introduced with a perturbative approach, using the mass ratio126

q = mp/M ≪ 1 as parameter of the expansion. In this work we consider linear-order perturba-127

tions in q, which correspond to the leading dissipative contribution in a generic SF expansion128

of the binary dynamics [14]. In this setup, the secondary evolves along a flow of geodesics129

driven by the energy and angular momentum fluxes. Higher-order terms, as well as a two-130

timescale analysis of environmental effects, will be studied elsewhere. The energy momentum131

of the secondary is given by:132

T pµν(xα) = mp

∫

γ

uµpuνp
δ(4)(xµ − xµp (τ))

p
−g

dτ , (7)

3A prescription to describe anisotropic fluids in Newtonian gravity and in General Relativity has been recently
proposed in [67–69], aiming to cure certain inconsistencies arising due to Eq. (6) when modeling stellar solutions.
Such formalism can in principle be adapted to our approach.
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where γ is the worldline of the compact object, τ its proper time, and uµp(τ) = d xµp/dτ its 4−133

velocity.134

We introduce a bookkeeping parameter ε to characterize the perturbative nature of the135

matter distribution, which will later guide the classification of environmental effects. With ρ136

setting the scale of the environmental stress-energy tensor (6), we follow [59] and define ε as137

the ratio between the environmental and BH densities, ε = (Me/L
3
e )/(M/L

3), where Me and138

Le are the mass and the scale of the distribution, and L ∼ M the BH scale. For instance, in the139

case of the dark matter configurations considered in [25], one finds ε = (Mhalo/M)/(a0/L)3,140

with Mhalo and a0 denoting the halo mass and its typical size, respectively. In addition to141

density, the compactness of the matter distribution, defined as Ce = Me/Le, is expected to play142

a central role in determining the behavior of perturbations [25,27]. Expressing ε in terms of143

Ce one obtains ε ∼ C3
e (M/Me)2, suggesting that the perturbative treatment remains valid as144

long as Ce ≲ (Me/M)2/3. For example, for typical dark matter halos, with Me ∼ (105−106)M ,145

the compactness satisfies Ce≪ 1, ensuring ε≪ 1.146

When ε∼O(1), the background metric deviates significantly from the Kerr solution. Con-147

versely, when ε ≪ O(1), environmental effects can be treated as small perturbations of the148

vacuum BH background, and the binary dynamics is governed by two small parameters: ε and149

the mass ratio q.150

In this work, we focus on the latter regime and compute the equations describing metric151

and matter perturbations by expanding the field equations (3), the covariant conservation of152

Tµν (5), and all relevant tensor quantities in powers of ε and q. We retain terms up to O(εq),153

such that the metric and stress-energy tensors can be expressed as:154

gµν =g(0,0)
µν + qg(1,0)

µν + εg(0,1)
µν + qεg(1,1)

µν , (8)

T e
µν =εT e

µν
(0,1) + qεT e

µν
(1,1) , T p

µν = qT p
µν
(1,0) + qεT p

µν
(1,1), (9)

where superscripts (i, j) identify the expansion order O(qi ,ε j). In the limit ε→ 0 the formal-155

ism reduces to a particle moving in the Schwarzschild spacetime, with perturbations described156

by the Regge-Wheeler-Zerilli equations [73–75].157

To isolate the various contributions at orders ε and q, we expand the nonlinear Einstein158

tensor Gµν[gαβ] about the background g(0,0)
αβ

, as in Eq. (8). For a generic perturbation hαβ , we159

define the n-th variations by160

G[n]µν [hαβ] =
1
n!

dn

dλn
Gµν
�

g(0,0)
αβ
+λhαβ
�

�

�

�

�

λ=0
. (10)

Then161

Gµν[g
(0,0)
αβ
+ hαβ] = Gµν[g

(0,0)] + G[1]µν [hαβ] + G[2]µν [hαβ , hαβ] + G[3]µν [hαβ , hαβ , hαβ] + . . . . (11)

Inserting the metric expansion (8) into Eq. (11) and keeping terms up to mixed order O(εq)162

yields163

Gµν[gαβ] = Gµν[g
(0,0)] + εG[1]µν
�

g(0,1)
�

+ q G[1]µν
�

g(1,0)
�

+ εq
�

G[1]µν
�

g(1,1)
�

+ G[2]µν
�

g(1,0), g(0,1)
�

�

(12)

We assume the background solves the zeroth-order field equations, Gµν[g(0,0)] = 0, which in164

Schwarzschild coordinates xµ = (t, r,θ ,φ) gives165

g(0,0)
µν = diag
�

− f , f −1, r2, r2 sin2 θ
�

, f = 1−
2M

r
. (13)
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For clarity, in what follows we absorb the explicit factors of q and ε within each term of the166

expansion.167

168

The perturbative framework developed above is valid when both the amplitude of the envi-169

ronmental effects and the contribution of the secondary remain small, i.e. for ε≪ 1 and q≪ 1.170

Within this regime, nonlinear backreaction on the background geometry is perturbative, and171

all quantities in Eqs. (8)–(12) can be consistently expanded in powers of these parameters.172

Moreover, we can estimate the regime in which nonlinear hydrodynamic effects within the173

fluid may become relevant by introducing an additional, although Newtonian, physical scale174

that controls the strength of the local fluid response. In our spherically symmetric configura-175

tion, the Bondi–Hoyle–Lyttleton radius rB [76] provides a diagnostic of the region where the176

surrounding fluid becomes gravitationally bound to the secondary and nonlinear effects may177

arise. For orbits at radius r = x M , with x the dimensionless orbital separation in units of the178

primary mass M , the ratio rB/r ∼ q/[x(c2
s + v2

rel)] remains well below unity for typical EMRIs179

(q ∼ 10−5) whenever either the sound speed cs or the relative velocity vrel between the fluid180

and the secondary exceeds a few 10−3c, where c is the speed of light [77–79]. This condition181

is naturally met in warm or hot subsonic flows, ensuring that the fluid response stays in the182

linear regime and that the point-particle approximation holds.183

2 Solutions of the multi-parameter expansion184

2.1 Environmental effects: (0,1) contributions185

The (0, 1) corrections to the metric tensor satisfy the inhomogeneous equations186

G[1]µν
�

g(0,1)
�

= 8πT eµ
ν
(0,1) . (14)

To determine the components of the environmental stress-energy tensor, we utilize the nor-187

malization and orthogonality properties of the fluid four-velocity and the vector kµ. For a188

stationary fluid with uµ = (ut , 0, 0, 0) and kµ = (kt , kr , 0, 0), these conditions lead to189

ut = (−gt t)
−1/2, kt = 0, kr = g−1/2

r r . (15)

Expanding the metric and matter variables in powers of ε, we obtain the explicit form of190

T eµ
ν
(0,1):191

T eµ
ν
(0,1) = diag(−ρ(0,1), p(0,1)

r , p(0,1)
t , p(0,1)

t ) . (16)

For sake of clarity, hereafter we drop the suffix (0, 1) from the background pressure and density192

functions.193

At order (0,1), we assume the following ansatz for the metric components:194

g(0,1)
µν = diag
�

− f H,
2m
r f 2

, 0, 0
�

, (17)

where both H(r) and m(r) are functions of the radial coordinate r only. We focus on asymptot-195

ically flat solutions for which the matter variables vanish at the BH horizon rh. This condition196

fixes rh = 2M , as in the vacuum case, given that m(rh) = 0. At spatial infinity, the functions197

behave as H(r → ∞) = −2Me/r + O
�

1/r2
�

and m(r → ∞) = Me + O (1/r), such that198

gt t(r →∞) = −1+ 2(M + Me)/r , where M + Me is the total ADM mass of the system, and199

Me denotes the mass of the matter distribution.200
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From the t t and r r components of Eq. (15), we derive two ordinary differential equations201

for H and m:202

dm
dr
= 4πr2ρ ,

r2 f 2

2
dH
dr
= m+ 4πr3 f pr . (18)

Additionally, the energy-momentum covariant derivative at order (0,1) gives:203

dpr

dr
=

2
r

pt +
(3M − 2r)

r2 f
pr −

M
r2 f
ρ . (19)

Equations (18)-(19) alone do not fully determine a solution for the metric and fluid variables.204

For a given density profile ρ(r), which depends on the specific matter distribution, additional205

equations are required to close the system. This is typically provided by an equation of state206

that relates pr , pt , and ρ, and that we assume to be barotropic.207

The background metric g(0,0)
µν + g(0,1)

µν allows for the study of the geodesic properties of208

both massless and massive particles. For example, the energy and angular momentum per209

unit mass, (E ,L), of a massive body on a circular orbit of radius rp are given by:210

E = E (0,0) +
fp[(1− 4 fp + 3 f 2

p )Hp − 2 fpMH ′p]
p

2( fp − 1)(3 fp − 1)3/2
, (20)

L= L(0,0) +
4 f 2

p M2H ′p
(1− fp)5/2(3 fp − 1)3/2

. (21)

where the vacuum expressions read:211

E (0,0) =

p
2 fp

(3 fp − 1)1/2
, L(0,0) =

2M
(4 fp − 3 f 2

p − 1)1/2
, (22)

and fp = 1 − 2M/rp, Hp = H(rp), H ′p = H ′(r)|r=rp
The corresponding angular frequency of212

the body up to the linear order in ε is:213

Ωp =
M1/2

r3/2
p

+
2MHp + rp(rp − 2M)H ′p

4
p

M r3/2
p

. (23)

2.2 The motion of the secondary: (1,0)+(1,1) contributions214

The motion of the secondary generates time dependent perturbations on both the metric and215

the matter fields, at the linear order in the mass ratio. For technical reasons, that will be clear216

at the end of this section, we will treat the left-hand side of Einstein equations working with a217

single background perturbation tensor218

δgµν = g(1,0)
µν + g(1,1)

µν , (24)

which solves the linearised field’s equations:219

Gµν[δgαβ] = 8π(T pµ
ν
(1,0) + T eµ

ν
(1,1) + T pµ

ν
(1,1)) . (25)

Since the decoupling of the vacuum (1,0) and matter (1, 1) sectors is performed at the end220

of the procedure, the operator on the left-hand side of Eq. (25) implicitly includes the terms221

appearing in the expansion (12), namely the linear operators G[1]µν[g(1,0)] and G[1]µν[g(1,1)],222

together with the mixed second-order contribution G[2]µν[g
(1,0)
αβ

, g(0,1)
αβ
].223
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Given the symmetry of the background, metric perturbations can be separated into the224

usual families of axial (A) and polar (P) components [73–75]:225

δgµν(x
α) = δgA

µν(x
α) +δgP

µν(x
α) . (26)

Axial and polar modes change sign as (−1)ℓ+1 and (−1)ℓ under the coordinate inversion226

(θ → π − θ ,φ → φ + π), respectively. The two classes of perturbations decouple, and can227

be treated independently. We can expand gA
µν(x

α) and gP
µν(x

α) in a complete set of tensor228

harmonics, such that:229

δgA
µν =
∑

ℓ,m

p
2λ
r

�

ih1,ℓm(t, r)cℓm(θ ,φ)− h0,ℓm(t, r)c0
ℓm(θ ,φ) +

p
Λ

r
h2,ℓm(t, r)dℓm(θ ,φ)

�

,

(27)

δgP
µν =
∑

ℓ,m

�

− gt t H0,ℓm(t, r)a0
ℓm(θ ,φ)− i

p
2H1,ℓm(t, r)a1

ℓm(θ ,φ)−
i
r

p

2λη0,ℓm(t, r)b0
ℓm(θ ,φ)

+
p

2λ
r
η1,ℓm(t, r)bℓm(θ ,φ) + gr r H2,ℓm(t, r)aℓm(θ ,φ) +

p

ΛλGℓm(t, r)fℓm(θ ,φ)

+
�p

2Kℓm(t, r)−
λ
p

2
Gℓm(t, r)
�

gℓm(θ ,φ)
�

, (28)

where λ= ℓ(ℓ+ 1), Λ= (ℓ+ 2)(ℓ− 1)/2, and the sum over the multipolar indices (ℓ, m) runs230

from ℓ = 0, . . . ,∞ and m = −ℓ, . . . ,ℓ. The ten basis components {cℓmµν ,c0ℓm
µν . . .gℓmµν} depend231

on the spherical harmonics Yℓm(θ ,φ) and their derivatives (see e.g. Appendix A of [80] for232

their explicit expression). Among the ten unknown functions {h1ℓm . . . Kℓm}, the axial term233

h2ℓm and the three polar components {η0ℓm,η1ℓm, Gℓm} can be set to zero by adopting the234

Regge-Wheeler-Zerilli gauge, such that the metric satisfy235

δgθφ = 0 , δgφφ = δgθθ sin2 θ ,

∂φ(δgtφ/ sinθ ) + ∂θ (δgtθ/ sinθ ) = 0 ,

∂φ(δgrφ/ sinθ ) + ∂θ (δgrθ/ sinθ ) = 0 . (29)

Similarly to the metric perturbations, we decompose the particle stress-energy tensor in236

the basis of tensor harmonics:237

T p
µν
(1,0) =
∑

ℓ,m

�

A0(1,0)
ℓm a0

ℓm(θ ,φ) +A1(1,0)
ℓm a1

ℓm(θ ,φ) +A(1,0)
ℓm aℓm(θ ,φ) +B0(1,0)

ℓm b0
ℓm(θ ,φ)

+B(1,0)
ℓm bℓm(θ ,φ) +Q(1,0)

ℓm cℓm(θ ,φ) +Q0(1,0)
ℓm c0

ℓm(θ ,φ) +D(1,0)
ℓm dℓm(θ ,φ)

+ G(1,0)
ℓm gℓm(θ ,φ) +F (1,0)

ℓm fℓm(θ ,φ)
�

. (30)

The specific form of the coefficients {A0(1,0)
ℓm , . . .F (1,0)

ℓm } depends on the secondary orbital con-238

figurations. Finally, the form T p
µν
(1,1) can be constructed using the same ansatz of Eqs. (30),239

and replacing the functions with the correct order of the expansion, e.g. Q(1,0)
ℓm → Q(1,1)

ℓm (see240

Appendix C for further details).241

2.2.1 Environmental effects in the presence of the secondary: (1,1) matter decomposi-242

tions243

The last piece of the multi-parameter expansion is given by the (1,1) perturbations of matter244

energy-momentum tensor, T eµ
ν
(1,1). The covariant equations (5) are determined, at this order,245

by three contributions:246

∇µ[g
(0,0)
αβ
](T eµ

ν
(1,1) + T pµ

ν
(1,1)) +∇µ[g

(1,0)
αβ
]T eµ

ν
(0,1) +∇µ[g

(0,1)
αβ
]T pµ

ν
(1,0) = 0 , (31)

8
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where we identify with ∇µ[g
(m,n)
αβ
] the covariant derivative depending on the metric at the247

(i, j) order. The (1,1) contributions to the matter stress-energy tensor depend on the energy248

density and the pressure perturbations:249

ρ = ρ(r) +ρ(1,1)(t, r,θ ,φ) , (32)

p = pr(r) + p(1,1)
r (t, r,θ ,φ) , (33)

pt = pt(r) + p(1,1)
t (t, r,θ ,φ) . (34)

We exploit again the symmetry of the background to separate angular and time-radial250

variables. We expand fluid variables in terms of standard spherical harmonics251

ρ(1,1) =
∑

ℓ,m

ρ
(1,1)
ℓm (t, r)Yℓm(θ ,φ) , (35)

p(1,1)
r =
∑

ℓ,m

p(1,1)
r,ℓm (t, r)Yℓm(θ ,φ), (36)

p(1,1)
t =
∑

ℓ,m

p(1,1)
t,ℓm (t, r)Yℓm(θ ,φ) . (37)

Moreover, pressure and density perturbations are linked by an equation of state4, such that:252

p(1,1)
r,ℓm = c2

r,ℓm(r)ρ
(1,1)
ℓm , p(1,1)

t,ℓm = c2
t,ℓm(r)ρ

(1,1)
ℓm , (38)

where the tangential (c2
t,ℓm) and the radial (c2

r,ℓm) sound speeds are in general not constant,253

and are functions of the radial coordinate (See Ref. [81] for specific examples).254

Perturbations of the fluid velocity uµ and kµ can be written in terms of vector harmonics255

[82]. Given the form of the matter stress-energy tensor in Eq. (6) and that, to leading order, the256

energy and pressure variables are O(ε), we only need terms of the order uµ(1,0) and kµ(1,0) to257

determine T eµ
ν
(1,1). The normalization of the 4-velocity reduces the independent component258

of the perturbations to three unknown functions. The explicit form of uµ(1,0) and kµ(1,0) is259

given by:260

ut(1,0) =
1

2
p

f

∑

ℓ,m

H(1,0)
0,ℓm(t, r)Yℓm(θ ,φ) , (39)

ur(1,0) =
f 3/2

4π

∑

ℓ,m

W (1,0)
ℓm (t, r)Yℓm(θ ,φ) , (40)

uθ (1,0) =

p

f
4πr2

∑

ℓ,m



V (1,0)
ℓm (t, r)∂θ −

U (1,0)
ℓm (t, r)

sinθ
∂φ



Yℓm(θ ,φ) , (41)

uφ(1,0) =

p

f

4πr2 sin2 θ

∑

ℓ,m

�

V (1,0)
ℓm (t, r)∂φ + U (1,0)

ℓm (t, r) sinθ∂θ
�

Yℓm(θ ,φ) . (42)

The form of kr(1,0) and kt(1,0) can be found using nomalisation and orthogonality conditions.261

3 Perturbation equations262

The procedure for determining axial and polar perturbations closely follows the vacuum case,263

which has been extensively studied in the literature since the seminal works of Regge and264

4Note that, since the physical properties of matter are not altered by linear perturbations, the underlying equa-
tion of state is assumed to remain unchanged.

9



SciPost Physics Submission

Wheeler [73, 74] and Zerilli [75]. In this section, we revisit the key steps for deriving the265

master equations governing the evolution of δg(A,P)
µν , and for isolating the contributions arising266

from the (1,0) and (1, 1) terms. We refer the reader to Appendix B for further details on our267

initial assumption of working with a single metric perturbation in q, and on the decoupling268

between vacuum and matter components. We present most of the equations in a compact269

form, emphasizing their functional dependence on the metric and fluid perturbations. The full270

explicit expressions are provided in the accompanying Mathematica supplementary file [83].271

3.1 ℓ≥ 2 axial modes272

In the axial case, we use the θθ and φφ components of Eqs. (25) to express the time deriva-273

tive ∂th0ℓm as a function of h1,ℓm and ∂rh1,ℓm. Substituting the latter into the rθ component274

of Einstein equations and introducing the master variable φ̄ℓm = −h1,ℓm/r(−gt t/gr r)1/2, we275

obtain a single, second-order partial differential equation of the form:276

(−gt t/gr r)∂
2
r φ̄ℓm − ∂

2
t φ̄ℓm + a1∂rφ̄ℓm + a2φ̄ℓm = Sℓm , (43)

where a1,2 depend only on (0,0) and (0,1) quantities. The source term Sℓm contains contri-277

butions from the particle’s stress-energy tensor and the background fluid variables. We now278

introduce a new master function:279

φℓm(t, r) =
Æ

Z(r)φ̄ℓm(t, r) , (44)

where Z = f −1(−gt t/gr r)1/2. For environmental effects that can be treated as small pertur-280

bations of the Schwarzschild metric, as considered here, we write Z(r) = 1 + δZ(r), where281

δZ(r) is of order O(ε):282

δZ(r) =
H(r)

2
−

m(r)
r f

. (45)

In terms of the new field φℓm, Eq. (43) becomes:283

f ∂r( f ∂rφℓm) + (1−δZ)∂ 2
t φℓm + a3φℓm = S̄ℓm , (46)

At this point we can decompose the perturbation into vacuum and matter components, i.e.,284

φℓm = φ
(0,0)
ℓm +φ(1,1)

ℓm . Furthermore, by introducing the usual tortoise coordinate r⋆, such that285

∂r∗ = f ∂r , we can eliminate the first radial derivative of the metric perturbations, obtaining286

the following wave equations:287

[∂ 2
r⋆
− ∂ 2

t − V A]φ(1,0)
ℓm (t, r) = SA(1,0)

ℓm (t, r) , (47)

[∂ 2
r⋆
− ∂ 2

t − V A]φ(1,1)
ℓm (t, r) = SA(1,1)

ℓm (t, r) . (48)

Thus, at linear order in O(ε), the axial perturbation problem reduces to solving two wave288

equations, with the same scattering potential, which matches the Regge–Wheeler expression289

for the vacuum case:290

V A = f
�

ℓ(ℓ+ 1)
r2
−

6M
r3

�

. (49)

The source SA(1,0)
ℓm (t, r) only depends on the coefficients of T p(1,0)

µν in Eq. (30). The source SA(1,1)
ℓm291

is proportional to T p(1,1)
µν , and contains contributions from the vacuum master function φ(1,0)

ℓm ,292

multiplied by the matter density and pressure. Once Eqs. (47)–(48) are solved, we can use293

Eq. (45) to obtain the (1,0) and (1, 1) components of φℓm, and consequently the expansion for294

the metric functions h1,ℓm = h(1,0)
1,ℓm + h(1,1)

1,ℓm and h0,ℓm = h(1,0)
0,ℓm + h(1,1)

0,ℓm. Their explicit expressions295

are given in Appendix A.296
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Finally, the velocity perturbation U (1,0)
ℓm can be derived from the tθ component of Einstein297

equations, which yields an algebraic relation between this quantity and the metric variables:298

∂t U
(1,0)
ℓm (t, r) =−

4π∂th
(1,0)
0,ℓm

f
+

4π(3− 2r)(κr −κt)h
(1,0)
1,ℓm

r2κt
+ SU

ℓm(t, r) , (50)

with SU
ℓm(t, r) depending on the point particle motion, κt = ρ(r)+pt(r), and κr = ρ(r)+pr(r).299

Axial perturbations do not couple, at this order, to the energy density or pressure perturbations300

because of parity considerations.301

3.1.1 The frequency domain solution302

In the frequency domain, Eqs. (47)–(48) reduce to two ordinary differential equations in the303

radial coordinate:304

[∂ 2
r⋆
+ω2 − V A]φ(1,0)

ℓm (ω, r) = SA(1,0)
ℓm (ω, r) , (51)

[∂ 2
r⋆
+ω2 − V A]φ(1,1)

ℓm (ω, r) = SA(1,1)
ℓm (ω, r) , (52)

where, for a generic function X (t, r):305

X (ω, r) =
1

2π

∫ +∞

−∞
eiωt X (t, r) d t , X (t, r) =

∫ +∞

−∞
e−iωt X (ω, r) dω . (53)

Equations (51)–(52) can be solved using a Green’s function approach. We first solve the as-306

sociated homogeneous equations with purely ingoing (-) boundary conditions at the horizon307

and purely outgoing (+) conditions at infinity:308

φ
(1,0)(−)
ℓm ∼

¨

e−iωr⋆ r⋆→−∞
Aine−iωr⋆ + Aoute

iωr⋆ r⋆→ +∞
, (54)

309

φ
(1,0)(+)
ℓm ∼

¨

eiωr⋆ r⋆→ +∞
Bine−iωr⋆ + Boute

iωr⋆ r⋆→−∞
, (55)

Note that the homogeneous equation is identical for both the (1,0) and (1, 1) components,310

and hence needs to be solved only once. The full solution is obtained by integrating φ(1,0)(±)
ℓm311

over the source term:312

φ
(1,0)
ℓm = C+φ(1,0)(−)

ℓm + C−φ(1,0)(+)
ℓm , (56)

with coefficients given by:313

C+ =

∫ r⋆

−∞

φ
(1,0)(−)
ℓm (r ′⋆)S

(1,0)
ℓm (r ′⋆)

Wℓm(r ′⋆)
dr ′⋆ , C− =

∫ +∞

r⋆

φ
(1,0)(+)
ℓm (r ′⋆)S

(1,0)
ℓm (r ′⋆)

Wℓm(r ′⋆)
dr ′⋆ , (57)

where Wℓm is the constant Wronskian of the homogeneous solutions:314

Wℓm(r⋆) = f ∂rφ
(1,0)(+)
ℓm φ

(1,0)(−)
ℓm − f ∂rφ

(1,0)(−)
ℓm φ

(1,0)(+)
ℓm . (58)

The solution for φ(1,1)
ℓm has the same form as Eq. (56), with the substitution S(1,0)

ℓm → S(1,1)
ℓm in315

the C± coefficients.316

For circular orbits the calculation of C± greatly simplifies. In this case the source term can317

be written as function of Dirac’s delta and it’s first derivative:318

S(1,0)
ℓm = D(r, rp)δ(r − rp) + G(r, rp)δ

′(r − rp) , (59)
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where rp is the secondary orbital radius, and the functions D, G can be determined from the319

coefficients of T p(1,0)
µν (and of T p(1,1)

µν for the matter contribution). Integration in Eqs. (57)can320

be performed analytically such that321

C+ = C+Θ(r − rp) , C− = C−Θ(rp − r) , (60)

where322

C± =
φ
(1,0)(∓)
ℓm (rp)D(rp)

fpW
−

d
dr





φ
(1,0)(∓)
ℓm (rp)G(rp)

W f (r)





r=rp

. (61)

3.2 ℓ≥ 2 polar modes323

Perturbations in the polar sector are characterized by seven variables: four metric components324

(H0,ℓm, H1,ℓm, H2,ℓm, Kℓm), two components of the fluid velocity perturbation (V (1,0)
ℓm , W (1,0)

ℓm ),325

and the density perturbation ρ(1,1). Despite this complexity, the dimensionality of the system326

can be significantly reduced.327

The θφ component of Eqs. (25) allows us to express H2,ℓm in terms of H0,ℓm. Furthermore,328

the r r, t r, and tθ components of Einstein equations can be used to eliminate the time deriva-329

tive of H0,ℓm, yielding two coupled differential equations5 that depend only on the metric330

functions Kℓm and H1,ℓm, along with the fluid perturbations, and take the following form:331

(b1 + b2∂r)H1,ℓm + (b3∂t + b4∂
2
t r)Kℓm + b5V (1,0)

ℓm + b6W (1,0)
ℓm = SH

ℓm , (62)

(c1 + c2∂r + c3∂
2
r r + c4∂

2
t t)H1,ℓm + (c4∂t + c5∂

2
t r)Kℓm + (c6 + c7∂r)V

(1,0)
ℓm + c8W (1,0)

ℓm = SK
ℓm ,

(63)

From the time component of the covariant derivative of the stress-energy tensor, we obtain an332

equation for ρ(1,1)
ℓm :333

d1∂tρ
(1,1)
ℓm + d2∂t Kℓm + (d3 + d4∂r)H1,ℓm + (d5 + d6∂r)W

(1,0)
ℓm + d7V (1,0)

ℓm = J ρ
ℓm . (64)

The coefficients (bi , ci , di) appearing in Eqs. (62)–(64) contain background quantities and de-334

pend only on r. Solving Eq. (64) allows to determine ρ(1,1)
ℓm , and hence (p(1,1)

r,ℓm , p(1,1)
t,ℓm ), as a335

function of background quantities and of the vacuum solution through Eq. (38).336

Finally, from ∇µTµθ = 0 and ∇µTµr = 0, we obtain two first-order equations in time for337

∂t V
(1,0)
ℓm and ∂tW

(1,0)
ℓm .338

We now reduce the coupled system for H1,ℓm and Kℓm to a single master equation for the339

metric perturbation, following the strategy introduced by Zerilli [75,84], and isolate its (0, 1)340

and (1, 1) components. We first introduce the new functions χ̄ℓm(t, r) and R̄ℓm(t, r):341

∂t Kℓm(t, r) = αχ̄ℓm(t, r) + β R̄ℓm(t, r) , H1,ℓm(t, r) = γχ̄ℓm(t, r) +δR̄ℓm(t, r) , (65)

As in the axial sector, we introduce the scaling function Z(r) such that χℓm =
p

Zχ̄ℓm and342

Rℓm =
p

ZR̄ℓm. The coefficients (α,β ,γ,δ), which depend only on r, are fixed by requiring343

that χℓm and Rℓm satisfy Zerilli-like equations of the form:344

f ∂r[ f ∂rχℓm] + (V P − ∂ 2
t )χℓm = SP

ℓm , f ∂rχℓm − Rℓm = J P
ℓm , (66)

5These algebraic manipulations also introduce a third-order time derivative of Kℓm, which can be removed using
the tφ component of Einstein equations.
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for some scattering potential V P . At this stage, and for readability, we collectively include in the345

source terms SP
ℓm and J P

ℓm all contributions proportional to the secondary orbital configuration346

and fluid perturbations. Their explicit forms will be given later.347

The coefficients that ‘diagonalize’ the problem coincide with those originally found by Zer-348

illi [75, 84]. At this point, all metric perturbations can be expanded in the two-parameter349

scheme, e.g., χℓm = χ
(0,1)
ℓm +χ(1,1)

ℓm . As a result, Eqs. (62)–(63) reduce to:350

∂ 2
r⋆
χ
(1,0)
ℓm + (V P − ∂ 2

t )χ
(1,0)
ℓm = SP(1,0)

ℓm , (67)

∂ 2
r⋆
χ
(1,1)
ℓm + (V P − ∂ 2

t )χ
(1,1)
ℓm + (z1 + z2 f ∂r)V

(1,0)
ℓm + (z3 + z4 f ∂r)W

(1,0)
ℓm = SP(1,1)

ℓm . (68)

The scattering potential for both the (1,0) and (1, 1) equations coincides and is given by the351

well-known vacuum result:352

V P = −
2 f
r3

9M3 + 9ΛM2r + 3Λ2M r2 +Λ2(Λ+ 1)r3

(3M + rΛ)2
. (69)

The source term SP(1,1)

ℓm is proportional to χ(1,0)
ℓm and to the components of T p,(1,1)

µν , while the353

coefficients z1,2,3,4 depend only on the background pressure and density. The density pertur-354

bation enters the equation for χ(1,1)
ℓm via the fluid velocities, which are determined by:355

κt∂t V
(1,0)
ℓm + 4πc2

t,ℓmρ
(1,1)
ℓm = SV

ℓm , (70)

κr∂tW
(1,0)
ℓm + (w1 +w2 f ∂r)ρ

(1,1)
ℓm = SW

ℓm , (71)

where κt = ρ(r) + pt(r) and κr = ρ(r) + pr(r). Finally, using Eqs. (67) and (70)–(71), we356

can simplify the master equation for ρ(1,1)
ℓm . Taking the time derivative of Eq. (64) yields:357

(∂ 2
r⋆
− c−2

r,ℓm∂
2
t + Vρ + γ1∂r⋆)ρ

(1,1)
ℓm = Sρ

ℓm . (72)

The coefficients (w1, w2) involve combinations of pt,r(r) and ρ(r), while Vρ and γ1 depend358

only on the sound speeds. Along with the particle motion, the sources SV,W,ρ
ℓm depend on the359

vacuum solutions χ(1,0)
ℓm .360

Note that Eq. (72) is decoupled from the (1, 1)metric perturbations and can be solved once361

the vacuum solution is known. This allows to determine V (1,0)
ℓm and W (1,0)

ℓm via Eqs. (70)-(71).362

These quantities can then be used to fully solve the polar sector and obtain χ(1,1)
ℓm through363

Eq. (68). The metric components can subsequently be reconstructed using the expressions in364

Appendix A.365

366

We also briefly comment on the structure of the polar sector in the frequency domain.367

Although the equations remain too lengthy to present explicitly, the formulation simplifies368

significantly. In this case, the velocity perturbations, given by Eqs. (70)-(71), reduce to alge-369

braic relations and can be eliminated from the wave equation for χ(1,1)
ℓm , which can then be370

determined once a solution for ρ(1,1)
ℓm is obtained using the Green function approach already371

discussed for the axial sector.372

3.3 ℓ= 0 modes373

For the sake of completeness, we complement the previous calculations with the treatment of374

the ℓ= 0 and ℓ= 1 modes, which do not contribute to gravitational radiation.375
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Fo ℓ = m = 0, only polar perturbations are excited. In this case we adopt the so called376

Zerilli gauge, which allows us to set H1,00 = K00 = 0 [84, 85]. Decomposing the remaining377

metric functions H2,00 and H0,00 into vacuum and matter components, we obtain378

∂r H(1,0)
0,00 = −

H(1,0)
2,00

r f
− 8πrA(1,0)

00 , (73)

∂r H(1,0)
2,00 = −

H(1,0)
2,00

r f
+

8πr
f 2

A0(1,0)
00 , (74)

which coincide with the standard results derived in the vacuum case [86], and379

∂r H(1,1)
0,00 = −

8πrc2
rρ
(1,1)
00

f
−

2
f 2r2

�

4π f r3pr +m
�

H(1,0)
2,00 −

H(1,1)
2,00

f r
− 8πrA(1,1)

00 , (75)

∂r H(1,1)
2,00 = −

H(1,1)
2,00

f r
+

8πr
f
ρ
(1,1)
00 +

8πr
f 2

A(0)(1,1)
00 +

2
f 2r2

H(1,0)
2,00

�

4π f r3ρ −m
�

−
8π
f 3

A0(1,0)
00 ( f rH − 2m) . (76)

Moreover, an algebraic equation for W (1,0)
00 can be obtained from the t r component of380

Einstein equations:381

κrW
(1,0)
00 =

2i
p

2πA1(1,1)
00

f
−
∂t H

(1,1)
2,00

2 f r
, (77)

Finally, substituting the above into the θθ component of Eqs. (25), we obtain a master equation382

for ρ(1,1)
00 :383

�

∂ 2
r⋆
− c−2

r,00∂
2
t + Vρ

ℓ=0 + γ1,ℓ=0∂r⋆

�

ρ
(1,1)
00 = Sρ00 . (78)

The source term Sρ00 depends on the vacuum solution H(1,0)
2,00 and on the secondary orbital384

trajectory, while the potential V p
ℓ=0 and the coefficient γ1,ℓ=0 contain terms proportional to385

the radial sound speed. As for the ℓ ≥ 2 modes, Eq. (78) is decoupled from the (1,1) metric386

perturbations and is entirely determined by the vacuum component. Once solved, one can387

determine W (1,0)
00 via Eq. (77), and subsequently reconstruct H0,00 and H2,00.388

3.4 ℓ= 1 modes389

For ℓ = 1, both axial and polar modes are present. In the axial sector, the Zerilli gauge is390

implemented by setting h0,1m = 0, leaving h1,1m as the only nonvanishing metric component391

to be determined [75]. The field equations for the (1,0) axial perturbation take the form:392

∂ 2
t h(1,0)

1,1m =− r f 8iπQ(1,0)
1m , (79)

2
r2
∂th

(1,0)
1,1m +

1
r
∂ 2

t,rh
(1,0)
1,1m +

8π
f
Q0(1,0)

1m = 0 . (80)

At the (1,1) order we have for the metric perturbation393

∂ 2
t h(1,1)

1,1m − [H∂
2
t − 16π f (pt − pr)]h

(1,0)
1,1m + 8πi f rQ(1,1)

1m = 0 , (81)
�

f ∂ 2
t,r +

2 f
r
∂t

�

h(1,1)
1,1m + 4 f κt U

(1,0)
1m + 8πrQ(0)(1,1)

1m −
4
r2

�

πr3κr +m+
rm
2
∂r

�

∂th
(1,0)
1,1m = 0 .

(82)
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Finally, an equation for ∂t U
(1,0)
1m can be derived from θ component of the covariant divergence394

∇µTµθ = 0.395

In the polar sector, we fix the Zerilli gauge by setting K1m = 0, so that the remaining metric396

perturbations to determine are H0,1m, H1,1m, and H2,1m, along with the fluid variables V (1,0)
1m ,397

W (1,0)
1m , and ρ(1,1)

1m . Decomposing the metric into its (1, 0) and (1, 1) components, we derive398

the corresponding perturbation equations by applying Einstein equations together with the t,399

r, and θ components of ∇µTµν = 0. The (1,0) vacuum equations for H0,1m, H1,1m, and H2,1m400

coincide with those available in Appendix B of [80].401

The functional forms of the equations for matter perturbations are identical to those in402

Eqs. (70)-(72), valid for modes with ℓ ≥ 2, except for the coefficients w1, w2, and γ1, as well403

as the scattering potential Vρ, whose explicit expressions are provided in the accompanying404

Mathematica file.405

4 Gravitational wave fluxes406

Having determined the axial and polar perturbations, we can compute the associated GW407

fluxes at infinity and at the horizon. The asymptotic structure of our metric allows us to408

employ the standard vacuum procedure [87,88], which relies on expressing the perturbations409

in a coordinate system where the metric exhibits the correct radial falloff [89].410

We note that matter fluxes across the horizon or to infinity are absent in this model. The411

perturbations of the matter stress–energy tensor are proportional to the background density,412

which vanishes at the horizon, and the fluid has compact support (or becomes rapidly negligi-413

ble) at large radius. Consequently, no fluid perturbation can carry energy or angular momen-414

tum across either boundary. The secondary does excite fluid perturbations, but these remain415

confined within the matter distribution. The only radiative degrees of freedom at leading order416

are the standard GW modes, which carry imprints of matter through coupling and background417

effects. While no asymptotic matter fluxes are present, one may still expect local interactions418

between the perturber and the fluid. A Newtonian estimate suggests that a local drag force419

on the worldline — analogous to dynamical friction [90] — would appear at order O(q2ε),420

sharing the same radiative scaling as the flux corrections discussed in the next section. Eval-421

uating this effect would require computing the self-consistent motion of the secondary in the422

perturbed geometry, i.e. feeding the metric corrections back into the worldline evolution, a SF423

analysis that lies beyond the scope of this work.424

To move from the RWZ gauge to the radiation gauge, we perform an infinitesimal coordi-425

nate transformation such that426

δgRG
µν = δgRWZ

µν −∇µξν −∇νξµ , (83)

where ξµ is a gauge vector expanded in multipole components (summation over (ℓ, m) is427

implicit):428

ξµ = (α1,α2, r2[α3 cscθ ∂φ +α4∂θ ], r2[α4∂φ −α3 sinθ ∂θ ])Yℓm , (84)

with α1,2,3,4 being gauge functions dependent on (t, r). Following [87], at infinity the pertur-429

bation tensor satisfies the outgoing radiation conditions:430

δgORG
µν nµnν = δgORG

µν nµmν = δgORG
µν nµmν∗ = δgORG

µν nµlν = δgORG
µν mµmν∗ = 0 , (85)
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where the null tetrad (lµ, nµ, mµ, mµ∗) has components:431

lµ =
�

−
p

−gt t gr r , gr r , 0, 0
	

,

nµ = −
1
2

¦
Æ

−gt t/gr r , 1, 0, 0
©

,

mµ =
1
p

2
{0, 0, r, ir sinθ} , (86)

with lµlµ = nµnµ = mµmµ = mµ∗m∗µ = 0, lµnµ = −1 = −mµm∗µ, and the asterisk denoting432

complex conjugation [91].433

Equations (85), together with the gauge transformation (83), can be used to expressα1,2,3,4434

in terms of the RWZ metric perturbations and reconstruct the perturbation tensor at infinity.6435

From the asymptotic form of the polar and axial components at r →∞, using Eqs. (A.1)–(A.5),436

we find to leading order:437

h0ℓm ≃ −h1ℓm ≃ r(φ(1,0)
ℓm +φ(1,1)

ℓm ) , (87)

H2,ℓm ≃ H0,ℓm ≃ −H1,ℓm ≃ r∂t(χ
(1,0)
ℓm +χ(1,1)

ℓm )−
2rMe

Λ
∂ 2

t χ
(1,0)
ℓm , (88)

Kℓm ≃ −(χ
(1,0)
ℓm +χ(1,1)

ℓm ) +
2Me

Λ
∂tχ

(1,0)
ℓm , (89)

assuming that at spatial infinity ∂t = −∂r +O(1/r). In the radiation zone, the perturbation438

becomes:439

δgORG
AB = −2r2(α4V ℓmAB +α3W ℓm

AB ) +O(1) , (90)

where indices A, B span the angular coordinates (θ ,φ), and440

α3 =
1
r

∫ t

(φ(1,0)
ℓm +φ(1,1)

ℓm )d t ′ , (91)

α4 = −
1
2r

∫ t �

χ
(1,0)
ℓm +χ(1,1)

ℓm −
2Me

Λ
∂tχ

(1,0)
ℓm

�

d t ′ , (92)

and441

VAB =
�

∇A∇B +
λ

2
ΩAB

�

Yℓm , WAB =
1
2

�

∇Bε
C

A ∇C +∇Aε
C

B ∇C

�

Yℓm , (93)

with ΩAB = diag(1, sin2 θ ), ∇A the covariant derivative, and εAB the Levi-Civita tensor on the442

unit 2-sphere.443

The energy and angular momentum fluxes can be obtained from the Isaacson stress-energy444

tensor for gravitational waves,445

TGW
µν =

1
64π
〈∇µδgαβ∇νδgαβ〉 , (94)

where 〈. . .〉 denotes average over a region of spacetime large compared with the GW wave-446

length. Given the symmetry of the background, we can express fluxes using the Killing vectors447

{ξν(t),ξ
ν
(φ)} associated to the two cyclic variables t and φ:448

−dE =

∫

Σ

TGWµ
νξ
ν
(t)dΣµ = ±
� |gt t |

gr r

�1/2

r2

∫

Σ

TGW
t r dΩd t , (95)

d L =

∫

Σ

TGWµ
νξ
ν
(φ)dΣµ = ±
� |gt t |

gr r

�1/2

r2

∫

Σ

TGW
rφ dΩd t , (96)

6These calculations are nearly identical to those in Appendix B of [87], except for the general form of the metric
components gt t and gr r , which include matter contributions beyond Schwarzschild.
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where dΣµ is a surface element outward-oriented on Σ and the signs − and + are for flux at449

horizon and at infinity respectively. Expanding all quantities at leading order in 1/r, and using450

Eqs. (90)–(91) within the energy flux (95), to order O(q2ε) we obtain:451

Ė∞ℓm =
1

64π
(ℓ+ 2)!
(ℓ− 2)!

�

�

�

�χ
(1,0)
ℓm

�

�

�

2
+ 4
�

�

�φ
(1,0)
ℓm

�

�

�

2
+ 2 Re
�

χ
(1,0)
ℓm χ

(1,1)∗
ℓm + 4φ(1,0)

ℓm φ
(1,1)∗
ℓm

−
2Me

Λ
χ
(1,0)
ℓm ∂tχ

(1,0)∗
ℓm

�

�

. (97)

Similarly, for the angular momentum flux, Eq. (96), we have:452

L̇∞ℓm =
im

128π
(ℓ+ 2)!
(ℓ− 2)!

�

χ
(1,0)
ℓm

∫ t

χ
(1,0)∗
ℓm d t ′ + 4φ(1,0)

ℓm

∫ t

d t ′φ(1,0)∗
ℓm −χ(1,0)

ℓm

�

2Me

Λ
χ
(1,0)∗
ℓm

−
∫ t

d t ′χ(1,1)∗
ℓm

�

−
�

2Me

Λ
∂tχ

(1,0)
ℓm −χ

(1,1)
ℓm

�

∫ t

d t ′χ∗(1,0)
ℓm

+ 4φ(1,0)
ℓm

∫ t

d t ′φ(1,1)∗
ℓm + 4φ(1,1)

ℓm

∫ t

d t ′φ(1,0)∗
ℓm

�

+ c.c. . (98)

The first two terms in Eqs. (97) and (98) correspond to the standard fluxes at infinity for vac-453

uum perturbations around Schwarzschild BHs.454

455

Calculations of GW fluxes at the horizon proceed analogously to those at infinity. We456

impose an ingoing radiation gauge by swapping lµ↔ nµ in Eqs. (85), and express the gauge457

functions in terms of the RWZ metric perturbations near the horizon, i.e., in the limit f → 0.458

Using Eqs. (A.1)–(A.5), we obtain the leading-order behavior of the axial and polar com-459

ponents as r → 2M :460

f h1ℓm ≃ −2M
�

φ
(1,0)
ℓm +φ(1,1)

ℓm

�

+
3MHh

2
φ
(1,0)
ℓm , (99)

h0ℓm ≃ −2M
�

φ
(1,0)
ℓm +φ(1,1)

ℓm

�

−
M
2

Hhφ
(1,0)
ℓm , (100)

H2,ℓm ≃ H0,ℓm ≃ H1ℓm ≃
1
2
(4M∂t − 1)
�

χ
(1,0)
ℓm +χ(1,1)

ℓm

�

−
Hh

8
(4M∂t − 1)χ(1,0)

ℓm , (101)

∂t Kℓm ≃
�

Λ+ 1
2M

+ ∂t

�

�

χ
(1,0)
ℓm +χ(1,1)

ℓm

�

−
Hh

4

�

Λ+ 1
2M

+ ∂t

�

χ
(1,0)
ℓm , (102)

where Hh ≡ H(r = rh), and we assume that near the horizon ∂t = f ∂r +O( f ). Combining7
461

these expressions with Eqs. (83) and (85), we can write the metric perturbation in the ingoing462

radiation gauge as:463

δg IRG
AB = −8M2
�

α4V ℓmAB +α3W ℓm
AB

�

+O( f ) , (103)

with the gauge coefficients given by464

α3 = −
1

2M

∫ t �

φ
(1,0)
ℓm +φ(1,1)

ℓm −
Hh

4
φ
(1,0)
ℓm

�

d t ′ , (104)

α4 = −
1

4M

∫ t �

χ
(1,0)
ℓm +χ(1,1)

ℓm +
MHh

3+ 2Λ
∂tχ

(1,0)
ℓm −

Hh

4
χ
(1,0)
ℓm

�

d t ′ . (105)

7Following [87] we rescale α2→ α2 f −1(1−Hh).
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The calculation of energy and angular momentum fluxes proceeds similarly to the far-zone465

treatment [87], by isolating the O( f −1) contribution to the GW stress-energy tensor (94), and466

neglecting terms of order O(1).467

We substitute the expression of the metric perturbation (103) into Eqs. (95)-(96), also468

multiplying by a− sign to account that we compute BH absorption rather fluxes in the radiation469

zone. To the leading order in f we find:470

ĖH
ℓm =

1
64π

(ℓ+ 2)!
(ℓ− 2)!

�

�

�

�χ
(1,0)
ℓm

�

�

�

2
+ 2Re
�

χ
(1,0)
ℓm χ

(1,1)∗
ℓm +

MHh

3+ 2Λ
χ
(1,0)
ℓm ∂tχ

(1,0)∗
ℓm

�

+ 4
�

�

�φ
(1,0)
ℓm

�

�

�

2

+ 8 Re
�

φ
(1,0)
ℓm φ

(1,1)∗
ℓm

�

�

. (106)

L̇H
ℓm =

im
128π

(ℓ+ 2)!
(ℓ− 2)!

�

χ
(1,0)
ℓm

∫ t

χ
(1,0)∗
ℓm d t ′ + 4φ(1,0)

ℓm

∫ t

d t ′φ(1,0)∗
ℓm

+χ(1,0)
ℓm

∫ t

d t ′
�

MHh

3+ 2Λ
∂tχ

(1,0)∗
ℓm +χ(1,1)∗

ℓm

�

+
�

MHh

3+ 2Λ
∂tχ

(1,0)
ℓm +χ(1,1)

ℓm

�

∫ t

d t ′χ(1,0)∗
ℓm

+ 4φ(1,0)
ℓm

∫ t

d t ′φ(1,1)∗
ℓm + 4φ(1,1)

ℓm

∫ t

d t ′φ(1,0)∗
ℓm

�

+ c.c. . (107)

The first two terms in Eqs. (106)–(107) represent vacuum contributions to the energy and471

angular momentum fluxes. The remaining terms depend on the matter distribution and vanish472

in the limit ε→ 0.473

5 Conclusions474

In this work, we developed a multi-parameter framework to model the dynamics and GW475

emission of binaries with large mass asymmetries embedded in dense astrophysical environ-476

ments. Previous studies have emphasized the scientific potential of such systems to probe the477

properties of baryonic and dark matter evolving alongside compact objects [27,61,64]. How-478

ever, these efforts also highlighted the significant complications introduced by non-vacuum479

environments, which have so far made accurate waveform modeling intractable.480

Motivated by these challenges, we constructed a semi-analytical approach that treats mat-481

ter effects as small perturbations to vacuum spacetime, as supported by most realistic astro-482

physical scenarios. By expanding Einstein equations around the Schwarzschild solution in483

powers of the binary mass ratio and the ratio of environmental to BH density, we derived484

expressions for both metric and matter perturbations within a genuinely SF framework at adi-485

abatic order.486

Our key results, summarized in Eqs. (51)–(52), (67)–(68), and (70)–(72), show that both487

axial and polar perturbations reduce to equations closely resembling the well-known Regge-488

Wheeler and Zerilli formalisms. Notably, unlike previous studies, we demonstrate that polar489

modes can be captured by a single Zerilli-like master variable, greatly simplifying numerical490

computations. We provide explicit expressions for reconstructing the metric functions and491

computing GW fluxes for binaries on generic orbits.492

This framework represents an initial step toward the development of accurate and compu-493

tationally feasible waveform models for asymmetric binaries in complex environments — key494

targets for future GW detectors like LISA. It also offers a flexible tool to study the interaction495

of such systems with ambient matter via time-domain evolution, and to investigate properties496

typically studied in vacuum, such as BH quasinormal mode spectra [92,93]. However, several497

advancements are necessary to reach full astrophysical realism.498
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One major, yet essential, challenge lies in modeling binaries with a rotating primary. De-499

scribing matter perturbations around Kerr BHs could benefit from recent progress in model-500

ing vacuum perturbations within modified gravity theories, assuming small deviations from501

GR [94–97]. In principle, the BH spin could be introduced as a third perturbative parame-502

ter within a slow-rotation scheme, such as the Hartle-Thorne formalism [98]. However, this503

approach generally exhibits poor convergence at high spin values, which are expected for as-504

trophysical BHs. The fluid description could also be enhanced in multiple ways, for instance505

by investigating the impact of viscous effects on the binary dynamics [99].506

While our focus here is methodological, and the present model still has limited direct as-507

trophysical applicability, due to the absence of spin and the restriction to spherically symmetric508

matter topologies, it nonetheless provides a first consistent framework for matter-embedded509

compact binaries. Interestingly, spherically symmetric configurations of BHs immersed in510

dense gas could, in fact, be relevant to certain recently observed compact sources — although511

at high redshift — the so-called “red dots,” which may represent heavily enshrouded accreting512

BHs [100–102].513

Finally, current studies of the evolution of asymmetric binaries including radiation reaction514

have mostly been restricted to circular, equatorial orbits due to computational complexity (see515

Ref. [103] for a study on the relevance of eccentricity in binaries immersed in an accretion516

disk). The framework developed here allows exploration of EMRI and IMRI dynamics on517

generic, eccentric, and inclined orbits across a broad parameter space, and assessment of the518

impact of matter on parameter estimation using recent tools developed to analyze GW signals519

from asymmetric binaries [104–106].520
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A Metric perturbations as a function of the master variables530

Metric perturbations can be easily reconstructed once a solution for the master equations (47)-531

(48) and (67)-(68) have been found. In this Appendix we provide relations that determine532

axial and polar metric functions at the linear order in O(ε). In the Regge-Wheeler gauge for533

axial modes with ℓ≥ 2 we have:534

h1,ℓm =− r f −1φ
(1,0)
ℓm +

3[ f rH − 2m]
4 f 2

φ
(1,0)
ℓm − r f −1φ

(1,1)
ℓm , (A.1)

∂th0,ℓm =− f ∂r

�

rφ(1,0)
ℓm

�

+ f
8i
p

2πr2D(1,0)
ℓm

p

λ(λ− 2)
+ f

8i
p

2πr2[HD(1,0)
ℓm +D(1,1)

ℓm ]
p

λ(λ− 2)

− f ∂r

�

rφ(1,1)
ℓm

�

+
1
4

�

2m
r
− f H
�

∂r

�

rφ(1,0)
ℓm

�

+
�

m
f r
+ 2πr2(pr −ρ)

�

φ
(1,0)
ℓm (A.2)
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where f = 1 − 2M/r and λ = ℓ(ℓ + 1). Frequency domain expressions can be obtained by535

replacing time derivatives as ∂t →−iω.536

The reconstruction of polar perturbations is more convoluted. We provide here explicit537

expressions including only the master functions. The full form depending on the coefficients538

of the secondary stress-energy tensor is provided in the Mathematica supplementary file:539

∂t H0,ℓm = [A1 + A5 + (A2 + A6)∂r + A3∂
2
r + A4∂

3
r ]χ

(1,0)
ℓm + (A1 + A2∂r + r f ∂ 2

r )χ
(1,1)
ℓm

+ (A7 + B4∂r)V
(1,0)
ℓm + (A8 + B5∂r)W

(1,0)
ℓm + SH0

ℓm , (A.3)

H1,ℓm = (B1 + B6 + B2∂r + B3∂
2
r )χ

(1,0)
ℓm + (B1 + r∂r)χ

(1,1)
ℓm +

B4

f
V (1,0)
ℓm +

B5

f
W (1,0)
ℓm + SH1

ℓm ,

(A.4)

∂t Kℓm =
�

C1 + C4 +
f
r

B2∂r +
f
r

B3∂
2
r

�

χ
(1,0)
ℓm + (C1 + f ∂r)χ

(1,1)
ℓm +

B4

r
V (1,0)
ℓm +

B5

r
W (1,0)
ℓm + SK

ℓm ,

(A.5)
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where the source terms SH0.H1,K
ℓm depend on the particle orbital motion, and540

A1 =−
9M3 + 9M2rΛ+ 3M r2Λ2 + r3Λ2(1+Λ)

r2C2
, A2 =

3M2 −M rΛ+ r2Λ

rC
, (A.6)

A3 =r f −
r f H

4
−

4π f r4(2pr − 3ρ)
C

+
m[(2− 3Λ)r − 13M]

2C
, A4 = −

2r2 f m
C

, (A.7)

A5 =−
A1H

4
+

m
2r4 f 2C4

§

9(14Λ− 3)M5r − 54M6 + 3[Λ(124Λ− 33) + 36]M4r2

+ 60(Λ− 1)Λ(2Λ− 3)M3r3 + 3Λ2[2Λ(7Λ− 6) + 55]M2r4 +Λ3[Λ(2Λ− 33)− 6]M r5

+Λ3[12− (Λ− 9)Λ]r6
ª

−
2πρ
f C3

§

18M4 + 9(1− 4Λ)M3r + 6Λ(Λ+ 12)M2r2

+Λ[(3− 4Λ)Λ− 12]M r3 + 4Λ2(Λ+ 1)r4
ª

−
4πr
C2

�

15M2 + 6ΛM r +Λ(3Λ+ 4)r2
�

pt

+
2πr2

C2

�

3M2 +Λ(Λ+ 2)r2
�

ρ′ −
2π
f C3

§

72M4 + 3(34Λ− 15)M3r + 6Λ(2Λ− 15)M2r2

+Λ[Λ(6Λ− 5) + 12]M r3 − 4Λ2(Λ+ 1)r4
ª

pr , (A.8)

A6 =−
A2H

4
+

4πr2ρ

C2

�

(6− 9Λ)M r + 4Λr2 − 15M2
�

+
4πr2

C
[M − (Λ+ 2)r]pr

−
16πr3 f pt

C
+

4πr4 f ρ′

C
−

m
2r2 f C3

§

9M4 + (36− 69Λ)M3r − 9(Λ− 13)ΛM2r2

+Λ[(14− 11Λ)Λ− 12]M r3 +Λ2(9Λ+ 8)r4
ª

, (A.9)

A7 =
4 f
C2
[3M2 + r2Λ2 +M r(2Λ− 3)]κt −

4r2 f 2

C
κ′t , (A.10)

A8 =
2r f
C2

�

r f C(rρ′ − 2pt)− [9M2 + (5M − r)rΛ]pr + [3M(2r −M) + r(M + r)Λ]ρ
	

,

(A.11)

B1 =
Λr
C
−

M
f r

, B2 = r −
rH
4
−

m
2 f C2

[3M2 + 6M r(1+Λ)− r2Λ(2+Λ)] , (A.12)

+
4πr4(ρ − 2pr)

C
, B3 =

2r2m
C

, B4 = −
4r2 f 2κt

C
, (A.13)

B5 =−
2 f 2r3κr

C
, B6 =

2πr2

f C2

�

3M2 +Λ(Λ+ 2)r2
�

ρ −
H
4

B1

−
3m

2r2 f 2C3

�

33M4 + (31Λ+ 6)M3r +Λ2(Λ+ 2)r4 + 3Λ(5Λ+ 3)M2r2

+Λ
�

Λ2 + 2
�

M r3
�

−
2πr2

f C2

�

15M2 + 6ΛM r +Λ(3Λ+ 4)r2
�

pr , (A.14)

C1 =
6M2 + 3M rΛ+ r2Λ(1+Λ)

r2C
, C4 = −

H
4

C1 +
2πr
C2
ρ
�

3M2 +Λ(Λ+ 2)r2
�

−
m

2 f r3C3

�

18M4 − 3(5Λ− 6)M3r − 9(Λ− 3)ΛM2r2 − 3Λ
�

3Λ2 − 2
�

M r3

−Λ2((Λ− 3)Λ− 6)r4
�

−
2πr
C2

�

15M2 + 6ΛM r +Λ(3Λ+ 4)r2
�

pr , (A.15)

with Λ= (ℓ+2)(ℓ−1)/2, κt,r = pt,r+ρ, C = rΛ+3M and a prime denoting radial derivative.541
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B Decoupling of Axial and Polar Modes into vacuum and matter542

components using the scaling function Z .543

In this appendix, we clarify why, in computing axial and polar modes, we chose to work with a544

single metric perturbation rather than separating vacuum (0,1) and matter (1,1) components545

from the beginning.546

The structure of the equations for axial modes, for example, allows one to follow a proce-547

dure similar to the vacuum case. In this framework, it is possible to eliminate one of the metric548

functions at each order in ε using the Einstein equations, leading to two second-order differen-549

tial equations in (r, t) for the (1, 0) and (1,1) perturbations. These equations can then be recast550

in the familiar wave-like form by introducing a generalized tortoise coordinate, which facili-551

tates the imposition of boundary conditions at spatial infinity and the BH horizon. However, a552

subtlety arises from the fact that the generalized tortoise coordinate dr⋆/dr = 1/
p

−gt t/gr r ,553

depends on the parameter ε. This introduces an ambiguity due to the perturbative relation554

between r and r⋆, since dr⋆/dr = f −1+O(ε), on whether one should use r or r⋆ in the pertur-555

bative expansion (see [107] for further details). This issue can be circumvented by following556

the approach developed in [108], which we briefly outline here.557

Consider a scalar perturbation Φ on a fixed, spherically symmetric background with the558

metric:559

ds2 = −A(r)d t2 +
dr2

B(r)
+ r2(dθ2 + sin2 θ dφ2) . (B.1)

After decomposing Φ into spherical harmonics, the Klein–Gordon equation □Φ = 0 can be560

written as:561

−
∂ 2Φ

∂ t2
+F d

dr

�

F dΦ
dr

�

−FVΦ= 0 , (B.2)

where V is the effective potential, which depends on the background geometry. Assume the562

metric functions A(r) and B(r) are close to the Schwarzschild solution:563

A(r) =
�

1−
rh

r

�

(1+δA), B(r) =
�

1−
rh

r

�

(1+δB) , (B.3)

with δA,δB≪ 1, and where rh denotes the horizon radius.8 Then, at the leading order in the564

metric changes (δA,δB), the function F =
p

AB can be expressed as:565

F = f (r)Z(r) =
�

1−
rh

r

�

Z(r) =
�

1−
rh

r

�

[1+δZ(r)] .

Introducing the rescaled field φ =
p

ZΦ, and expanding Eq. (B.2) to linear order in δZ , the566

master equation becomes:567

−(1+ 2δZ)
∂ 2φ

∂ t2
+ f

d
dr

�

f
dφ
dr

�

− f Ṽφ = 0 , (B.4)

where Ṽ is the modified potential (the explicit form can be found in [108]). For both axial and568

polar sectors, the metric perturbations we find satisfy master equations analogous to Eq. (B.2),569

with rh = 2M , and can be recast into the form of Eq. (B.4) by introducing an appropriate570

scaling function Z . Since the prefactor of the radial derivative terms in Eq. (B.4) is f (r), we571

can adopt the standard tortoise coordinate r⋆ = r +2M ln (r/2M − 1). This allows us to write572

the perturbations as a sum of the (1,0) and (1,1) components, and isolate their contributions573

without introducing ambiguities.574

8Note that in general rh may differ from the Schwarzschild value. In such cases, rh should be treated as a
fundamental parameter in the computation of perturbations, as done in the cases studied in [108].
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C Coefficients of the particle stress-energy momentum tensor575

The form of the coefficients {A0(1,0)
ℓm , . . .F (1,0)

ℓm } of the particle stress-energy tensor, can be found576

by projecting each one of the ten tensor harmonics on Eq. (30). Introducing the scalar product577

between two tensor harmonics Aµν and Bµν:578

(A, B) =

∫ ∫

ηµσηνδA∗µνBσδ sinθdθdφ , (C.1)

where ηµν is the Minkowski metric tensor in spherical coordinates, and ∗ denotes complex579

conjugation, we have, for example, A(1,1)
ℓm = (aℓm, T p(1,1)). We provide the expression of the580

coefficients for generic orbits in the supplementary material. In the case of equatorial circular581

motion, θp = π/2, for a secondary at a radius r = rp, the only non vanishing coefficients are582

given by Q0(1,0)
ℓm for the axial sector, and (A0(1,0)

ℓm ,B0(1,0)
ℓm ,G0(1,0)

ℓm ,D0(1,0)
ℓm ,F0(1,0)

ℓm ) for the polar583

modes (and similarly for the (1, 1) coefficients). Their explicit form is given by:584

Q0(1,0) =
p

2 f L(0,0)

r3
p
λ
∂θY ∗ℓmδ(r − rp) , A0(1,0) =

f E (0,0)

r2
Y ∗ℓmδ(r − rp) , (C.2)

B0(1,0) =
i
p

2 f L(0,0)

r3
p
λ

∂φY ∗ℓmδ(r − rp) , (C.3)

D(1,0) =
i
p

2 f (L(0,0))2

r4E (0,0)
p

λ(λ− 2)
∂θφY ∗ℓmδ(r − rp) , (C.4)

F (1,0) =
f (L(0,0))2δ(r − rp)
p

2r4E (0,0)
p

λ(λ− 2)
[∂ 2
φ − ∂

2
θ ]Y
∗
ℓm , G(1,0) =

f (L(0,0))2
p

2r4E (0,0)
Y ∗ℓmδ(r − rp) , (C.5)

Q0(1,1)
ℓm =

1
p

2λr4
[2 f rL(0,1) + f rL(0,0)H − 2L(0,0)m]∂θY ∗ℓmδ(r − rp) , (C.6)

A0(1,1)
ℓm =

1
2r3
[2 f rE (0,1) + (r f H − 2m)E (0,0)]Y ∗ℓmδ(r − rp) , (C.7)

B0(1,1)
ℓm =

i
p

2λr4
[2 f rL(0,1) + f rL(0,0)H − 2L(0,0)m]∂φY ∗ℓmδ(r − rp) , (C.8)

D0(1,1)
ℓm =

iL(0,0)δ(r − rp)

r5(E (0,0))2
p

2λ(λ− 2)
{4 f rE (0,0)L(0,1) − 2 f rE (0,1)L(0,0)

+ E (0,0)L(0,0)[ f rH − 2m]}∂θφY ∗ℓm , (C.9)

F (1,1)
ℓm =

L(0,0)δ(r − rp)

r5(E (0,0))2
p

8λ(λ− 2)
{4 f rE (0,0)L(0,1) − 2 f rE (0,1)L(0,0)

+ E (0,0)L(0,0)[ f rH − 2m]}[∂ 2
φ − ∂

2
θ ]Y
∗
ℓm , (C.10)

G(1,1)
ℓm =

L(0,0)δ(r − rp)

2
p

2r5(E (0,0))2
{4 f rE (0,0)L(0,1) − 2 f rE (0,1)L(0,0) + E (0,0)L(0,0)[ f rH − 2m]}Y ∗ℓm ,

(C.11)

where spherical harmonics are evaluated at θ = θp(t) and φ = φp(t), while E (0,1) and L(0,1)
585

are the non-vacuum corrections to the particle energy and angular momentum given by the586

O(ε) terms in Eqs. (20)-(21).587
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