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Abstract

Compact binaries with large mass asymmetries - such as Extreme and Intermediate
Mass Ratio Inspirals - are unique probes of the astrophysical environments in which
they evolve. Their long-lived and intricate dynamics allow for precise inference of source
properties, provided waveform models are accurate enough to capture the full complex-
ity of their orbital evolution. In this work, we develop a multi-parameter formalism,
inspired by vacuum perturbation theory, to model asymmetric binaries embedded in
general matter distributions with both radial and tangential pressures. In the regime of
small deviations from the Schwarzschild metric, relevant to most astrophysical scenar-
ios, the system admits a simplified description, where both metric and fluid perturbations
can be cast into wave equations closely related to those of the vacuum case. This frame-
work offers a practical approach to modeling the dynamics and the gravitational wave
emission from binaries in realistic matter distributions, and can be modularly integrated
with existing results for vacuum sources.
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Coalescing binaries with large mass asymmetry, i.e., mass ratios g < 1, represent a novel
class of gravitational wave (GW) sources for next-generation detectors, as they remain unde-
tectable by current interferometers. These systems consist of a stellar or an intermediate-mass
compact object (the secondary) orbiting a significantly more massive black hole (the primary).

Among these, Extreme Mass Ratio Inspirals (EMRIs), where a primary of mass ~ (106—10%)M,,

pairs with a companion of ~ (10 — 102)M,, can be observed continuously for tens of thou-
sands of orbits [1]. During this phase, the secondary evolves within a few gravitational radii
of the primary before the final plunge, emitting GWs that peak in the millihertz regime—well
within LISA's [2] or TianQin’s [3] sensitivity range.! Intermediate Mass Black Holes (IMBHs),
with masses in the range (102 — 10*)M,, can form Intermediate Mass Ratio Inspirals (IMRIs)
when coupled with either stellar-mass or supermassive black holes (BHs), with mass ratios
qg ~ 100%—1072 [6,7]. IMRIs have shorter inspirals and less variability than EMRIs [8],
emitting GWs across a broad frequency range, from 1072 Hz to 10 Hz. This makes them
multi-band sources, potentially detectable by mHz [9, 10], decihertz observatories [11], and
3G detectors [12,13].

As q decreases, the inspiral duration and the number of GW cycles followed by asymmetric
binaries increase significantly [ 14]. These systems spend a substantial portion of their inspiral
in a strong-field regime, tracing highly relativistic, eccentric, and off-equatorial trajectories
before merging. The combination of such a large number of GW cycles and rich relativistic
dynamics is crucial for achieving unprecedented precision in measuring source parameters [1],
and advancing the fundamental physics science goals expected by GW observations of these
systems [15-18].

Asymmetric binaries have garnered increasing attention as prime sources for probing the
astrophysical environments in which they evolve [15]. Indeed, BHs do not exist in isolation;
they inhabit diverse environments where particles and fields, potentially of unknown or exotic
nature, interact both with each other and with the compact objects. For instance, massive
BHs are often surrounded by dark matter halos, which may consist of exotic fields or beyond-
standard-model candidates [19]. These surrounding structures can redistribute in the pres-
ence of a BH, forming overdensities that influence the binary’s orbital dynamics and imprint
characteristic signatures on the emitted GW signals [20,21]. Such signals carry valuable in-
formation about changes in the galactic potential and local interactions, such as those arising
from dynamical friction [22-32].

Moreover, crowded galactic centers can induce tidal resonances that influence EMRI evolu-
tion and reveal nearby stellar-mass object distributions [33]. IMRIs are also expected to form
in dense, matter-dominated environments, such as the accretion disks of active galactic nu-

IExotic scenarios, such as those involving sub-solar black holes, could allow EMRIs with primaries as light as
10°M,, making them potential targets for third-generation detectors, with GW emission frequencies below 10
Hz [4,5].
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clei [8]. These systems interact with the surrounding gas through effects such as density wakes,
gap-opening processes, and tidal torques, leading to complex GW emission patterns [34]. Ob-
serving such effects could constrain disk properties and enable multi-messenger analyses via
electromagnetic counterparts [35].

Modeling GW emission from asymmetric binaries requires, however, highly accurate wave-
forms [36]. The self-force (SF) formalism provides the most precise framework to describe
such systems, capturing their full evolutionary complexity [14,37]. In this approach, Einstein
field equations are expanded in powers of the mass ratio q. The leading-order solution models
the secondary as a point particle moving along the geodesics of the primary, while higher-
order corrections account for self-interaction and finite-size effects. On the radiation-reaction
timescale, the GW phase evolution in the SF expansion follows:

©)
“p:(pq + oM 4 gp@ 4. (1)

where go(o) and (p(l) correspond to the adiabatic (OPA) and post-adiabatic (1PA) contributions,
respectively [37]. Phase accuracy at sub-radian levels is needed for precise parameter estima-
tion, requiring calculations up to at least the 1PA order. The leading dissipative effects govern
the OPA phase evolution, while? first-order conservative SF and second-order dissipative SF ef-
fects contribute to the 1PA phase component 1. After nearly three decades of effort, recent
work has achieved the first implementation of a 1PA waveform [38-40].

Moving beyond vacuum General Relativity presents significant challenges due to the lack
of relativistic solutions describing BHs embedded in matter and the complexities introduced
by metric-matter couplings. As a result, modeling environmental effects on EMRIs often relies
on post-Newtonian approaches [24,41-46], though fully relativistic descriptions remain key
to confidently extract small deviation from vacuum predictions [26,30,47-56].

Notable exceptions that provide ab initio background models incorporating non-vacuum
contributions include studies investigating how ultra-light scalar fields surrounding massive
primaries influence EMRI evolution at leading SF order [57, 58]. A recent study built a rel-
ativistic perturbative framework for investigating EMRIs and IMRIs in dense environments,
focusing on scalar clouds formed via superradiance around Kerr BHs [59, 60], emphasizing
the relevance of spin effects in assessing matter contributions to GW signals

Along with fundamental physics motivations, scalar fields likely provide the most accessible
framework for modeling environmental effects. Efforts to model the interaction of asymmet-
ric binaries with generic fluids remain limited due to the complexity of the calculations. A
fully relativistic approach, recently developed to model GW emission from EMRIs embedded
in spherically symmetric matter distributions [25, 61], using both semi-analytical and fully
numerical methods [27,62-65], revealed a rich and intricate phenomenology arising from a
fully relativistic treatment. This model also underscored the significant increase in computa-
tional complexity due to matter components and their perturbations. As a result, even at OPA,
generating accurate waveforms across a broad parameter space remains unfeasible.

However, in most astrophysically relevant cases, and in the dynamical regimes of interest
for GW detectors, environmental effects are expected to be “small”. In this regime, the back-
ground geometry of asymmetric binaries is dominated by the BH vacuum spacetime, in which
both the companion and the surrounding matter act as perturbations, leading to substantial
simplifications.

Following this path, we develop a multi-parameter framework to describe the evolution
of asymmetric binaries embedded in generic, low-density environments, modeled via a fluid
stress-energy tensor. We adopt a general anisotropic prescription that incorporates both radial

2Qrbital resonances introduce additional corrections at the 0.5PA order [37].
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and tangential pressure components. Focusing on non-spinning BHs, we solve Einstein equa-
tions by computing axial and polar perturbations at first order in the mass ratio. We provide
practical, ready-to-use formulas for computing both gravitational and fluid perturbations, as
well as the resulting GW emission at the adiabatic order, expressed in terms of environmental
parameters and the secondary’s orbital trajectory. Throughout this work, we use units in which
G = ¢ =1, unless speficied otherwise.

1 Field equations and the Multi-parameter expansion

Our starting point is the action for generic environmental fields ¥:

S = f ?_ngd“xR"i_Se[guwﬁ] +Sp[gl~“” ('0] ? )

where the action S, describes the perturber secondary of mass m, and its internal matter fields
¢, which can be treated using a skeletonized approach [66], R is the Ricci scalar, and g the
metric determinant. The field equations for g,,,, can be derived by varying the total action
with respect to the metric, that yields

Gy =8nTy, +8nT? | (3)

where G,,, is the Einstein operator, and Tﬁ’f are the stress-energy tensors related to the envi-
ronment and the secondary,
ep 167 5\/__g[’e,p
Ve A
where £, , are the Lagrangian densities associated with the actions S, ,. The total energy-
momentum tensor satisfies the covariant equation

4

VHTMVZVH(Te“v'i'TpHv):O . (5)

We assume the primary is a BH of mass M dressed by a stationary distribution of matter,
with a stress-energy tensor for a generic anisotropic fluid®:

T, = puyty, +pkyk, +pl,, (6)

where we call p, and p, as radial and tangential pressures, u" is the fluid four velocity and
k" is a unit space-like radial vector orthogonal to the later, such that —u,u" = k,k" = 1 and
u, k" = 0 [70-72]. The projector on the surface orthogonal to the 4-velocity and k" is given
by 1, = gy + uyu, —kyk,, with w11, X" = kM11,,,X” = 0, for a generic vector X”.

The secondary BH can be introduced with a perturbative approach, using the mass ratio
q =m,/M < 1 as parameter of the expansion. In this work we consider linear-order perturba-
tions in g, which correspond to the leading dissipative contribution in a generic SF expansion
of the binary dynamics [14]. In this setup, the secondary evolves along a flow of geodesics
driven by the energy and angular momentum fluxes. Higher-order terms, as well as a two-
timescale analysis of environmental effects, will be studied elsewhere. The energy momentum
of the secondary is given by:

@ (xk — M
TP (x%) = m, f . 1S )PR @

Y ? v—8 ’

3A prescription to describe anisotropic fluids in Newtonian gravity and in General Relativity has been recently
proposed in [67-69], aiming to cure certain inconsistencies arising due to Eq. (6) when modeling stellar solutions.
Such formalism can in principle be adapted to our approach.

4
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where 7 is the worldline of the compact object, 7 its proper time, and ug ()= dxl’f /dr its 4—
velocity.

We introduce a bookkeeping parameter € to characterize the perturbative nature of the
matter distribution, which will later guide the classification of environmental effects. With p
setting the scale of the environmental stress-energy tensor (6), we follow [59] and define € as
the ratio between the environmental and BH densities, € = (M, / LS) /(M /L?), where M, and
L, are the mass and the scale of the distribution, and L ~ M the BH scale. For instance, in the
case of the dark matter configurations considered in [25], one finds € = (M},5,/M)/(ao/L)3,
with My, and a, denoting the halo mass and its typical size, respectively. In addition to
density, the compactness of the matter distribution, defined as C, = M, /L,, is expected to play
a central role in determining the behavior of perturbations [25,27]. Expressing € in terms of
C, one obtains € ~ CS(M /M,)?, suggesting that the perturbative treatment remains valid as
long as C, S (M,/M)?/3. For example, for typical dark matter halos, with M, ~ (10°—10°)M,
the compactness satisfies C, < 1, ensuring ¢ < 1.

When e ~ O(1), the background metric deviates significantly from the Kerr solution. Con-
versely, when € < O(1), environmental effects can be treated as small perturbations of the
vacuum BH background, and the binary dynamics is governed by two small parameters: € and
the mass ratio g.

In this work, we focus on the latter regime and compute the equations describing metric
and matter perturbations by expanding the field equations (3), the covariant conservation of
T*, (5), and all relevant tensor quantities in powers of € and q. We retain terms up to O(eq),
such that the metric and stress-energy tensors can be expressed as:

ur =80 + a8 50 + eg ) + geglhY, (8)
Tﬁv :eTﬁv(O’D + qu;v(l’l) , Tﬁ’v = qTﬁv(l’O) + quﬁv(l’l), (9)

where superscripts (i, j) identify the expansion order O(q’, /). In the limit € — 0 the formal-
ism reduces to a particle moving in the Schwarzschild spacetime, with perturbations described
by the Regge-Wheeler-Zerilli equations [73-75].

To isolate the various contributions at orders € and g, we expand the nonlinear Einstein
tensor G,,,[g,p ] about the background gg;go), as in Eq. (8). For a generic perturbation h,g, we

define the n-th variations by

1 Jd" 0,0)
Gk, = — G g0+ Ay ]| . (10)
pv Ltaf n! dan Heap af 10

Then

Gl +hapl = G801+ G hap] + G2l hap, ]+ Gl hap, hup, g + ... . (1)

Inserting the metric expansion (8) into Eq. (11) and keeping terms up to mixed order O(eq)
yields

Gurl8ap] = Gl g1+ G eV ] +a G ]

+ eq(GEv][g(Ll)] + Gsz[g(l,o), g(o,l)]) (12)

We assume the background solves the zeroth-order field equations, Gw[g(o’o)] = 0, which in
Schwarzschild coordinates x* = (t,r, 6, ¢) gives

8&0;0) = diag(—f, £ r2, r?sin? 9), f=1- —. (13)
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For clarity, in what follows we absorb the explicit factors of g and ¢ within each term of the
expansion.

The perturbative framework developed above is valid when both the amplitude of the envi-
ronmental effects and the contribution of the secondary remain small, i.e. fore < 1and g < 1.
Within this regime, nonlinear backreaction on the background geometry is perturbative, and
all quantities in Egs. (8)—(12) can be consistently expanded in powers of these parameters.

Moreover, we can estimate the regime in which nonlinear hydrodynamic effects within the
fluid may become relevant by introducing an additional, although Newtonian, physical scale
that controls the strength of the local fluid response. In our spherically symmetric configura-
tion, the Bondi-Hoyle-Lyttleton radius rz [76] provides a diagnostic of the region where the
surrounding fluid becomes gravitationally bound to the secondary and nonlinear effects may
arise. For orbits at radius r = x M, with x the dimensionless orbital separation in units of the
primary mass M, the ratio rg/r ~ q/ [x(cs2 + vrze )] remains well below unity for typical EMRIs
(g ~ 107°) whenever either the sound speed c; or the relative velocity v,. between the fluid
and the secondary exceeds a few 10™>c, where c is the speed of light [77-79]. This condition
is naturally met in warm or hot subsonic flows, ensuring that the fluid response stays in the
linear regime and that the point-particle approximation holds.

2 Solutions of the multi-parameter expansion

2.1 Environmental effects: (0,1) contributions

The (0, 1) corrections to the metric tensor satisfy the inhomogeneous equations
G[l]”ig(o’l)] — 87TTe“v(0’1) ) (14)

To determine the components of the environmental stress-energy tensor, we utilize the nor-
malization and orthogonality properties of the fluid four-velocity and the vector k*. For a
stationary fluid with u* = (u*,0,0,0) and k* = (k*, k", 0,0), these conditions lead to

ut =(—g, )% k'=0, K'=g%. (15)

Expanding the metric and matter variables in powers of €, we obtain the explicit form of
TCHV(O,l):

Teuv(O,l) — diag(—p(o’l),pgo’l),pgo’l),pgo’l)) . (16)

For sake of clarity, hereafter we drop the suffix (0, 1) from the background pressure and density
functions.
At order (0, 1), we assume the following ansatz for the metric components:

gt = diag (—fH, % 0, 0) , (17)
where both H(r) and m(r) are functions of the radial coordinate r only. We focus on asymptot-
ically flat solutions for which the matter variables vanish at the BH horizon ry,. This condition
fixes r, = 2M, as in the vacuum case, given that m(r,) = 0. At spatial infinity, the functions
behave as H(r — o0) = —2M,/r + O(l/rz) and m(r —» o0) = M, + O(1/r), such that
g(r > 00)=—-1+2(M + M,)/r , where M + M, is the total ADM mass of the system, and
M, denotes the mass of the matter distribution.
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From the tt and rr components of Eq. (15), we derive two ordinary differential equations
for H and m:

d 2f24H
am =4nr’p rfTdH m+4nrifp, . (18)
dr 2 dr

Additionally, the energy-momentum covariant derivative at order (0, 1) gives:

dp, 2 (BM —2r) M

—— =—-pi+———DP,——=P - 19

dr  rbt r2f Pr rsz (19
Equations (18)-(19) alone do not fully determine a solution for the metric and fluid variables.
For a given density profile p(r), which depends on the specific matter distribution, additional
equations are required to close the system. This is typically provided by an equation of state
that relates p,, p;, and p, and that we assume to be barotropic.

.+ (0,0 0,1 : :
The background metric gl(” ) 4+ gL ; ) allows for the study of the geodesic properties of

both massless and massive particles. For example, the energy and angular momentum per

unit mass, (€, £), of a massive body on a circular orbit of radius r,, are given by:

frl(1—4f, + 3fp2)Hp —2f,MH]

=004 , (20)
V2(f, = 1Bf, — 1)/
4](: ZMZH/
L£=L004 b1 : (21)
(1 _fp)s/z(?’fp - 1)3/2
where the vacuum expressions read:
con__ Y 0 2M , (22)
(3f, — D)'V2 (4f, =32 —1)'/2

and f, =1—2M/r,, H, = H(rp), H;) =H’ (r)lr:rp The corresponding angular frequency of
the body up to the linear order in € is:

/
_ MY2  2MH, +r,(r,—2M)H,

= +
b r;’/z 41/Mr§/2

Q

(23)

2.2 The motion of the secondary: (1,0)+(1,1) contributions

The motion of the secondary generates time dependent perturbations on both the metric and
the matter fields, at the linear order in the mass ratio. For technical reasons, that will be clear
at the end of this section, we will treat the left-hand side of Einstein equations working with a
single background perturbation tensor

guy =850 +glhl, (24)
which solves the linearised field’s equations:
Guv[ggaﬁ] — 87‘E(Tp“v(1’0) + Te,uv(l,l) + TPMV(Ll)) ) (25)

Since the decoupling of the vacuum (1, 0) and matter (1, 1) sectors is performed at the end
of the procedure, the operator on the left-hand side of Eq. (25) implicitly includes the terms
appearing in the expansion (12), namely the linear operators GI'# [ ¢(19] and GIH# [ g(1LD]]

together with the mixed second-order contribution GI2# [ gilﬁ’o), gé%’l)].
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224 Given the symmetry of the background, metric perturbations can be separated into the
25 usual families of axial (A) and polar (P) components [73-75]:
5guy(x) =8¢, (x*) + g, (x4 . (26)

226 Axial and polar modes change sign as (—1)*! and (—1) under the coordinate inversion

27 (0 > m—0,¢ — ¢+ m), respectively. The two classes of perturbations decouple, and can
. A P .

28 be treated independently. We can expand gw(xa) and 8, ,(x%) in a complete set of tensor

220 harmonics, such that:

V22
58ty =2
{,m

[ihum(t, r)Cem(6, ) —ho gm(t, 1) m(0, ¢) + @hZ,Em(ta r)dgm(6, ¢)] ;

27)
580, = > = gecHoum(t, )2’ (8, ¢) —ivV2H, gn(t, )2l (6, ¢>)——«/_ A0 4m(ts 7ID% 1 (6, $)
{,m
+ @7)1 Em(t: r)blm(e, ¢) + grrHZ,fm(t; r)alm(e) ¢) + mG(m(t, r)ffm(e’ ¢)
(f Kin(t,7) = Z=Gn(t) ) gen0, )] 28)

230 where A ={£({+1), A= (£ +2)({—1)/2, and the sum over the multipolar indices (¢, m) runs
231 from ¢ =0,...,00 and m = —/{,...,{. The ten basis components {c‘Zm oem gem} depend
232 on the spherical harmonics Y;,,,(6, qb) and their derivatives (see e.g. Append1x A of [80] for
233 their explicit expression). Among the ten unknown functions {hq,,...K;,}, the axial term
23a  hyy,, and the three polar components {1ysm, N1¢m»> Gem} €an be set to zero by adopting the
235 Regge-Wheeler-Zerilli gauge, such that the metric satisfy

580y =0 , 684y =068 sin’ 0,
04(68¢/sin0)+ Jg(5g.9/sin6) =0
05(684/sin0)+ 09(58r9/5in0)=0. (29)

236 Similarly to the metric perturbations, we decompose the particle stress-energy tensor in
237 the basis of tensor harmonics:

72,000 = S [ AD2%, (8, ) + ALVl 1,(0, ) + AL V2, (6, ) + BIVb0,0(6, )
{,m

+ B0, ) + 910¢,,.(6,¢) + Q00 (0, ) + D0, (6, ¢)
+ G080, ) + FonV (0, )] - (30)

238 The specific form of the coefficients {Agg’o), o ..Fe(rln’o)} depends on the secondary orbital con-

230 figurations. Finally, the form Tﬁv(l’l) can be constructed using the same ansatz of Egs. (30),

240 and replacing the functions with the correct order of the expansion, e.g. QST;O) — Qgr’ll) (see
221  Appendix C for further details).

242 2.2.1 Environmental effects in the presence of the secondary: (1,1) matter decomposi-
243 tions

244 The last piece of the multi-parameter expansion is given by the (1, 1) perturbations of matter
25 energy-momentum tensor, T v(l’l). The covariant equations (5) are determined, at this order,
246 by three contributions:

v, Lel (T, D 4 7P (WD) 1[8N e 0D 4 v oGV 00 =0 (31)

7

8
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where we identify with Vu[gé"/;’n)] the covariant derivative depending on the metric at the
(i,j) order. The (1,1) contributions to the matter stress-energy tensor depend on the energy
density and the pressure perturbations:

p= pr)+ptV(t,r0,¢), (32)
p= p(r)+ptY(¢t,r0,¢), (33)
pe= p(r)+p(e,1,60,¢). (34)

We exploit again the symmetry of the background to separate angular and time-radial
variables. We expand fluid variables in terms of standard spherical harmonics

p( = Zp“ (e, )Y (60, ¢) (35)
pD —Zp?g,?(t, )Ym(6, $), (36)
pit = Zp?g},f(t,rmm(e,gb). 37)

Moreover, pressure and density perturbations are linked by an equation of state*, such that:

pgle’r}q) = Crlm(r)p(l Do pgle;) = tem(r)P(l Y (38)
where the tangential (c? tem ) and the radial (c ) sound speeds are in general not constant,
and are functions of the radial coordinate (See Ref [81] for specific examples).

Perturbations of the fluid velocity u* and k" can be written in terms of vector harmonics
[82]. Given the form of the matter stress-energy tensor in Eq. (6) and that, to leading order, the
energy and pressure variables are O(e), we only need terms of the order u*® and k*(19 to
determine T¢*,(bD. The normalization of the 4-velocity reduces the independent component
of the perturbations to three unknown functions. The explicit form of u*% and k*(1.0) js
given by:

w0 = HE o (6, 7)Y (6, ) (39)
2ﬁ2 S, 10, $)
““”—f Z WO, 1Y (6, ), (40)
e UrO(e,r)

6(1,0) _

“ 47”,22 —sme 9% | Yem(0,9), (41)
qf)(l,O) _ (1 0) (1,0) .

‘ 4712 sin? QZ[ (£,7)8p + Uy (t,r)sm@ae]Yem(e,(p)_ (42)

The form of k"9 and k!9 can be found using nomalisation and orthogonality conditions.

3 Perturbation equations

The procedure for determining axial and polar perturbations closely follows the vacuum case,
which has been extensively studied in the literature since the seminal works of Regge and

“Note that, since the physical properties of matter are not altered by linear perturbations, the underlying equa-
tion of state is assumed to remain unchanged.
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Wheeler [73, 74] and Zerilli [75]. In this section, we revisit the key steps for deriving the
master equations governing the evolution of & gfﬁ;P ), and for isolating the contributions arising
from the (1,0) and (1, 1) terms. We refer the reader to Appendix B for further details on our
initial assumption of working with a single metric perturbation in g, and on the decoupling
between vacuum and matter components. We present most of the equations in a compact
form, emphasizing their functional dependence on the metric and fluid perturbations. The full
explicit expressions are provided in the accompanying Mathematica supplementary file [83].

3.1 (¢ > 2 axial modes

In the axial case, we use the 66 and ¢ ¢ components of Egs. (25) to express the time deriva-
tive J;hgy, as a function of hy 4, and J.hy 4p,. Substituting the latter into the r6 component
of Einstein equations and introducing the master variable ¢;,, = —hy g/ 1(=&¢c/ g, )%, we
obtain a single, second-order partial differential equation of the form:

(_gtt/grr)arzqgfm - at2¢;€m + alarqgfm + a2q§€m = Slm ) (43)

where a; , depend only on (0,0) and (0, 1) quantities. The source term S, contains contri-
butions from the particle’s stress-energy tensor and the background fluid variables. We now
introduce a new master function:

¢[m(t’ r) =V Z(r)dgfm(t: T') P (44)

where Z = f1(—g,,/g,+)"/?. For environmental effects that can be treated as small pertur-
bations of the Schwarzschild metric, as considered here, we write Z(r) = 1 + 6§ Z(r), where
6Z(r) is of order O(¢):

H(r) m(r)
o7 = —— . 5
(r) 5 F (45)
In terms of the new field ¢,,,, Eq. (43) becomes:
far(far¢€m)+(1_5z)at2¢lm+a3¢lm :Slm ’ (46)

At this point we can decompose the perturbation into vacuum and matter components, i.e.,
bim = ¢§%0) + ¢&;1). Furthermore, by introducing the usual tortoise coordinate r,, such that
0,, = f0,, we can eliminate the first radial derivative of the metric perturbations, obtaining

the following wave equations:

[07 =87 =V 1y (t.1) = 5,108, r), 47)
[82—32—VvApih (e, r) =500, ). 48)

Thus, at linear order in O(e), the axial perturbation problem reduces to solving two wave
equations, with the same scattering potential, which matches the Regge-Wheeler expression
for the vacuum case:

L(+1) oM
r r
The source S?r(nl’o)(t, r) only depends on the coefficients of Tﬁgl’o) in Eq. (30). The source S?T(nl’l)

is proportional to , and contains contributions from the vacuum master function d)&o),

multiplied by the matter density and pressure. Once Egs. (47)—(48) are solved, we can use
Eq. (45) to obtain the (1,0) and (1, 1) components of ¢,,,, and consequently the expansion for

1,1
(PR

the metric functions hy ¢, = h(llé?,z + h(lltjg and hg ¢, = h(()lé(r)rz + h(()lljin). Their explicit expressions
are given in Appendix A.
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(1,0)
Ufm

Finally, the velocity perturbation can be derived from the t6 component of Einstein
equations, which yields an algebraic relation between this quantity and the metric variables:
4718&8@?3 . 4n(3—2r)(x, — Kt)h(lle?g

f riK,
with Sé]m(t, r) depending on the point particle motion, k, = p(r)+p,(r), and x, = p(r)+p,.(r).

Axial perturbations do not couple, at this order, to the energy density or pressure perturbations
because of parity considerations.

atULE;’O)(t: r)=—

Slf]m(t,r) , (50)

3.1.1 The frequency domain solution

In the frequency domain, Egs. (47)—(48) reduce to two ordinary differential equations in the
radial coordinate:

[ar% + w? V“‘]qbé1 0)(w r)= SA(1 O)(a) r), (51)
[ar% + o — VA]¢,§$;D(60, r)= S?S’l)(w, r), (52)

where, for a generic function X (t, r):

+00

+00o
1 . .
X(w,r)= ﬁj‘ e'tX(t,r)de X(t,r)=f e " X(w,r)dw . (53)

—00 —00

Equations (51)-(52) can be solved using a Green’s function approach. We first solve the as-

sociated homogeneous equations with purely ingoing (-) boundary conditions at the horizon
and purely outgoing (+) conditions at infinity:

$AO) eer . e (54)
A + Ayt r,—+oo ’

PRI err Fe = 00 (55)
Blne_lwr* + Boutelwr* r* — —00 5

Note that the homogeneous equation is identical for both the (1,0) and (1,1) components,
and hence needs to be solved only once. The full solution is obtained by integrating ¢§3r;0)(i)
over the source term:

I o B COO (56)
with coefficients given by:

J AP GOL) A GO SR f+°° im0 DS ()
Wen(r!) © : Wen(rD)

ar’,  (57)

where W,,, is the constant Wronskian of the homogeneous solutions:
Wém(r )= fa, ¢§1 0)(+)¢(1 ,0)(-) —fa, ¢§1 ,0)(— )¢(1 0)(+) (58)

The solution for ¢ 21 'Y has the same form as Eq. (56), with the substitution S(1 0 _, Slg;l) in
the C* coefficients.

For circular orbits the calculation of C* greatly simplifies. In this case the source term can
be written as function of Dirac’s delta and it’s first derivative:

S&;O) =D(r,r,)8(r —r,) +G(r, rp)5'(r—rp) , (59)
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where rp is the secondary orbital radius, and the functions D, G can be determined from the

coefficients of sz,(,l’o) (and of Tﬁgl’l) for the matter contribution). Integration in Egs. (57)can

be performed analytically such that

ct=c'e(r-r,) , C =C0O(r,—r), (60)

where

_ 9 0D d | e P60 | 1)

¢ LW dr WS (r)

3.2 (=2 polar modes

Perturbations in the polar sector are characterized by seven variables: four metric components
(Ho ¢m>H1 ¢m> Ha,¢m> K¢m), two components of the fluid velocity perturbation (Vl(n1170) , We(;l’o)),
and the density perturbation p')). Despite this complexity, the dimensionality of the system
can be significantly reduced.

The 6 ¢ component of Egs. (25) allows us to express Hy y,,, in terms of Hy 4,,,. Furthermore,
the rr, tr, and t0 components of Einstein equations can be used to eliminate the time deriva-
tive of Hy 4, yielding two coupled differential equations® that depend only on the metric
functions K;,,, and H, 4,,, along with the fluid perturbations, and take the following form:

(by + by8,)Hy gy + (b3d; + b4d2 Ky + bs VL ¥ + bW LD = sH (62)
1,0 1,0
(C]_ + Czar + C3ar2r + C43t2t)H1,em + (C43t + C53t2r)Kgm + (C6 + C7ar)‘/€(m ) + CSW((m ) == Sé(m B
(63)

From the time component of the covariant derivative of the stress-energy tensor, we obtain an
(1,1,

equation for p,

13,051 + dyd, Ky + (ds + dgd)Hy g + (ds + de8 )W 0 +d, V0 = 7P - (64)

The coefficients (b;, ¢;, d;) appearing in Egs. (62)-(64) contain background quantities and de-
pend only on r. Solving Eq. (64) allows to determine pﬁ’ll), and hence (pge’rln), ps[’rln)), as a
function of background quantities and of the vacuum solution through Eq. (38).

Finally, from V,, TH% = 0 and Vv, T#" = 0, we obtain two first-order equations in time for
3,V and a,w 0.

We now reduce the coupled system for H; ;,, and Ky, to a single master equation for the
metric perturbation, following the strategy introduced by Zerilli [75,84], and isolate its (0, 1)
and (1, 1) components. We first introduce the new functions %,,,,(t,r) and Ry,,(t,7):

O Kym(t,1) = afym(t,r)+ BRym(t, 1) Hypm(t, 1) =7 Xom(t, 1)+ SRy (t,7), (65)

As in the axial sector, we introduce the scaling function Z(r) such that y,,, = vZ %, and
Rym = VZRy,,. The coefficients (a, 3,7, 5), which depend only on r, are fixed by requiring
that y,,, and R,,, satisfy Zerilli-like equations of the form:

far[far)(lm] + (VP - atz))(lm = Sfm > farXEm —Ryp = t7eI:n > (66)

SThese algebraic manipulations also introduce a third-order time derivative of K,,,, which can be removed using
the t¢p component of Einstein equations.
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for some scattering potential V*. At this stage, and for readability, we collectively include in the
source terms Sfm and \Zﬁn all contributions proportional to the secondary orbital configuration
and fluid perturbations. Their explicit forms will be given later.

The coefficients that ‘diagonalize’ the problem coincide with those originally found by Zer-
illi [75,84]. At this point, all metric perturbations can be expanded in the two-parameter
scheme, e.g., yim = xéﬁ;l) + x&l). As a result, Egs. (62)-(63) reduce to:

(1,0)
i + (VP =0y =S 67)
an
33)(&1) + (VP — 3[2))(&’1) + (21 +2of Br)\/'[(;’o) + (23 +24f Br)We(;’o) = Sfm . (68)

The scattering potential for both the (1,0) and (1, 1) equations coincides and is given by the
well-known vacuum result:

_2f OM® +9AM?r + 3A*Mr? + A*(A + D)r?

vP =
r3 (BM +rA)?

(69)

an . .
The source term SP * is proportional to x(l’O) and to the components of T} ’(1’1), while the
im {m uv

coefficients 2, 5 3 4 depend only on the background pressure and density. The density pertur-

bation enters the equation for xé;’l) via the fluid velocities, which are determined by:

Ktc’)tVe(:l’O) + 4”6?,¢mp§3,;1) =S/ . (70)
1,0 1,1
K WD+ (wy +waf 3)p D =], 71)

where k;, = p(r) + p,(r) and «, = p(r) + p,(r). Finally, using Egs. (67) and (70)-(71), we
can simplify the master equation for pf,:r’ll). Taking the time derivative of Eq. (64) yields:

(8,,2* —c2 22+ VP + ylar*)p(l’l) = Sfm . (72)

rdm=t {m

The coefficients (w1, w,) involve combinations of p, .(r) and p(r), while V¥ and y; depend

only on the sound speeds. Along with the particle motion, the sources SZ’HW”) depend on the

: (1,0)
vacuum solutions y, "

Note that Eq. (72) is decoupled from the (1, 1) metric perturbations and can be solved once

the vacuum solution is known. This allows to determine V[(nl;o) and We(;’o) via Egs. (70)-(71).

These quantities can then be used to fully solve the polar sector and obtain xérln’l) through

Eq. (68). The metric components can subsequently be reconstructed using the expressions in
Appendix A.

We also briefly comment on the structure of the polar sector in the frequency domain.
Although the equations remain too lengthy to present explicitly, the formulation simplifies
significantly. In this case, the velocity perturbations, given by Egs. (70)-(71), reduce to alge-
braic relations and can be eliminated from the wave equation for xlfjr;”, which can then be
determined once a solution for p&l) is obtained using the Green function approach already

discussed for the axial sector.

3.3 ¢ =0 modes

For the sake of completeness, we complement the previous calculations with the treatment of
the £ = 0 and £ = 1 modes, which do not contribute to gravitational radiation.

13
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Fo { = m = 0, only polar perturbations are excited. In this case we adopt the so called
Zerilli gauge, which allows us to set H oo = Koo = 0 [84,85]. Decomposing the remaining
metric functions H, oo and Hy oo into vacuum and matter components, we obtain

(1,0)
O, HS o) = ——= —8nrAG” (73)
(1,0) 8
(1,0) 2,00 TTr 0(1,0)
aHzoo =- rf f2 00 (74)

which coincide with the standard results derived in the vacuum case [86], and

any  8mrc2plph (1.0) 200 (1L,1)
1,1) 00 3 1,0 : 1,1
O-Hygp =— 7 _f2r2 (47‘Cff' pr+m)H2’OO — r —8nrAy, (75)
(1,1)
H
1y _ 7200 87 ay)  87mr .1 2 0 3
arHZ,OO =— r + 7 —Poo f — A +f2 2H200 (47rfr p—m)
81
— A V(i —2m). (76)

Moreover, an algebraic equation for Wéé’o)

Einstein equations:

can be obtained from the tr component of

2iv2r A" 8iHyg
f 2fr

Finally, substituting the above into the 6 6 component of Egs. (25), we obtain a master equation
(1,1),

w0 _

(77)

for pg

(arz - Cr_goat2 + VLo + T10=00, )pc()})l) = Sto - (78)
The source term Sgo depends on the vacuum solution H( 2,00 ) and on the secondary orbital
trajectory, while the potential Vep: o and the coefficient v,y contain terms proportional to
the radial sound speed. As for the £ > 2 modes, Eq. (78) is decoupled from the (1, 1) metric
perturbations and is entirely determined by the vacuum component. Once solved, one can
determine Wé(l)’o) via Eq. (77), and subsequently reconstruct Hy, oo and Hj, oo.

3.4 (¢ =1 modes

For £ = 1, both axial and polar modes are present. In the axial sector, the Zerilli gauge is
implemented by setting hg ;,, = 0, leaving h; ;,, as the only nonvanishing metric component
to be determined [75]. The field equations for the (1,0) axial perturbation take the form:

3zh(1110n)l —rf8in ol 0), (79)
—a h§11?3+ 82 0 4 8 7 2T Qo) - (80)

At the (1, 1) order we have for the metric perturbation

82h) —[HO2 =16 (p, — p )1 + 8mifr ol =0, (81)

1,1Im
2
(£82 + 2L a0 4 4k, U0 4 grr Q@D (m Kot mt 8)a K =0
(82)
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Finally, an equation for &, U&O) can be derived from 6 component of the covariant divergence
v, T =o0.

In the polar sector, we fix the Zerilli gauge by setting K;,,, = 0, so that the remaining metric
perturbations to determine are Hy 1, Hy 1, and Hy 1,,, along with the fluid variables Vl(;’o),

Wl(rln’o) and p(1 1) Decomposing the metric into its (1,0) and (1,1) components, we derive
the corresponding perturbation equations by applying Einstein equations together with the t,
r, and 6 components of V,T#” = 0. The (1, 0) vacuum equations for Hy 1,,, H1 1, and Hp 1,
coincide with those available in Appendix B of [80].

The functional forms of the equations for matter perturbations are identical to those in
Egs. (70)-(72), valid for modes with £ > 2, except for the coefficients wy, w,, and y,, as well
as the scattering potential VP, whose explicit expressions are provided in the accompanying
Mathematica file.

4 Gravitational wave fluxes

Having determined the axial and polar perturbations, we can compute the associated GW
fluxes at infinity and at the horizon. The asymptotic structure of our metric allows us to
employ the standard vacuum procedure [87,88], which relies on expressing the perturbations
in a coordinate system where the metric exhibits the correct radial falloff [89].

We note that matter fluxes across the horizon or to infinity are absent in this model. The
perturbations of the matter stress—energy tensor are proportional to the background density,
which vanishes at the horizon, and the fluid has compact support (or becomes rapidly negligi-
ble) at large radius. Consequently, no fluid perturbation can carry energy or angular momen-
tum across either boundary. The secondary does excite fluid perturbations, but these remain
confined within the matter distribution. The only radiative degrees of freedom at leading order
are the standard GW modes, which carry imprints of matter through coupling and background
effects. While no asymptotic matter fluxes are present, one may still expect local interactions
between the perturber and the fluid. A Newtonian estimate suggests that a local drag force
on the worldline — analogous to dynamical friction [90] — would appear at order O(g2¢),
sharing the same radiative scaling as the flux corrections discussed in the next section. Eval-
uating this effect would require computing the self-consistent motion of the secondary in the
perturbed geometry, i.e. feeding the metric corrections back into the worldline evolution, a SF
analysis that lies beyond the scope of this work.

To move from the RWZ gauge to the radiation gauge, we perform an infinitesimal coordi-
nate transformation such that

5&5 5gRWZ v‘ugv_vvgu s (83)

where &* is a gauge vector expanded in multipole components (summation over (£, m) is
implicit):

u=(aq,ay, r2[ascscH 0y + 4091, rz[a48¢ —a3sinf dy]) Yy, , (84)

with a; , 5 4 being gauge functions dependent on (t, r). Following [87], at infinity the pertur-
bation tensor satisfies the outgoing radiation conditions:

5gORG 5gORGn,u 5gORG 5gORanLZV 5gORG m”* =0 , (85)
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where the null tetrad (I#, n*, m*, m"*) has components:

lu = {_ vV —8:t&rr> &> 0, 0} >

1
n.U‘:_E{ _gtt/grra]-aoyo};
1
m, =—1{0,0,r,irsin6}, (86)
P2
with I#l, = n¥n, = m"m, = m**m} =0, "n, = -1 = —m“mz, and the asterisk denoting

complex conjugation [91].
Equations (85), together with the gauge transformation (83), can be used to express a; 5 5 4
in terms of the RWZ metric perturbations and reconstruct the perturbation tensor at infinity.®
From the asymptotic form of the polar and axial components at r — 00, using Egs. (A.1)-(A.5),
we find to leading order:

Rotm = —ham = r(g,” + b)), (87)
HZ,ém = HO,lm = Hl Am — ~ 10 (X(l 0) (1 1)) e 82 5;0) 5 (88)
Ko~ (10 + 7 10) + 22 at i (89)
assuming that at spatial infinity d, = —0, + 0(1 /7). In the radiation zone, the perturbation
becomes:
SgMG = —2r(a,Vim + asWim + 0(1) , (90)
where indices A, B span the angular coordinates (6, ¢ ), and
1 t
ay = ;f (o0 + ¢bDyde (91)
1 t
1,0 1,1 1,0
=0 (%§m i - at Kim )) d’, (92)
and Y 1
Vas = (vAvB + EQAB) Yo > Wap =5 [Vae, Vot Vaey VelVim, — (93)

with Q5 = diag(1,sin? 0), V,, the covariant derivative, and e,z the Levi-Civita tensor on the
unit 2-sphere.

The energy and angular momentum fluxes can be obtained from the Isaacson stress-energy
tensor for gravitational waves,

1
Tﬁ"’_ e ——(V,68°PV ,5g4p) , (94)

where (...) denotes average over a region of spacetime large compared with the GW wave-
length. Given the symmetry of the background, we can express fluxes using the Killing vectors
{& (”t), 3 (” <¢>)} associated to the two cyclic variables t and ¢:

1/2
_dE:f TGW“VE(”t)dZM=i[|g”|} er TVdade (95)
x by

rr

1/2
_ GW _ |8l 2 GW
dL_L:r “vgg’¢)dzu_i|: ] r L r'dodt (96)

rr

®These calculations are nearly identical to those in Appendix B of [87], except for the general form of the metric
components g,, and g,,, which include matter contributions beyond Schwarzschild.
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where dY,, is a surface element outward-oriented on X and the signs — and + are for flux at
horizon and at infinity respectively. Expanding all quantities at leading order in 1/r, and using
Egs. (90)-(91) within the energy flux (95), to order O(q%€e) we obtain:

. 1 (+2) (1,0) (1,0) (1,0 (1,1) (1,0) , (1,1)%
oo
Fim _6477:(6—2)!(‘ +4’¢f ’ +2re[ 20O+ 400" 00

2M
. 10 0|

Similarly, for the angular momentum flux, Eq. (96), we have:

. im ({+2) @0 ‘ (1,0)% 5./ (1,0) 1,00+ (10) 2M, (1,00
L;ni:leﬂ: (e_z)![XKm xﬂm dt +4¢€m dt¢ Zm A Xﬂm

t t
7. (1,1« (1,0) (1,1) 7,.,%(1,0)
_f dt Xim )_( 8f Zim le )f dt le

+40l O)J dt'¢D" 1 agh ”J dt'¢L 0)*}+c.c.. (98)

The first two terms in Egs. (97) and (98) correspond to the standard fluxes at infinity for vac-
uum perturbations around Schwarzschild BHs.

Calculations of GW fluxes at the horizon proceed analogously to those at infinity. We
impose an ingoing radiation gauge by swapping [* «— n* in Egs. (85), and express the gauge
functions in terms of the RWZ metric perturbations near the horizon, i.e., in the limit f — 0.

Using Egs. (A.1)-(A.5), we obtain the leading-order behavior of the axial and polar com-
ponents as r — 2M:

3MH
1,0 1,1 h (1,0
fhygm ~—2M (¢( '+ i )) T¢§m ), (99
1,0 1,1 M 1,0
hoem = —2M (b3 + ¢77) = S Hnbin” (100)
H
Hyym ~Hopm ~ Hygm =~ 5(4M3 )[ (L0) 4 (g;l)] - gh(4M3 1))((1 0 (101)
A+1 (1,0) (1,1) Hy (A+1 (1,0)
0Ky = (—2M + 3t) (xgm + Xim )— = o T8 ) X (102)

where Hy, = H(r = r3,), and we assume that near the horizon 8, = f 3, + O(f). Combining’
these expressions with Egs. (83) and (85), we can write the metric perturbation in the ingoing
radiation gauge as:

5gaG = —8M? (a, Vit + asW) + O(f), (103)

with the gauge coefficients given by

1 (L0) | o1 _ a, 0))
- 104
%= oM J (‘/’ + b ‘f’ (104)
t
_ 1 L0, (1) MH, 00 Hy, (.0
a4 __m (xem +X€m 3 2A3t m 4 Xfm dt’. (105)

Following [87] we rescale a, — o, f ~1(1 — Hy).
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The calculation of energy and angular momentum fluxes proceeds similarly to the far-zone
treatment [87], by isolating the O(f ~!) contribution to the GW stress-energy tensor (94), and
neglecting terms of order O(1).

We substitute the expression of the metric perturbation (103) into Egs. (95)-(96), also
multiplying by a — sign to account that we compute BH absorption rather fluxes in the radiation
zone. To the leading order in f we find:

: 1 (£+2) 1,0 1,0) (1,1 MH, 10 1,0 1,0)|?
B ——— U .0 +2Re ngm )xtgm » )3t)(§m » +4‘¢§n:1)‘

tm 645 (£ —2)! 3+2A
+8Re[p Vg ”*]) : (106)
. t
u _ im (L+2) (10 (1,0)% 4./ (1,0) (1,0)%
LZm _1287'5 ((—2)! X@m Xém dt +4¢€m dt ¢
t t
(1,0) ,( MHy (L) , (LD« MHy (1,0) . _(1,1) /(1,00
+X€m f dt (3+2Aaf Em +X€m )+(3+2Aafxém +X€m dt le
+4¢b O)J dt'p bV + 49 ”J dt'olh O)*]+C.c.. (107)

The first two terms in Egs. (106)-(107) represent vacuum contributions to the energy and
angular momentum fluxes. The remaining terms depend on the matter distribution and vanish
in the limit € — 0.

5 Conclusions

In this work, we developed a multi-parameter framework to model the dynamics and GW
emission of binaries with large mass asymmetries embedded in dense astrophysical environ-
ments. Previous studies have emphasized the scientific potential of such systems to probe the
properties of baryonic and dark matter evolving alongside compact objects [27,61,64]. How-
ever, these efforts also highlighted the significant complications introduced by non-vacuum
environments, which have so far made accurate waveform modeling intractable.

Motivated by these challenges, we constructed a semi-analytical approach that treats mat-
ter effects as small perturbations to vacuum spacetime, as supported by most realistic astro-
physical scenarios. By expanding Einstein equations around the Schwarzschild solution in
powers of the binary mass ratio and the ratio of environmental to BH density, we derived
expressions for both metric and matter perturbations within a genuinely SF framework at adi-
abatic order.

Our key results, summarized in Egs. (51)-(52), (67)-(68), and (70)-(72), show that both
axial and polar perturbations reduce to equations closely resembling the well-known Regge-
Wheeler and Zerilli formalisms. Notably, unlike previous studies, we demonstrate that polar
modes can be captured by a single Zerilli-like master variable, greatly simplifying numerical
computations. We provide explicit expressions for reconstructing the metric functions and
computing GW fluxes for binaries on generic orbits.

This framework represents an initial step toward the development of accurate and compu-
tationally feasible waveform models for asymmetric binaries in complex environments — key
targets for future GW detectors like LISA. It also offers a flexible tool to study the interaction
of such systems with ambient matter via time-domain evolution, and to investigate properties
typically studied in vacuum, such as BH quasinormal mode spectra [92,93]. However, several
advancements are necessary to reach full astrophysical realism.
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490 One major, yet essential, challenge lies in modeling binaries with a rotating primary. De-
soo  scribing matter perturbations around Kerr BHs could benefit from recent progress in model-
so1 ing vacuum perturbations within modified gravity theories, assuming small deviations from
s02 GR [94-97]. In principle, the BH spin could be introduced as a third perturbative parame-
s03 ter within a slow-rotation scheme, such as the Hartle-Thorne formalism [98]. However, this
so4 approach generally exhibits poor convergence at high spin values, which are expected for as-
sos trophysical BHs. The fluid description could also be enhanced in multiple ways, for instance
so6 by investigating the impact of viscous effects on the binary dynamics [99].

507 While our focus here is methodological, and the present model still has limited direct as-
sos trophysical applicability, due to the absence of spin and the restriction to spherically symmetric
s00 matter topologies, it nonetheless provides a first consistent framework for matter-embedded
s10 compact binaries. Interestingly, spherically symmetric configurations of BHs immersed in
s11  dense gas could, in fact, be relevant to certain recently observed compact sources — although
s12  at high redshift — the so-called “red dots,” which may represent heavily enshrouded accreting
513 BHs [100-102].

514 Finally, current studies of the evolution of asymmetric binaries including radiation reaction
515 have mostly been restricted to circular, equatorial orbits due to computational complexity (see
s16 Ref. [103] for a study on the relevance of eccentricity in binaries immersed in an accretion
s17  disk). The framework developed here allows exploration of EMRI and IMRI dynamics on
518 generic, eccentric, and inclined orbits across a broad parameter space, and assessment of the
s10 impact of matter on parameter estimation using recent tools developed to analyze GW signals
s20 from asymmetric binaries [104-106].
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ss0 A Metric perturbations as a function of the master variables

531 Metric perturbations can be easily reconstructed once a solution for the master equations (47)-
532 (48) and (67)-(68) have been found. In this Appendix we provide relations that determine
533 axial and polar metric functions at the linear order in O(€). In the Regge-Wheeler gauge for
53¢ axial modes with £ > 2 we have:

3lfrH—2
e == 90+ LI 00 g, 1)

8iv2nr?D{-” ; 8iv2nr?2[HD L + D(LY]
+
VA —2) VA(A—2)

T MO NE S M

dihom=—10, (rot") +
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where f =1—2M/r and A = £(£ + 1). Frequency domain expressions can be obtained by
replacing time derivatives as J, — —iw.

The reconstruction of polar perturbations is more convoluted. We provide here explicit
expressions including only the master functions. The full form depending on the coefficients
of the secondary stress-energy tensor is provided in the Mathematica supplementary file:

0 Ho pm = [A) +As + (Ay +Ag)0, +A302 + 4,031y (27 + (A + 450, +1f32) 4 {1
+ (A7 +B43,)V,2Y + (Ag + Bsa )W) + 57 | (A.3)

B B
Hygm = (By + Bg + B30, + Byd2)x v + By + 13,50 + v 0+ =

(1,0)
f {m f W +S€m’

(A.4)

{m >

(A.5)

B Kom = (cl +Cy+ fBza + fB38 )xﬁf’) +(Cy+ f3) Y + V(1 0. W(1 D 45K
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sa0 Where the source terms SH0 vk depend on the particle orbital motion, and
OM3 +9M2rA+3Mr2A2 +r3A%2(1+A) 3M?—MrA+r2A
Al - N A2 == i (A.6)
r2C2 rC
rfH 4nfr*(2p,—3p) m[(2—3A)r—13M] 2r2fm
Ay =rf — - + , Ap=— , A7
2= c 2C ; C A7)
__AH m 5 6 4.2
A =— ) + 2r4f264{9(14A_3)M r—54M° + 3[A(124A—33)+36]M"r

+60(A — 1)A(2A —3)M3r3 4+ 3A2[2A(7A — 6) + 55]M2r* + A3[A(2A —33) —6]M

2
+A3[12—(A— 9)A]r6} - f%){wM“ +9(1 — 4A)M3r + 6A(A + 12)M2r2

+A[(B—4A)A —12]M 13 + 4A2(A + 1)r4} 467" [15M2 + 6AMT + A(3A +4)r2] p,

2mr? 21
2 [3M2 + A(A+2)r?]p —f—CB{72M4+3(34A 15)M3r + 6A(2A — 15)M?r?
+ A[A(6A —5) +12]Mr3 —4A%(A + 1)r? }pr , (A.8)
AH 2
Ag=—"2= +4“Cr P [(6—9MMr +4Ar® —15M2]+ [0 — (A + 2)r]p,
16nri3fp, 4nrifp’ 4 3 2.2
— + — M* + (36 —69A)M°r —9(A — 13)AM
C C 2r2fC3{9 (36— 69MM r = 9(A—13)AM"r
+A[(14—11A)A—12]M 73 +A2(9A+8)r4}, (A.9)
2r2
A, = 22[3M2+r2A2+Mr(2A )]k, — 4rcf K, (A.10)
Ag =F {rfC(rp'—Zpt)—[9M2 +(5M —r)rAlp, +[BMQ2r — M) +r(M + r)A]p} ,
(A.11)
Ar M rH
Bij=——— , By=r——— 3M2+6Mr(1+A)—r?AQR+A A.12
AT zr42fc2[ r(l+A)—r"A2+A)], (A.12)
4nr*(p —2p,) 2rm 4r?f2k,
+——— =7 | By= , Bj=—-o-— A.13
C *To¢ 4 C (A-13)
2f%r3k, 2mr? 5 H
Bi=—"—"" B 3M2+A(A+2 ——B
5 C » b= fC2 [ ( or ]P 41
3m 4 3 2 4 2.2
_W[SBM +(31A + 6)M3r + A%(A +2)r* + 3A(SA + 3)M?r
27
+A(A2+2)Mr3] o [15M2+6AMr+A(3A+4)r 1p,, (A.14)
6M? +3MrA+r?A(1+A) H 2nr )
C, = 3C , c4=—zc1 ey [3M2 + A(A +2)r?]
m 4 3 2.2 2 3
_zerCS[lsM —3(5A—6)M>r —9(A—3)AM?r? —3A(3A% —2) Mr
2
—AZ((A—S)A—6)r4] - % [15M2 + 6AMT + A(3A +4)r*] p, , (A.15)

sa1 with A= +2)({—1)/2, k., =p;,+p,C=rA+3M and a prime denoting radial derivative.
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B Decoupling of Axial and Polar Modes into vacuum and matter
components using the scaling function Z.

In this appendix, we clarify why, in computing axial and polar modes, we chose to work with a
single metric perturbation rather than separating vacuum (0, 1) and matter (1, 1) components
from the beginning.

The structure of the equations for axial modes, for example, allows one to follow a proce-
dure similar to the vacuum case. In this framework, it is possible to eliminate one of the metric
functions at each order in € using the Einstein equations, leading to two second-order differen-
tial equations in (r, t) for the (1,0) and (1, 1) perturbations. These equations can then be recast
in the familiar wave-like form by introducing a generalized tortoise coordinate, which facili-
tates the imposition of boundary conditions at spatial infinity and the BH horizon. However, a
subtlety arises from the fact that the generalized tortoise coordinate dr*/dr =1/4/—g::/&r»
depends on the parameter €. This introduces an ambiguity due to the perturbative relation
between r and r,, since dr*/dr = f '+ O(e), on whether one should use r or r, in the pertur-
bative expansion (see [107] for further details). This issue can be circumvented by following
the approach developed in [108], which we briefly outline here.

Consider a scalar perturbation ® on a fixed, spherically symmetric background with the
metric:

2
ds? =—A(r)dt2+]%+r2(d92+sin29d¢2). (B.1)
r

After decomposing & into spherical harmonics, the Klein—-Gordon equation 0% = 0 can be
written as: 5
29 d de
——— +F—|F—=)-Fve=o, B.2
ot2 dr ( dr) (B.2)

where V is the effective potential, which depends on the background geometry. Assume the
metric functions A(r) and B(r) are close to the Schwarzschild solution:

A(r)=(1—%)(1+5A), B(r) = (1—%)(1+5B), (B.3)

with §A, 5B < 1, and where r;, denotes the horizon radius.® Then, at the leading order in the
metric changes (64, 6B), the function F = +/AB can be expressed as:

F=f(rz(r)= (1 - %)Z(r) = (1 - rr—h) [1+62()].

Introducing the rescaled field ¢ = +/Z®, and expanding Eq. (B.2) to linear order in §Z, the
master equation becomes:
52 d ( do

—(1426Z2)—+f— | f—
( ) fdr dr

o )—f\?q§=0, (B.4)

where V is the modified potential (the explicit form can be found in [108]). For both axial and
polar sectors, the metric perturbations we find satisfy master equations analogous to Eq. (B.2),
with r;, = 2M, and can be recast into the form of Eq. (B.4) by introducing an appropriate
scaling function Z. Since the prefactor of the radial derivative terms in Eq. (B.4) is f(r), we
can adopt the standard tortoise coordinate r* = r +2M In(r/2M — 1). This allows us to write
the perturbations as a sum of the (1,0) and (1, 1) components, and isolate their contributions
without introducing ambiguities.

8Note that in general r, may differ from the Schwarzschild value. In such cases, r;, should be treated as a
fundamental parameter in the computation of perturbations, as done in the cases studied in [108].
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C Coefficients of the particle stress-energy momentum tensor

The form of the coefficients {.AO(1 0 L F Z(rln’o)} of the particle stress-energy tensor, can be found

by projecting each one of the ten tensor harmonics on Eq. (30). Introducing the scalar product
between two tensor harmonics A, and B,,,

(A,B)zffn“an”5A*ung5sin9d9d¢, (C.1)

where 7, is the Minkowski metric tensor in spherical coordinates, and * denotes complex
conjugation, we have, for example, A(l e = (ay,, TP™V). We provide the expression of the
coefficients for generic orbits in the supplementary material. In the case of equatorial circular

motion, 6, = 7/2, for a secondary at a radius r = r,, the only non vanishing coefficients are

given by le,(l 0 for the axial sector, and (.AO(1 0 Bo(l 0 go(l 0 Do(l 0 Fom oL, 0)) for the polar
modes (and similarly for the (1, 1) coefﬁc1ents) The1r exp11c1t form is given by.

2f L00) 5
S :q—ﬁ%%é(r—rp) . AXO = f 8 —1y) €2)
i (0,0)
0(1,0) _iV2fL * _
B R Y, o(r ) (C.3)
- (0,0)y2
poy __ V2F(L) Bos Y, 5(r—r,), (C.4)
r4€0.0) /A (A —2) "
(0,0)y2 —
]—“(1,0)= f(c ) 6(1" rp) [ 2 a ]Y* g(l,o) M S(r_r ) (C.S)
r45(00)m 7 V2rig0o
QYUY = 4[2fr£(0 D4 freO0g —2£09m15 v 5(r—1,), (C.6)
A :z_[Zer(O’U +(rfH—2m)ECOTY;, 50— r,), (©7)
B?;l,l) r4[2fr£(0 1)+fr£(00)H 2,0 O)m]a Y* 5(7‘—7‘ ), (C.8)
1[,(0 N§(r—r,)
,DO(l,l) — )4 {4 rg(O,O)E(O,l)_Z rg(O,l)E(0,0)
{m r5(£0.0)2,/2A(A —2) f f
+£00 L0 frp — 2m1}8g4 Y, , (C.9)

a1 £ O)S(r—rp)

m " 5(£00)2/BA(A—2)

+£00) L0 ¢rpy 2m]}[ ] . (C.10)

{4fre@0 O _ofe0.1)£(00)

0,0
wn _c( )5(r—r,)

=575 5(5(00))2{4fr8(0’0)£(0’1) 2f re@D L0 4 QO LOO £y —om}yy
r B

(C.11)
where spherical harmonics are evaluated at 6 = 6,(t) and ¢ = ¢,(t), while EOD and £OD

are the non-vacuum corrections to the particle energy and angular momentum given by the
O(e€) terms in Egs. (20)-(21).
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