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Abstract

Every spacetime that is asymptotically flat near null infinity can be conformally mapped
via a spatial inversion onto the geometry around an extremal, non-rotating and non-
expanding horizon. We set up a dictionary for this geometric duality, connecting the
geometry and physics near null infinity to those near the dual horizon. We then study
its physical implications for conserved quantities for extremal black holes, extending
previously known results to the case of gravitational perturbations. In particular, we
derive a tower of near-horizon gravitational charges that are exactly conserved and show
their one-to-one matching with Newman-Penrose conserved quantities associated with
gravitational perturbations of the extremal Reissner-Nordstrom black hole geometry. We
furthermore demonstrate the physical relevance of spatial inversions for extremal Kerr-
Newman black holes, even if the latter are notoriously not conformally isometric under
such inversions.
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1 Introduction

The study of null surfaces has proven paramount in understanding gravitational physics. A
very well-known class of such surfaces that is characteristic to asymptotically flat spacetimes
are the surfaces where radiation comes from and reaches at large distances, i.e. past and
future null infinities, .#~ and .#*. The asymptotic structure of gravity near null infinity has
been instrumental in proving the existence of gravitational radiation within the full non-linear
regime of Einstein’s general theory of relativity [1-6]. This concrete theoretical prediction has
been confirmed by the triumphant detection of the GW150914 signal by the LIGO interferom-
eters [ 7]. Today, gravitational waves are routinely observed through advanced interferometric
apparatuses of the LIGO-VIRGO-KAGRA collaboration, with the current third Gravitational-
Wave Transient Catalog (GWTC-3) reporting 90 confirmed detections of transient gravitational
waves emitted during the coalescence of binary systems of compact bodies [8]. Of those, 83
consist of signals from the coalescence of binary systems of black holes, objects which are
equipped with another fundamental type of null surfaces: black hole event horizons.

Both future null infinity and the black hole (future) event horizon are classically well-
defined properties of an asymptotically flat geometry; one is generated by asymptotic outgo-
ing null rays, while the other is the past null cone of the former.! Since both geometries are
by definition null hypersurfaces, they naturally inherit a ‘Carrollian’ structure [15-22], char-
acterized by a degenerate metric. For black holes, this has been explicitly demonstrated in
Refs. [23,24] and further studied in Refs. [25-29].

Recently, there has been growing interest utilizing structural similarities between these
two types of geometries [26,29-36]. Notably, Refs. [31-34] incorporated null infinity into
the framework of non-expanding horizons, while Ref. [35] examined a relationship between

IThis definition pertains to absolute/causal horizons. In the generic setup, the location of the event horizon
requires a global definition and is inherently teleological. For the special case of stationary black holes, however,
the event horizon is a Killing horizon and can, thus, be locally defined by the Killing vector that generates it.
Alternative local definitions that asymptote to the event horizons of stationary black holes at late times rely on
concepts such as that of apparent horizons [9] and trapping horizons [10], see also Refs. [11-14] and references
therein for more information.
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stretched horizons and asymptotic infinity. Despite these shared structural features, their re-
spective physical properties remain fundamentally distinct. For instance, the boundary struc-
ture of null infinity is universal and its phase space [37-39] comprises of a hard sector, con-
taining non-radiative data such as multipole moments [40], as well as a soft sector that is
associated with the vacuum structure [39,41-43]. In contrast, the phase space associated
with a null surface at a finite distance, such as a black hole horizon, describes a fluctuating
boundary [28,36,44-56].

These differences extend to their asymptotic symmetries. At future null infinity, the asymp-
totic isometry group is spanned by the BMS group [3,5,6]. Its characteristic enhancement com-
pared to the Poincaré group is the existence of supertranslations, angle-dependent translations
of the retarded time. At the horizon 5#7, one instead finds an infinite extension of supertrans-
lations with unrestricted dependence on the advanced time, precisely due to the fact that the
near-horizon surface gravity and boundary metric are fluctuating free data [44-46]. In the
case of extremal horizons, these reduce to supertranslations and superdilatations®. From this
symmetry perspective, it is therefore natural to seek a connection between the geometry of
an asymptotically flat spacetime and the geometry near an extremal horizon whose horizon
metric is fixed.

A notable classical property of extremal horizons is their dynamical instability under lin-
earized perturbations. This was first demonstrated by Aretakis in Refs. [57-59] for the case
of scalar perturbations of stationary and axisymmetric extremal horizons, and was soon gen-
eralized to electromagnetic and linearized gravitational perturbations of extremal Kerr and
Reissner-Nordstrom black holes [60, 61].% More precisely, Aretakis studied solutions to the
wave equation on extremal black holes and showed that, for generic initial data on a spacelike
surface intersecting the future horizon, first order derivatives of the scalar field transverse to
the future event horizon ##* do not decay along #*, while higher-order derivatives in fact
blow up at late advanced time v — o©o. Remarkably, these instabilities only depend on the
local geometric properties of the horizon and result from the existence of an infinite hierarchy
of conservation laws along extremal horizons.

The origin of this infinite tower of Aretakis conserved quantities is not well understood:
while they are sometimes referred to as ‘Aretakis charges™, it is still unknown whether they can
be interpreted as Noether charges associated to some type of near-horizon (or perhaps more
hidden) symmetries. In fact, their extraction from an expansion of the equations of motion
is reminiscent of the derivation of another set of mysterious ‘charges’: the linearly and non-
linearly Newman-Penrose conserved quantities that arise from a near—null infinity asymptotic
expansion of the equations of motion [65-67]. As emphasized in Ref. [61], Aretakis’ conserved
quantities are related to outgoing radiation at %, while the Newman-Penrose constants are
closely related to incoming radiation at .#*. In fact, there exists a precise relationship between
the near-horizon Aretakis charges and the Newman-Penrose constants at null infinity, as first
observed in Refs. [61,68] (and further studied in Refs. [69-75]).

In this work, we study further the relation between the surfaces of null infinity and horizon
at a finite distance. The structure of our paper is the following. In Section 2, we review the
physics near each of the two null surfaces. After highlighting their different dynamics, we show
the existence of discrete spatial inversions that conformally map the geometry of an asymp-

2This is to be contrasted with the fact that null infinity is a conformal boundary equipped with a non-fluctuating
boundary metric which completely fixes these would-be superdilatations.

°In Ref. [61] and, more recently in Ref. [62], the instability of the electrically charged extremal Reissner-
Nordstrom black hole under coupled electromagnetic and gravitational perturbations was studied. See also
Ref. [63] and Refs. [61, 64] for generalizations to massive scalar fields and to higher dimensional extremal black
hole geometries.

“We will sometimes also adopt this name in what follows, bearing in mind that this could not be the most
appropriate nomenclature.
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totically flat spacetime to the geometry near an extremal, non-expanding and non-twisting
horizon®. This allows the construction of a dictionary that relates geometric quantities living
on one null surface to quantities living on the corresponding dual-under-spatial-inversion null
surface. We also review and contrast the symmetries that preserve the structure near null in-
finity and near the horizon. As we clarify there, these naturally arise as subsectors of the larger
class of Carrollian conformal symmetries.

In Section 3, we consider the explicit example of the four-dimensional extremal Reissner-
Nordstrom black hole, which has the special property of being self-dual under the aforemen-
tioned type of spatial inversions. This property provides a geometric explanation for the exis-
tence of the well-known discrete conformal isometry of Couch & Torrence [76]. We analyze the
equations of motion associated with scalar, electromagnetic (with frozen gravitational field)
and gravitational (with constrained electromagnetic perturbations) perturbations of the ex-
tremal Reissner-Nordstrom black hole in a unified framework. This allows us to extract the
infinite towers of near-horizon (Aretakis) charges and the near-null infinity (Newman-Penrose)
charges for any spin-weight-s perturbations. We then apply our analysis to extract physical con-
straints, namely, we demonstrate the one-to-one matching between infinite hierarchy of Are-
takis and Newman-Penrose conserved quantities, extending previous results [61,68-71,74,75]
to the more intricate case of gravitational perturbations. As we explain, the key feature that
allows us to derive the analogs of these results for the gravitational case is the fact that the
spin-weighted wave operator of extremal Reissner-Nordstrom is conformally invariant under
conformal inversions.

In Section 4, we demonstrate the physical relevance of this type of spatial inversions even
in situations where the near-horizon geometry is not dual to an asymptotically flat space-
time. Namely, we study spin-weighted perturbations of the extremal Kerr-Newman black hole
and reveal the existence of phase space spatial inversions that are conformal symmetries of
the equations of motion, extending the results of Ref. [76] beyond the scalar perturbations
paradigm. After extracting the Newman-Penrose and Aretakis conserved quantities associated
with axisymmetric spin-weighted perturbations of the rotating black hole, we demonstrate that
this sector of perturbations inherits a geometric spatial inversion conformal symmetry which
precisely imposes the matching of these charges.

We finish with a discussion of our results and various future directions in Section 5. We
also supplement with Appendix A, reviewing some basic elements of the Newman-Penrose for-
malism needed for performing the calculations, and Appendix B, collecting expressions of the
Newman-Penrose and Aretakis charges that display the explicit mixing of spherical harmonic
modes induced by the non-zero angular momentum of the Kerr-Newman black hole.

Notation and conventions: In this work, we employ geometrized units with the speed of light
and Newton’s gravitational constant set to unity, c = Gy = 1, and we adopt the mostly-positive
metric Lorentzian signature. Spacetime indices will be denoted by small Latin indices from the
beginning of the alphabet, e.g. a, b, c, ranging from 0 to d —1, for a (1 + (d — 1))-dimensional
spacetime, while capital Latin indices from the beginning of the alphabet, e.g. A, B, C, will
denote angular directions transverse to null surfaces, ranging from 1 to d — 2. We will refer
to such transverse directions as “spatial” directions, with the corresponding intrinsic metric
describing the geometry of the submanifolds spanned by such spatial coordinates dubbed the
“spatial” metric. Repeated indices will be summed over. The symbol = will be used to denote
“equality on the null surface”. The metric on S¥~2 and its inverse will be denoted by y,5 and

v48 respectively.

>As explained in more details later, this conformal isomorphism arises from the realization that .# is also a non-
expanding horizon that is furthermore extremal and non-twisting, thanks to the existence of preferred divergence-
free conformal frames [32,33].
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2 Duality between null infinity and extremal horizon

In this section, we motivate a correspondence between null infinity (#) and a horizon (%)
that is extremal, non-expanding and non-twisting, and set up a .¢/s# dictionary between
geometric quantities associated with each of the null surfaces. We begin with a review of the
asymptotic expansions relevant for each of the two null surfaces and present their geometric
properties by means of evolution and hypersurface equations. We then remark a mapping from
one null surface to the other under spatial inversions and uncover a duality between them. In
doing so, we also point out the inequivalent physics at the two null surfaces [32,33], as well
as review the asymptotic symmetries manifesting at each null surface.

2.1 Geometry near a finite-distance horizon

Let us start with the horizon side of the correspondence. We refer the reader to Ref. [77] for
a clear review of horizon geometry. Here, we will adopt null Gaussian coordinates (U, 0, xA)
constructed as prescribed e.g. in Ref. [14]. Namely, the coordinate v is chosen to be an
advanced time coordinate, whose level-sets are null surfaces, the radial coordinate p is chosen
to be an affine parameter of the generators of these null surfaces, and the remaining transverse
coordinates x4, A = 1,...,d — 2, henceforth referred to as “spatial coordinates”, are chosen
to be constant on each such null generator. At the level of the metric, these light-cone gauge
conditions set g¥V = 0, g = +1 and g¥* = 0 respectively, or, equivalently, 8op =0, 8yp =+1
and g,, = 0. This gauge fixing is analogous to the Newman-Unti gauge at infinity [78].

Setting the (future) horizon " at the p = 0 null surface, the spacetime is described by
the line element [14, 79]

dsiﬁ =—p2Fdv?+2dvdp + g (dxA +p QAdU) (de +p QBdU) R (2.1)
while the corresponding inverse metric can be read from
05 =P F 83 +20,8, —2p 679,00+ g"° 9,3, (2.2)

with g8 the components of the inverse of the spatial metric g45.
On top of the light-cone gauge conditions, we impose the following near-horizon fall-offs
of the various fields entering the metric [45]

F(v,p,x%) =2p7 K (v, x) + Fo (v, x*) + 0 (p7?),
OA(v,p,xB) = ﬂA(U,xB) +o0 (p*o) , (2.3)
8AB (U>pzxc) = QAB ('U,XC)+pA.AB (Uﬂxc)—i_o(p) .

To study the physics at the horizon, we introduce a null vector ¢ and a null 1-form n
according to [24]

{=109,=0,—p 9A3A+%p2]:3p, n=n,dx®=—dv. (2.4)

These have been constructed such that £,£* = n,n® = 0 and n,£* = —1 everywhere and they
are appropriate for studying the intrinsic geometry of a level-v null surface. In particular,
the outgoing null ray vector ] c01nc1des with the null normal at the horizon, ¢ = d,, while
the ingoing null ray vector i = g%°n,d, = —0d, is transverse to the horizon and aligned with
the ingoing null geodesics everywhere in the exterior. Here, and in the rest of this work, the

A

symbol “ = ” means “evaluated at p = 0”.
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Using these null vielbein vectors, the intrinsic spatial metric q,; of the p = const. surface
can be isolated via the bulk metric decomposition

8ab = _Ze(anb) +4ap - (2.5)
In particular, the intrinsic metric becomes the spatial metric on the horizon,

Qopdxtdx® = gap (dxA +p QAd’U) (de +p 68 dv)

(2.6)
20-dv?+0-dvudx®+ Qupdx?dx®.

Such degenerate metrics are inherently endowed with a ‘Carrollian’ structure; see e.g. Refs.[15-
22,80-85].

The extrinsic geometry is captured by the longitudinal deformation tensor X,;, = %q acqbd L4qcq
(or second fundamental form), the twist (Haji¢ek) 1-form field w, = —q ab n VL€, the non-
affinity coefficient &, defined via £ bvbea = %02° and the transversal deformation tensor

Eap = %q acqbdﬁnch. On the horizon, the non-zero components are evaluated to be [24]

1 1

1
Yup = =0,g, = —=U,, K=k, Ep=—-A4, 2.7
4B = 50ui g, @a 5 VA AB o ap (2.7)
where spatial indices are lowered and raised using Q45 and its inverse, Q*8. From the longitu-
dinal deformation tensor, the expansion © = q?°%,, of the null normal ¢ and the longitudinal

shear o, =%, — ﬁqabG can be extracted to be [24]

1 1
Oap = 5005 — 7 U@, ©=9,InvQ, (2.8)

with v/Q := 4/det(Q,5) the volume element of the horizon spatial metric. Similarly, from the
transversal deformation tensor, the expansion ©™ = q?=_, of the ingoing null transverse

vector 7i and the transversal shear afﬁ} =E.— lezqab@(”) can be extracted to be [77]

.1 L1
o = = Jhum, O = 1AL, @9

where “(AB)” means “the symmetric trace-free part with respect to the horizon spatial metric”,
e.g. Aapy = Aap) — 5 AL

In summary, we see that the asymptotic fields entering the near-horizon expansion of the
geometry acquire a very physical interpretation: x is the surface gravity, 1, is the twist 1-form,
Qg is the horizon spatial metric, whose time dependence determines the longitudinal shear
and the expansion of the null normal ¢, and Agqp is the transversal deformation rate of the
horizon.

At this point, let us clarify the role of the field x (’U, xA) that enters the near-> expansion
of the metric and its distinction from the non-affinity coefficient k¥ of the null vector generating
the horizon. The non-affinity coefficient K is a scalar field defined intrinsically on the horizon,

®Even though the null tetrad vector ¢ we chose here is the null normal on the horizon, it is not aligned with out-
going null geodesics everywhere, namely, £°V, £ is not proportional to ¢ away from the horizon, unless D,F = 0.
Nevertheless, this can be achieved for generic geometries by adding the following “far-horizon” correction

- 2 o 1
(—>i=1( +pLA(3A— 2P LAap)
where L4 = L (v, p, x?) is a transverse vector and L, := g, L here. For £ to be geodesic, this transverse vector

must satisfy an evolution equation which can be solved order by order in a near-horizon expansion. For instance,
writing L, = LIE‘O) + O(p), at leading order one needs to have (9, + 2«) L;o) = —D,«x. Then, the resulting vector

field ¢ is aligned everywhere with null geodesics that become outgoing on the horizon.

6
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and, as the name suggests, it captures the information of whether the parameter 7, associ-
ated with ¢ by £¢ = %, is an affine parameter of the null geodesics generating the horizon
(kK = 0) or not (K # 0). Its value can be freely chosen by scalings of the form [ — aZ, which
preserve the structure of the horizon for any smooth and non-vanishing scalar field a, since
then K — a (& + V,Ina). For instance, one can always choose & = 0. On the other hand, the
metric field k (U, xA), that enters Eq. (2.1) according to Eq. (2.3), is independent of the choice

of the null vector £ and it is a property of the geometry, namely, a boundary condition for the
behavior of the metric near the horizon.

Acknowledging the importance of the near-horizon boundary conditions, we will coin the
transition from g,, = O(p) to g,, = O (pz) the term “extremality”, i.e., in the current work,
an extremal horizon is one for which (v,xA) = 0, regardless of what the value of the non-

affinity coefficient K of { is. While this distinction between the metric field x and the non-
affinity coefficient ¥ is important, the null vector field { used here has been chosen such that
K coincides with k (U,XA) on the horizon, so as to be able to propagate the definition of ex-
tremality at the level of &, but one should bare in mind that this definition is independent of
the choice of .

Horizon dynamics Let us now turn to the dynamics of these intrinsic objects. The evolution
equations for the expansion ©, the twist 1-form w,, and the transversal shear A5 are governed
by Einstein equations. The first and most famous one is the one governing the evolution of
the expansion, known as the null Raychaudhuri equation” [86],

1
(PR, = —[(av—x)e+ﬁez+oABoAB]. (2.10)
The twist evolution gives the Damour equation [87,88],
byc A 1.a d—3 B
q, LRy = —§5a (6, +©)U,+2D, K+dT2@ —2D%0 5| - (2.11)

While the above equation shares some resemblance with the Navier-Stokes equation for a
viscous fluid, it was pointed out in Ref. [24] that Egs. (2.10), (2.11) should rather be regarded
as conservation equations of a Carrollian fluid [89, 90], rather than a Galilean one. Last,
the dynamics of the transversal shear 1,5 are governed by the ‘transversal deformation rate
evolution equation’ (following the nomenclature of Ref. [77])

qacqbdRcd = 5?512 {RAB [Q]— (8, + k) App — 2D(uwp) — 2w wp

d—6
2(d —2)

1 (2.12)
+ ZO-C&A [A’B)C - ZQB)CADD] —

1
(S} |:A'AB + EQABACC] } .
In the above expressions R,z [Q2] and D, are the Ricci tensor and the covariant derivative
compatible with the horizon spatial metric €,5. An important remark here is that Q45 is
unconstrained by the field equations, i.e. it enters the description of the horizon as free data;
see Table 2.1.
The evolution of the longitudinal shear 0,5, on the other hand, is independent from Ein-
stein equations, as it involves the Weyl tensor. It is known as the ‘tidal force equation’[5,77,91]
A 1
0°q,0°q Cegey = — 535} [(au —K)Opp— 0pc 0 = deﬂABoCDoCD] . @I3)
Note that the Raychaudhuri (2.10) and tidal force (2.13) equations are part of Sachs’s optical
scalar equations [5,91].

"We use the sign convention R?, , = 23, T+ for the Riemann tensor.

7
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In d = 4, for any 2-dimensional symmetric tensor o5, Oac0z¢ = 20 cpo? and
thus the above tidal force equations agrees with the d = 4 expression given in Eq. (6.31)
of Ref. [77]. As for the deformation rate evolution equation, it agrees with Eq. (6.43) of
Ref. [7718.

Non-expanding and isolated horizons At this point it is instructive to make contact with the
notion of non-expanding horizons (NEHs) introduced by Ashtekar et al. in Refs. [12,30,31].
A NEH is a codimension-1 submanifold of the d-dimensional spacetime such that:

(a) it is a null surface of topology R x S%72;
(b) the expansion of every null normal £¢ vanishes on the horizon; and,
(c) the spacetime Ricci tensor satisfies Rab(Zb & (9,

The NEH requirement is an intrinsic property of a null hypersurface and provides a good (local)
description of black holes in quasi-equilibrium®.

For the horizon to be a NEH, we therefore see the defining condition that its area is con-
stant, d,+/Q = 0. Furthermore, the third condition'® above is the null Raychaudhuri equa-
tion [86], %R, £ 0, and the Damour equation [87,88], g abZCRbC = 0. The null Raychaud-
huri equation (2.10) implies o 45 = 0, since Q45 is positive-definite, which requires a stationary
horizon spatial metric, while the Damour equation (2.11) further constraints the time depen-
dence of the twist 1-form field to be J,w, = Dsx. The null normals to a NEH are then, besides

twist-free, also shear-free and expansion-free. In particular, an extremal NEH has
K=0, os5p=0, ©6=0, 0J,w,=0, (2.14)
or, equivalently, in terms of near-horizon metric fields,
k=0, J,p=0, J,9,=0. (2.15)

A subclass of NEHs are isolated horizons (IHs) [12,30,31], that is, NEHs with d,A,5 = 0. We
remark here that every Killing horizon is an IH, but the converse is not true; see for instance
Refs. [31,94].

2.2 Geometry near null infinity

On the other side of the proposed correspondence is another well-known null surface that is
associated with asymptotically flat spacetimes: null infinity, .#. The analog of the null Gaus-
sian coordinate system we used to describe the near-horizon geometry is the (algebraic'!)
Newman-Unti (NU) gauge [78]; the spacetime near future null infinity .#% is charted by a
retarded time coordinate u, whose level-sets are null surfaces, an affine'? radial coordinate r

8The necessary matchings of notations are, @a[bm = yhere — ghere _ d%zqabG)here, o7 = ghere, Q771 = gyhere,
1c [77] = yehere Ea[y] = ghere 2 gAsE [—1ahee ] and 9(,[57] = q“bEa[Zﬂ = — 2 Ahere, the minus signs coming from
the convention £ - n = —1 that we use here.

°NEHs were first studied by H4ji¢ek under the name of “perfect horizons” in Ref. [92] and they are closely
related to the notions of trapped surfaces [9], apparent horizons [93] and trapping horizons [10]; see Ref. [77]
for more details.

195ee footnote 2 of Ref. [33] for more details on the origin of this requirement.

" Alternatively, one can consider the differential NU gauge, with 8, g,, = 0; see Ref. [95].

12In Bondi gauge [3,96], the radial coordinate is instead an areal distance; see Refs. [95,97,98] for more details
on the relation between Bondi and NU gauges.
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of the null generators and d —2 transverse spatial coordinates x* that are parallel transported
along the null generators. In this gauge, the metric and its inverse can be read from

Ut Ut
dsix+ =—Fdu®—2dudr + rZHAB (dxA — —zdu) (de — —Zdu) ,
r r
3 (2.16)
U 1
3;+ == Farz - 2 auar - 2 ﬁaraA + r—szABaAaB 5
with H# the components of the inverse of the spatial metric #,5. Asymptotic flatness requires

the following boundary conditions for the asymptotic metric fields'>

Hag (u, r,xc) =(qup (xc) + %CAB (u,xc) +o0 (r_l) s

R[q] 1 2m _
()= (d—2)(d—3) T20C = o), 2.17)

UA(u,r, x") = (DsC* —DACP) + = [NA— chBDCCBC] fo(r ).

1
2(d—3) 3r 2

In the above, D, and R[q] denote the covariant derivative and curvature associated with
the boundary metric qu5, and C,p is an arbitrary function of (u,x*). We remark here that
the boundary spatial metric g,5 is taken to be fixed on .#, while J,q,5 = 0 by virtue of the
leading order field equations. In four spacetime dimensions, the subleading asymptotic fields
mg (u, xA) and N, (u, xB ) are the Bondi mass and angular momentum aspects respectively; they
enter as integration constants whose time evolution is constrained by the field equations [3,5].
In the same spirit, the STF parts of the subleading asymptotic fields in the spatial metric also
enter as data; the evolution of C,p) is completely unconstrained'#, that is, it comprises the
free data, while the dynamics of the successive o (r_l) fields are fixed by the field equations.
In particular, C4py is the asymptotic gravitational shear tensor and encodes the polarization
modes of the gravitational waves. For instance, the gravitational wave energy flux through
% is captured by the (square of the) Bondi news tensor'® Ny = 3,Clapy — 2w_1D<ADB)w,
w here being the conformal factor that relates the boundary metric to the spherical metric,
qus = w2y 45. The subleading shear tensors can be related to multipole moments [40].

As it was observed in Refs. [31-34], null infinity can be incorporated within the framework
of NEHs; namely, .#" is a weakly isolated horizon for the conformal spacetime,

2

2=% (2.18)

2 4272
ds’,, =Q%ds )

gt
where a is some length scale that we leave implicit at the current stage. To see this more
explicitly, one resorts to the definition of asymptotic flatness near null infinity [3, 5, 80, 96,
106,110-113]. For concreteness, we take Definition 1 in Ref. [80] and denote g,;, the physical
metric (which solves Einstein equations R, — %ga pR=871T,p), &ap = 2g4, (With Q a smooth
function such that Q = 0) the unphysical metric and n, := V9 is nowhere vanishing on .#.
From the field equations for g,

(d—1)(d—-2)

> Q2§ .,n.n" =80T, ,

(2.19)

~ 1. - i re I
Rab_igabR+(d_2)Q 1[vanb_gabvcnc]+

13See e.g. Refs. [95,99-105] for relaxations of these boundary conditions.

4The trace C AA = q*8C,; controls the origin for the affine parameter of null generators and can, in particular,
be freely set to zero in the NU gauge [98].

15The second term in the news tensor, besides d, Ciap) is required when the boundary metric is not spherical. It
follows from the Geroch tensor [106], and ensures that the news tensor is, besides traceless, also independent of
the choice of the conformal completion [80,107], see also Refs. [108,109].
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with T, = Q72T,, admitting a smooth limit to .#, one can extract the following implica-
tions [15,33,110]:

(@) nyn* =0, i.e. £ is a null hypersurface, and n“ is a null normal.

(b) The gauge freedom can be used to go to divergence-free conformal frames, for which
V,n® = 0. As such the expansion of all normals vanishes at .#. Equations (2.19) then
further imply V,n® £ 0 all together, and, hence, the twist 1-form on .# vanishes as well.

(c) The Schouten tensor S, = R, b—ﬁ &.»R of the unphysical ~Inetric &5 satisfies abnb =

with f = $2072n n°. Therefore, R% n® = ¢n?, with { £ 5% — f.

(d) If g,p is C3, the Weyl tensor C“bc ;4 vanishes on .#. Hence, Q1C,p.q admits a continuous
limit to .#.

We see, therefore, that the fall-offs T,;, = O (QZ) ensure that the unphysical conformally
completed spacetime (M, §,,) contains a NEH at the boundary, i.e. at null infinity, even in
the presence of radiation [32,33]. More explicitly, null infinity is a codimension-1 null surface
of topology R x S9=2 by definition, all null normals are expansion-free there and the null
Raychaudhuri and Damour equations in the unphysical spacetime are trivially satisfied,

Ry,20, Ru=0 Cup=0, (2.20)

while the last (tidal force) equation is just the statement that ¥, = 0 on a NEH [30, 31, 114,
115]. Furthermore, the vanishing of ¥ n® on .# means that this NEH is non-rotating and ex-
tremal, properties which arise (as the expansion-free condition) from the existence of preferred
divergence-free conformal frames [32,33].

2.3 Null infinity as a spatially inverted extremal horizon

From what we just discussed, it follows that a conformally completed spacetime whose bound-
ary is .# (as defined above) is diffeomorphic to a geometry that contains an extremal horizon
at a finite distance, as also pointed out in Ref. [71]. This can be seen explicitly by performing
the following spatial inversion

r=—, u=w, (2.21)

where «a is an arbitrary constant length scale introduced in Eq. (2.18), which maps the con-
formal geometry to the one around a horizon upon identifying (see Egs. (2.1) and (2.16))

ds”i,+ = dsiﬁ with

2
F(U,p,xA) =q%F (u — U, T a—,xA) s
Jol
2 (2.22)
4B (’u,p,xc) = az’HAB (u — U, T — a—,xc) and
Jol

2
GA(U,p,xB) = —pa_4UA (u — U, T a—,xB) .

Jol
The spatial inversion exactly maps an r — oo (near-.#") asymptotic expansion to a near-
horizon p — 0 expansion (see Fig. 1). In order for the fall-off conditions to be preserved,
we see then that such an interpretation of null infinity as a finite-distance horizon requires
the latter to be extremal, k = 0, and non-rotating, w, = 0. The explicit dictionary as well as
the interpretation and dynamics of the various quantities from the two sides is displayed in
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Figure 1: Penrose diagram representation of the conformal isomorphism between an
asymptotically flat spacetime and the geometry near a dual extremal horizon. The
spatial inversion in Eq. (2.21) (black arrows) conformally maps the geometry near
#7 of an asymptotically flat spacetime (red partial Penrose diagram) to that near a
future horizon s#* that is extremal, non-expanding and non-rotating (blue partial
Penrose diagram), and vice versa. An exactly analogous spatial inversion maps the
geometry near .#~ to that near a past horizon s#~ with the same properties.

Table 2.1. In particular, the free data at .# (the asymptotic shear C45) is mapped to the horizon
transversal shear, while the horizon free data Q45 corresponds to the sphere metric q45, which
is fixed at .#.

H Name Evolution equation g
K surface gravity 0
e expansion null Raychaudhuri (2.10) 0
Qup horizon metric (free data) qup (fixed)
wy (Héjicek) twist Damour (2.11) 0
O g | longitudinal shear derived from (2.8) 0
AAB transversal shear | transversal deformation rate evolution (2.12) || C,z (free data)

Table 2.1: Summary of the dictionary between the quantities appearing in the near-
horizon geometry (2.1) and an asymptotically flat spacetime (2.16) that are confor-
mally mapped onto each other under the spatial inversion of Eq. (2.21).

Physics at the two boundaries

It is important to recall that the null infinity-side of this ‘duality’ refers to the conformal comple-
tion of an asymptotically flat spacetime, in contrast to the horizon-side of the correspondence
which can reside in the physical spacetime. This results in very different physics at the two
null boundaries, as already emphasized in Refs. [32,33]. In particular, the physics at null in-
finity generically involves the presence of radiation, without ruining the interpretation of .#
as a weakly isolated horizon in the conformally completed spacetime.

A direct consequence of the fact that .# is a NEH in the unphysical spacetime even in the
presence of radiation is that there is a non-trivial energy-momentum tensor induced at the
‘dual’ horizon. To see this, focusing to d = 4 spacetime dimensions, recall first the dictionary
mapping the near-horizon spatial metric Q45 and transversal shear A5 to the .# spatial metric

11
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gapg and asymptotic shear Cyp,

Qup = a®qap, A =Caz. (2.23)

As mentioned above, from the horizon-side, Q45 is free data and J,A,p is constrained by
the field equations, while, from the null infinity-side, g,z is a universal structure fixed at .#¢
(typically taken to be the unit round metric on S?), and the Bondi news tensor N,z = 9,C (AB)
that encodes free data. From the horizon geometry point of view, the Einstein field equations

Rippy =871 Tiup) , (2.24)

provide the effective energy-momentum tensor associated with radiation in the physical space-
time near null infinity
87T (ap) = Ny . (2.25)

As a last remark, let us note that the map described above is true for any asymptotically
flat spacetime, regardless of whether the latter contains a genuine horizon at finite distance
or not. Even if the spacetime does contain a horizon, the latter has in general nothing to do
with the extremal horizon dual to null infinity. A very special exception is the four-dimensional
extremal Reissner-Nordstrom black hole, i.e. an asymptotically flat, static and spherically sym-
metric geometry that solves the general-relativistic electrovacuum field equations and contains
an extremal event horizon. This has the peculiarity of being equipped with a discrete confor-
mal isometry of the form just described, first pointed out by Couch & Torrence [76]. The
Couch-Torrence isometry can thus be understood as a consequence of the general geometric
7/ .# duality described above. We will discuss in the next section some of its direct physical
implications. In general, spacetimes that are ‘self-dual’ under the spatial inversions described
in this section are by definition extremal black hole geometries, since for these cases one auto-
matically has information about the global structure of the geometry that contains the extremal
event horizon.

2.4 Near-horizon vs asymptotic symmetries

We end this section by reviewing and contrasting the near-horizon symmetry analysis with
the one near null infinity. For another comparison of the symmetry groups with different
boundary conditions at .¢ and horizons, see Ref. [116]. The set of symmetries preserving a
certain notion of asymptotic flatness as the metric approaches null infinity has long been known
to span the BMS group (see e.g. Ref. [117] for a recent review). Understanding the nature of
analogous symmetries near (non-extremal) black hole horizons is, to a large extent, a much
more recent enterprise. For generic horizons, the near-horizon symmetries were first analyzed
in Refs. [44,45]'®, where they were showed to span a bigger set than the BMS symmetries,
as the supertranslation parameter is allowed to be an arbitrary function of advanced time as
well, spanning the so-called Newman-Unti algebra (see e.g. Ref. [124]). Of course, as already
emphasized, this difference can be traced back to the fact that finite-distance horizons are null
sub-regions of the physical spacetime, rather than the conformally completed spacetime.

Given the intrinsic Carrollian nature of these two null hypersurfaces [19, 22-24,89,106],
their symmetry-preserving structure shares several similarities!” but also important differ-
ences. After a brief review in terms of the unified framework of Carrollian symmetries, the
presentation below aims to unify the treatment of asymptotic symmetries for both .¢ and s
by treating the gauge-fixing and respective boundary conditions successively.

165ee Refs. [36,46-48,50,52-54,115,118-123] for further works.
7We do not discuss here potential matching of their respective asymptotic symmetry parameters; see Refs.
[47,75,125-127] for works in this direction.

12



376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

401

402

403

404

405

406

407

SciPost Physics Submission

Extended Carroll symmetries

LetC=%92xRbea (d —1)-dimensional smooth Carroll manifold (2 denotes a Riemannian
manifold), endowed with a metric g whose kernel is generated by a nowhere vanishing vector
field n [81].

The conformal Carroll algebra of level N, ccarry, is spanned by vector fields £ such that

L:g=Ag, Lgn= —%n, (2.26)

for some function A and positive integer N [81]. Introducing coordinates (i, x*) on C such
that n = 9, and g = g,z dx*dx?, the generic expression for such vector fields is

D,YA, (2.27)

§=YA(x)8A+(T(x)+u%) 9, » where A = 73
with Y a conformal Killing vector field of 242 and T is a density of conformal weight —2/N.
For 2972 = §%-2 endowed with its round metric, we thus immediately see that the conformal
Carroll transformations of level N = 2 are the semi-direct product of the conformal group
of S92 together with supertranslations T (of conformal weight —1), hence the celebrated
isomorphism bms? = ccattg_l [81].

The Newman-Unti Lie algebra [17,78,81, 124], nu is more generic as it does not require
preserving the strong conformal geometry. It is spanned by all vector fields ¢ on C such that

This condition automatically implies that the direction of n is preserved. In Carrollian coordi-
nates (u, x?), the nu vector fields are'®

= YA(x)é?A + f(u,x)9,, (2.29)

with Y# a conformal Killing vector field of £¢2 and f is now an arbitrary function of x4 and
u. As opposed to BMS supertranslations, the functions f do not form an abelian ideal. As we
recall below, the nu algebra is preserving the Carrollian structure of a generic horizon [24,45].
An interesting subalgebra of the Newman-Unti algebra was highlighted in Ref. [17] as the
algebra defined by

Lrg=Ag, (L)hE=0. (2.30)

This subalgebra, denoted nu,, is spanned by vector fields of the form of Eq. (2.29) with the
restriction
a,f=0. (2.31)

We will see below that the near-horizon symmetries of an extremal horizon span the nu, alge-
bra [45,52]. Notice also the relationship nu; = ccarrs, [17].

Newman-Unti gauge

Near a smooth null hypersurface located at r = 0, one can always choose null Gaussian coor-
dinates v,r,x* in which the metric satisfies g,, = g;» = 0, g&,; = 1 [79]. Both the near-horizon
geometry and null infinity can be written in the Newman-Unti (NU) form, as done in Eq. (2.1)
and Eq. (2.16). Independently of the location of the null hypersurface (be it at a finite or
infinite distance in spacetime), one can thus first search for the generic form of vector fields

preserving the NU gauge. The conditions

Lr8q=0, (2.32)

18They generate what were called Carrollian diffeomorphisms in Ref. [90].
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can be seen to lead to the generic form

r=f,

{'=—ro,f+Z+J,

where NU supertranslations f, superrotat1ons Y4 and radial transformations Z satisfy 3, f =0=0Y%=
but can depend arbitrarily of (v, x*) at this stage. The remaining functions satisfy 3.J = g*Bg A f,

aIA = ghBa,f .

Near .#7, this gives (adapting to retarded time) the following asymptotic Killing vector

field [98]
§=7,

E'=—ro,f+Z+J,

§A=YA+IA,

In near-horizon (advanced) coordinates, the corresponding asymptotic Killing vector field

near % reads [44,45]
'=f,

Zp:Z—Pavf'i'j,

A=A TA,

Asymptotic symmetries near ¢

On top of the gauge preserving conditions solved above, the asymptotic Killing vectors are also
subject to boundary conditions. Near .#*, asymptotic flatness imposes [3,5,96]

Legap=0(r) ,

leading to strong restrictions on the asymptotic Killing vector of Eq. (2.34). The first condition

Legua=0(r),

is

= —3AfJ dr'g™,

_anf dr'g

P
j:aAff dp/gABgUB:
0

P
Th=—3yf J dp'g"”.
0

Legu =0(r

Legn=0(r") =9,y =0.

The second condition of fixed boundary metric on the celestial sphere imposes that the super-

otations, Y*, are constrained to be conformal Killing vectors of g4z,

2
Legag=0(r) = Lyqup = ——quDcY°,

d—

We can thus write

2

f =T +ux(xY),

X =

1
d—2

%uf =7

DcYC.

),

D, YA.
2A

The last boundary condition of Eq. (2.36) does not impose further constraints.

The residual symmetry parameter Z in the radial component of the asymptotic Killing
vector is associated with the choice of origin for the affine parameter of the null geodesic [98].

This residual freedom can be used to set to zero the trace C AA = 0, which fixes

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

o,z
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In Bondi gauge, the trace condition C 4 = 0 is instead implemented by the determinant condi-
tion. The authors of Ref. [95] have argued that the NU gauge is thus in a sense ‘less restrictive’
than the Bondi gauge, as it generally allows for an arbitrary radial translation Z'°. Putting
everything together, one thus gets

£=T(x") o, +Y"(x B)8A+X(XA)(u8 —rd)

(2.41)
- —— (D*T +uD*X) 0, + - (DBT +uDpX) (2?3, — #%0,),
where X = 755D,Y* and we have defined
1 “dr’
—%A(u,r,xB) ::f _/rz A(U,T‘/,XB),
r r
. (2.42)

dr’

1 oo
i (u, r,xc) = J
r .2

such that %A(u, r,xB) = UA(u, r,xB) + o( ) and 4B (u r,X ) AB (x ) +o (ro_).
The above vector fields preserve the entire leading-order structure of the metric near .#*,
while their action on the traceless gravitational shear is

T HAB(u r’ xc)

1
5§CAB = (f au + LY - — 2DcYC) CAB - 2D(ADB>f . (2.43)

Asymptotic symmetries near ¢

Let us first briefly comment on the role of the radial translation Z in the horizon Killing vec-
tor field of Eq. (2.35). This captures angle-dependent shifts of the location of the horizon,
p =0 — p = Z. As such, choosing to preserve the horizon location at the origin of the affine
parameter p, we set it to Z = 0 (as in Ref. [45]).

Now, the near-horizon boundary conditions are [45]

O(p) fork#0
L =0 , L =0(p%), £ = . 2.44
){g’UA (P) ;(gAB (p ) ngv {O(pz) for k =0 ( )
The first condition imposes time-independence of the superrotation parameters
L,8sa=0(p) = o, 4=0. (2.45)

For the generic non-extremal case (k # 0), the rest of the boundary conditions do not lead to
further constraints on the form of the vector field, and we get the nu vector fields of Eq. (2.29).
However, for an extremal horizon (k = 0), we get the constraint

£l gf})g o (p ) = aszext =0 = fext = T(XA) + 'UX(XA) . (2.46)

For an extremal horizon, we thus get
=T (x*)a, +X( x*) (’ua —-p ap)+yA(xB)aA

2.47
+p(DB7'+UDBX)( @Bpa —gABaA) ( )

Notice, however, that since this transformation is subleading in r, it does not affect the Carrollian structure.
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The supertranslations, 7, superdilatations, X', and superotations, }, all live on the horizon
spatial cross-sections, and we have defined

1]
%pz@A(v,p,xB) :=f dp’p’ 0% (v,p’,xB),
% (2.48)
o gAB (U,p,xc) — J dp/gAB (v,p’,xc) ,
0

such that & (v, p, x8) =94 (v, x5)+o (pm) and G (v, p,x¢) = Q"8 (v,x¢)+o (p0+). Their
action on the leading-order asymptotic fields can then be worked out to be

5;(QAB == f@UQAB + ‘CyQAB N
5,04 = £0,0%+ L9 — 20Dy X — 5,0 Dy £, (2.49)
8, Fo=f0,Fo+ LyFo—30'DyX —3,0°D,f .

For an extremal NEH, for which one additionally has 8,95 = 0 and 3,9* = 0, these reduce
to
5}(QAB = ‘CyQAB B
5,9 = Ly — 20D, X, (2.50)
57(f0 =f3U.7-"0 + ﬁy]:() —BﬁADAX .

The action of the above near-s#" asymptotic Killing vectors, in particular, preserves the char-
acter of the extremal NEH without any further constraints on y. If now one deals with a
non-rotating extremal NEH, i.e. with 9% = 0, then the superdilatations are reduced to global
rescalings, namely X (xA) = const.

3 Aself-inverted example: The case of extremal Reissner-Nordstrom
black hole

In this section, we consider a known example of extremal black hole geometry which has
the property of being ‘self-dual’ under the spatial inversion discussed in the previous section.
This is the four-dimensional extremal Reissner-Nordstrém (ERN) black hole for which the spa-
tial inversion of Section 2 becomes the discrete Couch-Torrence conformal isometry identified
in [76]. Utilizing this property, it is possible to extract new pairings between near-horizon
and near-null infinity data which dictate the one-to-one matching between infinite towers of
conserved quantities. Previous literature [61,68-71,74,75] has focused on the case of a probe
scalar and Maxwell field in the ERN background. In this section we will extend these results
to the case of gravitational and spin-weight s perturbations. The treatment of gravitational
perturbations require extra care compared to the scalar and spin-one cases, as we will see.

3.1 The symmetry

The ERN black hole geometry in four spacetime dimensions is described in Schwarzschild-like
(t, T, xA) coordinates by the line element

A(r) r2
2 2
ERN ™ r2 dt” + A(r)

ds dr? + rde% (3.1)

with dQ% = YaB (xc) dxAdxB = d6? + sin? 6 d¢? the line element on S2. The discriminant
function is a perfect square, A (r) = (r —M)?, whose double root at r = M determines the
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radial location of the degenerate horizon, with M the ADM mass of the black hole. This
geometry describes an isolated, asymptotically flat, non-rotating and electrically charged black
hole solution of the general-relativistic electrovacuum field equations, whose electric charge
Q attains its critical (extremal) value, Q2 = M? (in CGS units). Besides the spherical and time
translation isometries, it has a discrete conformal symmetry: the Couch-Torrence (CT) spatial
inversion symmetry [76]

rﬁr:midsERN:Q dSERN’ Q= M :r_M, (3.2)
where d§éRN = —%dt2 + Af(zi)dfz + deﬂé is the same ERN black hole geometry, but with

i replacing r. In fact, as more recently noted in Ref. [128], this conformal symmetry can be
realized as an isometry of the conformal metric, namely, rzdséRN = des%RN. At the level of
the tortoise coordinate?°

2
r—M
r.=r—M— +2MIn , (3.3)
r—
the CT inversion acts as a reflection,
CT
Ty — =Ty, (3.4)

that preserves the photon sphere at r = 2M?! Therefore, the CT inversion maps the near-
horizon region onto null infinity and vice-versa. More specifically, the future (past) event-
horizon s#* (s¢7), specified by the v = const (u = const) null hypersurface at r = M, where
v=t+r, (u=t—r,) is the advanced (retarded) null coordinate, gets mapped onto the
future (past) null infinity #* (#7), specified by the u = const (v = const) null hypersurface
asr — 0o,

ot S ot (3.5)
since Y
('U, r, xA) & (u, r ,xA) . (3.6)
r—M

The CT inversion is precisely of the form of the conformal inversion we described in Sec-
tion 2. However, in contrast to the generic .#/5# duality we presented there, the extremal
Reissner-Nordstrom black hole has the characteristic property of being ‘self-dual’ under this
conformal inversion, meaning that both .¢ and the extremal horizon it describes under inver-
sion live in the same spacetime (see Fig. 2)22.

As already noted in Refs. [61,75] (see also Ref. [128] for a related work), this gives the
CT inversion a very physical manifestation in terms of conserved quantities: it implies that
the near-# Aretakis charges associated with extremal black holes [57-59] are identical to the
near-¢ Newman-Penrose conserved quantities [61,65-67,133]. We will review this matching
of near- and near-.# charges explicitly for scalar [61,68-71,74] and electromagnetic [75]
perturbations on the ERN black hole in a unified framework, and extend those results to the
case of gravitational perturbations (and in fact any spin-weight s perturbation).

20The integration constant has been fixed such that r, = 0 corresponds to the photon sphere r = 2M.

2'This geodesics point of view of the CT inversions, keeping fixed the unstable photon sphere at r = 2M,
provides a guide for potential generalizations of these types of discrete conformal symmetries [129], and have also
been utilized in Refs. [130,131] to study physical implications on geodesic observables.

225ee Ref. [132] for an analysis of the conformal structure of ERN spacetime.
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Figure 2: Part of the Penrose diagram of an extremal Reissner-Nordstrom black hole
that describes the causally connected patch in the exterior geometry. As opposed to
what happens with a generic pair of conformally related asymptotically flat spacetime
and a dual geometry near an extremal horizon (see Fig. 1), the existence of the
Couch-Torrence inversion (black arrows) for this geometry can be understood as the
manifestation that the two null surfaces reside in the same spacetime.

3.2 Equations of motion for perturbations

In this section, we will deal with perturbations of the extremal Reissner-Nordstrém black hole
and study the implications of this self-inverted conformal mapping. Naturally, we will treat
the spin-weight s perturbations by means of the Newman-Penrose (NP) formalism [134,135];
see Appendix A for a review of the basic elements needed and for our sign conventions.

To make contact with the notation of the previous section, let us now write down the
background solution of the extremal Reissner-Nordstrom black hole in null Gaussian coordi-
nates centered around the null surface of interest. To study the near-.#" or near-.#~ modes,
we will use retarded or advanced Eddington-Finkelstein coordinates, (u, r, xA) or (U, r, xA),
respectively,

M2
ds%RN 2—(1—7) du2—2dudr+r2df2§

) 3.7)
M
= —(1 — —) dv? +2dvdr + rzdﬁé.
r
A set of null tetrad vectors?® {¢,n, m,m}, adapted to .#* would then be
1 M2 1 1
€=8r, n=8u—5(1—7) ar, m:;sgzé‘A, m:;e‘é‘z@A, (3.8)

with sgz a complex dyad for the round 2-sphere. Charting the 2-sphere by spherical coordinates
(6, @), a convenient choice of this complex dyad is

1 i

Using this null tetrad, the only non-zero spin coefficients, Maxwell-NP scalars and Weyl-NP

*3We are using the sign convention m - m = —{ - n = +1, such that g,, = —24,n,) + 2mmy).
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scalars read

pN_ 1 omn_ (M)
Pxe =77 Hap T or3  ’
M(r—M) 1 cotf _
ERN _ ERN _ _ _=ERN
N T T o 0 P T s T anp > (3.10)
RN _ _ Q \I,ERN:M(r_M)'
1 2V4nr2’ 2 r4

To study the near-#* or near-##~ modes, we will instead use advanced or retarded
Eddington-Finkelstein coordinates, (v,p,xA) and (u,p,xA), respectively, p = r — M being
the affine radial coordinate centered at the horizon,

2

ds%RN = —p—zdv2 +2dvdp + (M + p)zdﬂg
(M +p)
, (3.11)
P 2 2 162
=—————du“—2dudp +(M +p)*dQs.
YEVSE p+(M+p) dQ;

Then, a set of null tetrad vectors adapted to #* would be

1 p? 1 4 1

(=-3 1P 5 m= o =1
2+l T MAp N " T Mg

pJ

n=2a,+ 0,0, (3.12)

with sgz the same complex dyad for the 2-sphere as in Eq. (3.9), and the non-zero spin coeffi-
cients, Maxwell-NP scalars and Weyl-NP scalars are

1 2
OERN _ JERN P
Yoo M+pT TN (M 4p)
Mp 1 coth
ERN ERN ~ERN
ne = ) = =—0yp > (3.13)
NP 2(M+p)*” TN 2/2M+p NP

1= RIS 4
2V4n (M + p) (M +p)

We announce here the change of notation compared to Section 2: here, it is the tetrad vector
n = g, that becomes the null normal on the horizon, rather than £. We have done this for
the sole reason of presenting more compactly our succeeding analysis, such that the Couch-
Torrence inversion does not change the spin-weight and boost-weight of the corresponding NP
scalar.

Similarly, null tetrads adapted to the past null surfaces .#~ or 5~ can be obtained by the
replacements u — —v or v — —u respectively.

The equations of motion for minimally coupled massless scalar, electromagnetic (Maxwell)
and gravitational perturbations around a configuration of type-D in the Petrov classification [136]
were shown to acquire the following collective form within the NP formalism [137-139] (see
Appendix A),

[ (D—2spnp — Prp — (25— 1) exp + Exp) (A + tinp — 257xp)
- (6 — ZSTNP + fCNP - (_pr - (25 - 1) ﬂNP) (5_ + NP — zsaNp) (3.14)
+(2s—1D(-D ¥ ]y, =0,

where s = 0 for scalar perturbations, s = %1 for electromagnetic perturbations and s = £2
for gravitational perturbations. The spin-weight s master variable 1), is directly related to the
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fundamental NP scalars according to

i for scalar perturbations (s =0) ;
P, = WhI x ¢1_, for electromagnetic perturbations (s = £1); (3.15)
W, . for gravitational perturbations (s = £2),

with W a spin-weight zero scalar function that satisfies
(D—pnp)W =0, (6—Tnp)W=0,

- (3.16)
(A+AU’NP)W:0> (5+7TNP)W:0'

For instance, if the background geometry is Ricci flat, it is typical to choose W = \1121/ 3 [137,
138], while, if the background is an electrovacuum spacetime, one may choose W = ¢;/ 2,

Let us briefly comment on the approximations involved when writing down Eq. (3.14).
For s = 0, it is exact for a minimally coupled real scalar field perturbation. For s = £1,
it deals with electromagnetic perturbations of an electrovacuum spacetime, but with frozen
gravitational field. The s = £2 equation, instead, captures gravitational perturbations, but
with constrained electromagnetic perturbations?#. This allowed us to set to zero all the source
terms that would otherwise enter in the RHS due to the coupling of electromagnetic and grav-
itational perturbations.

Focusing on the extremal Reissner-Nordstrom black hole background, the unified equation
of motion for ¢, reduces to

J”Tsws = 0: (3 17)
o+ Tgi=(r=M) 23, (r —M)***V 3, + 23,85 —2(r?8, + (25 + 1)r) 3, ’

when using the near-.#-adapted tetrad and coordinates, see Eq. (3.8), and after multiplying

by —2r2, or to

%*Tsws = 0>
—2s 2(s+1) / 2 (3.18)
s+ Ty = p 59, p*™3, + 280,85 +2((M +p)* 8, + (25 + 1) (M + p)) 8,,,

when using the near->#-adapted tetrad and coordinates, see Eq. (3.12), and after multiplying
by —2 (M + p)?. In the above expressions, 82 and 6’82 are the “edth” operators on the 2-sphere,
which in the current spherical coordinates act on a spin-weight s object according to

i

1
6S2 = E(ag + Sln@ad) —SCOtQ) 5

1 ; (3.19)
o =—(3 —— 0, + te),
27 5\ sing? 5€0
and we have made use of the commutator [682, 6’S2:| =s. Let it also be noted that the quantity

26/52682 is the spin-weighted Laplace-Beltrami operator on the 2-sphere.

The above two operators are actually exactly the same spin-weighted wave operator, but
were assigned a different symbol to emphasize that they are built from coordinates and tetrad
vectors adapted to each null surface.

Z*We note here that this is not equivalent to having a frozen background electromagnetic field if the back-
ground spacetime is charged under the Maxwell field. Rather, the exact requirement for the s = +2 (gravitational)
equations written here, for instance, is that there exists a non-zero electromagnetic perturbation that satisfies

(51{ (D —pnp + Onp — 3€np + Enp) [(5 —3Tnp — 2Pp) ‘75(()1) + 2¢1O'£\1113]
+ (8 — Typ — Ty — 3Bup — Gp) [ (D — 3pyp — 26xp) $7 + 26 K“)]}=0
NP NP NP NP NP Np) Pg 1Knp >

where the superscript “(1)” denotes a perturbed quantity, see e.g. the analyses of Refs. [140-143].
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3.3 Near-¢ (Newman-Penrose) charges

Newman and Penrose famously showed the existence of an infinite tower of conserved quan-
tities associated with linear massless fields of spacetime spin j at .¢ [65-67]. Remarkably, in
the full (nonlinear) theory, a set of (2j + 1) complex quantities remain conserved?>.

In order to extract the tower of conserved Newman-Penrose charges we first need to expand
the NP scalars 1), into near-.# modes. We do this according to the prescription

1 oo ,Lpgn) (u’ XA)

ws ~ (r _M)Zs+1 o (r _M)n

=y (u, T, XA) s (3.20)
where we took into account how the peeling behavior of the fundamental NP scalars,
i (u, r, xA) ~ % [<I>(O) (u, xA) +0 (r_l)] ,
1 _
b1 (u, r,xA) ~ ml: go_)s (u,xA)—l—O(r 1)] , (3.21)
1
W, (u, T, xA) ~ e [<I>go_)s (u, xA) +0O (r_l)] ,

gets translated onto the master variables 1), and we have emphasized that the near-.# field
profile denoted by v (u, r, xA) is expected to only asymptotically converge towards the full
solution 1), hence the “~” relation.

The above near-.# expansion is slightly different from the “canonical” prescription,

1 S eanth™ (uw, x?
s (urx%) = 5 > can'ls rf ) , (3.22)

n=0

and can be understood as the following redefinition of the conventional near-.# modes due to
the presence of the black hole in the bulk

n
n+2s _
can'tlJEH) (u, xA) — Z (k N 2S)Mn kwgk) (u, xA) ’ (3.23)
k=0
or, inversely,
n
_x(n+2s _
Y™ (u, x?) = Z (=1)"* ( Ly ZS)M” kan®® (u,x4) . (3.24)
k=0

In the flat limit, M — 0, the two prescriptions are of course identical, but we found that this
redefinition of the near-.# modes for M # 0 actually significantly simplifies the derivation of
the Newman-Penrose charges associated with spin-weight s perturbations of the ERN black
hole. In particular, plugging the near-.# expansion of Eq. (3.20) into the equations of motion
Eq. (3.17) outputs the following recursion relations

B (¥ + (25 + MYV = —0,8529 (3.25a)
3, ((n+ 1)y + (2n + 25 + 1) MY™ + (n + 25) My (")
1 (3.25b)
=— (6/§26§2 + En(n +2s + 1)) wgn) ,
or, after expanding the near-# modes into spin-weight s spherical harmonics,
oo {
P (w,xh) = >0 > PP W) Yy (x4, (3.26)

L=|s| m=—{

250ne says that they are ‘absolutely conserved’ quantities.
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to the recursion relations

8, (v, + s+ My ) 5 U=)(Uts+ DyQ, (3.27a)

sfm

((n +DYG + (2n+ 25 + 1)M1,I;§Z)n +(n+25) My 1))

stm

(3.27b)

stm

=%(€—s—n)(€+s+n+1)'¢(n) )

From these, one directly identifies the conserved Newman-Penrose charges at level n by setting
{=s+n,

— 20 +1 — L+s f—s—
Nem =95 () i wﬁe,,f) W+ ———— M2V,

s+1
:>ausNem:0, EZ'S'

(3.28)

In terms of the canonical near-.#¢ modes Canlpg”), using the redefinition in Eq. (3.24), the
Newman-Penrose charges instead read

{—s+1

e n £+s e

=2, (DT —s+1 (n +25— 1)M€ T i (W (3.29)
n=1

where canTPEZ)n (u) are the spherical harmonic modes of canngn) (u, xA). The Newman-Penrose
charges derived here correctly match with previous results for scalar and electromagnetic per-
turbations of the ERN black hole in the current setup,?® while they furthermore supply with
the Newman-Penrose charges associated with linear gravitational perturbations of the ERN
black hole.

For each value of £ > |[s|, there are 2¢ + 1 complex charges. The first set of Newman-
Penrose charges corresponds to £ = s and appears only in the branch of perturbations with
positive spin-weight,

5N5m = lpgslr)n (u) + (25 + 1) ngg% (u) = Canlps(slr)n (u) (330)

Their conservation turns out to be stronger than the current context of linearized perturba-
tions, namely, they are the 2(2s + 1) real non-linearly conserved charges as was famously
demonstrated in Refs. [65,67].

To make contact with the language of Ref. [65], let us now define the quantities

QM (u) = f A9 Vim (%) cantp™ (1, x*)
SZ

n

(n) n+2s\. .k (k) (3.31)

=t = (12 kD, ),
= k+2s

n=>1, |m|<{, |s|<f{<n+s—1,
where the integration is carried over the cut-u celestial sphere of .#*. Using the recursion

relations for the redefined near-.# modes, or, equivalently, plugging the canonical near-.¢ ex-
pansion of the master variables 1), into the equations of motion Eq. (3.17), one can show that

2For s = 0, Eq. (3.29) here agrees perfectly with Eq. (2.26) of Ref. [74], upon rescaling our near-.¢ modes by
powers of M to make all of them equi-dimensionful. For s = +1, working out the relation between the near-.¢
modes of the Maxwell NP scalar ¢, and the near-.# modes of the Regge-Wheeler-Zerilli master variables used by
Ref. [75], we find agreement of Eq. (3.29) here with Eq. (6.19) there.
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these satisfy the evolution equations

Submission
l—s—n)(L+s+n+1)
2 (n+1) ( (n)
usQ n+1 tm
2
UG Py (e (3.32)
n+1
_(n+23—1)(n+25—1) Q(n 2)
2(n+1) '

Compared to the original definitions of the Newman-Penrose charges for Maxwell (s = +1)
and linearized Einstein gravity (s = +2) (see Eq. (3.17) and Eq. (3.31) of Ref. [66]),

()

here

n—1,n—(+1

— —1,n— (n) _
o (F:’i . e) [66]° (+ZQ ; )here - (Gm

) e - (3.33)

The conserved Newman-Penrose charges are then identified with the following redefined Q’s

{—s+1

Nem= .
n=1

£+s
_1 {—s+1—n n (
=1 {—s+1

=0 wy+ow),

= aulem:O, {>

n+2s—1

Is| .

)Mé—s+1—ns Q(n) (u)

(3.34)

At this point, let us comment on the appearance of Newman-Penrose charges for nega-
tive spin-weights. These Newman-Penrose charges for s < 0 involve sub!*F*1-leading order
near-.¢ modes of the corresponding NP scalars. However, these are not new Newman-Penrose
charges, on top of the ones for the branch with s > 0. Rather, the hypersurface equations of mo-
tion dictate that they are not part of the data of the problem, e.g. that they can be expressed in

terms of the near-.# modes {

0) (n=1)
1—s> 70

} for sourceless Maxwell fields and {\IJ(O) \IJ(">1)} for

2—s?

Ricci-flat gravity. For instance, for the simple case of linearized perturbations of flat Minkowski
spacetime, the hypersurface equations of motion read [66]

and imply that

1—s

1 1
s+l Oy (rs+1¢2—s) = _6/2¢1—s , 0<s<+1
(3.35)
a(5+2\;r )—16/@ 1<s<+2
rs+2 r 3=) 7 T2 T2s s+
(n=>1—s) = (- 1)1—s (n+s' 1)! 6/1—3 (()n+s 1)’ —1<5<0,
n (3.36)

9 _(n+s=2)_,_ 9
\I/(n> s)_( 1)2 s ' 6/822 s\Il(()n+s )

, —2<s<+41,

thus showing that the subleading near-.# modes from which the quantities _; N, are built do
not carry new information.

Last, let us finish this near-.# analysis by writing down a realization of the Newman-Penrose
charges directly from asymptotic limits of transverse derivatives of the bulk field 1),. We find

that

sNém

{—s+1
(=) lim

(L —s+1)r—oo

J dQZ sYém [(T‘ _M)2 ar]e_s [
s2

23

(r _ M)Zs+1

r2s—1

8, (r25+11ps):| . (337
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610 3.4 Near- (Aretakis) charges

620 For the near-2# charges associated with spin-weight s perturbations, we follow the same pro-
621 cedure, that is, we first expand the NP scalar 1), in near-5# modes,

Zw(") v, x4 ( ) —Q,bs(v o, ), (3.38)

622 and then insert this into the equations of motion, Eq. (3.18), to get the recursion relations
Mo, (P + (25 + 1)) = 8,859, (3.392)
M3, ((n+ 1) + (2n + 25 + D YP™ + (n +25)H")

1 A (3.39b)
=— (6’82652 + En(n +2s + 1)) 1/)&’” )

623 We note here that we have chosen the near-# modes Iﬁgn) to be of equal length dimension,
624 due to the existence of the characteristic length scale M provided by the black hole’s size.

625 Proceeding, after expanding into spin-weight s spherical harmonics,
oo {
P (0, x4) = D77 P (v) Yo (x4) (3.40)
{=ls| m=—¢

626 the recursion relations reduce to

A A 1 A
M3, (i), +(@s +DYPG) ) =2 €=U +s+ DI (3.41a)
M3, ((n+ DY +@n+ 25+ )P +(n+25) 9 0)
ol (3.41b)
= —(e—s—n)(e +s+n+1)Yg,
627 In this form, it is straightforward to identify the conserved Aretakis charges. At level n,
628 they correspond to simply setting £ = s+ n,
_ 7 (t=st1) 20+1 s f TS r—s—1)
=B @) Y )+ T ), 3.42)
= aUsAEm_O: eZlSl
629 In terms of the quantities
(n) V()= | dQy Yy (x*) Y™ (v,x4) = )™ (v)
JSZ 2s Em( )Tl)s ( > ) wsgm ) (3'43)

n>1, |m|<{, |s|<f{<n+s—1,

630 with the integral being taken over the cut-v spherical cross-section of ", the conserved
631 Aretakis charges are identified with the following superpositions of Q’s

2€+1 £+s

632 At the level of the full bulk field 1), Eq. (3.42) is equivalent to
Mﬂ—s ' % {—s 1 2s+1
sAlm m rl}m o dQZSYKm 3 25 1 ( ’l/) ) (345)

24



633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

SciPost Physics Submission

For s = 0 or s = +1, our results coincide, up to overall constant factors, with the Aretakis
charges associated with scalar or electromagnetic (with a frozen gravitational field) pertur-
bations of ERN?’. Similar to what happens with the Newman-Penrose charges of negative
spin-weights, the hypersurface equations imply that the Aretakis charges with s < 0 are also
dependable quantities, rather than a second infinite tower of conservation laws.

3.5 Matching of near-.¢ and near-> charges under CT inversion

The curious reader might have noticed that the near-# recursion relations, Eq. (3.39), are
functionally identical to the recursion relations for the redefined near-# modes, Eq. (3.25).
This is not an accident and we will demonstrate here that it is a direct consequence of the CT
inversions being a conformal isometry of the ERN black hole geometry, see Eq. (3.2). Building
on this, we will reach the realization that the near-# (Aretakis) charges (A,,, and the near-.#
(Newman-Penrose) charges (N,,, derived above are in fact exactly equal. While this has already
been investigated separately for the scalar and electromagnetic cases [61,68-71,74,75], the
present approach will allow to collectively reproduce these results and also supplement with
the case of gravitational perturbations, the latter requiring a more careful treatment.

All in all, to figure out how, for instance, the Aretakis charges get mapped under the CT
inversion, we need to perform a conformal transformation onto the master variables 1), that
enter the equations of motion. Let us focus to the branch of perturbations with positive spin-
weights for the moment, for which

® fors=0;
'L/)+|5| = ¢0 fors = +1; (3.46)
U, fors=+2.

For the particular conformal factor 2 = % associated with the CT inversion, and from the
fact the near-3# tetrad vectors of Eq. (3.12) and the near-.# tetrad vectors of Eq. (3.8) are
conformally related under CT inversions according to

2
L QL (312
n cr [ n

@8 | ST (12 | (3.47)
meag) 2m3 19
ms.g) 2m 312

we then have

2
2 ) Do) = 2b(vup o ),

r—M r—M
3 2
a CT > A _( M ) A M A

u,rnx")— u,r, = vV Uu,p , X7, 3.48
¢ ( )= ol ) M ®o P T (3.48)

cT . M \*. M?

U, u,r,xA — P, u,r,xA =( ) Yylv—u,p— ,xA .
ol )= o )=o) ¥ P M

We now see an interesting pattern. Starting from the near-horizon expansion of the scalar
field ® and the Maxwell-NP scalar ¢, the resulting CT-inverted quantities have the correct

27For the scalar Aretakis charges, see Ref. [58] and Eq. (1.16) in Ref. [144]. For the electromagnetic Aretakis
charges, after working out the relation between the Maxwell-NP scalar ¢, and the gauge field perturbation master
variables entering the Regge-Wheeler-Zerilli approach of Ref. [75], Eq. (3.42) here can be seen to match with
Eq. (6.11) there, up to an overall constant. We remind, however, that we are working in a regime where the
coupling of electromagnetic and gravitational perturbations is as explained in Footnote 24. A direct comparison
with the results of Refs. [61,62], is therefore not straightforward.
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boundary conditions near null infinity, namely,  ~ r~ and ¢, ~ r—>. Since there is only one,
unique, solution of the equations of motion that satisfies the right boundary conditions at both
null infinity and the horizon, this tells us that the CT-inverted quantities are in fact exactly
equal to the corresponding near-.¢# field profiles,

] (u, T, xA) =& (u, r, xA) , qgo (u, T, xA) = ¢y (u, T, xA) , (3.49)

if they satisfy the same equations of motion of course. These are the types of matching con-
ditions that are needed to explore whether the near-> (Aretakis) and the near-¢ (Newman-
Penrose) charges coincide.

For the gravitational case, however, the CT-inverted Weyl-NP scalar ¥, does not have the
correct boundary conditions near null infinity, namely, it decays like ~ r~* instead of ~ r~>.
As such, the CT inverted Weyl-NP scalar is not expected to be the same Weyl-NP scalar one
started with. In fact, the CT inverted Weyl-NP scalar does not even satisfy the same equations
of motion! This is just the well-known statement that the gravitational equations of motion
are not conformally invariant, in the sense that, for instance, Ricci flatness is not preserved
under conformal transformations in four spacetime dimensions.

We will now provide a simple resolution to this complication for the gravitational case. This
relies on the following remarkable property: the spin-weighted wave operator is conformally
invariant [145]. For instance, under CT inversions, the differential operator acting on the NP
scalar 1), transforms homogeneously and with equal weights,

CT o M
T — T =0% T %1, o= R
r —

(3.50)

This property, however, is not special to CT inversions of ERN; it is true for any conformal
transformation of the spin-weighted wave operator in Eq. (3.14) [145].

We see then that, even though the wave operator does transform homogeneously under
conformal transformations, the problem resides in the fact that its conformal weights do not
match with the conformal weights of the perturbations it acts on, except in the special cases
s = 0 (scalar perturbations) and s = +1 (electromagnetic perturbations),

P (0]
o+ Tig | @0 | = (DR W T (3.51)
¥, Qly,

Consequently, if 1[AJ+|S| (v, 0, xA) is a solution of the equations of motion in the near-horizon-
adapted coordinate system, then one can reach a solution 1 (u, r, xA) of the equations of
motion in the near-null infinity-adapted coordinate system as follows

& (u,r,x") fors=0;
Yo (wrx?)=1{ do(u,r,x?)  fors=+1;
Q\ilo (u, r, xA) fors =+2; (3.52)

M \2sH M2,
= VU p ,x7] .
(r —M) Yy P

Applying analogous arguments for the perturbations of negative spin-weights, this can
be extended to the following matching statement: if ) (U, p,xA) is a near-horizon expanded
solution of the equations of motion, then

M\t M2
ws(u,r,xA)z(r_M) lps(UHu,pHr_M,xA (3.53)
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is a near-null infinity expanded solution of the equations of motion.

Let us now see the consequences of this matching under the CT inversion at the level of
the Newman-Penrose and the Aretakis charges. First of all, in terms of the asymptotic modes,
the matching condition tells us that

o0
If %ﬁs(U,P,XA)=Z¢£“)(U,XA)(%) and %Jr']l‘smf)s:O,

n=0
0 1 (n) x4
n o) = e S ]

such that 4 Ty, =0,

(r —0 (r — M)n
with
wgn) (u’ XA) — Mn+25+1¢£n) (U — 1, XA) ) (3.54)
or, in terms of the canonical near-.# modes,
n
) AY _ g pnd2s+1 n+2s\ ~p
canws (u,x )_M ;(k-l-Zs ws (U'_’U,XA) . (3.55)

It is then straightforward to see that the Newman-Penrose charges exactly match the Aretakis
charges,

e 2e+1 s L
O My (u e M2 ()

sém E sém sém

~(f— 20+1 — L+s f—s—
= Mst2 [wgem”” (v u)+ = wgmﬂ (v o)+ = (wow|

(3.56)

Ny =MTST2A, 0 0> s] . (3.57)

This result can also be seen directly from the representations of the Newman-Penrose and
Aretakis charges as asymptotic limits of transverse derivatives of the bulk field 1), namely,
Eq. (3.37) and Eq. (3.45). Indeed, when r — = M, the matching condition of Eq. (3.53) can
be seen to imply that Eq. (3.37) is equal to Eq. (3.45) according to Eq. (3.57) above.

The results reported here encompass in a unified manner previous results on scalar [68]
and electromagnetic [75] perturbations, but also extend the matching of the gravitational
Newman-Penrose charges?® with the tower of conserved Aretakis charges associated with grav-
itational perturbations of the ERN black hole, thanks to the property of the spin-weighted wave
operator identified and discussed above.

4 The case of extremal Kerr-Newman black holes

We will now study an instance of a black hole geometry which is not self-mapped under the
spatial inversions of the form described in Section 2. Nevertheless, and somehow remarkably,
we still find that these spatial inversions allow to extract physical constraints. This is the ex-
ample of the extremal Kerr-Newman black hole geometry, whose horizon has the characteristic
feature of being twisting. As discussed in Section 2, there is no simple geometric spatial in-
version that conformally maps null infinity of an asymptotically flat spacetime to a twisting
extremal horizon at a finite distance. Despite this fact, it was demonstrated, already by Couch

28 Another set of interesting gravitational charges at .# are associated with the so-called celestial w;, o, Sym-
metries [40, 146-148] and were studied at finite distance in [36]. Notice, however, that these NP charges are
orthogonal to the Newman-Penrose conserved quantities (see e.g. [148,149]).
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& Torrence [76], that the massless Klein-Gordon equation for scalar perturbations of the ex-
tremal Kerr-Newman black hole still enjoys a spatial inversion symmetry, albeit one that acts
non-locally in coordinate space. In this section, we will extend this result to all spin-weight
s perturbations of the rotating black hole. We will subsequently identify a sector of pertur-
bations onto which these spatial inversions act linearly in coordinate space and in precisely
such a way that one can infer an effective .¢ «— 5 mapping. Utilizing this, we will then
show that a physical consequence of these geometric spatial inversions is the exact match-
ing of the Newman-Penrose and Aretakis conserved quantities associated with axisymmetric
spin-weighted perturbations of the Kerr-Newman black hole.

4.1 The extremal Kerr-Newman black hole geometry

The Kerr-Newman black hole geometry is a solution of the electrovacuum Einstein-Maxwell
equations of motion. It describes an isolated, stationary and asymptotically flat black hole that
is, besides charged under the Maxwell field with electric charge Q, also rotating with angular
momentum J = Ma, a being the spin parameter. An extremal Kerr-Newman (EKN) black hole
is one for which the gauge charges are related according to

Q= M2, (4.1)

which is the condition for the event horizon to be degenerate. In Boyer-Lindquist coordinates
(t,r,0,¢), the Kerr-Newman black hole geometry is described by the line element [150,151]

sin? 6

dsﬁN:—%(dt—asin29d¢)2+ (adt—(r2+a2)d¢)2+%dr2+2d92, (4.2)
where
A=r2—2Mr+a®>+Q? and T =r?+a%cos?6. 4.3)

At extremality, the discriminant function becomes a perfect square, A = (r —M)?, with the
degenerate event horizon being located at r = M.

The Boyer-Lindquist coordinate system is singular at the event horizon. A regular coordi-
nate system that is adapted to a near-.#" or a near-.#~ analysis is the system of retarded null
coordinates (u,r, 68, ¢_) or advanced null coordinates (v, r, 6, ¢ ) respectively, related to the
Boyer-Lindquist coordinates according to

2, 2
du=dt—""Car dp_=dp—Lar,
A
5 (4.4)
dv=di+"2Car, d¢, =dé+Ldr
A > + A >
In these coordinates, the Kerr-Newman metric reads
9 , r*t+a*—A . 92 2 . 2
dsy =—du +—(du—asm qub_) —Z(du—asm Gdd)_)dr
+2d60%+(r* + a*)sin* 0 d¢?
(4.5)

IPOYLET Y

dv—asin20d¢, )’ +2(dv—asin®0d¢, )dr

+2d0%+ (r*+a*)sin? 0 d¢>.
The above two regular coordinate systems are suitable for studying observables in a near-.¢" or
near-¢_ analysis, corresponding to the limiting behavior as r — oo while keeping (u, 6, ¢_)
or (v, 0, ¢, ) fixed respectively. For analogous coordinate systems that are suitable for studying
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observables near the future or past event horizon one can simply employ the horizon-centered
radial coordinate p = r — M. Namely, a near-5#" or near-s— analysis corresponds to the
limiting behavior as p — 0 while keeping (v, 0, ¢, ) or (u, 0, ¢_) fixed respectively. Let it
be noted, however, that these coordinates are not null Gaussian coordinates, due to the non-
vanishing of the metric components g,4, = +a sin 6.

As opposed to ERN black hole geometry, the EKN black hole geometry does not have a
simple spatial inversion conformal isometry. This should not come as a surprise though since,

as we clarified in Section 2, spatial inversions of the form r — %2 conformally map null infin-
ity to a finite-distance extremal horizon that is non-rotating. As we will see shortly, however,
the equations of motion for perturbations of the EKN black hole do have a spatial inversion
conformal symmetry; this is a transformation that is non-local in coordinate space, but acts lin-
early onto the phase space of perturbations, as was already remarked for the case of minimally
coupled massless scalar field perturbations in Ref. [76].

4.2 Equations of motion for perturbations

Let us now analyze the equations of motion governing spin-weighted perturbations of the EKN
black hole. We will follow the same procedure as with the ERN black hole, namely, we will
first introduce tetrad vectors adapted to each null surface of interest to subsequently extract
the spin-weighted wave equation satisfied by the perturbations.

Tetrad vectors, spin coefficients and fundamental NP scalars for near-.# analysis For a
near-#* analysis, we choose to work with the following set of null tetrad vectors

a (r—M)>?
(8u+ r2+a28¢*) 2% %

34,_ +iasin6 3u) ) (4.6)

2 2

n

2

1 i

=—|0,+

" 1/51“(6 sin 6
7l

i

P 0y_—lasinf 8u) ,

where
'=r+iacos@, “4.7)

in terms of which ¥ = I'T. In the spinless limit, a — 0, these reduce the tetrad vectors of
Eq. (3.8) used for the ERN black hole geometry. In the black hole perturbation theory liter-
ature, these tetrad vectors are better known as the Kinnersley tetrad [152]. The Kinnersley
tetrad has the property of being regular at the past event horizon but singular at the future
event-horizon, as opposed to, for instance, the Hartle-Hawking tetrad [153] which is obtain-
able by locally boosting the Kinnersley tetrad. While this does not matter for a near-.¢" anal-
ysis, it will be compensated in the near-#* investigation by choosing an adjusted set of null
tetrad vectors that is regular at s£7.
Then, the non-zero background spin coefficients can be worked out to be

ErN L EKN _ (r_M)z
i TN

"Ne T TTorre T arm “4.8)
Exn _ _iasin® gy tasin® '

—, Ty = == >
e vari’ TN a2t
prn _ cotO pky . cot®  iasinf

= , = -+ >
NP ov2T NP 24/2T /272

5
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772 while the only non-zero Weyl-NP and Maxwell-NP scalars are

M . Q
WEN — —_ ( — M +iacos8), BN - = 4.9
2 FF3( ) 1 24/ 4 T2 (4.9)

773 Tetrad vectors, spin coefficients and fundamental NP scalars for near-># analysis For a
772 near->" analysis, we choose to work with the following set of null tetrad vectors

(=2 nzﬂ(@ﬁ#a )+p_a

P> 3 (M+p)2+a2 by 23" P

1 i .
m= 7r (39 + ﬁ@m +iasin® 31;) , (4.10)
_ 1 i .
m=E(ag—sin98¢+—la31n93v),

775 with I'= M + p +iacos 0 using the current horizon-centered radial coordinate. As promised,
776  this tetrad is regular at the future event horizon, and, hence, so will the NP scalars built from it
777 be. The corresponding non-vanishing background spin coefficients, Weyl-NP and Maxwell-NP
778 scalars are then given by

2

1 P
EKN _ & EKN _
pr - 1_.3 .U’Np _+21_,21—_,,
yERN PP
NPorel 21T’
gy lasin® EKN iasin
=——, nkN—_ , (4.11)
NP yarr T W V212
kN cotf EKN cotd iasin6
NP T => Onp =7 - 3’
2v/2T 2v/2T V2T
M
\IIZEKN=—(p+iac059), fKN— Q

37  2/4nr?’

779 Teukolsky equations We will work again with the equations of motion of Eq. (3.14). As
780 already remarked in Footnote 24, these are approximate for perturbations of non-zero spin-
781 weights when the electric charge of the black hole is non-zero. They are nevertheless exact
72  if the background electromagnetic field is absent, e.g. for the astrophysically relevant case of
783 the electrically neutral Kerr black holes, which is also captured by our subsequent analysis.
784 For the .#*-adapted tetrad vectors of Eq. (4.6) and coordinates (u,r, 0, ¢_), and the 5#7-
7es adapted tetrad vectors of Eq. (4.10) and coordinates (v, p, 0, ¢, ), the Teukolsky equations
786 become, after multiplying Eq. (3.14) by —2%,

ﬂ"’TSwS = 05 %‘*’Tsws = OJ (412)
787 With
o+ To=(r—M)> 8, (r—M)***1 3, —2a0, 3, +28,,8x
1 (4.13a)
—20, [(r2 + az) o +(2s+1)r— Eaz sin®6 3, — ady_+isacos 9} ,
s+ Ty = p 28, p**V5, +2a8, 3, + 23,0
1
+20, [((M +p)°+ az) Op+t(2s+1)(M+p)+ Eaz sin?0 8, + ady, —isacos 9] .

(4.13b)
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7ss  We note here that we have isolated the purely spherical contribution to the angular operator
7s0 from the remaining 0-dependent pieces that enter for rotating black holes, namely, the terms
790 20,y (a&'qsi + %az sin? 6 9, /v —1sacos 9). These terms are the spheroidal contributions to the
791 spin-weighted Laplace-Beltrami operator on the 2-sphere [137, 138], but the fact that they
792 enter inside total time derivatives ensures that they will not affect our previous prescription
793 of extracting conservation laws near .#* and near 5#* by expanding into spherical harmonic
794 modes; rather, their contribution will enter as the technical complication that the resulting
795 charges will mix spherical harmonic modes of different orbital numbers as we will shortly see
796 more explicitly.

797 4.3 Near-¢ (Newman-Penrose) charges

798 As with the ERN black hole paradigm, to extract the Newman-Penrose charges associated with
790 spin-weight s perturbations of the EKN black hole, we expand the master variables 1), into
soo redefined near-.# modes

1 i (u, ¢, 6)
~ E =, (u,r,¢_,0). (4.14)
st (T‘ —M)25+1 ~ (r _M)n ws ¢
801 Inserting this near-.#¢ expansion into the Teukolsky equation 4+T v, = O gives rise to the

so2 following recursion relations
au{ (n+ )Y 4+ (2n+25s + MY + (n+25) (1 + y2) M2
+| L2sin2o Mo, + ya, —i 0 [My™ (4.15)
2)( sin .+ X 0p_—lisy cos P, .
1
=— (6/52682 + 5" (n+2s+ 1)) Y™ — (n+2s) )(M&‘(b}pg”_l) ,
so3 Where we have introduce the dimensionless spin parameter

= (4.16)

804 Projecting onto spin-weight s spherical harmonics, this reduces to
o, f dﬂgsl_/gm{ (n+ 1)1/)§”+1) +(2n+2s+ 1)M1/)£") +(n+2s) (1 + XZ) M2¢§n—1)
2
+Exzsin29Mau+ix (m—scos@):|M1,b§”)} (4.17)
= Lz dQy Yo {% (l—s—n)({l+s+n+ l)wgn) —imy (n +25)M¢§"—1)}

sos For axisymmetric (m = 0) perturbations, in particular, one then identifies the n’th axisymmetric
sos Newman-Penrose charge by setting £ =s + n,

sNZ,sz = f dQZSYLmZO{
S2

20+1

l+s
(Z—s+1)+ M (€—s)+ 1+ 2) M2 (£—s—-1) (4.18)
i LA s { G DL
1 1
+m[EXZSiHZQMau—l‘SXCOSQ}M’l/)‘EZ_S)},
—S

807

= 0ysNymeo =0, €£>]s]. (4.19)
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The first thing to observe is the qualitative new feature that the Newman-Penrose charges
for rotating black holes contain mixing of near-.# spherical harmonic modes with different
orbital number ¢, due to the presence of the % x?sin?6 M aungf—s) and —isy cos 9¢EE—3) terms.
Namely, the former term induces mixing between ¢ + 2 modes, while the latter term induces
mixing between £ £ 1 modes. The explicit form of this mixing is written down in Appendix B.

The above Newman-Penrose charges are equivalent to the following asymptotic limit of
transverse derivatives of the bulk field 1),

(_1)€—S+1 . _ ) I—s
sNem=0 = U—s+1) lim LZ dQy Yy m—o [ (r —M)* 5, ] {
] a2
(r —M)>* ) —Eaz sin® 0 8,1, + isa cos O, }

Furthermore, for n = 0, one can still find Newman-Penrose charges, now without the
restriction of the perturbations being axisymmetric. These correspond to setting £ = s, which
occurs only in the s > 0 branch, and are given by

v 1
sNem = J dQs, Y, {1/{51) + [25 +1+iy(m—scosf)+ 512 sinZ 6 MBH]ngo)}
3 1 (4.21)
:J dQy Yem {canﬂ)gl) + [Exzsinz OMJ,+iy(m—scos 9)] MCanwgo)} ,
S2

where in the second line we rewrote the expression in terms of the canonical near-.¢ modes.
These are the 2s + 1 complex Newman-Penrose constants that are non-linearly conserved [65,
66]. One might notice that, for y # 0, we see additional terms as opposed to the well-known
result that (N, = Canwgsl% [65,66]. We strongly suspect that this is related to the fact that the
retarded null coordinates (u,r, ¢_, 0) we have employed are not light-cone coordinates (such
as null Gaussian or Bondi-like), since g,, =a sin® @ # 0.

As already mentioned, the equations of motion for the perturbations that we have used
are only approximate when the black hole carries an electric charge. For an extremal Kerr
black hole, however, for which a? = M? and, hence, y = sign{a} := o, our results are exact,

namely,

SNZ:;T:() = J dQZ s?f,mzo{
s2

- 1 . . -
Pl 4 [26 +1+ 5 sin®> @ M3, —iso, cos 9} My () (4.22)

{—s+1

+s 5
+2————M “—5—1)}.
l—s+1 ¥s

4.4 Near-¢ (Aretakis) charges

For the Aretakis charges investigation, we follow the analogous near-¢ procedure. We choose
to expand the master variables into equi-dimensionful near-# modes according to,

S n Mp " 7
¢s~§¢§ )(U’¢+’9)(M2—+612) =1, (v,0,¢+.,6), (4.23)

2 2
namely, we chose the characteristic length dimension to be M% =M (1 + )(2), instead of
just M. This is purely conventional and solely for future convenience, such that, when we
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833 will spatially invert the near-2# solution, the matching onto the redefined near-.# modes will
s34 involve as few as possible powers of the factor 1 + 2.

835 Plugging this near-5¢ expansion into the Teukolsky equation ,,+ T4, = 0, we arrive at the
836 following recursion relations

Mav{ (n+ )PP+ (2n + 25 + )P + (n+25) (1 + 1 2) PV

+[%xzsinzeMav+x8¢+—isxc059]tﬁ§”)} (4.24)

1 A x A
_ / - (n) _ (n+1)
= (682(’§Sz+2n(n+25+1))1/)5 (n+1)1+x28¢+1/)5 .
837 A first observation here is that the terms involving 1/3§”+1) collect to form the operator
s3s MO,+ 1578% =M (81, + i 8¢+). This reflects the fact that frame-dragging effects become
830 important on the horizon and suggests going to the co-rotating frame,
a

i (4.25)

Y =¢y—
sa0 in which the recursion relations become
Mav{ (n+ )P 4+ (2n+ 25 + )P + (n+25) (1 + x2) PV
1,5, ., 1+ y2cos?0 ) .
+ [Ex sin“ 0 Mo, + szx% —isy cos® ,Lpgn)
1 (4.26)
- (6/826S2 ton (n+2s+ 1)) Y™ + (n + 2s) xa%qun—l)

2 in2
) x“sin“ 0 X *(n)
+|:2n+25+1—1sxc059+(1——2(1+Xz))x(9¢+} 1+128¢+¢sn .

8a1 As with the case of Newman-Penrose charges, projecting onto axisymmetric (m = 0) spin-
sa2  weighted spherical harmonics,

Ma, f dQZsYe’m:O{ (n+ 1) + (20 + 25 + 1))
S2
. 1 .
+ (n+ 2s) (1 + xz)wg"_l) + [Exzsinz O Mo, —isy cos 9} wgn)} (4.27)

_ 1 ;
:J dQZSYe,mZO{E(ﬁ—s—n)(ﬁ +s+n+ 1)zp§”)},
SZ

sa3 reveals that setting £ = s 4+ n gives rise to a conservation law on the horizon, i.e. the axisym-
ss4 metric Aretakis charges are given by

SAK,m=0 = J dQZ sYé,m=O{
S2

A 20+1 =« {+s A
(l—s+1) + (0—s) + 1+ 2 (l—s—1) (4‘28)
Vs E—s+1ws E—s+1( X)lps

1 1 A
[ExzsinzéMav—isx cose]xpg_s)},

L—s+1
= av sAK,m=0 = O> (> |S| . (429)

845

ss6 In Appendix B, we perform explicitly the integrals to write the above Aretakis charges in terms
saz  of mixed near-s# spherical harmonic modes.

33



SciPost Physics Submission

8as In terms of near-2# limits of transverse derivatives of the bulk field, this is equivalent
sag  to [60]
A M (1 +X2)€_S li dQ, .Y,
—0 = im -
s44,m=0 (6—54-1)! oM » 2st{,m=0
241 4.30
o, [(r2+a2) 2 1/)5} 1 ( )
X af—s o) + Eaz sin® @ 3,4, — isa cos O
(r2+a2) 2
850 For an extremal Kerr black hole, for which our results become exact, the axisymmetric

ss1  Aretakis charges then read

Kerr __ %
s m=0 — J dQZsYZ,mZOI:
S2

A 1 1 A
1/)§€_5+1) + 571 (26 +1+ B sin®> O M3, —iso, cos 0) Il)ge_s) (4.31)
-
l+s
+ 2 (Z—S—l)] ,
l—s+1 Ws

ss2 with the near-5# modes defined according to the expansion

$y (0,0, 64,0)= D 0 (0,60 () (4.32)
n=0

ss3  and can be seen to match with the Aretakis charges already derived in Ref. [60], up to overall
ss4 normalization factors.

sss 4.5 Spatial inversions symmetry of Teukolsky equations

ss6  As briefly discussed at the beginning of this section, the EKN geometry is not equipped with a

ss7  conformal isometry of the form r — %2 that exchanges the null surfaces of null infinity and the
ss8 event horizon, in accordance with the results of Section 2. Nevertheless, Couch & Torrence
sso noticed that the equations of motion for minimally coupled real massless scalar perturbations
sso of the EKN black hole do enjoy a conformal symmetry under spatial inversions of this form, but
se1 that act non-locally in coordinate space [76], a result that was recently generalized to scalar
se2 field perturbations of instances of rotating black holes in supergravity [154,155].

863 Motivated by this, we will now examine the behavior of the Teukolsky operators in Eq. (4.13)
se4 under spatial inversions of the form

2
r
r—=Mw— =, u—v, ¢_—g¢,. (4.33)
Jol
ses Under such inversions,
Vaﬂ-’]rs — p25+1%+']1'5 p—25—1
2
2, .2 2 P 2s+1 (4.34)
+2[(M?*+a —rc)av+aa¢+][(§—1)ap = ] ,
C

ses from which one realizes that the Teukolsky operator is conformally invariant if one formally
se7 matches the parameter r, to be

ad
rcz = ]\42 + a2 + a;m = J*Ts — p_25_1”+’]rs p25+1 . (4.35)
v
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ses The parameter r. is non-local in coordinate space, but acts linearly in the phase space of
seo perturbations

rcz (e—iwveim¢+) — e—iwveim¢+ (MZ + a2 — %) s (4.36)

s70 as already demonstrated by Couch & Torrence for scalar perturbations, and here extended to
sr1  all spin-weight s perturbations of the rotating black hole.

872 The geometric part of r. is in fact precisely what reflects the tortoise coordinate®’
M? + a? r—M M? + a?
r.(ry=r—- M———+2Mn——==—r, | M+ —— | . 4.37
() r—M /T ( r—M 37
873 The non-geometric part of the parameter r. is built from Killing vectors of the background

s74 geometry, hence the no troubles when commuting it with the various metric functions. Its
s7s origin can be traced back to the following single term in the Teukolsky operator,

T, > +2ad,, 0, . (4.38)

s7e Evidently, this is also the term that obstructs the analytic construction of Aretakis and Newman-
g7z Penrose charges for non-axisymmetric perturbations.

s7s 4.6 Geometric sector of spatial inversions and the matching of near-.¢ and near-
879 ¢ charges

sso The last technical observation around the origin of the non-local part of the spatial inver-
ss1 sions for spinning black holes, suggests that the sector of axisymmetric perturbations posses
ss2 a geometric spatial inversion conformal symmetry. Indeed, when 9, = 0, the perturba-

ss3 tion satisfies 'I[‘gedmps = 0, with the following reduced Teukolsky operator adapted to each null
sss surface of interest

T = (r =M)™ 0, (r —M)** ™V 5, + 28,3
1 (4.39a)
—29, [(r2 + az) o, +(2s+1)r— Eaz sin 6 3, + isa cos 9} ,
”+']I‘§ed = p—zsap p2(5+1)8p + 26’826S2

+20, [((M +p)? +a2)8p +(2s+1)(M+p)+ %az sin? @ 9, —isa cos 9} ,

(4.39b)
sss and this reduced Teukolsky operator has the advantage of precisely being conformally invariant
sss under the geometric spatial inversion>®

M2+ g2
F—Meo—— "y, Pp_— Py
p u (4.40)
d —25—1 do2s+1 _
= %+T;e — Q7 y+T§eQS 5 Q_T’—M,

2We note here that the integration constant in r, has been fixed such that
r*(r=M+\/M2+a2)=0.

For non-rotating (extremal Reissner-Nordstrom) black holes, this root at r = 2M is just the location of the photon
sphere. For rotating black holes, however, this does not coincide with the photon sphere [156].

30We note here that the length scale entering the conformal factor, Q = ﬁ, can be arbitrarily chosen since the
conformal weights of the Teukolsky operator are equal. Here, we chose L = M for future convenience.
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a fact that was already remarked in Ref. [68] for scalar perturbations and extended here to all
spin-weight s perturbations.

This geometric spatial inversion acquires a very nice physical interpretation: From the
fact that it acts as a reflection on the tortoise coordinate, r, — —r,, and the exchange of
retarded/advanced coordinates, u — v and ¢_ — ¢, one then realizes that the geometric
spatial inversion exactly maps .#* to £+, and vice versa.

Using the same arguments as in Section 3.5, we then arrive to the analogous matching
condition that, if 1/3 s (v, p, ¢, 0)is anear-horizon expanded solution of the reduced equations
of motion, then

M 2s+1 . M2+a2
Vs (u,r,p_,0)= (m) P (U Swp ¢ =P, 9) (4.41)

is a near-null infinity expanded solution of the reduced equations of motion. Plugging this
matching condition into the Newman-Penrose charges of Eq. (4.20), and comparing with the
Aretakis charges of Eq. (4.30), one then realize that these two types of charges are exactly
equal, up to an overall normalization factor,

Nem=o =MP*2A g, L2215 (4.42)
Equivalently, at the level of asymptotic modes, the matching condition of Eq. (4.41) tells us

that, if b, (v, p, P4, 0) = D P (v, ¢, 6) (M¥—f2) solves -+ T4, = 0, then v, (u, 7, ¢_, 0)

(n)
= (r—]\/})zm Z:Z o ws( r(f]’\i)’n’e) solves ﬁ’]l‘;edws =0, provided that

P (u, p_,0) = M (v sy, ¢, - ¢, 0), (4.43)

which precisely outputs the equality Eq. (4.42) when inserting it into the Newman-Penrose
charges of Eq. (4.18) and comparing with the Aretakis charges of Eq. (4.28).

5 Summary and discussion

In this work, we have emphasized the existence of a conformal isomorphism between asymp-

totically flat spacetimes and geometries that contain an extremal, non-twisting and non-expanding

horizon. The correspondence between the two types of geometries comes in the form of dis-
crete spatial inversions that map a large distance null surface (null infinity) to a finite dis-
tance one (horizon). The conformal nature of this correspondence, nevertheless, ensures the
renowned dissimilar physics near each null surface [32,33,115].

The geometry near the extremal horizon that corresponds to the spatially inverted asymp-
totically flat spacetime in general does not reside in the same asymptotically flat spacetime.
A counterexample of this situation is the four-dimensional extremal Reissner-Nordstrom (ERN)
black hole, with the spatial inversion reducing to the well-known Couch-Torrence inversion [ 76].
This fact allows to extract physical constraints in the form of matching conditions between
quantities living on the asymptotically far null surface of null infinity and quantities living on
the event horizon of the ERN black hole. We have illustrated this by further examining the rela-
tion between infinite towers of conservation laws: the near-null infinity Newman-Penrose and
the near-horizon Aretakis conserved quantities. We have revisited previous analyses for scalar
and electromagnetic perturbations of the ERN geometry [61,68,75] in a unified framework
and extended these results to the more intricate case of gravitational perturbations.

We have furthermore showed that, while they seemed a priori to only lead to physical con-
sequences for the restricted case of ERN, conformal inversions turn out to be also relevant for
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the extremal Kerr-Newman (EKN) black holes. The event horizon of these black holes is now
equipped with a non-zero twist and hence does not spatially invert simply to null infinity of an
asymptotically flat spacetime. Despite this fact, we have demonstrated that spatial inversions
of the form studied in this work still have a physical effect onto spin-weight s perturbations of
the EKN black hole and, in particular, impose physical constraints such as the matching of the
conserved quantities.

Our results open various venues for future research, summarized below.

More selection rules from conformal inversion The Aretakis and Newman-Penrose charges
have previously been suggested to be associated with outgoing radiation at #* and incoming
radiation at .#7" respectively [61]. However, the Couch-Torrence inversion conformal symme-
try is expected to provide selection rules on other physical response properties of the black
hole, namely, on its quasinormal-modes spectrum. A first hint towards this is the fact that the
boundary conditions one imposes when studying the quasinormal mode spectrum of a black
hole (ingoing wave at #* and outgoing wave at .#*) are preserved under the Couch-Torrence
inversion. The Couch-Torrence inversion could then provide a notion of strong-weak coupling
duality in which solving the perturbation equations of motion in the “strong coupling” regime
of the near-zone region w (r —M) < 1, w being the frequency of the perturbation, is dual to
solving the perturbation equations of motion in the “weak coupling” regime ?’_]‘;{; < 1, and
vice versa. A preliminary analysis along these lines was done in Ref. [157] which showed that
the vanishing of the Love numbers associated with static scalar perturbations of the ERN black
hole or static and axisymmetric scalar perturbations of the EKN black hole, follows from the
Couch-Torrence inversion conformal isometry.

Generalized Couch-Torrence inversion It is natural to ask whether our present approach
can be applied to other examples of black holes that are equipped with a generalized Couch-
Torrence (CT) inversion structure [ 130,131,154,155], notably, to black holes that are rotating.
A significant complication that enters when the black hole is spinning is that the spatial inver-
sions studied so far are not geometrical; rather, they act on the phase space of perturbations
of the black hole, as was already remarked in the original work of Couch & Torrence [76]. In
this work, we utilized the observation that the sector of axisymmetric black hole perturbations
possess a generalized CT inversion is agnostic to the details of the perturbation [68]. A natural
next step is to study how the phase-space spatial inversions associated with non-axisymmetric
perturbations of rotating black holes restrict the physical data.

At the same time, one may wonder whether there exist spinning generalizations of the
CT inversion symmetry of the ERN black hole that remain conformal isometries of the back-
ground. A first attempt along these lines could be through the Newman-Janis algorithm of
constructing rotating black hole solutions, starting from a seed geometry of a non-rotating
black hole [150,151,158-162]. Furthermore, for the case of EKN black holes, the observation
that the parameter r. entering the generalized Couch-Torrence inversion of Eq. (4.35) involves
the characteristic co-rotating operator J, + y5-— 0, (in Boyer-Lindquist coordinates), which is
also the Killing vector field that generates the event horizon of the rotating black hole, suggests
that factorizing the leading order frame-dragging effects on the horizon could potentially al-
low to find spatial inversions that map this horizon onto null infinity and vice versa. We leave
these computational prospects for near future work.

Conformal isomorphism for twisting horizons Our present analysis demonstrated a con-
formal isomorphism between asymptotically flat spacetimes and geometries that contain an ex-
tremal, non-expanding and non-rotating horizon, by means of the spatial inversion of Eq. (2.21).
One may then ask whether twisting horizons can also be incorporated withing this framework.
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As demonstrated in Ref. [71], the spatial inversion presented here in general maps the geom-
etry near an extremal and non-expanding horizon to an asymptotically flat geometry with
gua = O(r)3!. We expect that it should be possible to generalize our analysis to this case as
well.

Self-inversion and near-horizon multipole moments In general, geometries that are ‘self-
dual’ under the spatial inversions are automatically black hole geometries, since the self-
inversion condition captures information about the global structure of the spacetime that con-
tains the horizon. It would be therefore instructive to understand what are the minimum
geometric conditions that eventually ensure this property. To achieve this, one would need to
identify a sufficiently large class of observables constructed from the data associated with each
geometry, such that these observables uniquely reconstruct the corresponding geometry.

For instance, one could identify multipole moments that live near null infinity and near
the horizon and check under what conditions one can be retrieved after performing a spa-
tial inversion on the other. While multipole moments are typically defined near spatial infin-
ity [163-165], it was recently demonstrated in Ref. [40] that a notion of “celestial multipoles”
living at null infinity plus the Newman-Penrose charges could be sufficient for this scope. On
the other hand, the dynamical nature of the horizon metric obstructs the construction of multi-
pole moments living on a generic horizon, due to the absence of a universal boundary structure
at the horizon. However, non-expanding horizons appear to have sufficiently constrained dy-
namics to allow such a universality class of geometries to arise and, hence, attempt to define
horizon multipole moments. This was partly achieved in Refs. [114, 115] which identified
a set of near-horizon geometric multipole moments that uniquely characterize the intrinsic
geometry of the horizon. In the same spirit, one may attempt to define horizon multipole
moments associated with extremal black hole geometries using the characteristic feature of
a near-horizon AdS, throat [166-168]. Another prospect would be to see how the celestial
multipoles of Ref. [40] behave under spatial inversions and whether the resulting near-horizon
quantities can be identified as horizon multipole moments with the expected properties. We
leave these prospects for forthcoming development.
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A Elements of the Newman-Penrose formalism

In this appendix, we review basic elements of the Newman-Penrose (NP) formalism [134,135].
In the NP formalism, the spacetime metric formulation is replaced by a local frame tetrad

31Comparing with the usual Bondi fall-offs g,, = O (ro), this led the authors of Ref. [71] to call this geometry
“weakly asymptotically flat”. However, asymptotic flatness does allow for a fall-off g,, = O (rz), see e.g. Ref. [95].
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formulation, the tetrad, in particular, being chosen to be null. The starting point is then the
introduction of two real, {{,n}, and two complex, complex-conjugacy-related, {m, m}, tetrad
vectors, normalized as

L-n=—-1, m-m=+1, (A1)

with all other inner products being zero. The metric is then reconstructed as g,j, = —2£(,np)+2m,Mp).
The fundamental fields in the NP formalism are projections of curvature tensors onto the
various null directions. More explicitly, the 6 independent components of the Maxwell field
strength tensor F,; are repackaged into the 3 complex Maxwell-NP scalars

1
¢O =Fim, ¢1 :=§(F€n_Fmrﬁ)> ¢2 = Fp, (A.2)

while the 10 independent components of the Weyl tensor C,;.4 are rearranged into the 5
complex Weyl-NP scalars

Uy, = —Cemfm , U= _Clmﬂn , U= _lemﬁm s (A.3)

\IJ?) = _Cfnrﬁn > lIJ4 = _Cn'mﬁm >
where we are using the shorthand notation of replacing a spacetime index with the symbol of
tetrad vector it is contracted with, e.g. F,,, := £¢mPF ;.
In order to write down equations of motion in the NP formalism, one furthermore intro-
duces the directional derivatives,

ea
na
ma | Vao (A.4)

D
A
s | =
5

ﬁla

and the spacetime Christoffel symbols are traded for the 12 spin coefficients

Knp D NP D
TNP | a A "We | _ L -a| D
o | m 5 Ly, e | = +m 5 Ng,
o A 0]
Pnp NP (A.5)
Enp D D
YNe | . 1 =a A _aa A
B | = +2 (m 5 my,—n 5 .,
anp o o

where the labels “NP” have been inserted in order to avoid confusion between these NP spin
coefficients and other symbols used in the current manuscript, e.g. from the symbols for the
surface gravity k or the null Gaussian coordinate p we employed in describing the near-horizon
metric in Section 2.

B Newman-Penrose and Aretakis charges for extremal Kerr-Newman
black holes in terms of spherical harmonic modes of perturba-
tions

The Newman-Penrose charges associated with axisymmetric perturbations of the rotating black
hole are given by Eq. (4.18). Expanding the near-.¢ modes ’l,bgn) into spin-weighted spherical
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1038 harmonics,

oo

e/
P (¢, 0)= >, > P W) Yy ($-,0), (B.1)

U=ls| m'=—L'

1030 they reduce to

s (=) t+s 2\ p 2., (—s—1)
Moo =itmlo + =gy MVstmeo * 757 (1 )My
M A 1 5 (t—s) 1) () (B.2)
— —S . —s
* {—s+1 Z Z (Ex slu’m’Mauq‘psé’m’ Ly 4 SIM’m’wSK’m’) 5
V=|s| m'=—t’
1040 Where
1 _
SI(gZ’)m’ = f dQ2SY€,m=OSY1{’m’ cos 6,
3 (B.3)

@ . ] .
SIZK/m’ = fdeZSYZ,mzo.sYé’m’ Sin 9 .
S

141 The aim of this appendix is to compute these integrals and reveal the explicit mixing of the
1042 different £-modes induced by the non-vanishing rotation of the black hole.
1043 The first step is to write cos @ and sin? 6 in the basis of spherical harmonic functions,

41 1671 1
cosf =\ —,Y;,, sin’0= —(Y ——Y ) B.4
\ 3 0110 \ g (0fo0 ™ =020 (B.4)

104+ Then, using the fact that (¥;,, = (=1)" ™ Y, _,, the integrals I ﬁ)m, and (I g,)m, can be com-

1045 puted in terms of Wigner’s 3 — j symbols using the triple integral formula

(20, +1)(20, + 1) (205 + 1)
J dQZslyflml sZYZZmZ 53YZ3m3 = \J 4
s2 n

(B.5)
% 31 EZ E3 81 62 Z3
m; my Mg —S1 —S9 —S3 )
1046  While holds whenever s; + s, +53 =0.
1047 For Sllgl}’)m” this gives
M) _ 1y e U 1\[(¢ ¢ 1
T = (1) \/(2£+1)(2£/+1)(0 o 0)(3 o
s ¢ (-1 1\(¢ -1 1
=8 o(-1) {50,@_1\/(%—1)(2“1)(0 0 O)(s s 0)
(B.6)
¢ (+1 1\(¢ £+1 1
+5g,,e+1\/(2e+1)(2e+3)(0 0 O)(s s 0)}
_s Is U=s)(t+s) | o %(Z—s+1)(€+s+1)
Tomo TSN -1 20 +1) TN e+ 1)(20+3) [

1048 Where in the second line we applied the selection rules imposed by Wigner’s 3—j symbols and

1040 in the third line we wrote their explicit values. Following the same procedure for (I g,)m,, we
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find

@ _s {_5/ ((—s=1)(+s—1)(—5)(€+5)
Seem IO TR (20 —3) (20— 1) (20 +1)

2 e+ |
+5”§[1+\J (2€—1)(2€+3)J ®7

J (e—s+1)(£+s+1)(e—s+2)(e+s+2)}
— O 42 3
(20+1)(20+3)°(2£+5)

In summary, putting everything together, if we expand the perturbation %), into near-.¢
spherical harmonic modes according to

{ (n)

M)MZZ 2. “mM)nmm(qb_,e), ®.8)

n=0 (=|s| m=— =, (

was (ll, T, ¢—: 9) -

then the axisymmetric Newman-Penrose charges of Eq. (4.20) have the following explicit form

(t=s+1) | 20+1 (t—s) l+s IYERIGESY
Nf m=0 — ’(/)sﬂ m=0 e ’(/)s( m= O {— (1 +x ) ’(/)sﬂ,mzo

M x_z l—s—1)U+s—1)—5s)(+5s) (t—s)
f—8+1{ 2 J (26 —3)(20—1)* (20 +1) M st 2m=0

(C=s)+s) @ _x° (e+1) | (t=s)
-+ Vs 3 [T\ sy e v ey | MAVsin B9
. L—s+1)(l+s+1) (t—s)

o\ Tarr @ity Yetrimeo

12 | U=s+D)U+s+1D)(—s+2)(L+5+2) (t=s) }
’ 2 \J (20 +1)(20 +3)* (20 +5) Mau¢s,@+z,m:o

+isx\

Similarly, if we expand the perturbation 1), into near-## spherical harmonic modes ac-
cording to

Py (v,p, ¢+,9)—ZZ Z PP () ( z)nsnm(m,e), (B.10)

n=0 {=]s| m=—(

then the axisymmetric Aretakis charges of Eq. (4.30) read

p—s+D) | 20+1 ) {+s 2\ 7 (—s—1)
sAZ,m 0~ lps@m 0 K wslm 0 {—s+1 (1+X )wsf,mzo

1 )(_2 l—s—1)U+s—1)L—5s)(L +5s) N
f—S+1{2J (2¢—3) (26 —1)* (20 +1) MO, -2m=0

, (L=s)E+s) re—s _x° Q (e+1 | A (lms)
P\ @ D Ve T [” @i—D@t+3) |[M%Ysum=o ®1D
L—s+1)( +S+1)lﬁ(l_s)

(20+1)(2¢+3) Tst+Lm=0
22 U=+ DEs+ 1)U =5 +2) (L +5+2) 3 }

2\ (20 +1) (20 +3)*(2¢ +5) V¥ s t+2,m=0

+isx\
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