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Abstract

Every spacetime that is asymptotically flat near null infinity can be conformally mapped
via a spatial inversion onto the geometry around an extremal, non-rotating and non-
expanding horizon. We set up a dictionary for this geometric duality, connecting the
geometry and physics near null infinity to those near the dual horizon. We then study
its physical implications for conserved quantities for extremal black holes, extending
previously known results to the case of gravitational perturbations. In particular, we
derive a tower of near-horizon gravitational charges that are exactly conserved and show
their one-to-one matching with Newman-Penrose conserved quantities associated with
gravitational perturbations of the extremal Reissner-Nordström black hole geometry. We
furthermore demonstrate the physical relevance of spatial inversions for extremal Kerr-
Newman black holes, even if the latter are notoriously not conformally isometric under
such inversions.
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1 Introduction30

The study of null surfaces has proven paramount in understanding gravitational physics. A31

very well-known class of such surfaces that is characteristic to asymptotically flat spacetimes32

are the surfaces where radiation comes from and reaches at large distances, i.e. past and33

future null infinities, I − and I +. The asymptotic structure of gravity near null infinity has34

been instrumental in proving the existence of gravitational radiation within the full non-linear35

regime of Einstein’s general theory of relativity [1–6]. This concrete theoretical prediction has36

been confirmed by the triumphant detection of the GW150914 signal by the LIGO interferom-37

eters [7]. Today, gravitational waves are routinely observed through advanced interferometric38

apparatuses of the LIGO-VIRGO-KAGRA collaboration, with the current third Gravitational-39

Wave Transient Catalog (GWTC-3) reporting 90 confirmed detections of transient gravitational40

waves emitted during the coalescence of binary systems of compact bodies [8]. Of those, 8341

consist of signals from the coalescence of binary systems of black holes, objects which are42

equipped with another fundamental type of null surfaces: black hole event horizons.43

Both future null infinity and the black hole (future) event horizon are classically well-44

defined properties of an asymptotically flat geometry; one is generated by asymptotic outgo-45

ing null rays, while the other is the past null cone of the former.1 Since both geometries are46

by definition null hypersurfaces, they naturally inherit a ‘Carrollian’ structure [15–22], char-47

acterized by a degenerate metric. For black holes, this has been explicitly demonstrated in48

Refs. [23,24] and further studied in Refs. [25–29].49

Recently, there has been growing interest utilizing structural similarities between these50

two types of geometries [26, 29–36]. Notably, Refs. [31–34] incorporated null infinity into51

the framework of non-expanding horizons, while Ref. [35] examined a relationship between52

1This definition pertains to absolute/causal horizons. In the generic setup, the location of the event horizon
requires a global definition and is inherently teleological. For the special case of stationary black holes, however,
the event horizon is a Killing horizon and can, thus, be locally defined by the Killing vector that generates it.
Alternative local definitions that asymptote to the event horizons of stationary black holes at late times rely on
concepts such as that of apparent horizons [9] and trapping horizons [10], see also Refs. [11–14] and references
therein for more information.

2



SciPost Physics Submission

stretched horizons and asymptotic infinity. Despite these shared structural features, their re-53

spective physical properties remain fundamentally distinct. For instance, the boundary struc-54

ture of null infinity is universal and its phase space [37–39] comprises of a hard sector, con-55

taining non-radiative data such as multipole moments [40], as well as a soft sector that is56

associated with the vacuum structure [39, 41–43]. In contrast, the phase space associated57

with a null surface at a finite distance, such as a black hole horizon, describes a fluctuating58

boundary [28,36,44–56].59

These differences extend to their asymptotic symmetries. At future null infinity, the asymp-60

totic isometry group is spanned by the BMS group [3,5,6]. Its characteristic enhancement com-61

pared to the Poincaré group is the existence of supertranslations, angle-dependent translations62

of the retarded time. At the horizonH +, one instead finds an infinite extension of supertrans-63

lations with unrestricted dependence on the advanced time, precisely due to the fact that the64

near-horizon surface gravity and boundary metric are fluctuating free data [44–46]. In the65

case of extremal horizons, these reduce to supertranslations and superdilatations2. From this66

symmetry perspective, it is therefore natural to seek a connection between the geometry of67

an asymptotically flat spacetime and the geometry near an extremal horizon whose horizon68

metric is fixed.69

A notable classical property of extremal horizons is their dynamical instability under lin-70

earized perturbations. This was first demonstrated by Aretakis in Refs. [57–59] for the case71

of scalar perturbations of stationary and axisymmetric extremal horizons, and was soon gen-72

eralized to electromagnetic and linearized gravitational perturbations of extremal Kerr and73

Reissner-Nordström black holes [60, 61].3 More precisely, Aretakis studied solutions to the74

wave equation on extremal black holes and showed that, for generic initial data on a spacelike75

surface intersecting the future horizon, first order derivatives of the scalar field transverse to76

the future event horizon H + do not decay along H +, while higher-order derivatives in fact77

blow up at late advanced time υ →∞. Remarkably, these instabilities only depend on the78

local geometric properties of the horizon and result from the existence of an infinite hierarchy79

of conservation laws along extremal horizons.80

The origin of this infinite tower of Aretakis conserved quantities is not well understood:81

while they are sometimes referred to as ‘Aretakis charges’4, it is still unknown whether they can82

be interpreted as Noether charges associated to some type of near-horizon (or perhaps more83

hidden) symmetries. In fact, their extraction from an expansion of the equations of motion84

is reminiscent of the derivation of another set of mysterious ‘charges’: the linearly and non-85

linearly Newman-Penrose conserved quantities that arise from a near–null infinity asymptotic86

expansion of the equations of motion [65–67]. As emphasized in Ref. [61], Aretakis’ conserved87

quantities are related to outgoing radiation atH +, while the Newman-Penrose constants are88

closely related to incoming radiation at I +. In fact, there exists a precise relationship between89

the near-horizon Aretakis charges and the Newman-Penrose constants at null infinity, as first90

observed in Refs. [61,68] (and further studied in Refs. [69–75]).91

In this work, we study further the relation between the surfaces of null infinity and horizon92

at a finite distance. The structure of our paper is the following. In Section 2, we review the93

physics near each of the two null surfaces. After highlighting their different dynamics, we show94

the existence of discrete spatial inversions that conformally map the geometry of an asymp-95

2This is to be contrasted with the fact that null infinity is a conformal boundary equipped with a non-fluctuating
boundary metric which completely fixes these would-be superdilatations.

3In Ref. [61] and, more recently in Ref. [62], the instability of the electrically charged extremal Reissner-
Nordström black hole under coupled electromagnetic and gravitational perturbations was studied. See also
Ref. [63] and Refs. [61, 64] for generalizations to massive scalar fields and to higher dimensional extremal black
hole geometries.

4We will sometimes also adopt this name in what follows, bearing in mind that this could not be the most
appropriate nomenclature.
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totically flat spacetime to the geometry near an extremal, non-expanding and non-twisting96

horizon5. This allows the construction of a dictionary that relates geometric quantities living97

on one null surface to quantities living on the corresponding dual-under-spatial-inversion null98

surface. We also review and contrast the symmetries that preserve the structure near null in-99

finity and near the horizon. As we clarify there, these naturally arise as subsectors of the larger100

class of Carrollian conformal symmetries.101

In Section 3, we consider the explicit example of the four-dimensional extremal Reissner-102

Nordström black hole, which has the special property of being self-dual under the aforemen-103

tioned type of spatial inversions. This property provides a geometric explanation for the exis-104

tence of the well-known discrete conformal isometry of Couch & Torrence [76]. We analyze the105

equations of motion associated with scalar, electromagnetic (with frozen gravitational field)106

and gravitational (with constrained electromagnetic perturbations) perturbations of the ex-107

tremal Reissner-Nordström black hole in a unified framework. This allows us to extract the108

infinite towers of near-horizon (Aretakis) charges and the near-null infinity (Newman-Penrose)109

charges for any spin-weight-s perturbations. We then apply our analysis to extract physical con-110

straints, namely, we demonstrate the one-to-one matching between infinite hierarchy of Are-111

takis and Newman-Penrose conserved quantities, extending previous results [61,68–71,74,75]112

to the more intricate case of gravitational perturbations. As we explain, the key feature that113

allows us to derive the analogs of these results for the gravitational case is the fact that the114

spin-weighted wave operator of extremal Reissner-Nordström is conformally invariant under115

conformal inversions.116

In Section 4, we demonstrate the physical relevance of this type of spatial inversions even117

in situations where the near-horizon geometry is not dual to an asymptotically flat space-118

time. Namely, we study spin-weighted perturbations of the extremal Kerr-Newman black hole119

and reveal the existence of phase space spatial inversions that are conformal symmetries of120

the equations of motion, extending the results of Ref. [76] beyond the scalar perturbations121

paradigm. After extracting the Newman-Penrose and Aretakis conserved quantities associated122

with axisymmetric spin-weighted perturbations of the rotating black hole, we demonstrate that123

this sector of perturbations inherits a geometric spatial inversion conformal symmetry which124

precisely imposes the matching of these charges.125

We finish with a discussion of our results and various future directions in Section 5. We126

also supplement with Appendix A, reviewing some basic elements of the Newman-Penrose for-127

malism needed for performing the calculations, and Appendix B, collecting expressions of the128

Newman-Penrose and Aretakis charges that display the explicit mixing of spherical harmonic129

modes induced by the non-zero angular momentum of the Kerr-Newman black hole.130

131

Notation and conventions: In this work, we employ geometrized units with the speed of light132

and Newton’s gravitational constant set to unity, c = GN = 1, and we adopt the mostly-positive133

metric Lorentzian signature. Spacetime indices will be denoted by small Latin indices from the134

beginning of the alphabet, e.g. a, b, c, ranging from 0 to d−1, for a (1+ (d − 1))-dimensional135

spacetime, while capital Latin indices from the beginning of the alphabet, e.g. A, B, C , will136

denote angular directions transverse to null surfaces, ranging from 1 to d − 2. We will refer137

to such transverse directions as “spatial” directions, with the corresponding intrinsic metric138

describing the geometry of the submanifolds spanned by such spatial coordinates dubbed the139

“spatial” metric. Repeated indices will be summed over. The symbol =̂ will be used to denote140

“equality on the null surface”. The metric on Sd−2 and its inverse will be denoted by γAB and141

γAB respectively.142

5As explained in more details later, this conformal isomorphism arises from the realization that I is also a non-
expanding horizon that is furthermore extremal and non-twisting, thanks to the existence of preferred divergence-
free conformal frames [32,33].
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2 Duality between null infinity and extremal horizon143

In this section, we motivate a correspondence between null infinity (I ) and a horizon (H )144

that is extremal, non-expanding and non-twisting, and set up a I /H dictionary between145

geometric quantities associated with each of the null surfaces. We begin with a review of the146

asymptotic expansions relevant for each of the two null surfaces and present their geometric147

properties by means of evolution and hypersurface equations. We then remark a mapping from148

one null surface to the other under spatial inversions and uncover a duality between them. In149

doing so, we also point out the inequivalent physics at the two null surfaces [32, 33], as well150

as review the asymptotic symmetries manifesting at each null surface.151

2.1 Geometry near a finite-distance horizon152

Let us start with the horizon side of the correspondence. We refer the reader to Ref. [77] for153

a clear review of horizon geometry. Here, we will adopt null Gaussian coordinates
�

υ,ρ, xA
�

154

constructed as prescribed e.g. in Ref. [14]. Namely, the coordinate υ is chosen to be an155

advanced time coordinate, whose level-sets are null surfaces, the radial coordinate ρ is chosen156

to be an affine parameter of the generators of these null surfaces, and the remaining transverse157

coordinates xA, A = 1, . . . , d − 2, henceforth referred to as “spatial coordinates”, are chosen158

to be constant on each such null generator. At the level of the metric, these light-cone gauge159

conditions set gυυ = 0, gυρ = +1 and gυA = 0 respectively, or, equivalently, gρρ = 0, gυρ = +1160

and gρA = 0. This gauge fixing is analogous to the Newman-Unti gauge at infinity [78].161

Setting the (future) horizon H + at the ρ = 0 null surface, the spacetime is described by162

the line element [14,79]163

ds2
H + = −ρ2F dυ2 + 2 dυdρ + gAB

�

d xA+ρθAdυ
� �

d xB +ρθ Bdυ
�

, (2.1)

while the corresponding inverse metric can be read from164

∂ 2
H + = ρ2F ∂ 2

ρ + 2∂υ∂ρ − 2ρθA∂ρ∂A+ gAB∂A∂B , (2.2)

with gAB the components of the inverse of the spatial metric gAB.165

On top of the light-cone gauge conditions, we impose the following near-horizon fall-offs166

of the various fields entering the metric [45]167

F
�

υ,ρ, xA
�

= 2ρ−1κ
�

υ, xA
�

+F0

�

υ, xA
�

+ o
�

ρ+0
�

,

θA
�

υ,ρ, xB
�

= ϑA
�

υ, xB
�

+ o
�

ρ+0
�

,

gAB

�

υ,ρ, xC
�

= ΩAB

�

υ, xC
�

+ρλAB

�

υ, xC
�

+ o (ρ) .

(2.3)

To study the physics at the horizon, we introduce a null vector ℓ⃗ and a null 1-form n168

according to [24]169

ℓ⃗= ℓa∂a = ∂υ −ρθA∂A+
1
2
ρ2F∂ρ , n= nad xa = −dυ . (2.4)

These have been constructed such that ℓaℓ
a = nana = 0 and naℓ

a = −1 everywhere and they170

are appropriate for studying the intrinsic geometry of a level-υ null surface. In particular,171

the outgoing null ray vector ℓ⃗ coincides with the null normal at the horizon, ℓ⃗ =̂ ∂υ, while172

the ingoing null ray vector n⃗ = gabnb∂a = −∂ρ is transverse to the horizon and aligned with173

the ingoing null geodesics everywhere in the exterior. Here, and in the rest of this work, the174

symbol “ =̂ ” means “evaluated at ρ = 0”.175
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Using these null vielbein vectors, the intrinsic spatial metric qab of the ρ = const. surface176

can be isolated via the bulk metric decomposition177

gab = −2ℓ(anb) + qab . (2.5)

In particular, the intrinsic metric becomes the spatial metric on the horizon,178

qabd xad x b = gAB

�

d xA+ρθA dυ
� �

d xB +ρθ B dυ
�

=̂ 0 · dυ2 + 0 · dυd xA+ΩABd xAd xB .
(2.6)

Such degenerate metrics are inherently endowed with a ‘Carrollian’ structure; see e.g. Refs. [15–179

22,80–85].180

The extrinsic geometry is captured by the longitudinal deformation tensorΣab =
1
2q c

a q d
b Lℓqcd181

(or second fundamental form), the twist (Há́ȷiček) 1-form field ωa = −q b
a nc∇bℓ

c , the non-182

affinity coefficient κ̃, defined via ℓb∇bℓ
a = κ̃ ℓa,6 and the transversal deformation tensor183

Ξab =
1
2q c

a q d
b Lnqcd . On the horizon, the non-zero components are evaluated to be [24]184

ΣAB =̂
1
2
∂υΩAB , ωA =̂ −

1
2
ϑA , κ̃ =̂ κ , ΞAB =̂ −

1
2
λAB , (2.7)

where spatial indices are lowered and raised using ΩAB and its inverse, ΩAB. From the longitu-185

dinal deformation tensor, the expansion Θ = qabΣab of the null normal ℓ⃗ and the longitudinal186

shear σab = Σab −
1

d−2qabΘ can be extracted to be [24]187

σAB =̂
1
2
∂υΩAB −

1
d − 2

ΩABΘ , Θ =̂ ∂υ ln
p
Ω , (2.8)

with
p
Ω :=
p

det (ΩAB) the volume element of the horizon spatial metric. Similarly, from the188

transversal deformation tensor, the expansion Θ(n) = qabΞab of the ingoing null transverse189

vector n⃗ and the transversal shear σ(n)ab = Ξab −
1

d−2qabΘ
(n) can be extracted to be [77]190

σ
(n)
AB =̂ −

1
2
λ〈AB〉 , Θ(n) =̂ −

1
2
λ A

A , (2.9)

where “〈AB〉” means “the symmetric trace-free part with respect to the horizon spatial metric”,191

e.g. λ〈AB〉 := λ(AB) −
1

d−2ΩABλ
C

C .192

In summary, we see that the asymptotic fields entering the near-horizon expansion of the193

geometry acquire a very physical interpretation: κ is the surface gravity, ϑA is the twist 1-form,194

ΩAB is the horizon spatial metric, whose time dependence determines the longitudinal shear195

and the expansion of the null normal ℓ⃗, and λAB is the transversal deformation rate of the196

horizon.197

At this point, let us clarify the role of the field κ
�

υ, xA
�

that enters the near-H expansion198

of the metric and its distinction from the non-affinity coefficient κ̃ of the null vector generating199

the horizon. The non-affinity coefficient κ̃ is a scalar field defined intrinsically on the horizon,200

6Even though the null tetrad vector ℓ⃗we chose here is the null normal on the horizon, it is not aligned with out-
going null geodesics everywhere, namely, ℓb∇bℓ

a is not proportional to ℓa away from the horizon, unless DAF = 0.
Nevertheless, this can be achieved for generic geometries by adding the following “far-horizon” correction

ℓ⃗→ ⃗̃ℓ= ℓ⃗+ρ LA
�

∂A−
1
2
ρ LA∂ρ

�

where LA = LA
�

υ,ρ, xB
�

is a transverse vector and LA := gAB LB here. For ⃗̃ℓ to be geodesic, this transverse vector
must satisfy an evolution equation which can be solved order by order in a near-horizon expansion. For instance,
writing LA = L(0)A +O (ρ), at leading order one needs to have (∂υ + 2κ) L(0)A = −DAκ. Then, the resulting vector

field ⃗̃ℓ is aligned everywhere with null geodesics that become outgoing on the horizon.

6



SciPost Physics Submission

and, as the name suggests, it captures the information of whether the parameter τ, associ-201

ated with ℓ⃗ by ℓa = d xa

dτ , is an affine parameter of the null geodesics generating the horizon202

(κ̃ = 0) or not (κ̃ ̸= 0). Its value can be freely chosen by scalings of the form ℓ⃗→ αℓ⃗, which203

preserve the structure of the horizon for any smooth and non-vanishing scalar field α, since204

then κ̃→ α (κ̃+∇ℓ lnα). For instance, one can always choose κ̃ = 0. On the other hand, the205

metric field κ
�

υ, xA
�

, that enters Eq. (2.1) according to Eq. (2.3), is independent of the choice206

of the null vector ℓ⃗ and it is a property of the geometry, namely, a boundary condition for the207

behavior of the metric near the horizon.208

Acknowledging the importance of the near-horizon boundary conditions, we will coin the209

transition from gυυ =O (ρ) to gυυ =O
�

ρ2
�

the term “extremality”, i.e., in the current work,210

an extremal horizon is one for which κ
�

υ, xA
�

= 0, regardless of what the value of the non-211

affinity coefficient κ̃ of ℓ⃗ is. While this distinction between the metric field κ and the non-212

affinity coefficient κ̃ is important, the null vector field ℓ⃗ used here has been chosen such that213

κ̃ coincides with κ
�

υ, xA
�

on the horizon, so as to be able to propagate the definition of ex-214

tremality at the level of κ̃, but one should bare in mind that this definition is independent of215

the choice of ℓ⃗.216

217

Horizon dynamics Let us now turn to the dynamics of these intrinsic objects. The evolution218

equations for the expansionΘ, the twist 1-formωA, and the transversal shear λAB are governed219

by Einstein equations. The first and most famous one is the one governing the evolution of220

the expansion, known as the null Raychaudhuri equation7 [86],221

ℓaℓbRab =̂ −
�

(∂υ −κ)Θ+
1

d − 2
Θ2 +σABσ

AB
�

. (2.10)

The twist evolution gives the Damour equation [87,88],222

q b
a ℓ

cRbc =̂ −
1
2
δA

a

�

(∂υ +Θ)ϑA+ 2DA

�

κ+
d − 3
d − 2

Θ

�

− 2DBσAB

�

. (2.11)

While the above equation shares some resemblance with the Navier-Stokes equation for a223

viscous fluid, it was pointed out in Ref. [24] that Eqs. (2.10), (2.11) should rather be regarded224

as conservation equations of a Carrollian fluid [89, 90], rather than a Galilean one. Last,225

the dynamics of the transversal shear λAB are governed by the ‘transversal deformation rate226

evolution equation’ (following the nomenclature of Ref. [77])227

q c
a q d

b Rcd =̂ δ
A
aδ

B
b

§

RAB [Ω]− (∂υ + κ)λAB − 2D(AωB) − 2ωAωB

+ 2σC
(A

�

λB)C −
1
4
ΩB)Cλ

D
D

�

−
d − 6

2 (d − 2)
Θ

�

λAB +
1

d − 6
ΩABλ

C
C

�ª

.
(2.12)

In the above expressions RAB [Ω] and DA are the Ricci tensor and the covariant derivative228

compatible with the horizon spatial metric ΩAB. An important remark here is that ΩAB is229

unconstrained by the field equations, i.e. it enters the description of the horizon as free data;230

see Table 2.1.231

The evolution of the longitudinal shear σAB, on the other hand, is independent from Ein-232

stein equations, as it involves the Weyl tensor. It is known as the ‘tidal force equation’ [5,77,91]233

ℓcq d
a ℓ

eq f
b Ccde f =̂ −δA

aδ
B
b

�

(∂υ −κ)σAB −σACσ
C

B −
1

d − 2
ΩABσC Dσ

C D
�

. (2.13)

Note that the Raychaudhuri (2.10) and tidal force (2.13) equations are part of Sachs’s optical234

scalar equations [5,91].235

7We use the sign convention Ra
bcd = 2∂[cΓ

a
d]b + . . . for the Riemann tensor.

7
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In d = 4, for any 2-dimensional symmetric tensor σAB, σACσ
C

B = 1
2ΩABσC Dσ

C D and236

thus the above tidal force equations agrees with the d = 4 expression given in Eq. (6.31)237

of Ref. [77]. As for the deformation rate evolution equation, it agrees with Eq. (6.43) of238

Ref. [77]8.239

240

Non-expanding and isolated horizons At this point it is instructive to make contact with the241

notion of non-expanding horizons (NEHs) introduced by Ashtekar et al. in Refs. [12, 30, 31].242

A NEH is a codimension-1 submanifold of the d-dimensional spacetime such that:243

(a) it is a null surface of topology R× Sd−2;244

(b) the expansion of every null normal ℓa vanishes on the horizon; and,245

(c) the spacetime Ricci tensor satisfies Ra
bℓ

b ∝̂ ℓa.246

The NEH requirement is an intrinsic property of a null hypersurface and provides a good (local)247

description of black holes in quasi-equilibrium9.248

For the horizon to be a NEH, we therefore see the defining condition that its area is con-249

stant, ∂υ
p
Ω = 0. Furthermore, the third condition10 above is the null Raychaudhuri equa-250

tion [86], ℓaℓbRab =̂ 0, and the Damour equation [87,88], q b
a ℓ

cRbc =̂ 0. The null Raychaud-251

huri equation (2.10) impliesσAB =̂ 0, sinceΩAB is positive-definite, which requires a stationary252

horizon spatial metric, while the Damour equation (2.11) further constraints the time depen-253

dence of the twist 1-form field to be ∂υωA =̂ DAκ. The null normals to a NEH are then, besides254

twist-free, also shear-free and expansion-free. In particular, an extremal NEH has255

κ̃ =̂ 0 , σAB =̂ 0 , Θ =̂ 0 , ∂υωA =̂ 0 , (2.14)

or, equivalently, in terms of near-horizon metric fields,256

κ= 0 , ∂υΩAB = 0 , ∂υϑA = 0 . (2.15)

A subclass of NEHs are isolated horizons (IHs) [12,30,31], that is, NEHs with ∂υλAB = 0. We257

remark here that every Killing horizon is an IH, but the converse is not true; see for instance258

Refs. [31,94].259

2.2 Geometry near null infinity260

On the other side of the proposed correspondence is another well-known null surface that is261

associated with asymptotically flat spacetimes: null infinity, I . The analog of the null Gaus-262

sian coordinate system we used to describe the near-horizon geometry is the (algebraic11)263

Newman-Unti (NU) gauge [78]; the spacetime near future null infinity I + is charted by a264

retarded time coordinate u, whose level-sets are null surfaces, an affine12 radial coordinate r265

8The necessary matchings of notations are, Θ [77]
ab = Σhere

ab = σ
here
ab −

1
d−2 qabΘ

here, θ [77] = Θhere, Ω [77]
a = ωhere

a ,

κ [77] = κhere, Ξ [77]
ab = Ξhere

ab =̂ δ
A
aδ

B
b

�

− 1
2λ

here
AB

�

and θ [77]
(k) = qabΞ

[77]
ab =̂ − 1

2Ω
AB
hereλ

here
AB , the minus signs coming from

the convention ℓ · n= −1 that we use here.
9NEHs were first studied by Há́ȷiček under the name of “perfect horizons” in Ref. [92] and they are closely

related to the notions of trapped surfaces [9], apparent horizons [93] and trapping horizons [10]; see Ref. [77]
for more details.

10See footnote 2 of Ref. [33] for more details on the origin of this requirement.
11Alternatively, one can consider the differential NU gauge, with ∂r gur = 0; see Ref. [95].
12In Bondi gauge [3,96], the radial coordinate is instead an areal distance; see Refs. [95,97,98] for more details

on the relation between Bondi and NU gauges.
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of the null generators and d−2 transverse spatial coordinates xA that are parallel transported266

along the null generators. In this gauge, the metric and its inverse can be read from267

ds2
I + = −Fdu2 − 2 dudr + r2HAB

�

d xA−
UA

r2
du

��

d xB −
UB

r2
du

�

,

∂ 2
I + = F∂ 2

r − 2∂u∂r − 2
UA

r2
∂r∂A+

1
r2

HAB∂A∂B ,

(2.16)

with HAB the components of the inverse of the spatial metric HAB. Asymptotic flatness requires268

the following boundary conditions for the asymptotic metric fields13
269

HAB

�

u, r, xC
�

= qAB

�

xC
�

+
1
r

CAB

�

u, xC
�

+ o
�

r−1
�

,

F
�

u, r, xA
�

=
R [q]

(d − 2) (d − 3)
+

1
d − 2

∂uC A
A −

2mB

r
+ o
�

r−1
�

,

UA
�

u, r, xB
�

=
1

2 (d − 3)

�

DBCAB − DAC B
B

�

+
2
3r

�

NA−
1
2

CAB DC CBC

�

+ o
�

r−1
�

.

(2.17)

In the above, DA and R [q] denote the covariant derivative and curvature associated with270

the boundary metric qAB, and CAB is an arbitrary function of (u, xA). We remark here that271

the boundary spatial metric qAB is taken to be fixed on I , while ∂uqAB = 0 by virtue of the272

leading order field equations. In four spacetime dimensions, the subleading asymptotic fields273

mB

�

u, xA
�

and NA

�

u, xB
�

are the Bondi mass and angular momentum aspects respectively; they274

enter as integration constants whose time evolution is constrained by the field equations [3,5].275

In the same spirit, the STF parts of the subleading asymptotic fields in the spatial metric also276

enter as data; the evolution of C〈AB〉 is completely unconstrained14, that is, it comprises the277

free data, while the dynamics of the successive o
�

r−1
�

fields are fixed by the field equations.278

In particular, C〈AB〉 is the asymptotic gravitational shear tensor and encodes the polarization279

modes of the gravitational waves. For instance, the gravitational wave energy flux through280

I + is captured by the (square of the) Bondi news tensor15 NAB = ∂uC〈AB〉 − 2ω−1D〈ADB〉ω,281

ω here being the conformal factor that relates the boundary metric to the spherical metric,282

qAB =ω2γAB. The subleading shear tensors can be related to multipole moments [40].283

As it was observed in Refs. [31–34], null infinity can be incorporated within the framework284

of NEHs; namely, I + is a weakly isolated horizon for the conformal spacetime,285

ds̃2
I + = Ω

2ds2
I + , Ω2 =

α2

r2
, (2.18)

where α is some length scale that we leave implicit at the current stage. To see this more286

explicitly, one resorts to the definition of asymptotic flatness near null infinity [3, 5, 80, 96,287

106,110–113]. For concreteness, we take Definition 1 in Ref. [80] and denote gab the physical288

metric (which solves Einstein equations Rab−
1
2 gabR= 8πTab), g̃ab = Ω2 gab (with Ω a smooth289

function such that Ω =̂ 0) the unphysical metric and na := ∇̃aΩ is nowhere vanishing on I .290

From the field equations for g̃ab,291

R̃ab −
1
2

g̃abR̃+ (d − 2)Ω−1
�

∇̃anb − g̃ab∇̃cn
c
�

+
(d − 1) (d − 2)

2
Ω−2 g̃abncn

c = 8πΩ2 T̂ab ,

(2.19)
13See e.g. Refs. [95,99–105] for relaxations of these boundary conditions.
14The trace C A

A = qABCAB controls the origin for the affine parameter of null generators and can, in particular,
be freely set to zero in the NU gauge [98].

15The second term in the news tensor, besides ∂uC〈AB〉, is required when the boundary metric is not spherical. It
follows from the Geroch tensor [106], and ensures that the news tensor is, besides traceless, also independent of
the choice of the conformal completion [80,107], see also Refs. [108,109].
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with T̂ab := Ω−2Tab admitting a smooth limit to I , one can extract the following implica-292

tions [15,33,110]:293

(a) nana =̂ 0, i.e. I is a null hypersurface, and na is a null normal.294

(b) The gauge freedom can be used to go to divergence-free conformal frames, for which295

∇̃ana =̂ 0. As such the expansion of all normals vanishes at I . Equations (2.19) then296

further imply ∇̃anb =̂ 0 all together, and, hence, the twist 1-form on I vanishes as well.297

(c) The Schouten tensor S̃ab = R̃ab−
1

2(d−1) g̃abR̃ of the unphysical metric g̃ab satisfies S̃a
bnb =̂ − f na,298

with f = d−2
2 Ω

−2ncn
c . Therefore, R̃a

bnb =̂ ζna, with ζ =̂ R̃
2(d−1) − f .299

(d) If g̃ab is C3, the Weyl tensor C̃a
bcd vanishes on I . Hence, Ω−1C̃abcd admits a continuous300

limit to I .301

We see, therefore, that the fall-offs Tab = O
�

Ω2
�

ensure that the unphysical conformally302

completed spacetime (M̃, g̃ab) contains a NEH at the boundary, i.e. at null infinity, even in303

the presence of radiation [32,33]. More explicitly, null infinity is a codimension-1 null surface304

of topology R × Sd−2 by definition, all null normals are expansion-free there and the null305

Raychaudhuri and Damour equations in the unphysical spacetime are trivially satisfied,306

R̃uu =̂ 0 , R̃uA =̂ 0 C̃uAuB =̂ 0 , (2.20)

while the last (tidal force) equation is just the statement that Ψ0 =̂ 0 on a NEH [30, 31, 114,307

115]. Furthermore, the vanishing of ∇̃anb on I means that this NEH is non-rotating and ex-308

tremal, properties which arise (as the expansion-free condition) from the existence of preferred309

divergence-free conformal frames [32,33].310

2.3 Null infinity as a spatially inverted extremal horizon311

From what we just discussed, it follows that a conformally completed spacetime whose bound-312

ary is I (as defined above) is diffeomorphic to a geometry that contains an extremal horizon313

at a finite distance, as also pointed out in Ref. [71]. This can be seen explicitly by performing314

the following spatial inversion315

r =
α2

ρ
, u= υ , (2.21)

where α is an arbitrary constant length scale introduced in Eq. (2.18), which maps the con-316

formal geometry to the one around a horizon upon identifying (see Eqs. (2.1) and (2.16))317

ds̃2
I + = ds2

H + with

F
�

υ,ρ, xA
�

= α−2F

�

u 7→ υ, r 7→
α2

ρ
, xA

�

,

gAB

�

υ,ρ, xC
�

= α2HAB

�

u 7→ υ, r 7→
α2

ρ
, xC

�

and

θA
�

υ,ρ, xB
�

= −ρα−4UA

�

u 7→ υ, r 7→
α2

ρ
, xB

�

.

(2.22)

The spatial inversion exactly maps an r → ∞ (near-I +) asymptotic expansion to a near-318

horizon ρ → 0 expansion (see Fig. 1). In order for the fall-off conditions to be preserved,319

we see then that such an interpretation of null infinity as a finite-distance horizon requires320

the latter to be extremal, κ = 0, and non-rotating, ωA =̂ 0. The explicit dictionary as well as321

the interpretation and dynamics of the various quantities from the two sides is displayed in322
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i−

H −

c0

H +

i+

υ

u

i+

I +

i0

I −

i−

u

υ

Figure 1: Penrose diagram representation of the conformal isomorphism between an
asymptotically flat spacetime and the geometry near a dual extremal horizon. The
spatial inversion in Eq. (2.21) (black arrows) conformally maps the geometry near
I + of an asymptotically flat spacetime (red partial Penrose diagram) to that near a
future horizon H + that is extremal, non-expanding and non-rotating (blue partial
Penrose diagram), and vice versa. An exactly analogous spatial inversion maps the
geometry near I − to that near a past horizonH − with the same properties.

Table 2.1. In particular, the free data at I (the asymptotic shear CAB) is mapped to the horizon323

transversal shear, while the horizon free data ΩAB corresponds to the sphere metric qAB, which324

is fixed at I .325

H Name Evolution equation I
κ surface gravity 0
Θ expansion null Raychaudhuri (2.10) 0
ΩAB horizon metric (free data) qAB (fixed)

ωA (Há́ȷiček) twist Damour (2.11) 0
σAB longitudinal shear derived from (2.8) 0
λAB transversal shear transversal deformation rate evolution (2.12) CAB (free data)

Table 2.1: Summary of the dictionary between the quantities appearing in the near-
horizon geometry (2.1) and an asymptotically flat spacetime (2.16) that are confor-
mally mapped onto each other under the spatial inversion of Eq. (2.21).

Physics at the two boundaries326

It is important to recall that the null infinity-side of this ‘duality’ refers to the conformal comple-327

tion of an asymptotically flat spacetime, in contrast to the horizon-side of the correspondence328

which can reside in the physical spacetime. This results in very different physics at the two329

null boundaries, as already emphasized in Refs. [32, 33]. In particular, the physics at null in-330

finity generically involves the presence of radiation, without ruining the interpretation of I331

as a weakly isolated horizon in the conformally completed spacetime.332

A direct consequence of the fact that I is a NEH in the unphysical spacetime even in the333

presence of radiation is that there is a non-trivial energy-momentum tensor induced at the334

‘dual’ horizon. To see this, focusing to d = 4 spacetime dimensions, recall first the dictionary335

mapping the near-horizon spatial metric ΩAB and transversal shear λAB to the I spatial metric336

11
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qAB and asymptotic shear CAB,337

ΩAB = α
2qAB , λAB = CAB . (2.23)

As mentioned above, from the horizon-side, ΩAB is free data and ∂υλAB is constrained by338

the field equations, while, from the null infinity-side, qAB is a universal structure fixed at I339

(typically taken to be the unit round metric on S2), and the Bondi news tensor NAB = ∂uC〈AB〉340

that encodes free data. From the horizon geometry point of view, the Einstein field equations341

R̃〈AB〉 = 8πT̃〈AB〉 , (2.24)

provide the effective energy-momentum tensor associated with radiation in the physical space-342

time near null infinity343

8πT̃〈AB〉 =̂ NAB . (2.25)

As a last remark, let us note that the map described above is true for any asymptotically344

flat spacetime, regardless of whether the latter contains a genuine horizon at finite distance345

or not. Even if the spacetime does contain a horizon, the latter has in general nothing to do346

with the extremal horizon dual to null infinity. A very special exception is the four-dimensional347

extremal Reissner-Nordström black hole, i.e. an asymptotically flat, static and spherically sym-348

metric geometry that solves the general-relativistic electrovacuum field equations and contains349

an extremal event horizon. This has the peculiarity of being equipped with a discrete confor-350

mal isometry of the form just described, first pointed out by Couch & Torrence [76]. The351

Couch-Torrence isometry can thus be understood as a consequence of the general geometric352

H /I duality described above. We will discuss in the next section some of its direct physical353

implications. In general, spacetimes that are ‘self-dual’ under the spatial inversions described354

in this section are by definition extremal black hole geometries, since for these cases one auto-355

matically has information about the global structure of the geometry that contains the extremal356

event horizon.357

2.4 Near-horizon vs asymptotic symmetries358

We end this section by reviewing and contrasting the near-horizon symmetry analysis with359

the one near null infinity. For another comparison of the symmetry groups with different360

boundary conditions at I and horizons, see Ref. [116]. The set of symmetries preserving a361

certain notion of asymptotic flatness as the metric approaches null infinity has long been known362

to span the BMS group (see e.g. Ref. [117] for a recent review). Understanding the nature of363

analogous symmetries near (non-extremal) black hole horizons is, to a large extent, a much364

more recent enterprise. For generic horizons, the near-horizon symmetries were first analyzed365

in Refs. [44, 45]16, where they were showed to span a bigger set than the BMS symmetries,366

as the supertranslation parameter is allowed to be an arbitrary function of advanced time as367

well, spanning the so-called Newman-Unti algebra (see e.g. Ref. [124]). Of course, as already368

emphasized, this difference can be traced back to the fact that finite-distance horizons are null369

sub-regions of the physical spacetime, rather than the conformally completed spacetime.370

Given the intrinsic Carrollian nature of these two null hypersurfaces [19,22–24,89,106],371

their symmetry-preserving structure shares several similarities17 but also important differ-372

ences. After a brief review in terms of the unified framework of Carrollian symmetries, the373

presentation below aims to unify the treatment of asymptotic symmetries for both I and H374

by treating the gauge-fixing and respective boundary conditions successively.375

16See Refs. [36,46–48,50,52–54,115,118–123] for further works.
17We do not discuss here potential matching of their respective asymptotic symmetry parameters; see Refs.

[47,75,125–127] for works in this direction.
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Extended Carroll symmetries376

Let C = Σd−2×R be a (d−1)-dimensional smooth Carroll manifold (Σ denotes a Riemannian377

manifold), endowed with a metric g whose kernel is generated by a nowhere vanishing vector378

field n [81].379

The conformal Carroll algebra of level N , ccarrN , is spanned by vector fields ξ such that380

Lξg= λg , Lξn= −
λ

N
n , (2.26)

for some function λ and positive integer N [81]. Introducing coordinates (u, xA) on C such381

that n= ∂u and g= gABd xAd xB, the generic expression for such vector fields is382

ξ= Y A(x)∂A+
�

T (x) + u
λ

N

�

∂u , where λ=
2

d − 2
DAY A , (2.27)

with Y A a conformal Killing vector field of Σd−2 and T is a density of conformal weight −2/N .383

For Σd−2 = Sd−2 endowed with its round metric, we thus immediately see that the conformal384

Carroll transformations of level N = 2 are the semi-direct product of the conformal group385

of Sd−2 together with supertranslations T (of conformal weight −1), hence the celebrated386

isomorphism bmsd = ccarrd−1
2 [81].387

The Newman-Unti Lie algebra [17, 78, 81, 124], nu is more generic as it does not require388

preserving the strong conformal geometry. It is spanned by all vector fields ζ on C such that389

Lζg= λg . (2.28)

This condition automatically implies that the direction of n is preserved. In Carrollian coordi-390

nates (u, xA), the nu vector fields are18
391

ζ= Y A(x)∂A+ f (u, x)∂u , (2.29)

with Y A a conformal Killing vector field of Σd−2 and f is now an arbitrary function of xA and392

u. As opposed to BMS supertranslations, the functions f do not form an abelian ideal. As we393

recall below, the nu algebra is preserving the Carrollian structure of a generic horizon [24,45].394

An interesting subalgebra of the Newman-Unti algebra was highlighted in Ref. [17] as the395

algebra defined by396

Lζg= λg , (Ln)
nξ= 0 . (2.30)

This subalgebra, denoted nun, is spanned by vector fields of the form of Eq. (2.29) with the397

restriction398

∂ n
u f = 0 . (2.31)

We will see below that the near-horizon symmetries of an extremal horizon span the nu2 alge-399

bra [45,52]. Notice also the relationship nu1 = ccarr∞ [17].400

Newman-Unti gauge401

Near a smooth null hypersurface located at r = 0, one can always choose null Gaussian coor-402

dinates v, r, xA in which the metric satisfies grr = grA = 0, gvr = 1 [79]. Both the near-horizon403

geometry and null infinity can be written in the Newman-Unti (NU) form, as done in Eq. (2.1)404

and Eq. (2.16). Independently of the location of the null hypersurface (be it at a finite or405

infinite distance in spacetime), one can thus first search for the generic form of vector fields406

preserving the NU gauge. The conditions407

Lζgra = 0 , (2.32)

18They generate what were called Carrollian diffeomorphisms in Ref. [90].
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can be seen to lead to the generic form408

ζv = f ,

ζr = −r∂v f + Z + J ,

ζA = Y A + IA ,

(2.33)

where NU supertranslations f , superrotations Y A and radial transformations Z satisfy ∂r f = 0= ∂rY
A = ∂rZ409

but can depend arbitrarily of (v, xA) at this stage. The remaining functions satisfy ∂rJ = gAB gvA∂B f ,410

∂r I
A = gAB∂B f .411

Near I +, this gives (adapting to retarded time) the following asymptotic Killing vector412

field [98]413

ξu = f ,

ξr = −r ∂u f + Z + J , J = −∂A f

∫ ∞

r
dr ′g rA ,

ξA = Y A+ IA , IA = −∂B f

∫ ∞

r
dr ′gAB .

(2.34)

In near-horizon (advanced) coordinates, the corresponding asymptotic Killing vector field414

nearH + reads [44,45]415

χυ = f ,

χρ = Z −ρ∂υ f +J , J = ∂A f

∫ ρ

0

dρ′gAB gυB ,

χA = YA+ IA , IA = −∂B f

∫ ρ

0

dρ′gAB .

(2.35)

Asymptotic symmetries near I +416

On top of the gauge preserving conditions solved above, the asymptotic Killing vectors are also417

subject to boundary conditions. Near I +, asymptotic flatness imposes [3,5,96]418

LξguA =O
�

r0
�

, LξgAB =O (r) , Lξguu =O
�

r−1
�

, (2.36)

leading to strong restrictions on the asymptotic Killing vector of Eq. (2.34). The first condition419

is420

LξguA =O
�

r0
�

⇒ ∂uY A = 0 . (2.37)

The second condition of fixed boundary metric on the celestial sphere imposes that the super-421

otations, Y A, are constrained to be conformal Killing vectors of qAB,422

LξgAB =O (r) ⇒ LY qAB =
2

d − 2
qAB DC Y C , ∂u f =

1
d − 2

DAY A . (2.38)

We can thus write423

f = T (xA) + uX (xA) , X =
1

d − 2
DC Y C . (2.39)

The last boundary condition of Eq. (2.36) does not impose further constraints.424

The residual symmetry parameter Z in the radial component of the asymptotic Killing425

vector is associated with the choice of origin for the affine parameter of the null geodesic [98].426

This residual freedom can be used to set to zero the trace C A
A = 0, which fixes427

Z
�

u, xA
�

= −
1

d − 2
D2 f . (2.40)
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In Bondi gauge, the trace condition C A
A = 0 is instead implemented by the determinant condi-428

tion. The authors of Ref. [95] have argued that the NU gauge is thus in a sense ‘less restrictive’429

than the Bondi gauge, as it generally allows for an arbitrary radial translation Z19. Putting430

everything together, one thus gets431

ξ= T
�

xA
�

∂u + Y A
�

xB
�

∂A+ X
�

xA
�

(u∂u − r ∂r)

−
1

d − 2

�

D2T + uD2X
�

∂r +
1
r
(DB T + uDBX )
�

U B∂r −H AB∂A

�

,
(2.41)

where X = 1
d−2 DAY A and we have defined432

1
r
U A
�

u, r, xB
�

:=

∫ ∞

r

dr ′

r ′2
UA
�

u, r ′, xB
�

,

1
r
H AB
�

u, r, xC
�

:=

∫ ∞

r

dr ′

r ′2
HAB
�

u, r ′, xC
�

,

(2.42)

such that U A
�

u, r, xB
�

= UA
�

u, r, xB
�

+ o
�

r0−
�

andH AB
�

u, r, xC
�

= qAB
�

xC
�

+ o
�

r0−
�

.433

The above vector fields preserve the entire leading-order structure of the metric near I +,434

while their action on the traceless gravitational shear is435

δξCAB =
�

f ∂u +LY −
1

d − 2
DC Y C
�

CAB − 2D〈ADB〉 f . (2.43)

Asymptotic symmetries near H +
436

Let us first briefly comment on the role of the radial translation Z in the horizon Killing vec-437

tor field of Eq. (2.35). This captures angle-dependent shifts of the location of the horizon,438

ρ = 0→ ρ = Z. As such, choosing to preserve the horizon location at the origin of the affine439

parameter ρ, we set it to Z = 0 (as in Ref. [45]).440

Now, the near-horizon boundary conditions are [45]441

Lχ gυA =O (ρ) , Lχ gAB =O
�

ρ0
�

, Lχ gυυ =

¨

O (ρ) for κ ̸= 0

O
�

ρ2
�

for κ= 0
. (2.44)

The first condition imposes time-independence of the superrotation parameters442

Lχ gυA =O (ρ) ⇒ ∂υYA = 0 . (2.45)

For the generic non-extremal case (κ ̸= 0), the rest of the boundary conditions do not lead to443

further constraints on the form of the vector field, and we get the nu vector fields of Eq. (2.29).444

However, for an extremal horizon (κ= 0), we get the constraint445

Lχ gext
υυ =O
�

ρ2
�

⇒ ∂ 2
υ fext = 0 ⇒ fext = T (xA) +υX (xA) . (2.46)

For an extremal horizon, we thus get446

χext = T
�

xA
�

∂υ +X
�

xA
� �

υ∂υ −ρ∂ρ
�

+YA
�

xB
�

∂A

+ρ (DBT +υDBX )
�

1
2
ΘBρ∂ρ − GAB∂A

�

.
(2.47)

19Notice, however, that since this transformation is subleading in r, it does not affect the Carrollian structure.
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The supertranslations, T , superdilatations, X , and superotations, YA, all live on the horizon447

spatial cross-sections, and we have defined448

1
2
ρ2ΘA
�

υ,ρ, xB
�

:=

∫ ρ

0

dρ′ρ′ θA
�

υ,ρ′, xB
�

,

ρGAB
�

υ,ρ, xC
�

:=

∫ ρ

0

dρ′ gAB
�

υ,ρ′, xC
�

,

(2.48)

such thatΘA
�

υ,ρ, xB
�

= ϑA
�

υ, xB
�

+o
�

ρ0+
�

and GAB
�

υ,ρ, xC
�

= ΩAB
�

υ, xC
�

+o
�

ρ0+
�

. Their449

action on the leading-order asymptotic fields can then be worked out to be450

δχΩAB = f ∂υΩAB +LYΩAB ,

δχϑ
A = f ∂υϑ

A+LYϑ
A− 2ΩAB DBX − ∂υΩAB DB f ,

δχF0 = f ∂υF0 +LYF0 − 3ϑADAX − ∂υϑADA f .

(2.49)

For an extremal NEH, for which one additionally has ∂υΩAB = 0 and ∂υϑ
A = 0, these reduce451

to452

δχΩAB = LYΩAB ,

δχϑ
A = LYϑ

A− 2ΩAB DBX ,

δχF0 = f ∂υF0 +LYF0 − 3ϑADAX .

(2.50)

The action of the above near-H + asymptotic Killing vectors, in particular, preserves the char-453

acter of the extremal NEH without any further constraints on χ. If now one deals with a454

non-rotating extremal NEH, i.e. with ϑA = 0, then the superdilatations are reduced to global455

rescalings, namely X
�

xA
�

= const.456

3 A self-inverted example: The case of extremal Reissner-Nordström457

black hole458

In this section, we consider a known example of extremal black hole geometry which has459

the property of being ‘self-dual’ under the spatial inversion discussed in the previous section.460

This is the four-dimensional extremal Reissner-Nordström (ERN) black hole for which the spa-461

tial inversion of Section 2 becomes the discrete Couch-Torrence conformal isometry identified462

in [76]. Utilizing this property, it is possible to extract new pairings between near-horizon463

and near–null infinity data which dictate the one-to-one matching between infinite towers of464

conserved quantities. Previous literature [61,68–71,74,75] has focused on the case of a probe465

scalar and Maxwell field in the ERN background. In this section we will extend these results466

to the case of gravitational and spin-weight s perturbations. The treatment of gravitational467

perturbations require extra care compared to the scalar and spin-one cases, as we will see.468

3.1 The symmetry469

The ERN black hole geometry in four spacetime dimensions is described in Schwarzschild-like470
�

t, r, xA
�

coordinates by the line element471

ds2
ERN = −

∆ (r)
r2

d t2 +
r2

∆ (r)
dr2 + r2dΩ2

2 (3.1)

with dΩ2
2 = γAB

�

xC
�

d xAd xB = dθ2 + sin2 θ dφ2 the line element on S2. The discriminant472

function is a perfect square, ∆ (r) = (r −M)2, whose double root at r = M determines the473
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radial location of the degenerate horizon, with M the ADM mass of the black hole. This474

geometry describes an isolated, asymptotically flat, non-rotating and electrically charged black475

hole solution of the general-relativistic electrovacuum field equations, whose electric charge476

Q attains its critical (extremal) value, Q2 = M2 (in CGS units). Besides the spherical and time477

translation isometries, it has a discrete conformal symmetry: the Couch-Torrence (CT) spatial478

inversion symmetry [76]479

r
CT
−→ r̃ =

M r
r −M

⇒ ds2
ERN = Ω

−2ds̃2
ERN , Ω=

r̃ −M
M

=
M

r −M
, (3.2)

where ds̃2
ERN = −

∆(r̃)
r̃2 d t2 + r̃2

∆(r̃)d r̃2 + r̃2dΩ2
2 is the same ERN black hole geometry, but with480

r̃ replacing r. In fact, as more recently noted in Ref. [128], this conformal symmetry can be481

realized as an isometry of the conformal metric, namely, r2ds2
ERN = r̃2ds̃2

ERN. At the level of482

the tortoise coordinate20
483

r∗ = r −M −
M2

r −M
+ 2M ln

�

�

�

�

r −M
M

�

�

�

�

, (3.3)

the CT inversion acts as a reflection,484

r∗
CT
−→−r∗ , (3.4)

that preserves the photon sphere at r = 2M21 Therefore, the CT inversion maps the near-485

horizon region onto null infinity and vice-versa. More specifically, the future (past) event-486

horizonH + (H −), specified by the υ= const (u= const) null hypersurface at r = M , where487

υ = t + r∗ (u = t − r∗) is the advanced (retarded) null coordinate, gets mapped onto the488

future (past) null infinity I + (I −), specified by the u = const (υ = const) null hypersurface489

as r →∞,490

H ± CT
←→I ± , (3.5)

since491

�

υ, r, xA
� CT
←→
�

u,
M r

r −M
, xA
�

. (3.6)

The CT inversion is precisely of the form of the conformal inversion we described in Sec-492

tion 2. However, in contrast to the generic I /H duality we presented there, the extremal493

Reissner-Nordström black hole has the characteristic property of being ‘self-dual’ under this494

conformal inversion, meaning that both I and the extremal horizon it describes under inver-495

sion live in the same spacetime (see Fig. 2)22.496

As already noted in Refs. [61, 75] (see also Ref. [128] for a related work), this gives the497

CT inversion a very physical manifestation in terms of conserved quantities: it implies that498

the near-H Aretakis charges associated with extremal black holes [57–59] are identical to the499

near-I Newman-Penrose conserved quantities [61,65–67,133]. We will review this matching500

of near-H and near-I charges explicitly for scalar [61, 68–71, 74] and electromagnetic [75]501

perturbations on the ERN black hole in a unified framework, and extend those results to the502

case of gravitational perturbations (and in fact any spin-weight s perturbation).503

20The integration constant has been fixed such that r∗ = 0 corresponds to the photon sphere r = 2M .
21This geodesics point of view of the CT inversions, keeping fixed the unstable photon sphere at r = 2M ,

provides a guide for potential generalizations of these types of discrete conformal symmetries [129], and have also
been utilized in Refs. [130,131] to study physical implications on geodesic observables.

22See Ref. [132] for an analysis of the conformal structure of ERN spacetime.
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i−

H −

c0

H +

i+

υ

u

i+

I +

i0

I −

i−

u

υ

Figure 2: Part of the Penrose diagram of an extremal Reissner-Nordström black hole
that describes the causally connected patch in the exterior geometry. As opposed to
what happens with a generic pair of conformally related asymptotically flat spacetime
and a dual geometry near an extremal horizon (see Fig. 1), the existence of the
Couch-Torrence inversion (black arrows) for this geometry can be understood as the
manifestation that the two null surfaces reside in the same spacetime.

3.2 Equations of motion for perturbations504

In this section, we will deal with perturbations of the extremal Reissner-Nordström black hole505

and study the implications of this self-inverted conformal mapping. Naturally, we will treat506

the spin-weight s perturbations by means of the Newman-Penrose (NP) formalism [134,135];507

see Appendix A for a review of the basic elements needed and for our sign conventions.508

To make contact with the notation of the previous section, let us now write down the509

background solution of the extremal Reissner-Nordström black hole in null Gaussian coordi-510

nates centered around the null surface of interest. To study the near-I + or near-I − modes,511

we will use retarded or advanced Eddington-Finkelstein coordinates,
�

u, r, xA
�

or
�

υ, r, xA
�

,512

respectively,513

ds2
ERN = −
�

1−
M
r

�2

du2 − 2 dudr + r2dΩ2
2

= −
�

1−
M
r

�2

dυ2 + 2 dυdr + r2dΩ2
2 .

(3.7)

A set of null tetrad vectors23 {ℓ, n, m, m̄}, adapted to I + would then be514

ℓ= ∂r , n= ∂u −
1
2

�

1−
M
r

�2

∂r , m=
1
r
ϵA
S2∂A , m̄=

1
r
ϵ̄A
S2∂A , (3.8)

with ϵA
S2 a complex dyad for the round 2-sphere. Charting the 2-sphere by spherical coordinates515

(θ ,φ), a convenient choice of this complex dyad is516

ϵA
S2∂A =

1
p

2

�

∂θ +
i

sinθ
∂φ

�

. (3.9)

Using this null tetrad, the only non-zero spin coefficients, Maxwell-NP scalars and Weyl-NP517

23We are using the sign convention m · m̄= −ℓ · n= +1, such that gab = −2ℓ(anb) + 2m(am̄b).
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scalars read518

ρERN
NP = −

1
r

, µERN
NP = −

(r −M)2

2r3
,

γERN
NP =

M (r −M)
2r3

, βERN
NP =

1

2
p

2

cotθ
r
= −ᾱERN

NP ,

φERN
1 =

Q

2
p

4π r2
, ΨERN

2 =
M (r −M)

r4
.

(3.10)

To study the near-H + or near-H − modes, we will instead use advanced or retarded519

Eddington-Finkelstein coordinates,
�

υ,ρ, xA
�

and
�

u,ρ, xA
�

, respectively, ρ = r − M being520

the affine radial coordinate centered at the horizon,521

ds2
ERN = −

ρ2

(M +ρ)2
dυ2 + 2 dυdρ + (M +ρ)2 dΩ2

2

= −
ρ2

(M +ρ)2
du2 − 2 dudρ + (M +ρ)2 dΩ2

2 .

(3.11)

Then, a set of null tetrad vectors adapted toH + would be522

ℓ= −∂ρ , n= ∂υ +
1
2

ρ2

(M +ρ)2
∂ρ , m=

1
M +ρ

ϵA
S2∂A , m̄=

1
M +ρ

ϵ̄A
S2∂A , (3.12)

with ϵA
S2 the same complex dyad for the 2-sphere as in Eq. (3.9), and the non-zero spin coeffi-523

cients, Maxwell-NP scalars and Weyl-NP scalars are524

ρERN
NP =

1
M +ρ

, µERN
NP =

ρ2

2 (M +ρ)3
,

γERN
NP = −

Mρ

2 (M +ρ)3
, βERN

NP =
1

2
p

2

cotθ
M +ρ

= −ᾱERN
NP ,

φERN
1 =

Q

2
p

4π (M +ρ)2
, ΨERN

2 =
Mρ

(M +ρ)4
.

(3.13)

We announce here the change of notation compared to Section 2: here, it is the tetrad vector525

n =̂ ∂υ that becomes the null normal on the horizon, rather than ℓ. We have done this for526

the sole reason of presenting more compactly our succeeding analysis, such that the Couch-527

Torrence inversion does not change the spin-weight and boost-weight of the corresponding NP528

scalar.529

Similarly, null tetrads adapted to the past null surfaces I − orH − can be obtained by the530

replacements u 7→ −υ or υ 7→ −u respectively.531

The equations of motion for minimally coupled massless scalar, electromagnetic (Maxwell)532

and gravitational perturbations around a configuration of type-D in the Petrov classification [136]533

were shown to acquire the following collective form within the NP formalism [137–139] (see534

Appendix A),535

�

(D− 2sρNP − ρ̄NP − (2s− 1)εNP + ε̄NP) (△+µNP − 2sγNP)

− (δ− 2sτNP + π̄NP − ᾱNP − (2s− 1)βNP)
�

δ̄+πNP − 2sαNP

�

+ (2s− 1) ( j − 1)Ψ2

�

ψs = 0 ,

(3.14)

where s = 0 for scalar perturbations, s = ±1 for electromagnetic perturbations and s = ±2536

for gravitational perturbations. The spin-weight s master variable ψs is directly related to the537
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fundamental NP scalars according to538

ψs =W |s|−s ×











Φ for scalar perturbations (s = 0) ;

φ1−s for electromagnetic perturbations (s = ±1) ;

Ψ2−s for gravitational perturbations (s = ±2) ,

(3.15)

with W a spin-weight zero scalar function that satisfies539

(D−ρNP)W = 0 , (δ−τNP)W = 0 ,

(△+µNP)W = 0 ,
�

δ̄+πNP

�

W = 0 .
(3.16)

For instance, if the background geometry is Ricci flat, it is typical to choose W = Ψ1/3
2 [137,540

138], while, if the background is an electrovacuum spacetime, one may choose W = φ1/2
2 .541

Let us briefly comment on the approximations involved when writing down Eq. (3.14).542

For s = 0, it is exact for a minimally coupled real scalar field perturbation. For s = ±1,543

it deals with electromagnetic perturbations of an electrovacuum spacetime, but with frozen544

gravitational field. The s = ±2 equation, instead, captures gravitational perturbations, but545

with constrained electromagnetic perturbations24. This allowed us to set to zero all the source546

terms that would otherwise enter in the RHS due to the coupling of electromagnetic and grav-547

itational perturbations.548

Focusing on the extremal Reissner-Nordström black hole background, the unified equation549

of motion for ψs reduces to550

I +Tsψs = 0 ,

I +Ts := (r −M)−2s ∂r (r −M)2(s+1) ∂r + 2ð′S2ðS2 − 2
�

r2∂r + (2s+ 1) r
�

∂u ,
(3.17)

when using the near-I -adapted tetrad and coordinates, see Eq. (3.8), and after multiplying551

by −2r2, or to552

H +Tsψs = 0 ,

H +Ts := ρ−2s∂ρ ρ
2(s+1)∂ρ + 2ð′S2ðS2 + 2

�

(M +ρ)2 ∂ρ + (2s+ 1) (M +ρ)
�

∂υ ,
(3.18)

when using the near-H -adapted tetrad and coordinates, see Eq. (3.12), and after multiplying553

by−2 (M +ρ)2. In the above expressions, ðS2 and ð′S2 are the “edth” operators on the 2-sphere,554

which in the current spherical coordinates act on a spin-weight s object according to555

ðS2 =
1
p

2

�

∂θ +
i

sinθ
∂φ − s cotθ
�

,

ð′S2 =
1
p

2

�

∂θ −
i

sinθ
∂φ + s cotθ
�

,
(3.19)

and we have made use of the commutator
�

ðS2 , ð′S2
�

= s. Let it also be noted that the quantity556

2ð′S2ðS2 is the spin-weighted Laplace-Beltrami operator on the 2-sphere.557

The above two operators are actually exactly the same spin-weighted wave operator, but558

were assigned a different symbol to emphasize that they are built from coordinates and tetrad559

vectors adapted to each null surface.560

24We note here that this is not equivalent to having a frozen background electromagnetic field if the back-
ground spacetime is charged under the Maxwell field. Rather, the exact requirement for the s = +2 (gravitational)
equations written here, for instance, is that there exists a non-zero electromagnetic perturbation that satisfies

φ̄1

§

(D−ρNP + ρ̄NP − 3εNP + ε̄NP)
�

(δ− 3τNP − 2βNP)φ
(1)
0 + 2φ1σ

(1)
NP

�

+ (δ−τNP − π̄NP − 3βNP − ᾱNP)
�

(D− 3ρNP − 2εNP)φ
(1)
0 + 2φ1κ

(1)
NP

�

ª

= 0 ,

where the superscript “(1)” denotes a perturbed quantity, see e.g. the analyses of Refs. [140–143].
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3.3 Near-I (Newman-Penrose) charges561

Newman and Penrose famously showed the existence of an infinite tower of conserved quan-562

tities associated with linear massless fields of spacetime spin j at I [65–67]. Remarkably, in563

the full (nonlinear) theory, a set of (2 j + 1) complex quantities remain conserved25.564

In order to extract the tower of conserved Newman-Penrose charges we first need to expand565

the NP scalars ψs into near-I modes. We do this according to the prescription566

ψs ∼
1

(r −M)2s+1

∞
∑

n=0

ψ(n)s

�

u, xA
�

(r −M)n
:=ψs

�

u, r, xA
�

, (3.20)

where we took into account how the peeling behavior of the fundamental NP scalars,567

Φ
�

u, r, xA
�

∼
1
r

�

Φ(0)
�

u, xA
�

+O
�

r−1
��

,

φ1−s

�

u, r, xA
�

∼
1

r2+s

�

φ
(0)
1−s

�

u, xA
�

+O
�

r−1
�

�

,

Ψ2−s

�

u, r, xA
�

∼
1

r3+s

�

Φ
(0)
2−s

�

u, xA
�

+O
�

r−1
�

�

,

(3.21)

gets translated onto the master variables ψs and we have emphasized that the near-I field568

profile denoted by ψs

�

u, r, xA
�

is expected to only asymptotically converge towards the full569

solution ψs, hence the “∼” relation.570

The above near-I expansion is slightly different from the “canonical” prescription,571

ψs

�

u, r, xA
�

=
1

r2s+1

∞
∑

n=0

canψ
(n)
s

�

u, xA
�

rn
, (3.22)

and can be understood as the following redefinition of the conventional near-I modes due to572

the presence of the black hole in the bulk573

canψ
(n)
s

�

u, xA
�

=
n
∑

k=0

�

n+ 2s
k+ 2s

�

M n−kψ(k)s

�

u, xA
�

, (3.23)

or, inversely,574

ψ(n)s

�

u, xA
�

=
n
∑

k=0

(−1)n−k
�

n+ 2s
k+ 2s

�

M n−k
canψ

(k)
s

�

u, xA
�

. (3.24)

In the flat limit, M → 0, the two prescriptions are of course identical, but we found that this575

redefinition of the near-I modes for M ̸= 0 actually significantly simplifies the derivation of576

the Newman-Penrose charges associated with spin-weight s perturbations of the ERN black577

hole. In particular, plugging the near-I expansion of Eq. (3.20) into the equations of motion578

Eq. (3.17) outputs the following recursion relations579

∂u

�

ψ(1)s + (2s+ 1)Mψ(0)s

�

= −ð′S2ðS2ψ
(0)
s , (3.25a)

∂u

�

(n+ 1)ψ(n+1)
s + (2n+ 2s+ 1)Mψ(n)s + (n+ 2s)Mψ(n−1)

s

�

= −
�

ð′S2ðS2 +
1
2

n (n+ 2s+ 1)
�

ψ(n)s ,
(3.25b)

or, after expanding the near-I modes into spin-weight s spherical harmonics,580

ψ(n)s

�

u, xA
�

=
∞
∑

ℓ=|s|

ℓ
∑

m=−ℓ

ψ
(n)
sℓm (u) sYℓm
�

xA
�

, (3.26)

25One says that they are ‘absolutely conserved’ quantities.
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to the recursion relations581

∂u

�

ψ
(1)
sℓm + (2s+ 1)Mψ(0)sℓm

�

=
1
2
(ℓ− s) (ℓ+ s+ 1)ψ(0)sℓm , (3.27a)

∂u

�

(n+ 1)ψ(n+1)
sℓm + (2n+ 2s+ 1)Mψ(n)sℓm + (n+ 2s)Mψ(n−1)

sℓm

�

=
1
2
(ℓ− s− n) (ℓ+ s+ n+ 1)ψ(n)sℓm .

(3.27b)

From these, one directly identifies the conserved Newman-Penrose charges at level n by setting582

ℓ= s+ n,583

sNℓm =ψ
(ℓ−s+1)
sℓm (u) +

2ℓ+ 1
ℓ− s+ 1

Mψ(ℓ−s)
sℓm (u) +

ℓ+ s
ℓ− s+ 1

M2ψ
(ℓ−s−1)
sℓm (u) ,

⇒ ∂u sNℓm = 0 , ℓ≥ |s| .
(3.28)

In terms of the canonical near-I modes canψ
(n)
s , using the redefinition in Eq. (3.24), the584

Newman-Penrose charges instead read585

sNℓm =
ℓ−s+1
∑

n=1

(−1)ℓ−s−n+1 n
ℓ− s+ 1

�

ℓ+ s
n+ 2s− 1

�

Mℓ−s−n+1
canψ

(n)
sℓm (u) , (3.29)

where canψ
(n)
sℓm (u) are the spherical harmonic modes of canψ

(n)
s

�

u, xA
�

. The Newman-Penrose586

charges derived here correctly match with previous results for scalar and electromagnetic per-587

turbations of the ERN black hole in the current setup,26 while they furthermore supply with588

the Newman-Penrose charges associated with linear gravitational perturbations of the ERN589

black hole.590

For each value of ℓ ≥ |s|, there are 2ℓ + 1 complex charges. The first set of Newman-591

Penrose charges corresponds to ℓ = s and appears only in the branch of perturbations with592

positive spin-weight,593

sNsm =ψ
(1)
ssm (u) + (2s+ 1)Mψ(0)ssm (u) = canψ

(1)
ssm (u) . (3.30)

Their conservation turns out to be stronger than the current context of linearized perturba-594

tions, namely, they are the 2 (2s+ 1) real non-linearly conserved charges as was famously595

demonstrated in Refs. [65,67].596

To make contact with the language of Ref. [65], let us now define the quantities597

sQ
(n)
ℓm (u) :=

∫

S2
dΩ2 s Ȳℓm
�

xA
�

canψ
(n)
s

�

u, xA
�

= canψ
(n)
sℓm (u) =

n
∑

k=0

�

n+ 2s
k+ 2s

�

M n−kψ
(k)
sℓm (u) ,

n≥ 1 , |m| ≤ ℓ , |s| ≤ ℓ≤ n+ s− 1 ,

(3.31)

where the integration is carried over the cut-u celestial sphere of I +. Using the recursion598

relations for the redefined near-I modes, or, equivalently, plugging the canonical near-I ex-599

pansion of the master variables ψs into the equations of motion Eq. (3.17), one can show that600

26For s = 0, Eq. (3.29) here agrees perfectly with Eq. (2.26) of Ref. [74], upon rescaling our near-I modes by
powers of M to make all of them equi-dimensionful. For s = +1, working out the relation between the near-I
modes of the Maxwell NP scalar φ0 and the near-I modes of the Regge-Wheeler-Zerilli master variables used by
Ref. [75], we find agreement of Eq. (3.29) here with Eq. (6.19) there.
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these satisfy the evolution equations601

∂u sQ
(n+1)
ℓm =

(ℓ− s− n) (ℓ+ s+ n+ 1)
n+ 1 sQ

(n)
ℓm

+
(n+ s) (n+ 2s)

n+ 1
M sQ

(n−1)
ℓm

−
(n+ 2s− 1) (n+ 2s− 1)

2 (n+ 1)
M2

sQ
(n−2)
ℓm .

(3.32)

Compared to the original definitions of the Newman-Penrose charges for Maxwell (s = +1)602

and linearized Einstein gravity (s = +2) (see Eq. (3.17) and Eq. (3.31) of Ref. [66]),603

�

+1Q
(n)
ℓm

�

here
=
�

F n−1,n−ℓ
m

�

[66] ,
�

+2Q
(n)
ℓm

�

here
=
�

Gn−1,n−ℓ+1
m

�

[66] . (3.33)

The conserved Newman-Penrose charges are then identified with the following redefined Q’s604

sNℓm =
ℓ−s+1
∑

n=1

(−1)ℓ−s+1−n n
ℓ− s+ 1

�

ℓ+ s
n+ 2s− 1

�

Mℓ−s+1−n
sQ
(n)
ℓm (u)

= sQ
(ℓ−s+1)
ℓm (u) +O (M) ,

⇒ ∂u sNℓm = 0 , ℓ≥ |s| .

(3.34)

At this point, let us comment on the appearance of Newman-Penrose charges for nega-605

tive spin-weights. These Newman-Penrose charges for s < 0 involve subℓ+|s|+1-leading order606

near-I modes of the corresponding NP scalars. However, these are not new Newman-Penrose607

charges, on top of the ones for the branch with s ≥ 0. Rather, the hypersurface equations of mo-608

tion dictate that they are not part of the data of the problem, e.g. that they can be expressed in609

terms of the near-I modes
¦

φ
(0)
1−s,φ

(n≥1)
0

©

for sourceless Maxwell fields and
¦

Ψ
(0)
2−s,Ψ

(n≥1)
0

©

for610

Ricci-flat gravity. For instance, for the simple case of linearized perturbations of flat Minkowski611

spacetime, the hypersurface equations of motion read [66]612

1
rs+1

∂r

�

rs+1φ2−s

�

=
1
r

ð′S2φ1−s , 0≤ s ≤ +1 ,

1
rs+2

∂r

�

rs+2Ψ3−s

�

=
1
r

ð′S2Ψ2−s , −1≤ s ≤ +2 ,
(3.35)

and imply that613

φ
(n≥1−s)
1−s = (−1)1−s (n+ s− 1)!

n!
ð′1−s
S2 φ

(n+s−1)
0 , −1≤ s ≤ 0 ,

Ψ
(n≥2−s)
2−s = (−1)2−s (n+ s− 2)!

n!
ð′2−s
S2 Ψ

(n+s−2)
0 , −2≤ s ≤ +1 ,

(3.36)

thus showing that the subleading near-I modes from which the quantities −|s|Nℓm are built do614

not carry new information.615

Last, let us finish this near-I analysis by writing down a realization of the Newman-Penrose616

charges directly from asymptotic limits of transverse derivatives of the bulk field ψs. We find617

that618

sNℓm =
(−1)ℓ−s+1

(ℓ− s+ 1)!
lim

r→∞

∫

S2
dΩ2 s Ȳℓm
�

(r −M)2 ∂r

�ℓ−s
�

(r −M)2s+1

r2s−1
∂r

�

r2s+1ψs

�

�

. (3.37)
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3.4 Near-H (Aretakis) charges619

For the near-H charges associated with spin-weight s perturbations, we follow the same pro-620

cedure, that is, we first expand the NP scalar ψs in near-H modes,621

ψs ∼
∞
∑

n=0

ψ̂(n)s

�

υ, xA
�

� ρ

M

�n
:= ψ̂s

�

υ,ρ, xA
�

, (3.38)

and then insert this into the equations of motion, Eq. (3.18), to get the recursion relations622

M∂υ
�

ψ̂(1)s + (2s+ 1) ψ̂(0)s

�

= −ð′S2ðS2ψ̂
(0)
s , (3.39a)

M∂υ
�

(n+ 1) ψ̂(n+1)
s + (2n+ 2s+ 1) ψ̂(n)s + (n+ 2s) ψ̂(n−1)

s

�

= −
�

ð′S2ðS2 +
1
2

n (n+ 2s+ 1)
�

ψ̂(n)s .
(3.39b)

We note here that we have chosen the near-H modes ψ̂(n)s to be of equal length dimension,623

due to the existence of the characteristic length scale M provided by the black hole’s size.624

Proceeding, after expanding into spin-weight s spherical harmonics,625

ψ̂(n)s

�

υ, xA
�

=
∞
∑

ℓ=|s|

ℓ
∑

m=−ℓ

ψ̂
(n)
sℓm (υ) sYℓm
�

xA
�

, (3.40)

the recursion relations reduce to626

M∂υ
�

ψ̂
(1)
sℓm + (2s+ 1) ψ̂(0)sℓm

�

=
1
2
(ℓ− s) (ℓ+ s+ 1) ψ̂(0)sℓm , (3.41a)

M∂υ
�

(n+ 1) ψ̂(n+1)
sℓm + (2n+ 2s+ 1) ψ̂(n)sℓm + (n+ 2s) ψ̂(n−1)

sℓm

�

=
1
2
(ℓ− s− n) (ℓ+ s+ n+ 1) ψ̂(n)sℓm .

(3.41b)

In this form, it is straightforward to identify the conserved Aretakis charges. At level n,627

they correspond to simply setting ℓ= s+ n,628

sAℓm := ψ̂(ℓ−s+1)
sℓm (υ) +

2ℓ+ 1
ℓ− s+ 1

ψ̂
(ℓ−s)
sℓm (υ) +

ℓ+ s
ℓ− s+ 1

ψ̂
(ℓ−s−1)
sℓm (υ) ,

⇒ ∂υ sAℓm = 0 , ℓ≥ |s| .
(3.42)

In terms of the quantities629

sQ̂
(n)
ℓm (υ) :=

∫

S2
dΩ2 s Ȳℓm
�

xA
�

ψ̂(n)s

�

υ, xA
�

= ψ̂(n)sℓm (υ) ,

n≥ 1 , |m| ≤ ℓ , |s| ≤ ℓ≤ n+ s− 1 ,

(3.43)

with the integral being taken over the cut-υ spherical cross-section of H +, the conserved630

Aretakis charges are identified with the following superpositions of Q̂’s631

sAℓm = sQ̂
(ℓ−s+1)
ℓm (υ) +

2ℓ+ 1
ℓ− s+ 1 sQ̂

(ℓ−s)
ℓm (υ) +

ℓ+ s
ℓ− s+ 1 sQ̂

(ℓ−s−1)
ℓm (υ) . (3.44)

At the level of the full bulk field ψs, Eq. (3.42) is equivalent to632

sAℓm =
Mℓ−s−1

(ℓ− s+ 1)!
lim
r→M

∫

S2
dΩ2 s Ȳℓm ∂

ℓ−s
r

�

1
r2s−1

∂r

�

r2s+1ψs

�

�

. (3.45)
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For s = 0 or s = +1, our results coincide, up to overall constant factors, with the Aretakis633

charges associated with scalar or electromagnetic (with a frozen gravitational field) pertur-634

bations of ERN27. Similar to what happens with the Newman-Penrose charges of negative635

spin-weights, the hypersurface equations imply that the Aretakis charges with s < 0 are also636

dependable quantities, rather than a second infinite tower of conservation laws.637

3.5 Matching of near-I and near-H charges under CT inversion638

The curious reader might have noticed that the near-H recursion relations, Eq. (3.39), are639

functionally identical to the recursion relations for the redefined near-I modes, Eq. (3.25).640

This is not an accident and we will demonstrate here that it is a direct consequence of the CT641

inversions being a conformal isometry of the ERN black hole geometry, see Eq. (3.2). Building642

on this, we will reach the realization that the near-H (Aretakis) charges sAℓm and the near-I643

(Newman-Penrose) charges sNℓm derived above are in fact exactly equal. While this has already644

been investigated separately for the scalar and electromagnetic cases [61, 68–71, 74, 75], the645

present approach will allow to collectively reproduce these results and also supplement with646

the case of gravitational perturbations, the latter requiring a more careful treatment.647

All in all, to figure out how, for instance, the Aretakis charges get mapped under the CT648

inversion, we need to perform a conformal transformation onto the master variables ψs that649

enter the equations of motion. Let us focus to the branch of perturbations with positive spin-650

weights for the moment, for which651

ψ+|s| =











Φ for s = 0 ;

φ0 for s = +1 ;

Ψ0 for s = +2 .

(3.46)

For the particular conformal factor Ω = M
r−M associated with the CT inversion, and from the652

fact the near-H tetrad vectors of Eq. (3.12) and the near-I tetrad vectors of Eq. (3.8) are653

conformally related under CT inversions according to654







ℓ(3.8)
n(3.8)
m(3.8)
m̄(3.8)







CT
−→







Ω2ℓ(3.12)
n(3.12)
Ωm(3.12)
Ω m̄(3.12)






, (3.47)

we then have655

Φ
�

u, r, xA
� CT
−→ Φ̃
�

u, r, xA
�

=
M

r −M
Φ̂

�

υ 7→ u,ρ 7→
M2

r −M
, xA

�

,

φ0

�

u, r, xA
� CT
−→ φ̃0

�

u, r, xA
�

=
�

M
r −M

�3

φ̂0

�

υ 7→ u,ρ 7→
M2

r −M
, xA

�

,

Ψ0

�

u, r, xA
� CT
−→ Ψ̃0

�

u, r, xA
�

=
�

M
r −M

�4

Ψ̂0

�

υ 7→ u,ρ 7→
M2

r −M
, xA

�

.

(3.48)

We now see an interesting pattern. Starting from the near-horizon expansion of the scalar656

field Φ and the Maxwell-NP scalar φ0, the resulting CT-inverted quantities have the correct657

27For the scalar Aretakis charges, see Ref. [58] and Eq. (1.16) in Ref. [144]. For the electromagnetic Aretakis
charges, after working out the relation between the Maxwell-NP scalar φ0 and the gauge field perturbation master
variables entering the Regge-Wheeler-Zerilli approach of Ref. [75], Eq. (3.42) here can be seen to match with
Eq. (6.11) there, up to an overall constant. We remind, however, that we are working in a regime where the
coupling of electromagnetic and gravitational perturbations is as explained in Footnote 24. A direct comparison
with the results of Refs. [61,62], is therefore not straightforward.
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boundary conditions near null infinity, namely, Φ̃∼ r−1 and φ̃0 ∼ r−3. Since there is only one,658

unique, solution of the equations of motion that satisfies the right boundary conditions at both659

null infinity and the horizon, this tells us that the CT-inverted quantities are in fact exactly660

equal to the corresponding near-I field profiles,661

Φ̃
�

u, r, xA
�

= Φ
�

u, r, xA
�

, φ̃0

�

u, r, xA
�

= φ0

�

u, r, xA
�

, (3.49)

if they satisfy the same equations of motion of course. These are the types of matching con-662

ditions that are needed to explore whether the near-H (Aretakis) and the near-I (Newman-663

Penrose) charges coincide.664

For the gravitational case, however, the CT-inverted Weyl-NP scalar Ψ̃0 does not have the665

correct boundary conditions near null infinity, namely, it decays like ∼ r−4 instead of ∼ r−5.666

As such, the CT inverted Weyl-NP scalar is not expected to be the same Weyl-NP scalar one667

started with. In fact, the CT inverted Weyl-NP scalar does not even satisfy the same equations668

of motion! This is just the well-known statement that the gravitational equations of motion669

are not conformally invariant, in the sense that, for instance, Ricci flatness is not preserved670

under conformal transformations in four spacetime dimensions.671

We will now provide a simple resolution to this complication for the gravitational case. This672

relies on the following remarkable property: the spin-weighted wave operator is conformally673

invariant [145]. For instance, under CT inversions, the differential operator acting on the NP674

scalar ψs transforms homogeneously and with equal weights,675

I +Ts
CT
−→ I +T̃s = Ω

2s+1
H +TsΩ

−2s−1 , Ω=
M

r −M
. (3.50)

This property, however, is not special to CT inversions of ERN; it is true for any conformal676

transformation of the spin-weighted wave operator in Eq. (3.14) [145].677

We see then that, even though the wave operator does transform homogeneously under678

conformal transformations, the problem resides in the fact that its conformal weights do not679

match with the conformal weights of the perturbations it acts on, except in the special cases680

s = 0 (scalar perturbations) and s = +1 (electromagnetic perturbations),681

I +T̃+|s|





Φ̃

φ̃0
Ψ̃0



= Ω2|s|+1
H +T+|s|





Φ

φ0
Ω−1Ψ0



 . (3.51)

Consequently, if ψ̂+|s|
�

υ,ρ, xA
�

is a solution of the equations of motion in the near-horizon-682

adapted coordinate system, then one can reach a solution ψ+|s|
�

u, r, xA
�

of the equations of683

motion in the near-null infinity-adapted coordinate system as follows684

ψ+|s|
�

u, r, xA
�

=











Φ̃
�

u, r, xA
�

for s = 0 ;

φ̃0

�

u, r, xA
�

for s = +1 ;

ΩΨ̃0

�

u, r, xA
�

for s = +2 ;

=
�

M
r −M

�2|s|+1

ψ̂+|s|

�

υ 7→ u,ρ 7→
M2

r −M
, xA

�

.

(3.52)

Applying analogous arguments for the perturbations of negative spin-weights, this can685

be extended to the following matching statement: if ψ̂s

�

υ,ρ, xA
�

is a near-horizon expanded686

solution of the equations of motion, then687

ψs

�

u, r, xA
�

=
�

M
r −M

�2s+1

ψ̂s

�

υ 7→ u,ρ 7→
M2

r −M
, xA

�

(3.53)
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is a near-null infinity expanded solution of the equations of motion.688

Let us now see the consequences of this matching under the CT inversion at the level of689

the Newman-Penrose and the Aretakis charges. First of all, in terms of the asymptotic modes,690

the matching condition tells us that691

If ψ̂s

�

υ,ρ, xA
�

=
∞
∑

n=0

ψ̂(n)s

�

υ, xA
�

� ρ

M

�n
and H +Tsψ̂s = 0 ,

then ψs

�

u, r, xA
�

=
1

(r −M)2s+1

∞
∑

n=0

ψ(n)s

�

u, xA
�

(r −M)n
such that I +Tsψs = 0 ,

with692

ψ(n)s

�

u, xA
�

= M n+2s+1ψ̂(n)s

�

υ 7→ u, xA
�

, (3.54)

or, in terms of the canonical near-I modes,693

canψ
(n)
s

�

u, xA
�

= M n+2s+1
n
∑

k=0

�

n+ 2s
k+ 2s

�

ψ̂(k)s

�

υ 7→ u, xA
�

. (3.55)

It is then straightforward to see that the Newman-Penrose charges exactly match the Aretakis694

charges,695

sNℓm =ψ
(ℓ−s+1)(u)
sℓm +

2ℓ+ 1
ℓ− s+ 1

Mψ(ℓ−s)
sℓm (u) +

ℓ+ s
ℓ− s+ 1

M2ψ
(ℓ−s−1)
sℓm (u)

= Mℓ+s+2
�

ψ̂
(ℓ−s+1)
sℓm (υ 7→ u) +

2ℓ+ 1
ℓ− s+ 1

ψ̂
(ℓ−s)
sℓm (υ 7→ u) +

ℓ+ s
ℓ− s+ 1

ψ̂
(ℓ−s−1)
sℓm (υ 7→ u)
�

,
(3.56)

696

∴ sNℓm = Mℓ+s+2
sAℓm , ℓ≥ |s| . (3.57)

This result can also be seen directly from the representations of the Newman-Penrose and697

Aretakis charges as asymptotic limits of transverse derivatives of the bulk field ψs, namely,698

Eq. (3.37) and Eq. (3.45). Indeed, when r 7→ M r
r−M , the matching condition of Eq. (3.53) can699

be seen to imply that Eq. (3.37) is equal to Eq. (3.45) according to Eq. (3.57) above.700

The results reported here encompass in a unified manner previous results on scalar [68]701

and electromagnetic [75] perturbations, but also extend the matching of the gravitational702

Newman-Penrose charges28 with the tower of conserved Aretakis charges associated with grav-703

itational perturbations of the ERN black hole, thanks to the property of the spin-weighted wave704

operator identified and discussed above.705

4 The case of extremal Kerr-Newman black holes706

We will now study an instance of a black hole geometry which is not self-mapped under the707

spatial inversions of the form described in Section 2. Nevertheless, and somehow remarkably,708

we still find that these spatial inversions allow to extract physical constraints. This is the ex-709

ample of the extremal Kerr-Newman black hole geometry, whose horizon has the characteristic710

feature of being twisting. As discussed in Section 2, there is no simple geometric spatial in-711

version that conformally maps null infinity of an asymptotically flat spacetime to a twisting712

extremal horizon at a finite distance. Despite this fact, it was demonstrated, already by Couch713

28Another set of interesting gravitational charges at I are associated with the so-called celestial w1+∞ sym-
metries [40, 146–148] and were studied at finite distance in [36]. Notice, however, that these NP charges are
orthogonal to the Newman-Penrose conserved quantities (see e.g. [148,149]).

27



SciPost Physics Submission

& Torrence [76], that the massless Klein-Gordon equation for scalar perturbations of the ex-714

tremal Kerr-Newman black hole still enjoys a spatial inversion symmetry, albeit one that acts715

non-locally in coordinate space. In this section, we will extend this result to all spin-weight716

s perturbations of the rotating black hole. We will subsequently identify a sector of pertur-717

bations onto which these spatial inversions act linearly in coordinate space and in precisely718

such a way that one can infer an effective I ↔ H mapping. Utilizing this, we will then719

show that a physical consequence of these geometric spatial inversions is the exact match-720

ing of the Newman-Penrose and Aretakis conserved quantities associated with axisymmetric721

spin-weighted perturbations of the Kerr-Newman black hole.722

4.1 The extremal Kerr-Newman black hole geometry723

The Kerr-Newman black hole geometry is a solution of the electrovacuum Einstein-Maxwell724

equations of motion. It describes an isolated, stationary and asymptotically flat black hole that725

is, besides charged under the Maxwell field with electric charge Q, also rotating with angular726

momentum J = Ma, a being the spin parameter. An extremal Kerr-Newman (EKN) black hole727

is one for which the gauge charges are related according to728

a2 +Q2 = M2 , (4.1)

which is the condition for the event horizon to be degenerate. In Boyer-Lindquist coordinates729

(t, r,θ ,φ), the Kerr-Newman black hole geometry is described by the line element [150,151]730

ds2
KN = −

∆

Σ

�

d t − a sin2 θ dφ
�2
+

sin2 θ

Σ

�

ad t −
�

r2 + a2
�

dφ
�2
+
Σ

∆
dr2 +Σ dθ2 , (4.2)

where731

∆= r2 − 2M r + a2 +Q2 and Σ= r2 + a2 cos2 θ . (4.3)

At extremality, the discriminant function becomes a perfect square, ∆ = (r −M)2, with the732

degenerate event horizon being located at r = M .733

The Boyer-Lindquist coordinate system is singular at the event horizon. A regular coordi-734

nate system that is adapted to a near-I + or a near-I − analysis is the system of retarded null735

coordinates (u, r,θ ,φ−) or advanced null coordinates (υ, r,θ ,φ+) respectively, related to the736

Boyer-Lindquist coordinates according to737

du= d t −
r2 + a2

∆
dr , dφ− = dφ −

a
∆

dr ,

dυ= d t +
r2 + a2

∆
dr , dφ+ = dφ +

a
∆

dr ,

(4.4)

In these coordinates, the Kerr-Newman metric reads738

ds2
KN = −du2 +

r2 + a2 −∆
Σ

�

du− a sin2 θ dφ−
�2 − 2
�

du− a sin2 θ dφ−
�

dr

+Σ dθ2 +
�

r2 + a2
�

sin2 θ dφ2
−

= −dυ2 +
r2 + a2 −∆

Σ

�

dυ− a sin2 θ dφ+
�2
+ 2
�

dυ− a sin2 θ dφ+
�

dr

+Σ dθ2 +
�

r2 + a2
�

sin2 θ dφ2
+ .

(4.5)

The above two regular coordinate systems are suitable for studying observables in a near-I + or739

near-I − analysis, corresponding to the limiting behavior as r →∞ while keeping (u,θ ,φ−)740

or (υ,θ ,φ+) fixed respectively. For analogous coordinate systems that are suitable for studying741
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observables near the future or past event horizon one can simply employ the horizon-centered742

radial coordinate ρ = r − M . Namely, a near-H + or near-H − analysis corresponds to the743

limiting behavior as ρ → 0 while keeping (υ,θ ,φ+) or (u,θ ,φ−) fixed respectively. Let it744

be noted, however, that these coordinates are not null Gaussian coordinates, due to the non-745

vanishing of the metric components grφ± = ±a sin2 θ .746

As opposed to ERN black hole geometry, the EKN black hole geometry does not have a747

simple spatial inversion conformal isometry. This should not come as a surprise though since,748

as we clarified in Section 2, spatial inversions of the form r 7→ α2

ρ conformally map null infin-749

ity to a finite-distance extremal horizon that is non-rotating. As we will see shortly, however,750

the equations of motion for perturbations of the EKN black hole do have a spatial inversion751

conformal symmetry; this is a transformation that is non-local in coordinate space, but acts lin-752

early onto the phase space of perturbations, as was already remarked for the case of minimally753

coupled massless scalar field perturbations in Ref. [76].754

4.2 Equations of motion for perturbations755

Let us now analyze the equations of motion governing spin-weighted perturbations of the EKN756

black hole. We will follow the same procedure as with the ERN black hole, namely, we will757

first introduce tetrad vectors adapted to each null surface of interest to subsequently extract758

the spin-weighted wave equation satisfied by the perturbations.759

Tetrad vectors, spin coefficients and fundamental NP scalars for near-I analysis For a760

near-I + analysis, we choose to work with the following set of null tetrad vectors761

ℓ= ∂r , n=
r2 + a2

Σ

�

∂u +
a

r2 + a2
∂φ−

�

−
(r −M)2

2Σ
∂r ,

m=
1
p

2 Γ

�

∂θ +
i

sinθ
∂φ− + ia sinθ ∂u

�

,

m̄=
1
p

2 Γ̄

�

∂θ −
i

sinθ
∂φ− − ia sinθ ∂u

�

,

(4.6)

where762

Γ := r + ia cosθ , (4.7)

in terms of which Σ = Γ Γ̄ . In the spinless limit, a → 0, these reduce the tetrad vectors of763

Eq. (3.8) used for the ERN black hole geometry. In the black hole perturbation theory liter-764

ature, these tetrad vectors are better known as the Kinnersley tetrad [152]. The Kinnersley765

tetrad has the property of being regular at the past event horizon but singular at the future766

event-horizon, as opposed to, for instance, the Hartle-Hawking tetrad [153] which is obtain-767

able by locally boosting the Kinnersley tetrad. While this does not matter for a near-I + anal-768

ysis, it will be compensated in the near-H + investigation by choosing an adjusted set of null769

tetrad vectors that is regular atH +.770

Then, the non-zero background spin coefficients can be worked out to be771

ρEKN
NP = −

1
Γ̄

, µEKN
NP = −

(r −M)2

2Γ Γ̄ 2
,

γEKN
NP = −

(r −M)2

2Γ Γ̄ 2
+

r −M
2Γ Γ̄

,

τEKN
NP = −

ia sinθ
p

2 Γ Γ̄
, πEKN

NP =
ia sinθ
p

2 Γ̄ 2
,

βEKN
NP =

cotθ

2
p

2 Γ
, αEKN

NP = −
cotθ

2
p

2 Γ̄
+

ia sinθ
p

2 Γ̄ 2
,

(4.8)
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while the only non-zero Weyl-NP and Maxwell-NP scalars are772

ΨEKN
2 =

M
Γ Γ̄ 3
(r −M + ia cosθ ) , φEKN

1 =
Q

2
p

4π Γ̄ 2
. (4.9)

Tetrad vectors, spin coefficients and fundamental NP scalars for near-H analysis For a773

near-H + analysis, we choose to work with the following set of null tetrad vectors774

ℓ= −∂ρ , n=
(M +ρ)2 + a2

Σ

�

∂υ +
a

(M +ρ)2 + a2
∂φ+

�

+
ρ2

2Σ
∂ρ ,

m=
1
p

2 Γ̄

�

∂θ +
i

sinθ
∂φ+ + ia sinθ ∂υ

�

,

m̄=
1
p

2 Γ

�

∂θ −
i

sinθ
∂φ+ − ia sinθ ∂υ

�

,

(4.10)

with Γ = M +ρ+ ia cosθ using the current horizon-centered radial coordinate. As promised,775

this tetrad is regular at the future event horizon, and, hence, so will the NP scalars built from it776

be. The corresponding non-vanishing background spin coefficients, Weyl-NP and Maxwell-NP777

scalars are then given by778

ρEKN
NP =

1
Γ

, µEKN
NP = +

ρ2

2Γ 2Γ̄
,

γEKN
NP =

ρ2

2Γ 2Γ̄
−
ρ

2Γ Γ̄
,

τEKN
NP =

ia sinθ
p

2 Γ Γ̄
, πEKN

NP = −
ia sinθ
p

2 Γ 2
,

βEKN
NP =

cotθ

2
p

2 Γ̄
, αEKN

NP = −
cotθ

2
p

2 Γ
−

ia sinθ
p

2 Γ 2
,

ΨEKN
2 =

M
Γ 3Γ̄
(ρ + ia cosθ ) , φEKN

1 =
Q

2
p

4π Γ 2
.

(4.11)

Teukolsky equations We will work again with the equations of motion of Eq. (3.14). As779

already remarked in Footnote 24, these are approximate for perturbations of non-zero spin-780

weights when the electric charge of the black hole is non-zero. They are nevertheless exact781

if the background electromagnetic field is absent, e.g. for the astrophysically relevant case of782

the electrically neutral Kerr black holes, which is also captured by our subsequent analysis.783

For the I +-adapted tetrad vectors of Eq. (4.6) and coordinates (u, r,θ ,φ−), and theH +-784

adapted tetrad vectors of Eq. (4.10) and coordinates (υ,ρ,θ ,φ+), the Teukolsky equations785

become, after multiplying Eq. (3.14) by −2Σ,786

I +Tsψs = 0 , H +Tsψs = 0 , (4.12)

with787

I +Ts := (r −M)−2s ∂r (r −M)2(s+1) ∂r − 2a ∂φ−∂r + 2ð′S2ðS2

− 2∂u

�

�

r2 + a2
�

∂r + (2s+ 1) r −
1
2

a2 sin2 θ ∂u − a∂φ− + isa cosθ
�

,
(4.13a)

H +Ts := ρ−2s∂ρ ρ
2(s+1)∂ρ + 2a ∂φ+∂ρ + 2ð′S2ðS2

+ 2∂υ

�

�

(M +ρ)2 + a2
�

∂ρ + (2s+ 1) (M +ρ) +
1
2

a2 sin2 θ ∂υ + a∂φ+ − isa cosθ
�

.

(4.13b)
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We note here that we have isolated the purely spherical contribution to the angular operator788

from the remaining θ -dependent pieces that enter for rotating black holes, namely, the terms789

2∂u/υ

�

a∂φ± +
1
2 a2 sin2 θ ∂u/υ − isa cosθ

�

. These terms are the spheroidal contributions to the790

spin-weighted Laplace-Beltrami operator on the 2-sphere [137, 138], but the fact that they791

enter inside total time derivatives ensures that they will not affect our previous prescription792

of extracting conservation laws near I + and near H + by expanding into spherical harmonic793

modes; rather, their contribution will enter as the technical complication that the resulting794

charges will mix spherical harmonic modes of different orbital numbers as we will shortly see795

more explicitly.796

4.3 Near-I (Newman-Penrose) charges797

As with the ERN black hole paradigm, to extract the Newman-Penrose charges associated with798

spin-weight s perturbations of the EKN black hole, we expand the master variables ψs into799

redefined near-I modes800

ψs ∼
1

(r −M)2s+1

∞
∑

n=0

ψ(n)s (u,φ−,θ )

(r −M)n
:=ψs (u, r,φ−,θ ) . (4.14)

Inserting this near-I expansion into the Teukolsky equation I +Tsψs = 0 gives rise to the801

following recursion relations802

∂u

§

(n+ 1)ψ(n+1)
s + (2n+ 2s+ 1)Mψ(n)s + (n+ 2s)

�

1+χ2
�

M2ψ(n−1)
s

+
�

1
2
χ2 sin2 θ M∂u +χ∂φ− − isχ cosθ

�

Mψ(n)s

ª

= −
�

ð′S2ðS2 +
1
2

n (n+ 2s+ 1)
�

ψ(n)s − (n+ 2s)χM∂φ−ψ
(n−1)
s ,

(4.15)

where we have introduce the dimensionless spin parameter803

χ :=
a
M

. (4.16)

Projecting onto spin-weight s spherical harmonics, this reduces to804

∂u

∫

S2
dΩ2 s Ȳℓm

§

(n+ 1)ψ(n+1)
s + (2n+ 2s+ 1)Mψ(n)s + (n+ 2s)

�

1+χ2
�

M2ψ(n−1)
s

+
�

1
2
χ2 sin2 θ M∂u + iχ (m− s cosθ )

�

Mψ(n)s

ª

=

∫

S2
dΩ2 s Ȳℓm

§

1
2
(ℓ− s− n) (ℓ+ s+ n+ 1)ψ(n)s − imχ (n+ 2s)Mψ(n−1)

s

ª

(4.17)

For axisymmetric (m= 0) perturbations, in particular, one then identifies the n’th axisymmetric805

Newman-Penrose charge by setting ℓ= s+ n,806

sNℓ,m=0 =

∫

S2
dΩ2 s Ȳℓ,m=0

§

ψ(ℓ−s+1)
s +

2ℓ+ 1
ℓ− s+ 1

Mψ(ℓ−s)
s +

ℓ+ s
ℓ− s+ 1

�

1+χ2
�

M2ψ(ℓ−s−1)
s

+
1

ℓ− s+ 1

�

1
2
χ2 sin2 θ M∂u − isχ cosθ

�

Mψ(ℓ−s)
s

ª

,

(4.18)

807

⇒ ∂u sNℓ,m=0 = 0 , ℓ≥ |s| . (4.19)
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The first thing to observe is the qualitative new feature that the Newman-Penrose charges808

for rotating black holes contain mixing of near-I spherical harmonic modes with different809

orbital number ℓ, due to the presence of the 1
2χ

2 sin2 θ M∂uψ
(ℓ−s)
s and −isχ cosθψ(ℓ−s)

s terms.810

Namely, the former term induces mixing between ℓ± 2 modes, while the latter term induces811

mixing between ℓ± 1 modes. The explicit form of this mixing is written down in Appendix B.812

The above Newman-Penrose charges are equivalent to the following asymptotic limit of813

transverse derivatives of the bulk field ψs814

sNℓ,m=0 =
(−1)ℓ−s+1

(ℓ− s+ 1)!
lim

r→∞

∫

S2
dΩ2 s Ȳℓ,m=0

�

(r −M)2 ∂r

�ℓ−s
�

(r −M)2s+1





∂r

h

�

r2 + a2
�

2s+1
2 ψs

i

(r2 + a2)
2s−1

2

−
1
2

a2 sin2 θ ∂uψs + isa cosθψs





�

.

(4.20)

Furthermore, for n = 0, one can still find Newman-Penrose charges, now without the815

restriction of the perturbations being axisymmetric. These correspond to setting ℓ = s, which816

occurs only in the s ≥ 0 branch, and are given by817

sNsm =

∫

S2
dΩ2 s Ȳsm

§

ψ(1)s +
�

2s+ 1+ iχ (m− s cosθ ) +
1
2
χ2 sin2 θ M∂u

�

Mψ(0)s

ª

=

∫

S2
dΩ2 s Ȳsm

§

canψ
(1)
s +
�

1
2
χ2 sin2 θ M∂u + iχ (m− s cosθ )

�

M canψ
(0)
s

ª

,

(4.21)

where in the second line we rewrote the expression in terms of the canonical near-I modes.818

These are the 2s+1 complex Newman-Penrose constants that are non-linearly conserved [65,819

66]. One might notice that, for χ ̸= 0, we see additional terms as opposed to the well-known820

result that sNsm = canψ
(1)
ssm [65,66]. We strongly suspect that this is related to the fact that the821

retarded null coordinates (u, r,φ−,θ ) we have employed are not light-cone coordinates (such822

as null Gaussian or Bondi-like), since grφ− = a sin2 θ ̸= 0.823

As already mentioned, the equations of motion for the perturbations that we have used824

are only approximate when the black hole carries an electric charge. For an extremal Kerr825

black hole, however, for which a2 = M2 and, hence, χ = sign {a} := σa, our results are exact,826

namely,827

sN
Kerr
ℓ,m=0 =

∫

S2
dΩ2 s Ȳℓ,m=0

§

ψ(ℓ−s+1)
s +

1
ℓ− s+ 1

�

2ℓ+ 1+
1
2

sin2 θ M∂u − isσa cosθ
�

Mψ(ℓ−s)
s

+ 2
ℓ+ s
ℓ− s+ 1

M2ψ(ℓ−s−1)
s

ª

.

(4.22)

4.4 Near-H (Aretakis) charges828

For the Aretakis charges investigation, we follow the analogous near-H procedure. We choose829

to expand the master variables into equi-dimensionful near-H modes according to,830

ψs ∼
∞
∑

n=0

ψ̂(n)s (υ,φ+,θ )
�

Mρ
M2 + a2

�n
:= ψ̂s (υ,ρ,φ+,θ ) , (4.23)

namely, we chose the characteristic length dimension to be M2+a2

M = M
�

1+χ2
�

, instead of831

just M . This is purely conventional and solely for future convenience, such that, when we832
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will spatially invert the near-H solution, the matching onto the redefined near-I modes will833

involve as few as possible powers of the factor 1+χ2.834

Plugging this near-H expansion into the Teukolsky equation H +Tsψs = 0, we arrive at the835

following recursion relations836

M∂υ

§

(n+ 1) ψ̂(n+1)
s + (2n+ 2s+ 1) ψ̂(n)s + (n+ 2s)

�

1+χ2
�

ψ̂(n−1)
s

+
�

1
2
χ2 sin2 θ M∂υ +χ∂φ+ − isχ cosθ

�

ψ̂(n)s

ª

= −
�

ð′S2ðS2 +
1
2

n (n+ 2s+ 1)
�

ψ̂(n)s − (n+ 1)
χ

1+χ2
∂φ+ψ̂

(n+1)
s .

(4.24)

A first observation here is that the terms involving ψ̂(n+1)
s collect to form the operator837

M∂υ+
χ

1+χ2 ∂φ+ = M
�

∂υ +
a

M2+a2 ∂φ+

�

. This reflects the fact that frame-dragging effects become838

important on the horizon and suggests going to the co-rotating frame,839

ϕ+ = φ+ −
a

M2 + a2
υ , (4.25)

in which the recursion relations become840

M∂υ

§

(n+ 1) ψ̂(n+1)
s + (2n+ 2s+ 1) ψ̂(n)s + (n+ 2s)

�

1+χ2
�

ψ̂(n−1)
s

+

�

1
2
χ2 sin2 θ M∂υ +

1+χ2 cos2 θ

1+χ2
χ∂ϕ+ − isχ cosθ

�

ψ̂(n)s

ª

= −
�

ð′S2ðS2 +
1
2

n (n+ 2s+ 1)
�

ψ̂(n)s + (n+ 2s)χ∂ϕ+ψ̂
(n−1)
s

+

�

2n+ 2s+ 1− isχ cosθ +

�

1−
χ2 sin2 θ

2 (1+χ2)

�

χ∂ϕ+

�

χ

1+χ2
∂ϕ+ψ̂

(n)
s .

(4.26)

As with the case of Newman-Penrose charges, projecting onto axisymmetric (m= 0) spin-841

weighted spherical harmonics,842

M∂υ

∫

S2
dΩ2 s Ȳℓ,m=0

§

(n+ 1) ψ̂(n+1)
s + (2n+ 2s+ 1) ψ̂(n)s

+ (n+ 2s)
�

1+χ2
�

ψ̂(n−1)
s +
�

1
2
χ2 sin2 θ M∂υ − isχ cosθ

�

ψ̂(n)s

ª

=

∫

S2
dΩ2 s Ȳℓ,m=0

§

1
2
(ℓ− s− n) (ℓ+ s+ n+ 1) ψ̂(n)s

ª

,

(4.27)

reveals that setting ℓ = s + n gives rise to a conservation law on the horizon, i.e. the axisym-843

metric Aretakis charges are given by844

sAℓ,m=0 =

∫

S2
dΩ2 s Ȳℓ,m=0

§

ψ̂(ℓ−s+1)
s +

2ℓ+ 1
ℓ− s+ 1

ψ̂(ℓ−s)
s +

ℓ+ s
ℓ− s+ 1

�

1+χ2
�

ψ̂(ℓ−s−1)
s

+
1

ℓ− s+ 1

�

1
2
χ2 sin2 θ M∂υ − isχ cosθ

�

ψ̂(ℓ−s)
s

ª

,

(4.28)

845

⇒ ∂υ sAℓ,m=0 = 0 , ℓ≥ |s| . (4.29)

In Appendix B, we perform explicitly the integrals to write the above Aretakis charges in terms846

of mixed near-H spherical harmonic modes.847
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In terms of near-H limits of transverse derivatives of the bulk field, this is equivalent848

to [60]849

sAℓ,m=0 =
Mℓ−s−1
�

1+χ2
�ℓ−s

(ℓ− s+ 1)!
lim
r→M

∫

S2
dΩ2 s Ȳℓ,m=0

× ∂ ℓ−s
r





∂r

h

�

r2 + a2
�

2s+1
2 ψs

i

(r2 + a2)
2s−1

2

+
1
2

a2 sin2 θ ∂υψs − isa cosθψs



 .

(4.30)

For an extremal Kerr black hole, for which our results become exact, the axisymmetric850

Aretakis charges then read851

sA
Kerr
ℓ,m=0 =

∫

S2
dΩ2 s Ȳℓ,m=0

�

ψ̂(ℓ−s+1)
s +

1
ℓ− s+ 1

�

2ℓ+ 1+
1
2

sin2 θ M∂υ − isσa cosθ
�

ψ̂(ℓ−s)
s

+ 2
ℓ+ s
ℓ− s+ 1

ψ̂(ℓ−s−1)
s

�

,

(4.31)

with the near-H modes defined according to the expansion852

ψ̂s (υ,ρ,φ+,θ ) =
∞
∑

n=0

ψ̂(n)s (υ,φ+,θ )
� ρ

2M

�n
, (4.32)

and can be seen to match with the Aretakis charges already derived in Ref. [60], up to overall853

normalization factors.854

4.5 Spatial inversions symmetry of Teukolsky equations855

As briefly discussed at the beginning of this section, the EKN geometry is not equipped with a856

conformal isometry of the form r 7→ α2

ρ that exchanges the null surfaces of null infinity and the857

event horizon, in accordance with the results of Section 2. Nevertheless, Couch & Torrence858

noticed that the equations of motion for minimally coupled real massless scalar perturbations859

of the EKN black hole do enjoy a conformal symmetry under spatial inversions of this form, but860

that act non-locally in coordinate space [76], a result that was recently generalized to scalar861

field perturbations of instances of rotating black holes in supergravity [154,155].862

Motivated by this, we will now examine the behavior of the Teukolsky operators in Eq. (4.13)863

under spatial inversions of the form864

r −M 7→
r2
c

ρ
, u 7→ υ , φ− 7→ φ+ . (4.33)

Under such inversions,865

I +Ts 7→ ρ2s+1
H +Ts ρ

−2s−1

+ 2
��

M2 + a2 − r2
c

�

∂υ + a∂φ+
�

��

ρ2

r2
c
− 1

�

∂ρ +
2s+ 1
ρ

�

,
(4.34)

from which one realizes that the Teukolsky operator is conformally invariant if one formally866

matches the parameter rc to be867

r2
c = M2 + a2 +

a∂φ+
∂υ

⇒ I +Ts 7→ ρ−2s−1
H +Ts ρ

2s+1 . (4.35)
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The parameter rc is non-local in coordinate space, but acts linearly in the phase space of868

perturbations869

r2
c

�

e−iωυeimφ+
�

= e−iωυeimφ+
�

M2 + a2 −
ma
ω

�

, (4.36)

as already demonstrated by Couch & Torrence for scalar perturbations, and here extended to870

all spin-weight s perturbations of the rotating black hole.871

The geometric part of rc is in fact precisely what reflects the tortoise coordinate29
872

r∗ (r) = r −M −
M2 + a2

r −M
+ 2M ln

r −M
p

M2 + a2
= −r∗

�

M +
M2 + a2

r −M

�

. (4.37)

The non-geometric part of the parameter rc is built from Killing vectors of the background873

geometry, hence the no troubles when commuting it with the various metric functions. Its874

origin can be traced back to the following single term in the Teukolsky operator,875

Ts ⊃ ±2a∂φ±∂r . (4.38)

Evidently, this is also the term that obstructs the analytic construction of Aretakis and Newman-876

Penrose charges for non-axisymmetric perturbations.877

4.6 Geometric sector of spatial inversions and the matching of near-I and near-878

H charges879

The last technical observation around the origin of the non-local part of the spatial inver-880

sions for spinning black holes, suggests that the sector of axisymmetric perturbations posses881

a geometric spatial inversion conformal symmetry. Indeed, when ∂φψs = 0, the perturba-882

tion satisfies Tred
s ψs = 0, with the following reduced Teukolsky operator adapted to each null883

surface of interest884

I +Tred
s = (r −M)−2s ∂r (r −M)2(s+1) ∂r + 2ð′S2ðS2

− 2∂u

�

�

r2 + a2
�

∂r + (2s+ 1) r −
1
2

a2 sin2 θ ∂u + isa cosθ
�

,
(4.39a)

H +Tred
s = ρ−2s∂ρ ρ

2(s+1)∂ρ + 2ð′S2ðS2

+ 2∂υ

�

�

(M +ρ)2 + a2
�

∂ρ + (2s+ 1) (M +ρ) +
1
2

a2 sin2 θ ∂υ − isa cosθ
�

,

(4.39b)

and this reduced Teukolsky operator has the advantage of precisely being conformally invariant885

under the geometric spatial inversion30
886

r −M 7→
M2 + a2

ρ
, u 7→ υ , φ− 7→ φ+

⇒ H +Tred
s 7→ Ω−2s−1

I +Tred
s Ω

2s+1 , Ω=
M

r −M
,

(4.40)

29We note here that the integration constant in r∗ has been fixed such that

r∗
�

r = M +
p

M2 + a2
�

= 0 .

For non-rotating (extremal Reissner-Nordström) black holes, this root at r = 2M is just the location of the photon
sphere. For rotating black holes, however, this does not coincide with the photon sphere [156].

30We note here that the length scale entering the conformal factor, Ω= L
r−M , can be arbitrarily chosen since the

conformal weights of the Teukolsky operator are equal. Here, we chose L = M for future convenience.
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a fact that was already remarked in Ref. [68] for scalar perturbations and extended here to all887

spin-weight s perturbations.888

This geometric spatial inversion acquires a very nice physical interpretation: From the889

fact that it acts as a reflection on the tortoise coordinate, r∗ 7→ −r∗, and the exchange of890

retarded/advanced coordinates, u 7→ υ and φ− 7→ φ+, one then realizes that the geometric891

spatial inversion exactly maps I + toH +, and vice versa.892

Using the same arguments as in Section 3.5, we then arrive to the analogous matching893

condition that, if ψ̂s (υ,ρ,φ+,θ ) is a near-horizon expanded solution of the reduced equations894

of motion, then895

ψs (u, r,φ−,θ ) =
�

M
r −M

�2s+1

ψ̂s

�

υ 7→ u,ρ 7→
M2 + a2

r −M
,φ+ 7→ φ−,θ

�

(4.41)

is a near-null infinity expanded solution of the reduced equations of motion. Plugging this896

matching condition into the Newman-Penrose charges of Eq. (4.20), and comparing with the897

Aretakis charges of Eq. (4.30), one then realize that these two types of charges are exactly898

equal, up to an overall normalization factor,899

sNℓ,m=0 = Mℓ+s+2
sAℓ,m=0 , ℓ≥ |s| . (4.42)

Equivalently, at the level of asymptotic modes, the matching condition of Eq. (4.41) tells us900

that, if ψ̂s (υ,ρ,φ+,θ ) =
∑∞

n=0 ψ̂
(n)
s (υ,φ+,θ )
�

Mρ
M2+a2

�n
solvesH +Tred

s ψ̂s = 0, thenψs (u, r,φ−,θ )901

= 1
(r−M)2s+1

∑∞
n=0

ψ(n)s (u,φ−,θ )
(r−M)n solves I +Tred

s ψs = 0, provided that902

ψ(n)s (u,φ−,θ ) = M n+2s+1ψ̂(n)s (υ 7→ u,φ+ 7→ φ−,θ ) , (4.43)

which precisely outputs the equality Eq. (4.42) when inserting it into the Newman-Penrose903

charges of Eq. (4.18) and comparing with the Aretakis charges of Eq. (4.28).904

5 Summary and discussion905

In this work, we have emphasized the existence of a conformal isomorphism between asymp-906

totically flat spacetimes and geometries that contain an extremal, non-twisting and non-expanding907

horizon. The correspondence between the two types of geometries comes in the form of dis-908

crete spatial inversions that map a large distance null surface (null infinity) to a finite dis-909

tance one (horizon). The conformal nature of this correspondence, nevertheless, ensures the910

renowned dissimilar physics near each null surface [32,33,115].911

The geometry near the extremal horizon that corresponds to the spatially inverted asymp-912

totically flat spacetime in general does not reside in the same asymptotically flat spacetime.913

A counterexample of this situation is the four-dimensional extremal Reissner-Nordström (ERN)914

black hole, with the spatial inversion reducing to the well-known Couch-Torrence inversion [76].915

This fact allows to extract physical constraints in the form of matching conditions between916

quantities living on the asymptotically far null surface of null infinity and quantities living on917

the event horizon of the ERN black hole. We have illustrated this by further examining the rela-918

tion between infinite towers of conservation laws: the near-null infinity Newman-Penrose and919

the near-horizon Aretakis conserved quantities. We have revisited previous analyses for scalar920

and electromagnetic perturbations of the ERN geometry [61, 68, 75] in a unified framework921

and extended these results to the more intricate case of gravitational perturbations.922

We have furthermore showed that, while they seemed a priori to only lead to physical con-923

sequences for the restricted case of ERN, conformal inversions turn out to be also relevant for924
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the extremal Kerr-Newman (EKN) black holes. The event horizon of these black holes is now925

equipped with a non-zero twist and hence does not spatially invert simply to null infinity of an926

asymptotically flat spacetime. Despite this fact, we have demonstrated that spatial inversions927

of the form studied in this work still have a physical effect onto spin-weight s perturbations of928

the EKN black hole and, in particular, impose physical constraints such as the matching of the929

conserved quantities.930

Our results open various venues for future research, summarized below.931

More selection rules from conformal inversion The Aretakis and Newman-Penrose charges932

have previously been suggested to be associated with outgoing radiation atH + and incoming933

radiation at I + respectively [61]. However, the Couch-Torrence inversion conformal symme-934

try is expected to provide selection rules on other physical response properties of the black935

hole, namely, on its quasinormal-modes spectrum. A first hint towards this is the fact that the936

boundary conditions one imposes when studying the quasinormal mode spectrum of a black937

hole (ingoing wave atH + and outgoing wave at I +) are preserved under the Couch-Torrence938

inversion. The Couch-Torrence inversion could then provide a notion of strong-weak coupling939

duality in which solving the perturbation equations of motion in the “strong coupling” regime940

of the near-zone region ω (r −M)≪ 1, ω being the frequency of the perturbation, is dual to941

solving the perturbation equations of motion in the “weak coupling” regime ωM2

r−M ≪ 1, and942

vice versa. A preliminary analysis along these lines was done in Ref. [157] which showed that943

the vanishing of the Love numbers associated with static scalar perturbations of the ERN black944

hole or static and axisymmetric scalar perturbations of the EKN black hole, follows from the945

Couch-Torrence inversion conformal isometry.946

Generalized Couch-Torrence inversion It is natural to ask whether our present approach947

can be applied to other examples of black holes that are equipped with a generalized Couch-948

Torrence (CT) inversion structure [130,131,154,155], notably, to black holes that are rotating.949

A significant complication that enters when the black hole is spinning is that the spatial inver-950

sions studied so far are not geometrical; rather, they act on the phase space of perturbations951

of the black hole, as was already remarked in the original work of Couch & Torrence [76]. In952

this work, we utilized the observation that the sector of axisymmetric black hole perturbations953

possess a generalized CT inversion is agnostic to the details of the perturbation [68]. A natural954

next step is to study how the phase-space spatial inversions associated with non-axisymmetric955

perturbations of rotating black holes restrict the physical data.956

At the same time, one may wonder whether there exist spinning generalizations of the957

CT inversion symmetry of the ERN black hole that remain conformal isometries of the back-958

ground. A first attempt along these lines could be through the Newman-Janis algorithm of959

constructing rotating black hole solutions, starting from a seed geometry of a non-rotating960

black hole [150,151,158–162]. Furthermore, for the case of EKN black holes, the observation961

that the parameter rc entering the generalized Couch-Torrence inversion of Eq. (4.35) involves962

the characteristic co-rotating operator ∂t+
a

M2+a2 ∂φ (in Boyer-Lindquist coordinates), which is963

also the Killing vector field that generates the event horizon of the rotating black hole, suggests964

that factorizing the leading order frame-dragging effects on the horizon could potentially al-965

low to find spatial inversions that map this horizon onto null infinity and vice versa. We leave966

these computational prospects for near future work.967

Conformal isomorphism for twisting horizons Our present analysis demonstrated a con-968

formal isomorphism between asymptotically flat spacetimes and geometries that contain an ex-969

tremal, non-expanding and non-rotating horizon, by means of the spatial inversion of Eq. (2.21).970

One may then ask whether twisting horizons can also be incorporated withing this framework.971
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As demonstrated in Ref. [71], the spatial inversion presented here in general maps the geom-972

etry near an extremal and non-expanding horizon to an asymptotically flat geometry with973

guA = O (r)31. We expect that it should be possible to generalize our analysis to this case as974

well.975

Self-inversion and near-horizon multipole moments In general, geometries that are ‘self-976

dual’ under the spatial inversions are automatically black hole geometries, since the self-977

inversion condition captures information about the global structure of the spacetime that con-978

tains the horizon. It would be therefore instructive to understand what are the minimum979

geometric conditions that eventually ensure this property. To achieve this, one would need to980

identify a sufficiently large class of observables constructed from the data associated with each981

geometry, such that these observables uniquely reconstruct the corresponding geometry.982

For instance, one could identify multipole moments that live near null infinity and near983

the horizon and check under what conditions one can be retrieved after performing a spa-984

tial inversion on the other. While multipole moments are typically defined near spatial infin-985

ity [163–165], it was recently demonstrated in Ref. [40] that a notion of “celestial multipoles”986

living at null infinity plus the Newman-Penrose charges could be sufficient for this scope. On987

the other hand, the dynamical nature of the horizon metric obstructs the construction of multi-988

pole moments living on a generic horizon, due to the absence of a universal boundary structure989

at the horizon. However, non-expanding horizons appear to have sufficiently constrained dy-990

namics to allow such a universality class of geometries to arise and, hence, attempt to define991

horizon multipole moments. This was partly achieved in Refs. [114, 115] which identified992

a set of near-horizon geometric multipole moments that uniquely characterize the intrinsic993

geometry of the horizon. In the same spirit, one may attempt to define horizon multipole994

moments associated with extremal black hole geometries using the characteristic feature of995

a near-horizon AdS2 throat [166–168]. Another prospect would be to see how the celestial996

multipoles of Ref. [40] behave under spatial inversions and whether the resulting near-horizon997

quantities can be identified as horizon multipole moments with the expected properties. We998

leave these prospects for forthcoming development.999
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A Elements of the Newman-Penrose formalism1012

In this appendix, we review basic elements of the Newman-Penrose (NP) formalism [134,135].1013

In the NP formalism, the spacetime metric formulation is replaced by a local frame tetrad1014

31Comparing with the usual Bondi fall-offs guA =O
�

r0
�

, this led the authors of Ref. [71] to call this geometry
“weakly asymptotically flat”. However, asymptotic flatness does allow for a fall-off guA =O

�

r2
�

, see e.g. Ref. [95].
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formulation, the tetrad, in particular, being chosen to be null. The starting point is then the1015

introduction of two real, {ℓ, n}, and two complex, complex-conjugacy-related, {m, m̄}, tetrad1016

vectors, normalized as1017

ℓ · n= −1 , m · m̄= +1 , (A.1)

with all other inner products being zero. The metric is then reconstructed as gab = −2ℓ(anb)+2m(am̄b).1018

The fundamental fields in the NP formalism are projections of curvature tensors onto the1019

various null directions. More explicitly, the 6 independent components of the Maxwell field1020

strength tensor Fab are repackaged into the 3 complex Maxwell-NP scalars1021

φ0 := Fℓm , φ1 :=
1
2
(Fℓn − Fmm̄) , φ2 := Fm̄n , (A.2)

while the 10 independent components of the Weyl tensor Cabcd are rearranged into the 51022

complex Weyl-NP scalars1023

Ψ0 := −Cℓmℓm , Ψ1 := −Cℓmℓn , Ψ2 := −Cℓmm̄n ,

Ψ3 := −Cℓnm̄n , Ψ4 := −Cm̄nm̄n ,
(A.3)

where we are using the shorthand notation of replacing a spacetime index with the symbol of1024

tetrad vector it is contracted with, e.g. Fℓm := ℓambFab.1025

In order to write down equations of motion in the NP formalism, one furthermore intro-1026

duces the directional derivatives,1027







D
△
δ

δ̄






:=







ℓa

na

ma

m̄a






∇a , (A.4)

and the spacetime Christoffel symbols are traded for the 12 spin coefficients1028







κNP
τNP
σNP
ρNP






= −ma







D
△
δ

δ̄






ℓa ,







πNP
νNP
µNP
λNP






= +m̄a







D
△
δ

δ̄






na ,







εNP
γNP
βNP
αNP






:= +

1
2

�

m̄a







D
△
δ

δ̄






ma − na







D
△
δ

δ̄






ℓa

�

,

(A.5)

where the labels “NP” have been inserted in order to avoid confusion between these NP spin1029

coefficients and other symbols used in the current manuscript, e.g. from the symbols for the1030

surface gravity κ or the null Gaussian coordinateρwe employed in describing the near-horizon1031

metric in Section 2.1032

B Newman-Penrose and Aretakis charges for extremal Kerr-Newman1033

black holes in terms of spherical harmonic modes of perturba-1034

tions1035

The Newman-Penrose charges associated with axisymmetric perturbations of the rotating black1036

hole are given by Eq. (4.18). Expanding the near-I modes ψ(n)s into spin-weighted spherical1037
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harmonics,1038

ψ(n)s (u,φ−,θ ) =
∞
∑

ℓ′=|s|

ℓ′
∑

m′=−ℓ′
ψ
(n)
sℓ′m′ (u) sYℓ′m′ (φ−,θ ) , (B.1)

they reduce to1039

sNℓ,m=0 =ψ
(ℓ−s+1)
sℓ,m=0 +

2ℓ+ 1
ℓ− s+ 1

Mψ(ℓ−s)
sℓ,m=0 +

ℓ+ s
ℓ− s+ 1

�

1+χ2
�

M2ψ
(ℓ−s−1)
sℓ,m=0

+
M

ℓ− s+ 1

∞
∑

ℓ′=|s|

ℓ′
∑

m′=−ℓ′

�

1
2
χ2

s I
(2)
ℓℓ′m′M∂uψ

(ℓ−s)
sℓ′m′ − isχ s I

(1)
ℓℓ′m′ψ

(ℓ−s)
sℓ′m′

�

,
(B.2)

where1040

s I
(1)
ℓℓ′m′ :=

∫

S2
dΩ2 s Ȳℓ,m=0 sYℓ′m′ cosθ ,

s I
(2)
ℓℓ′m′ :=

∫

S2
dΩ2 s Ȳℓ,m=0 sYℓ′m′ sin

2 θ .

(B.3)

The aim of this appendix is to compute these integrals and reveal the explicit mixing of the1041

different ℓ-modes induced by the non-vanishing rotation of the black hole.1042

The first step is to write cosθ and sin2 θ in the basis of spherical harmonic functions,1043

cosθ =

√

√4π
3 0Y10 , sin2 θ =

√

√16π
9

�

0Y00 −
1
p

5
0Y20

�

. (B.4)

Then, using the fact that s Ȳℓm = (−1)s−m
−sYℓ,−m, the integrals s I

(1)
ℓℓ′m′ and s I

(2)
ℓℓ′m′ can be com-1044

puted in terms of Wigner’s 3− j symbols using the triple integral formula1045

∫

S2
dΩ2 s1

Yℓ1m1 s2
Yℓ2m2 s3

Yℓ3m3
=

√

√(2ℓ1 + 1) (2ℓ2 + 1) (2ℓ3 + 1)
4π

×
�

ℓ1 ℓ2 ℓ3
m1 m2 m3

��

ℓ1 ℓ2 ℓ3
−s1 −s2 −s3

�

.

(B.5)

while holds whenever s1 + s2 + s3 = 0.1046

For s I
(1)
ℓℓ′m′ , this gives1047

s I
(1)
ℓℓ′m′ = (−1)s
Æ

(2ℓ+ 1) (2ℓ′ + 1)

�

ℓ ℓ′ 1
0 m′ 0

��

ℓ ℓ′ 1
s −s 0

�

= δm′,0 (−1)s
§

δℓ′,ℓ−1

Æ

(2ℓ− 1) (2ℓ+ 1)

�

ℓ ℓ− 1 1
0 0 0

��

ℓ ℓ− 1 1
s −s 0

�

+δℓ′,ℓ+1

Æ

(2ℓ+ 1) (2ℓ+ 3)

�

ℓ ℓ+ 1 1
0 0 0

��

ℓ ℓ+ 1 1
s −s 0

�

ª

= δm′,0

¨

δℓ′,ℓ−1

√

√ (ℓ− s) (ℓ+ s)
(2ℓ− 1) (2ℓ+ 1)

+δℓ′,ℓ+1

√

√(ℓ− s+ 1) (ℓ+ s+ 1)
(2ℓ+ 1) (2ℓ+ 3)

«

,

(B.6)

where in the second line we applied the selection rules imposed by Wigner’s 3− j symbols and1048

in the third line we wrote their explicit values. Following the same procedure for s I
(2)
ℓℓ′m′ , we1049
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find1050

s I
(2)
ℓℓ′m′ = δm′,0

�

−δℓ′,ℓ−2

√

√

√
(ℓ− s− 1) (ℓ+ s− 1) (ℓ− s) (ℓ+ s)

(2ℓ− 3) (2ℓ− 1)2 (2ℓ+ 1)

+δℓ′,ℓ
2
3

�

1+

√

√ ℓ (ℓ+ 1)
(2ℓ− 1) (2ℓ+ 3)

�

−δℓ′,ℓ+2

√

√

√
(ℓ− s+ 1) (ℓ+ s+ 1) (ℓ− s+ 2) (ℓ+ s+ 2)

(2ℓ+ 1) (2ℓ+ 3)2 (2ℓ+ 5)

�

.

(B.7)

In summary, putting everything together, if we expand the perturbation ψs into near-I1051

spherical harmonic modes according to1052

ψs (u, r,φ−,θ ) =
1

(r −M)2s+1

∞
∑

n=0

∞
∑

ℓ=|s|

ℓ
∑

m=−ℓ

ψ
(n)
sℓm (u)

(r −M)n sYℓm (φ−,θ ) , (B.8)

then the axisymmetric Newman-Penrose charges of Eq. (4.20) have the following explicit form1053

sNℓ,m=0 =ψ
(ℓ−s+1)
sℓ,m=0 +

2ℓ+ 1
ℓ− s+ 1

Mψ(ℓ−s)
sℓ,m=0 +

ℓ+ s
ℓ− s+ 1

�

1+χ2
�

M2ψ
(ℓ−s−1)
sℓ,m=0

−
M

ℓ− s+ 1

�

χ2

2

√

√

√
(ℓ− s− 1) (ℓ+ s− 1) (ℓ− s) (ℓ+ s)

(2ℓ− 3) (2ℓ− 1)2 (2ℓ+ 1)
M∂uψ

(ℓ−s)
s,ℓ−2,m=0

+ isχ

√

√ (ℓ− s) (ℓ+ s)
(2ℓ− 1) (2ℓ+ 1)

ψ
(ℓ−s)
s,ℓ−1,m=0 −

χ2

3

�

1+

√

√ ℓ (ℓ+ 1)
(2ℓ− 1) (2ℓ+ 3)

�

M∂uψ
(ℓ−s)
sℓ,m=0

+ isχ

√

√(ℓ− s+ 1) (ℓ+ s+ 1)
(2ℓ+ 1) (2ℓ+ 3)

ψ
(ℓ−s)
s,ℓ+1,m=0

+
χ2

2

√

√

√
(ℓ− s+ 1) (ℓ+ s+ 1) (ℓ− s+ 2) (ℓ+ s+ 2)

(2ℓ+ 1) (2ℓ+ 3)2 (2ℓ+ 5)
M∂uψ

(ℓ−s)
s,ℓ+2,m=0

�

.

(B.9)

Similarly, if we expand the perturbation ψs into near-H spherical harmonic modes ac-1054

cording to1055

ψ̂s (υ,ρ,φ+,θ ) =
∞
∑

n=0

∞
∑

ℓ=|s|

ℓ
∑

m=−ℓ

ψ̂
(n)
sℓm (u)
�

Mρ
M2 + a2

�n

sYℓm (φ+,θ ) , (B.10)

then the axisymmetric Aretakis charges of Eq. (4.30) read1056

sAℓ,m=0 = ψ̂
(ℓ−s+1)
sℓ,m=0 +

2ℓ+ 1
ℓ− s+ 1

ψ̂
(ℓ−s)
sℓ,m=0 +

ℓ+ s
ℓ− s+ 1

�

1+χ2
�

ψ̂
(ℓ−s−1)
sℓ,m=0

−
1

ℓ− s+ 1

�

χ2

2

√

√

√
(ℓ− s− 1) (ℓ+ s− 1) (ℓ− s) (ℓ+ s)

(2ℓ− 3) (2ℓ− 1)2 (2ℓ+ 1)
M∂υψ̂

(ℓ−s)
s,ℓ−2,m=0

+ isχ

√

√ (ℓ− s) (ℓ+ s)
(2ℓ− 1) (2ℓ+ 1)

ψ̂
(ℓ−s)
s,ℓ−1,m=0 −

χ2

3

�

1+

√

√ ℓ (ℓ+ 1)
(2ℓ− 1) (2ℓ+ 3)

�

M∂υψ̂
(ℓ−s)
sℓ,m=0

+ isχ

√

√(ℓ− s+ 1) (ℓ+ s+ 1)
(2ℓ+ 1) (2ℓ+ 3)

ψ̂
(ℓ−s)
s,ℓ+1,m=0

+
χ2

2

√

√

√
(ℓ− s+ 1) (ℓ+ s+ 1) (ℓ− s+ 2) (ℓ+ s+ 2)
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s,ℓ+2,m=0

�

.

(B.11)
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