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LEMONS: An open-source platform to generate non-circular,
anthropometry-based pedestrian shapes and simulate their
mechanical interactions in two dimensions
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Abstract

To model dense crowds, the usual recourse to oversimplified (circular) pedestrian shapes
and contact forces shows limitations. To help modellers overcome these limitations, we
propose an open-source numerical tool. It consists of a Python library that generates
2D and 3D pedestrian crowds based on anthropometric data, and a C++ library that
computes mechanical contacts with other agents and with obstacles, and evolves the
crowd’s configuration. Additionally, we provide an online platform with a user-friendly
graphical interface for the Python library, and scripts to call the C++ library from Python.
The tool enables users to implement their own decisional layer, i.e., to control the agents’
choices of desired velocities.
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1 Introduction

1.1 Motivations

From an external physical viewpoint, a pedestrian is a deformable mechanical body. As such,
the pedestrians’ bodies obey Newtonian mechanics. In particular, they experience physical
forces (e.g., if they happen to push against a wall) that partly constrain their motion. Yet,
they differ from inert objects in that, upon flexing their muscles, they can internally deform
their bodies and thus self-propel via the interaction with the ground. This reveals two
intrinsically coupled levels of pedestrian dynamics: the mechanical level and the
decision-making level (which controls the internal body deformation and is not governed by
Mechanics). The literature on crowds reflects this duality. Some studies focus on mechanical
aspects (essential in high-density scenarios) [1, 2] but most often relying on idealised
interaction forces and simplified circular shapes that fail to replicate mechanical interactions
faithfully;  others examine decision-making (especially relevant in low-density
contexts) [3, 4], while yet others [5] address the coupling of both levels, crucial in
intermediate-density situations where individuals navigate to avoid collisions, but may
nonetheless experience physical contact.

Most existing crowd dynamics models [2, 5, 7] represent pedestrians as disks. However,
when using the bideltoid breadth (defined in Fig. 2) as the disk diameter, a tightly packed
random arrangement of a realistic population (shown in Fig. 1) only achieves densities of
about 4 ped/m?. This falls far short of empirically observed peak densities, which sometimes
exceed 8ped/m? in real-world scenarios [8-10]. One idea to reconcile this density
discrepancy could be to reduce disk diameters. However, this adjustment introduces critical
flaws. First, it preserves the unrealistic circular body geometry, which fails to reflect human
morphology and limits the number of simultaneous physical contacts a pedestrian can have
to at most six. In contrast, in controlled dense crowd scenarios [11, 12], single individuals
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Figure 1: Tightly packed random pedestrian disk arrangement, reaching a density
of 4ped/m?. The disk diameters are sampled from the empirical bideltoid breadth
distribution of a US population subset (ANSURII database, [6]), with mean 49 cm
and standard deviation 4 cm. Algorithm details: App. D.

Side view Back view

chest depth

i ¥ bideltoid
breadth

height

Figure 2: Illustration of anthropometric measurements — including height, chest
depth and bideltoid breadth — adapted from [6].

experiencing simultaneous contact with eight distinct others were observed. Second,
narrower disks would artificially lift constraints on unidirectional flow in narrow corridors
and overestimate the associated flow rate. Therefore, instead of reducing disk diameters, we
refine existing elongated-body formulations and represent the mechanical shape of a
pedestrian by an anisotropic shape that better captures pedestrian morphology and
multi-contact interactions.

The use of anisotropic shapes in the granular materials literature is well-established.
Discrete element simulations have employed diverse geometries to describe solid dynamics:
ellipses [13], polygons [14], polar-form polygons [15], and disk assemblies [16] represent
key examples, while [17] provides a comprehensive review. Despite extensive research on
granular dynamics, non-circular body shapes have so far only been integrated into a
relatively small number of pedestrian models. Elliptical volume exclusion was incorporated
into generalised centrifugal force models, prioritising inertial forces over traditional
damped-spring mechanics for pedestrian contact [18]. For models relying on the concept of
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velocity obstacles, the original circular agents’ shapes were gradually extended to ellipsoids
(EORCA), or polygonal approximations thereof for computational efficiency [19, 20], and to
arbitrary shapes approximated by stitching rounded trapezoids centred on the medial axis of
the shape [21]. These ellipsoid arbitrarily shaped representations govern the choice of an
optimal velocity that ideally enables collision-free navigation (decisional purpose), alien to
any consideration of mechanical interactions. If one focuses on models including short-range
and/or contact interactions, Langston et al. represented pedestrians with three overlapping
circles in a discrete-element simulation [22]. So, too, did Korhonen et al. (FDS+EVAC) [23]
and Song et al. [24] in the mechanically simpler context of modified social-force models
(also see the 1995 paper by Thompson et al. [25]), while spheropolygons [26] or
spherocylinders [27, 28] were later introduced in force-based simulations incorporating
self-propulsion forces as well as granular material interactions governed by Newtonian
mechanics, notably to model competitive egress scenarios. Recently, the human torso has
been modelled as a capsule in a flow governed by position-based dynamics, supplemented
with short-range interactions [29].

Nevertheless, albeit anisotropic, these shapes face significant limitations: they are more
or less arbitrarily defined and lack a quantitative medical or anthropometric basis.
Consequently, the generated crowds lack representative heterogeneity, which is crucial for
accurately replicating density and collision statistics. These rigid structures also resist
extension to new contact models involving deformation or relative motion between the
centres of mass of the body segments. This article addresses these limitations by introducing
a tool that generates realistic crowds from anthropometric data, simulates mechanical
interactions, and allows user-defined decisional layers. It therefore removes the technical
barriers when it comes to modelling elongated crowd shapes, allowing the community to
focus on decision-making and its interaction with mechanics. This tool also opens the door to
exploring essential questions about introducing complexity into modelling, such as whether
one needs to introduce a third dimension or incorporate heterogeneity in agent types, like
strollers or individuals carrying bags.

In addition to serving researchers in the field, this tool is designed for crowd modellers at
all levels, starting from beginners, in their efforts to assist, e.g. public authorities and
businesses; it provides them with the possibility to achieve more realistic simulations of
dense (and possibly heterogeneous) crowds in a simple way. In this particular regard,
existing simulation software!, such as Iventis [30] and Vadere [31], fail to reflect the latest
advances; our solution brings crowd simulation into the present.

Finally, the proposed tool, dubbed LEMONS, may also be of pedagogical interest. It can
easily be integrated into classroom settings, enabling teachers and science communicators
to simulate agents with minimal effort. It has the potential to spark interest in the physical
sciences, particularly in the study of complex systems and active matter.

1.2 How to read this document

This document exposes the theoretical foundations of the LEMONS software tool and provides
an overview of the code structure. A minimal usage example, detailed usage tutorials (along
with Jupyter Notebooks), and comprehensive API documentation for the classes and functions
in LEMONS are available online [32]. Great care has been taken in developing the codebase
to make it user-friendly, easy to expand, and maintainable, as detailed in App. E.

This article is structured as follows. We begin by outlining the theoretical foundations of
the project, introducing a novel mechanical shape for pedestrians, and describing the

IThe GitHub repository https://github.com/pozapas/awesome-crowdynamics aspires to compile a broad
collection of existing crowd and pedestrian open source simulation software.
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generation of realistic crowds based on anthropometric data. Sec. 2.2 also details the
specification of mechanical interactions between agents’ shapes and with any walls present in
the environment. The document then provides an overview of the code structure in Sec. 3.
Finally, in Sec. 4, we present an in-depth discussion of our model, outline the tests conducted
to validate its implementation, and propose potential directions for future improvements. We
also provide detailed instructions for running a pushing scenario simulation in this section.
Supplemental videos of the tests and of the practical case studied are also provided [33].

2 Theory & Methods

2.1 From the individual pedestrian’s shape to the generation of a synthetic
crowd

For realistic pedestrian shapes, we relied on medical data, specifically, cross-sectional images
from two cryopreserved middle-aged cadavers (a male at 1 mm intervals and a female at 0.33
mm intervals) provided by the Visible Human Project [34]. Since 2D simulations prevail in
the field of pedestrian dynamics, we need to project the 3D shape onto a suitable effective
2D shape. To this end, we selected the cross-section at torso height?, an example of which is
shown in Fig. 3 for the male specimen; this choice is notably justified by the fact that fatalities
during crowd crushes often result from asphyxia and severe compression of the rib cage and
lungs. We approximated the torso slice with a set of five partly overlapping disks: two for the
shoulders, two for the pectoral muscles, and one for the back, as illustrated in Fig. 7. Disks
were chosen over polygons because defining and computing mechanical contact between disks
is much simpler and more computationally efficient [17].

:::gglz (=]
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Figure 3: Torso section of a cryopreserved man, slice number 4405, from the [34]
database, covered with five disks. The ‘Kodak Q-13 Gray Scale’ ruler measures
20.3cm by 2.5cm.

To extend the fitting method to a whole population, we utilised anthropometric data
from the ANSURII database [6], which comprises 93 body measurements from 6,000 US

2The torso height corresponds to the height where chest depth and bideltoid breadth are measured in the
anthropometric data, as shown in Fig. 2 from the Visible Human Project cadavers. Specifically, it corresponds to
151.6 cm for the male cadaver and 138.369 cm for the female cadaver.
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Army personnel (4,082 men and 1,918 women). In the Anthropometry tab of our online
app, these data are easily accessible, viewable, and downloadable. Note, however, that this
sample is not fully representative of the US civilian population; in particular, among other
selection biases, men are over-represented, whereas women form the majority of the US
population, according to the NHANES database [35] 3 (which can be partly explained by the
higher life expectancy of women in the US population). To generate a crowd that reflects the
anthropometric diversity of ANSURII starting from the foregoing 2D projection made of five
disks, we translate the centres of the disks with a homothety centred at the pedestrian’s
centre of mass and scale their radii to match empirical chest depth and bideltoid breadth
measurements (defined in Fig. 2). These geometric operations do not perfectly preserve the
initial shape, but they achieve a realistic approximation. Compared to the maximal possible
density around 4 ped/m? for circular agents (see Fig. 1), crowds generated with these
methods can reach a density of 7.2ped/m? (see Fig. 4), much closer to empirical
measurements in very dense situations [8-10].

2507=

45

Bideltoid breadth [cm]

=

X coordinate [cm]

Figure 4: Tight random packing of pedestrians without preferred orientation using
an arrangement of five disks, reaching a density of 7.2 ped/m?. Both the sample from
the ANSURII database [6] and our model database have a mean bideltoid breadth of
49 cm and a mean chest depth of 25 cm.

2.2 Mechanical interactions

Studying mechanical interactions between pedestrians is inherently complex, owing to factors
such as three-dimensional contact geometry, protective hand movements during contacts or
falls, and non-static, multi-point contact configurations [12,36]. Biomechanical studies on
both embalmed and unembalmed (fresh, non-rigid) cadavers subjected to dynamic loading —
both frontal [37,38] and lateral [39] — have characterized thoracic impact response, derived
the Lobdell mechanical model for the human thorax under blunt impact [40], and subsequently
refined and extended it [41,42]. In addition, contact forces between pedestrians have been
measured under varying degrees of crowding, in both static and dynamic conditions [43].
Nonetheless, the fundamental nature of live pedestrian-to-pedestrian contact remains poorly
understood, particularly during complex, multi-body collisions in which active responses, such
as the use of the hands, can substantially influence the interaction dynamics. To render the
problem tractable, we therefore simplify these interactions by relying on granular material
interactions between the disks that constitute each agent’s shape. Specifically, we model the

®NHANES provides only limited measurements and lacks key metrics such as bideltoid breadth and chest depth,
and therefore cannot be used in our software.
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interaction in the simplest way we find appropriate, using a single-damped spring as illustrated
in Fig. 5:

* In the normal direction (orthogonal to the contact surface), the interaction is described
by a spring in parallel with a dashpot (Kelvin—Voigt model), which captures both elastic
effects and energy dissipation;

* In the tangential direction (parallel to the contact surface), the interaction is modelled
by a parallel spring-dashpot system in series with a slider, reflecting Coulomb’s law. This
slider represents a threshold-based element that resists tangential motion until a critical
force threshold, proportional to the normal force, is exceeded; after this threshold is
reached, it slips at a constant force.

Another force is introduced to encompass the effective backwards friction with the ground over
a step cycle, controlled by the deformation of the body. Technical details are given in App. A.1,
and a comprehensive overview of notations, definitions, and mathematical expressions can be
found in App. A.3.

Figure 5: Interactions between composite disks of pedestrians i (radius Ry, velocity
v,») and j (radius Ry, stationary with v, = 0) are modeled using mechanical
elements.

Finally, the deliberate forward motion is subsumed into a propulsion force F, for translational
motion (and a propulsion torque 7, for deliberate rotations of the torso) which result from
the pedestrian’s decision-making process. The LEMONS platform is agnostic to the decision-
making model: it expects the user to define F,, and 7, for each agent as they see fit (see Eq. 4
for a crude proposal). The equation of motion of the centre of mass of agent i (mass m;,
translational velocity v;) is then expressed as:

dvi Vi ||contact

—F —m. L contact

m; dtr Fp m; t(transl) + Z (Fs(f)—ns(i) + Fs(l')—m(i) )

i) <G (ped)
(s(l),s(l))ec.
' (D
+ Z (Fllcontgct + FJ_congact)
w—)s(l) w—>s(l)

- (wall)
(sOw)ec;
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where

Cfped) = {9,599 |59 in contact with sV},

Cl.(wan) = {G",w)|w in contact with s} .

(2)

Here, the symbol || indicates a force tangential to the contact surface, while L signifies a
force orthogonal to the contact surface. t(™@ js a characteristic timescale for the effective
backwards friction and the s represents the five disks that form agent i. Importantly,
depending on the time scale tD Eq. 1 will describe either inertial, underdamped
translation dynamics (long t™™) or overdamped dynamics (short t{¥asD),

These forces are applied at the contact centres to induce torques on the torso. The
rotational dynamics of agent i’s torso (moment of inertia I;, angular velocity ;) are
governed by:

d(,l)l' w;
Ii dr = Tp — Ii t(r_ot) + Z TGi,s(j)_>s(i)
(s(j)’g(i)) e Cl_(Ped)

+ E : TG, wos®

- : (wall)
(5(}) }s(l)) e Ci

(3

where 9 is a characteristic timescale for rotational damping and the TG, s s refer to the
torque at the centre of mass G; of pedestrian i, resulting from pedestrian-pedestrian interaction
forces. A (very) crude choice for the propulsion force and torque is

V(O) e(target) —-56

FP =m t(transl) and T Ii (t(rot))z’ 4)

where v(®, e8¢0 and 56 are the preferential speed, the unit vector pointing to the target
(or way-point), and the angular mismatch between the target direction e and the front
direction of the body of agent i. To solve this set of coupled differential equations of motion,
we employed the standard Velocity-Verlet algorithm* mentioned in [44], section 3.

3 The Codebase

The software release consists of (i) an online platform https://lemons.streamlit.app/ to
generate and visualise individual pedestrians (whose shapes are compatible with
anthropometric data) or crowds, (ii) a C++ library to compute mechanical contact forces in
two dimensions and then evolve the crowd according to Newton’s equation of motion (in the
overdamped regime or in the inertial, underdamped one), and (iii) a Python interface to
import anthropometric data, generate and visualise crowds, and simulate their dynamics via
simple calls to the C++ library. It introduces a generic configuration file format (stored as
XML) to store agents’ shapes and mechanical properties, as well as crowd configurations.

3.1 XML crowd configuration classes

Several levels of detail must be specified to define the configuration of a (presently 2D)
crowd, from the geometric and mechanical properties of each of its agents to their positions.
We introduce a generic structure composed of nested classes, stored as XML files (processed
by the third-party library TinyXML-2), included in the codebase, to mimic these levels of

“To save computational time and avoid looping over all agents and walls at each time step of the simulation to
determine C,.(pe‘n and waa”), the algorithm’s implementation relies on a careful definition and handling of neighbour
lists; see App. B for details of our neighbour-determination procedure.

8
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218 information; we hope this structure will be used broadly for the definition of crowd
210 configurations. To illustrate its generality, alongside standard adult pedestrians, we will also
220 instantiate geometric objects corresponding to cyclists on bikes.

Parameters.xml

static/
Geometry.xml
Materials.xml — e \
! I AgentDynamics.xml

Agents.xml |  C++ library =

CrowdMechanics

- - mm mm oEm o e
dynamic/ L
Python wrapper

AgentDynamics.xml

Agentinteractions.xml

(Agentlnteractions.xml)

Figure 6: Functional diagram showing the XML configuration files defining the crowd
and used as input and output of the mechanical simulation routine, coded in C++ and
interfaced with Python.

221 Fig. 6 shows how the XML configuration files are used as input and output of the C++
222 library (which has a Python interface) to simulate the dynamic evolution of the crowd. The
23 contents of each XML configuration file are detailed below. All units are expressed in the
224 International System (SI). One example of each file (used for the practical case example
225 presented in Sec. 4.3) is provided in App. C. We begin with the Parameters.xml file:

226 ¢ Parameters:

227 * Directory in which STATIC files are stored,

228 » Directory in which DyNAMIC files are stored,

229 x Time step TimeStepMechanical of the Velocity-Verlet algorithm used to solve the
230 dynamics,

231 * Duration TimeStep of one decisional loop, after which F, and 7, can change,
232 typically a fraction of a second.

233 “STATIC” files contain information that does not change throughout a simulation, namely:

234 * Geometry:

235 * Dimensions of the simulation area,

236 * List of ‘obstacles’ (notably, wall), defined as ordered lists of corners (i.e., the
237 vertices that are connected by the zero-width wall faces). Each obstacle is made of
238 a given material, whose ID must be specified.

239 * Materials (for obstacles as well as agents):

240 * Intrinsic properties: Young’s modulus E, shear modulus G for 2D materials
241 relative to a unique material ID.

242 Note: these moduli enter the stiffness of the springs that are used to model
243 contact interactions, following common practice in the discrete-element method
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(the formulae are derived from [45,46], also see Fig. 5)

kL=(4G1—2E1+4G2—2E2) 1’ -
4G 4G;
Kl = (6G1 _2E1 n 6G, _zEz) ! , ©)
8G? 8G3
* Binary physical properties that are not reducible to intrinsic ones: damping
coefficient y* perpendicular to the contact surface, damping coefficient !
tangential to the contact surface, dynamic friction coefficient during slip u®™.
These need to be defined for all pairs of materials.
¢ Agents:
x ID of the agent,
* Mass,
x Height,
* Moment of inertia,
* Inverse timescale for translational friction 1/t(ranslational) (g1 oorDamping),
* Inverse timescale for rotational damping 1/ t{rotational) (AngularDamping),
x Constitutive shapes (5 for a pedestrian):
> ID of the constitutive material,
> Radius,
> Initial position relative to agent’s centre of mass.
Note: the composite shapes order is important, because the body’s orientation will
be determined based on the first and last composite shapes. For a pedestrian, the
first composite shape should be the left shoulder, and the last one should be the
right shoulder.
“DYNAMIC FILES” are used both as input and output of the C++ library, and they contain

information that changes during the execution of the code, namely:
* AgentDynamics (current state of the agents):

*

*

Kinematic quantities for each agent:
> Position r of the center of mass,
> Velocity v of the center of mass,
> Orientation (Theta) of the body concerning the x-axis, that is, the angle 6
between the gaze of the agent when looking straight ahead, and the x-axis
(see Fig. 11c),
> Angular velocity (Omega).
Dynamic quantities for each agent (not written in the output files):
> Propulsion force F, (Fp),
> Driving torque for the torso 7, (Mp).

Note: all angular quantities are given relative to the z-axis, with the trigonometric
convention.
* Agentlnteractions:

*

*

Normal force Fijc)"_)n%t (Fn), tangential force Fll(cj?fjg (Ft), and tangential spring
elongation (TangentialRelativeDisplacement) also known as slip (see
Sec. A.1.1) between all pairs of composite shapes in contact (that do not belong

to the same agent),

Normal force F-®" tangential force F
w—os

composite shape) in contact.

|contact
w—os® 2

and slip between all pairs (wall —

Note 1: using the symmetries of forces and spring elongation, we only list the values
once for each pair (composite shape — composite shape or wall - composite shape) in

10
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contact.

Note 2: this file is only provided if there are contacts between agents or between agents
and walls. No such file is needed in the initial configuration, provided there are no
overlaps; the output file can be used unchanged for the next run.

3.2 Mechanical layer

In Fig. 6, the mechanical layer CrowdMechanics is a C++ shared library that handles the
dynamics of the agents described in Sec. 2.2. Calling instructions from C++ and Python are
provided in the online tutorials [32].

3.3 Python classes

The Python wrapper mirrors the foregoing structure, insofar as it contains Python classes
corresponding to the foregoing XML configuration files. However, since it also allows
generating a synthetic crowd based on anthropometric statistics and visualising it in 2D and
in 3D, additional Python classes needed to be defined. The following classes and ‘dataclasses’
(which contain the statistics and measurements relevant for the generation of the crowd or
the agent) are provided:

x Crowd class: group of Agent objects.

The class contains methods to generate a crowd that abides by the measurement
constraints of CrowdMeasures and to position the agents either on a grid or using the
packing algorithm detailed in App. D.

» CrowdMeasures dataclass: Collection of dictionaries representing the characteristics.
By default, it contains ANSURII-based anthropometric statistics. But the user can
define custom normal distributions for each agent’s attributes (e.g., pedestrian
bideltoid breadth, bike top tube length).

* Agent class: represents a single pedestrian (or bike rider, etc.)

x AgentMeasures dataclass: Collection of attribute measurements (e.g., chest depth,
mass, height for pedestrians; handlebar length, total bike weight for bikes). The
attribute values are taken from CrowdMeasures if the agent is instantiated from a
Crowd; alternatively, they can be specified manually if agents are created one by one.

» InitialPedestrian class: 2D and 3D contour shapes of a reference pedestrian.

The 2D shape consists of 5 overlapping discs, whose outer contour matches that of a
cryogenic specimen at shoulder’s height® (see Sec. 2.1 and Fig. 3). There is one 2D
template that applies to both men and women, and separate 3D templates: one for
men and one for women. To further emphasise the versatility of the file structure, an
InitialBike class was also defined to represent the shape of a rider on a bike, that is to
say, a top-down approximate orthogonal projection of the bike and the rider.

The 3D shape takes the form of a dictionary where each key corresponds to a specific
altitude and each value is a Shapely.MultiPolygon object. Each
Shapely.MultiPolygon contains multiple Shapely.Polygon objects, each of
which is a polygon representing a distinct part of the body, such as a finger, an arm or a
leg, etc. This is illustrated in Fig. 7.

* Shapes2D class: 2D shape of a particular agent (pedestrian, bike, ...).

The 2D pedestrian’s shape is obtained by transforming the reference 2D shape
(InitialPedestrian class) to match the measurements specified in AgentMeasures.
More precisely, the radii of the five disks are uniformly rescaled to match the specified

>More precisely, we consider the horizontal slice at the altitude used to measure bideltoid breadth in our
186.6 cm-tall reference cryogenic male specimen; the same altitude was used to measure the bideltoid breadth
of the female specimen (whose feet are extended as if she were on tiptoe, resulting in an elongated posture).

11
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10

Y [cm]
o

-10

chest depth, defined by the diameter of the middle disk. Additionally, a homothety
centred at the agent’s centroid is applied to the centres of each of the five composite
disks to match the specified bideltoid breadth.

A similar process is applied for 2D bike shapes; it hinges on the application of
homotheties to each composite shape of the reference bike.

Shapes3D class: 3D shape of a particular agent (only for pedestrians at present).
Starting from the reference pedestrian (InitialPedestrian class), the dimensions of
each Shapely.Polygon at various altitudes are adjusted along with the altitude
values themselves. Specifically, a vertical homothety is applied to ensure that the
resulting shape matches the desired pedestrian height. Additionally, a homothety is
applied to each contour of our reference cryogenic specimen defined in the
InitialPedestrian class; the centre of the homothety is set at the mean of the x and y
coordinates of each polygon’s centroid. The scaling factors s;,;; for the homothety are
selected to match the chest depth and bideltoid breadth specified in AgentMeasures.

In detail, the chest depth is defined as the maximum distance between two points
along the orientation-axis of the Shapely.MultiPolygon (i.e., the x-axis if the agent
is turned to the right, corresponding to 6 = 0) in the slice at the torso’s height (the
altitude used to measure the bideltoid breadth of the cryogenically preserved
specimen). The bideltoid breadth is defined as the maximum distance between two
points along the axis orthogonal to the orientation-axis of the
Shapely.MultiPolygon (the y-axis if O = 0) at the foregoing altitude.

To avoid inflating the head and feet because of the homothety, the scaling factors s;;
are modulated with the altitude z; the final scaling factor is s,.,(2) = f (2, Sinit), Where
f(z,s) is a smooth, door-shaped function equal to 1 for altitudes above the neck and
below the knees (meaning no rescaling in those regions) and to s elsewhere. This
approach ensures that, unlike the head, the belly and abdominal regions are duly
inflated and reflect morphological differences, particularly for bigger individuals. We
are aware that more sophisticated statistical shape models [47] can infer a 3D body
shape from a limited set of measurements; however, we chose not to use them to
simplify the model as much as possible.

female male
150
g 150 _,
10 £
\ 100% 5 1005
s5, S
T > =
50 2 50 =
0 -10 0
-20 -10 y 0 10 20 50 -10 10 20
lem] X [cm]

Figure 7: Superimposed cross-sectional contours of two cryogenically preserved
bodies, sampled at 0.5cm intervals. The body on the left is female, and the one
on the right is male. Contours are extracted from the images of each section in [34];
upper-body regions appear reddish and lower-body regions bluish.
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4 Discussion

4.1 Relevance of the use of 2D projections of standing pedestrians

In line with the dominant approach in pedestrian dynamics, our code primarily operates on
2D shapes, although it provides access to 3D visualisation. This simplification may be
questioned because people have different heights, so that it may be inadequate to assess
their contacts based on 2D projections at torso height. Shorter individuals (e.g., children,
women) may have their heads at the level of the chests or shoulders of taller ones.
Consequently, 2D crowd representations can vary significantly depending on the pedestrian’s
viewpoint; the practical impact of this perspective remains unclear. Our platform enables us
to gauge the extent to which 2D projections reflect the packing conditions in a 3D crowd
composed of adults of diverse heights. For this purpose, we generate a static 3D synthetic
crowd based on the ANSURII database. In this example, pedestrian heights range from
155cm to 178 cm for females and from 163 cm to 201 cm for males, with a mean height of
170cm. As shown in Fig. 8, we present a comparison between the 2D projection of the
scene—constructed from our pedestrian shape models—with cross-sections extracted from the
corresponding 3D crowd at three distinct altitudes: the torso height of the smallest agent, the
torso height of the tallest agent, and the mean torso height across the group. These
comparisons reveal that perceived density can vary considerably with the pedestrian’s height.
Notably, the area covered at the mean torso height is closely matched by our 2D projection
approach.

Effective integration of leaning effects and hand contacts. Our algorithm operates in
2D. As a consequence, it cannot directly integrate some previously evinced effects that may
take place when densely packed people are destabilised, such as hand contacts or the
push-induced forward leaning that may amplify pushing forces [48]. However, we would like
to mention that they can be implemented in an effective way by amending the propulsion
force F, entering Eq. (1). Indeed, if a postural model (such as that proposed in [48]) can
predict how a push propagates through a pedestrian (depending on their physical attributes
and how they were pushed), then this agent’s propulsion force F,, can be supplemented with
this pushing force. Within LEMONS, one may also consider defining effective shapes
corresponding to the situation of stretched arms and extended hands. Nonetheless, as we
will see in the practical case study of Sec. 4.3, these refinements may be superfluous to
describe the propagation of a push on flat ground.

Along similar lines, since pedestrians may stand and pivot on only their right or left leg,
whereas the model computes torques along the body’s central vertical axis, in some
circumstances it might be necessary to account for the difference between the right or left
leg’s axis and the central axis. In principle, if the stepping dynamics are known, this can be
achieved via the parallel-axis theorem, even though in practice it may prove complicated.

4.2 Mechanical tests

Tests for agent generation comprehensively cover all essential functions, including rotation
operations, backup file handling, and file downloading. They also verify that the statistical
properties of the generated agents, such as mean bideltoid breadth, mean chest depth, and
standard deviation, accurately match the intended crowd statistics. To execute these tests, run
from the root directory:

uv run pytest tests/configuration

13
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Our 2D projections

0) Covered area: 9.35 m?
400

0 100 200 300 400
x [cm]

Horizontal slices
b) atz =126 cm <) atz =138 cm d) atz=163 cm

Covered area: 10.55 m? Covered area: 9.76 m? Covered area: 2.47 m?

Figure 8: 2D representations of a pedestrian crowd at a density of about 6 ped/m?.
Panel (a) shows the 2D projections used in the simulations, while panels (b), (c),
and (d) display horizontal cross-section of the 3D crowd at z = 126 cm, z = 138 ¢m,
and z = 163 cm, corresponding to the torso altitudes of the shortest pedestrian, the
mean torso altitude, and the tallest pedestrian, respectively. Indicated areas are the
sums of the shapes’ areas without overlap correction.

Regarding the simulation engine, eight test suites covering distinct scenarios have been
defined. These tests are designed to verify the behaviour of each mathematical term in the
mechanical model; they are not intended as comparisons with experimental data. They rely
on tolerance thresholds (detailed in the API documentation) that you can adjust if necessary.
They should be repeated after each modification of the C++ code or data files and are also
included in the continuous integration pipeline (see App. E). They all can be executed locally
from the project root as follows:

1. Navigate to the tests/mechanical_layer directory.

2. Run the following command in your terminal:

./run_mechanical_tests.sh

The results of the eight test suites will appear directly within the Terminal.
3. If you further want to visualise the results of the tests as videos, run the following
command in your terminal:

./make_tests_videos.sh

The script first prompts you for the path to your FFmpeg executable, which is required
to generate movies from the simulation files.  All videos are saved in the
tests/mechanical_layer/movies directory. Once generated, you can review them
and verify that they meet your expectations.
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The eight test scenarios are as follows:

= Agent pushing another agent (test_push_agent_agent folder)
Tests the force orthogonal to the contact surface, representing a damped spring
interaction between two agents.

» Agent colliding with a wall (test_push_agent_wall folder)
Tests the force orthogonal to the contact surface, representing a damped spring
interaction between an agent and a wall.

» Agent sliding over other agents (test_slip_agent_agent folder)
Tests the Coulomb friction interaction between two agents as one slides over the other.

» Agent sliding over a wall (test_slip_agent_wall folder)
Tests the Coulomb friction interaction between an agent and a wall as the agent slides
along it.

x Agent translating and relaxing (test_t_translation folder)
Tests the behaviour as an agent undergoes a translation and gradually relaxes to a

stationary state (no motion), due to the fluid-like force with the damping coefficient of
1 /t(translation).

» Agent rotating and relaxing (test_t_rotation folder)
Tests the behaviour as an agent rotates and gradually relaxes to a stationary state (no
motion), due to the fluid-like torque with the damping coefficient of 1/¢Fotation),
» Agent rolling over other agents without sliding
(test_tangential_spring_agent_agent folder)
Tests the force tangential to the contact surface, representing a damped spring
interaction between two agents.
= Agent rolling over a wall without sliding (test_tangential_spring_agent_wall
folder)
Tests the force tangential to the contact surface, representing a damped spring
interaction between an agent and a wall.
These tests yielded outcomes that concord with the expectations for the implemented
mechanical model (the videos are provided in the supplemental material [33]).

4.3 Practical case study

We will detail here how to perform a simulation of a push that propagates through a queue
of closely standing people, a scenario that mirrors recent experiments by Feldmann et
al. [36] (and by Wang and Weng [48]). Illustrative snapshots® of the experiments and
simulations are shown in Fig. 9. For us, the interest of this scenario is that it largely relies on
the mechanical modelling layer, and only a little on the decisional layer (which we recall the
user of our mechanical code can choose freely). Consistently with the scope of this Codebase
paper, we defer the details of the experimental comparison to another publication.

Estimation of the mechanical parameters.

The parameters employed in the simulations are detailed in Tab. 1. They were selected to
align with the experimental results of [36] and to produce credible output in simple scenarios.
We start by justifying the consistency of the estimates for the key mechanical parameters.

bPedestrian size corresponds to the area (in m?) of the 2D shapes used in the simulations. Because chest
depth and bideltoid breadth were not measured during the experiment (but the mass and height were), these
dimensions were obtained from the ANSURII anthropometric database by selecting, for each participant, the values
corresponding to their recorded body mass and height. This procedure yields individualised 2D shapes consistent
at least qualitatively with the observed body proportions in the videos.
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Figure 9: Simulated trajectories for two pushing scenarios based on Feldmann et
al. [12]. Dashed lines show the measured head trajectories, while solid lines show
model predictions with fine-tuned parameters, which are kept identical across the two
scenarios. (a) Near-wall configuration with arms held in front. (b) Far-from-wall
configuration with arms initially alongside the body and later raised for protection.

The translation relaxation time ¢ should be around the duration of one step, i.e.,

0.5s. More precisely, Li and colleagues [49] found that, when one suddenly pushes a static
pedestrian, they come to a halt after a distance that grows as a ~ 0.02 times the impulse Z,
i.e., the time-integral of the pushing force. Supposing that this force is constant over At and
then vanishes, integrating Eq. (1) (with motion constraint along a single dimension) in the
absence of any other propulsion force yields a scalar speed

B t(transl)I max(O,t—At) t_
V== [P T e ) TP T ) | 7

hence a halting distance

+oo (transl)
t A
Ay:J v(t)dt = ———, (8)
0 m

whence taking m = 53kg we arrive at t ™™D ~ 15, larger but comparable to our estimate of
0.5s. The rotational relaxation time t ™ was taken equal to t ™D because both relaxations
have a similar origin, namely the contact of the feet with the ground.

Turning to the Young’s modulus Ej,q, (noting that assuming it to be uniform is a clear
oversimplification, given the layered heterogeneity of the human body), we base our value on
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reported measurements of the elastic modulus of sternal trabecular bone, located at the centre
of the thorax [50]. These data give E}oqy ~ 4.0 X 107 kg/(ms?), which, after conversion from
3D to 2D by multiplying by a characteristic load length of 10 cm, supports our estimate in
Tab. 1. The Young and shear moduli assigned to the walls were taken from values for concrete
and were converted from 3D to 2D using the same characteristic load length.

The coefficient of sliding friction ,ugzgy = 0.4 lies in the typical range of values for dry
irregular surfaces (e.g., leather on oak) [51].

The damping coefficient for the direction orthogonal to the pedestrian-wall contact
surface is set to the value reported by [41] for thoracic extension in wood-bones impact,
accounting for energy dissipation due to air in the lungs and blood in the thoracic vessels
being displaced during impact. To further refine these estimates, additional experiments
using clothed, unembalmed cadavers could be conducted, following those already performed
on granular materials, such as for wood in [52].

Parameter | Description Value Compatible with
¢ (ransD Relaxation time for translational motion 0.22's [49]
¢ @D Relaxation time for rotational motion 0.22s
Epody Young modulus for the body (human naked material) 4.0e6kgs? [53]
Ghody Shear modulus for the body (human naked material) | 1.38e6 kg/s? [53]
y]fo dy Damping for pedestrian-pedestrian contact in the 0.7e3 kg/s
direction orthogonal to the surface contact
)/L‘O dy Damping for pedestrian-pedestrian contact in the 0.7e3 kg/s
direction parallel to the surface contact
ugZZy Kinetic friction for pedestrian-pedestrian contact 0.4 [51]
E i Young modulus for the wall (concrete) 1.7e9 kg/s* [54]
Gyall Shear modulus for the wall (concrete) 7.1e8 kg/s? [54]
Yool Damping for pedestrian-wall contact in the direction | 1.23e3kg/s [41]
orthogonal to the surface contact
y"l]an Damping for pedestrian-wall contact in the direction | 1.23e3kg/s
parallel to the surface contact
usvya’;l Kinetic friction for pedestrian-wall contact 0.5 [51]

Table 1: Parameter values used in the practical case study. The elastic moduli are
expressed for 2D systems. We multiplied the measured 3D moduli by a characteristic
load length of 0.1 m to convert from kg/(ms?) to the 2D units kg/s.

Set the working environment and generate the desired configuration files

We now describe how to run the code for this practical case study, focusing on the scenario
shown in panel (a) of Fig. 9. Start by creating your desired crowd using the online platform, for
example, eight pedestrians with anthropometric characteristics from the ANSURII database,
arranged in a tightly packed configuration. Download the resulting configuration files to your
local system. For instance, you can create a new directory called Trial_1 and navigate into
it. Create and configure a Parameters.xml file in this directory. Within Trial_1, add two
subdirectories named static and dynamic. Place the configuration files obtained from the
online platform into their respective folders. For reference, an example of the recommended
directory structure is shown below:

| -- Parameters.xml

| -- static/

I |-- Agents.xml

| |-- Geometry.xml
| | -- Materials.xml
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| -- dynamic/
| | -- AgentDynamics.xml

Finally, modify the Geometry.xml file to define the desired geometry, and adjust the
AgentDynamics.xml file to set the appropriate initial propulsion force and torque. Refer to
App. C for the configuration files used in this practical case.

Run the simulation

First of all, you need to navigate to the root of the src/mechanical_layer directory and
build the project:

cmake -H. -Bbuild -DBUILD_SHARED_LIBS=0N
cmake --build build

Run the Python code provided below, making any necessary modifications to suit your needs.
The simulation results will be saved automatically in the outputXML/ directory. Each output
file follows the naming pattern AgentDynamics output t=TIME_VALUE.xml, where
TIME_VALUE indicates the corresponding simulation time or a unique identifier for that run.
First, we import the recorded external force data corresponding to the initial push applied to
the leftmost agent in the row, and then construct an interpolation function so that it can be
used as the propulsion-force input for the mechanical layer (all other agents have a
self-propulsion force equal to 0):

import xml.etree.ElementTree as ET
from pathlib import Path

import pandas as pd
from scipy.interpolate import interpld

# === Import of external force data ===
dataPath = Path("../../../../data/tutorial_mechanical_layer/push_Feldmann/Wed_03_m_wiW_row4_14_w_s_b_p_n_u")
df = pd.read_csv(

dataPath / "external_force_per_mass.txt",

sep=r"\s+",
header=0,
names=["time [s]", "force per mass [N/m]"],

)

# === Read mass of agent with Id O from XML configuration ===

XMLtree = ET.parse("static/Agents.xml")
agentsTree = XMLtree.getroot()

mass_agent_0 = 0.0
for agent in agentsTree:
if int(agent.attrib["Id"]) ==
mass_agent_0 = float(agent.attrib["Mass"])
break

print(f"Mass of agent 0: {mass_agent_0} kg\n")

# === Build interpolator for the external force on agent 0 ===
_push_agentO_interp = interpid(
df ["time [s]"].values,
df ["force per mass [N/m]"].values * mass_agent_0, # Multiply force per unit mass by mass to obtain the total force
< on agent 0.
kind="linear",
fill_value=0.0, # zero force outside the sampled time range

Now you can run the mechanical layer:

import ctypes

from pathlib import Path

import numpy as np

from shutil import copyfile

import xml.etree.ElementTree as ET

== Simulation Parameters ===
t = 0.1 # Time step for the decisional layer (matches "TimeStep" in Parameters.xml)
dt = 100 # How many dt will be performed in total

# === Paths Setup ===

outputPath = Path("outputXML/") # Directory to store output XML files

inputPath = Path("inputXML/") # Directory to store input XML files
outputPath.mkdir(parents=True, exist_ok=True) # Create directories if they don’t exist
inputPath.mkdir (parents=True, exist_ok=True)
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# === Loading the External Mechanics Library ===
# Adjust filename for 0S (.so for Linux, .dylib for macOS)
Clibrary = ctypes.CDLL("../../src/mechanical_layer/build/libCrowdMechanics.dylib")

agentDynamicsFilename = "AgentDynamics.xml"

# Prepare the list of XML files that will be passed to the DLL/shared library
files = [

b"Parameters.xml",

b"Materials.xml",

b"Geometry.xml",

b"Agents.xml",

agentDynamicsFilename.encode("ascii"), # Convert filename to bytes (required by ctypes)
1
nFiles = len(files) # Number of configuration files to be passed
filesInput = (ctypes.c_char_p * nFiles)() # Create a ctypes array of string pointers
filesInput[:] = files # Populate array with the XML file names

# === Main Simulation Loop ===
for t in range(Ndt):
print ("Looping the Crowd mechanics engine - t=%.1fs..." % (t * dt))

# 1. Save the current AgentDynamics file as input for this step (can be used for analysis later)
copyfile("dynamic/" + agentDynamicsFilename, str(inputPath) + rf"/AgentDynamics input t={t * dt:.1f}.xml")

# 2. Call the external mechanics engine, passing in the list of required XML files
Clibrary.CrowdMechanics (filesInput)

# 3. Save the updated AgentDynamics output to results folder (can be used for analysis later)
copyfile("dynamic/" + agentDynamicsFilename, str(outputPath) + rf"/AgentDynamics output t={(t + 1) * dt:.1f}.xml")

# 4. If the simulation produced an AgentInteractions.xml file, save that as well (optional output)
try:

copyfile("dynamic/AgentInteractions.xml", str(outputPath) + rf"/AgentInteractions t={(t + 1) * dt:.1f}.xml")
except FileNotFoundError:

# If the AgentInteractions file does not exist, skip copying

pass

# === Decision/Controller Layer for Next Step ===

# Read the output AgentDynamics XML as input for the next run.

# This is where you (or another program) can set new forces/moments for each agent for the next simulation step.
XMLtree = ET.parse("dynamic/" + agentDynamicsFilename)

agentsTree = XMLtree.getroot ()

# -- Assign random forces/moments to each agent --

for agent in agentsTree:
# Create new <Dynamics> tag for the agent (as the output file doesn’t have it)
dynamicsItem = ET.SubElement(agent, "Dynamics")

# Assign random force, and random moment
dynamicsItem.attrib["Fp"] = f"{np.random.normal(loc=200, scale=200):.2f},{np.random.normal(loc=0, scale=50):.2f}
oo

dynamicsItem.attrib["Mp"] = f£"{np.random.normal(loc=0, scale=5):.2f}"

# Write the modified XML back, to be used in the next iteration
XMLtree.write("dynamic/" + agentDynamicsFilename)
#

# After all simulation steps are complete, print a final message.
print(f"Loop terminated at t={Ndt * dt:.1f}s!")

Generate plots and create a video from output files

A plot of the scene can be generated from each input/output file under PNG format using the
Python wrapper. To begin, you need to install the required Python packages, which you can
quickly do by setting up a virtual environment using uv as follows (from the root directory of
the project):

python -m pip install --upgrade pip
pip install uv
uv sync

You can then run the following Python script within your working environment:

import matplotlib.pyplot as plt

import configuration.backup.dict_to_xml_and_reverse as fun_xml # For converting XML to dictionary and vice versa

from configuration.models.crowd import create_agents_from_dynamic_static_geometry_parameters # For creating agents
— based on XML data

from streamlit_app.plot import plot # For plotting crowd data

# === Prepare the folders ===
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# Define the paths to the folders you’ll use

outputPath = Path("outputXML")

staticPath = Path("static")

plotsPath = Path("plots")

plotsPath.mkdir (parents=True, exist_ok=True) # Create plots directory if it doesn’t exist

# Remove any old ’.png’ files in the plots directory
for file in plotsPath.glob("*.png"):
os.remove(file)

# === Load static XML files ===

# Read the Agents.xml file as a string and convert it to a dictionary

with open(staticPath / "Agents.xml", encoding="utf-8") as f:
crowd_xml = f.read()

static_dict = fun_xml.static_xml_to_dict(crowd_xml)

# Read the Geometry.xml file as a string and convert it to a dictionary

with open(staticPath / "Geometry.xml", encoding="utf-8") as f:
geometry_xml = f.read()

geometry_dict = fun_xml.geometry_xml_to_dict(geometry_xml)

# === Loop over time steps ===
for t in range(Ndt):
current_time = (t + 1) * dt

# Check if the dynamics file exists; if not, skip to the next time step
dynamics_file = outputPath / f"AgentDynamics output t={current_time:.1f}.xml"
if not dynamics_file.exists():

print (f"Warning: {dynamics_file} not found, skipping.")

continue

# === Read and process the dynamics XML file ===
# Read the current dynamics XML file as a string and convert it to a dictionary
with open(dynamics_file, encoding="utf-8") as f:
dynamic_xml = f.read()
dynamic_dict = fun_xml.dynamic_xml_to_dict(dynamic_xml)

# Create a crowd object using the configuration files data
crowd = create_agents_from_dynamic_static_geometry_parameters(
static_dict=static_dict,
dynamic_dict=dynamic_dict,
geometry_dict=geometry_dict,

)

# Plot the crowd

plot.display_crowd2D(crowd)

plt.savefig(plotsPath / rf"crowd2D_t={t:d}.png", dpi=300, format="png")
plt.close()

Additionally, simulated and measured trajectories can be overlaid in each plot, as in Fig. 9
(which is detailed in the online tutorial [32]). The resulting series of PNG images can then
be combined into a video using FFmpeg. Representative frames are shown in Fig. 9, and the
complete video is provided in the supplemental materials [33].

4.4 Extension to arbitrary shapes

This software was designed to facilitate further development, particularly by including a wider
variety of agents, e.g., people carrying a backpack, children, etc. To prove this point, we
chose a very different type of shapes, namely, bicycles, and implemented them in the 2D agent
generation on the online application [55]. To access this feature, navigate to the CROWD tab,
then in the sidebar under DATABASE ORIGIN, select the Custom statistics option, and set
the desired proportion of bicycles within the crowd. The bicycle agent has been simplified
to two overlapping rectangular polygons: one representing the front and rear wheels, and
the other representing the seated rider and handlebars. The statistics of the dimensions of
these shapes are adjustable. Note, however, that the simulation code does not model the
mechanical interactions with bicycles, which we consider less relevant and more complex than
those between pedestrians. An example of such a heterogeneous crowd is shown in Fig. 10.
The configuration file synthesising the crowd can be downloaded in XML format; it is
simpler than the configuration files for a pedestrian-only crowd. The file includes a list of
agents, each containing the following information: type (either pedestrian or bike), Id (an
integer), Moment of inertia (in kg:m?®), FloorDamping (t(traml)), AngularDamping
(t79), and Shapes. For agents of type bike, the Shapes tag contains two tags: bike
(corresponding to the front and rear wheels) and rider (corresponding to the human on the
bicycle and the handlebars). Within the bike tag, several other tags are included: type
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(rectangle), material (iron, human clothes, etc.), min_x, min_y, max_x, and max_y,
which transparently define the rectangle’s boundaries in absolute coordinates. The rider
tag follows a similar structure. For agents of type pedestrian, a similar structure is used.
However, within the Shapes tag, there are sub-tags disk0, disk1, up to disk4, each of
which specifies the following attributes: type (disk), radius, material, and x, y (the
position of the disk’s centre in absolute coordinates).

300

200

y [cm]

100

0

0 200 400

Figure 10: Heterogeneous crowd of 40 agents (17 bicycles + 23 pedestrians) with
uniform orientation. Agent area is colour-coded using the Hawaii colourmap [56],
from purple (smallest) to blue (largest). This example is not intended to be realistic,
but rather to showcase that the pedestrian generation code can be easily generalised.

5 Conclusion

In summary, we have released an open-source numerical tool to help modellers simulate the
dynamics of pedestrians in 2D and visualise the output in 2D and 3D. This tool is not a
pedestrian simulation software (because the decisional components, notably the desired
speeds and directions, should be given as input), but it adds a substantial contribution to the
field, especially for the study of dense crowds, in that it promotes realistic 2D projections of
pedestrians, grounded in anthropometric data and much more faithful than the typical
circular assumption, and it computes contact forces derived from Physics. To make the code
as broadly accessible to the public as possible, we have released an online platform for
generating and visualising agents, a computationally efficient C++ library for dynamical
simulations, and an easy-to-use Python wrapper to run all scripts.

To let the tool evolve with the field, a generic XML format for configuration files has been
proposed. Currently, the tool can only generate bare or clothed adult men and women, as well
as cyclists. However, thanks to the generic file format, other shapes may be included in the
future, such as children, people carrying a backpack, and people pushing a pushchair. Further
in the future, it may also become relevant to extend the mechanical computations of contact
forces to 3D.
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A Equation of motion

A.1 Mechanical interactions

Consider two pedestrians, i and j, represented by sets of disks s*) and s respectively. Each
disk center s’ of pedestrian i is positioned relative to pedestrian i’s center of mass G; through
the displacement vector A;_,», which points toward s® (see Fig. 11a). The pedestrian’s
orientation is defined by the normal vector to the line connecting their first and last disks (see
Fig. 11c). The CoM of pedestrian i moves with a translational velocity v;, and the pedestrian
rotates with an angular velocity w;.

A.1.1 Forces acting on the pedestrian centre of mass

The motion of a pedestrian i can be broken down into two components: the motion of its
Center of Mass (CoM) and rotational motion. The motion of the CoM is determined by applying
the fundamental principle of dynamics at that point. When the shape s of pedestrian i (with
radius Ry and position ry) comes into contact with the shape sY) of pedestrian j (with radius
R,y and position 1)), as illustrated in Fig. 11a, pedestrian i experiences the following forces
(analogous forces are applied in the case of contact with a wall, illustrated in Fig. 11b):

» A damped-spring force orthogonal to the surface contact denoted as Fl(.“’“ta.“, split into
s J)—)s(l)
its spring part denoted as F-eo™at = linear with the interpenetration depth and a
spring, s()—s(

: | contact .

damping part denoted as F damping, s0)ss(0 that can be expressed as:
L contact _ li)_ody hs(”s(f) 10) 500 if hs(f)s(f) =Rsn + Ry — |r5(1)—)5(i)| >0 (overlap)
spring, s)=s® ) g otherwise

1 . .

| contact _ ~Y body vt if hyoy» > 0 (i.e. an overlap occurs)
damping, s0)—s® 0 otherwise

where ny)_,» denotes the unitary vector normal to the surface contact pointing towards

5@, vl.lj describes the relative velocity at the contact point C along the direction normal
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b) contact
surface

Figure 11: (a) Contact between two pedestrian bodies; (b) contact between a
pedestrian body and a wall; (c¢) definition of pedestrian orientation. The contact
surface is defined as the bisector of the shortest line segment connecting either the
contours of two composite disks or the contour of a composite disk and a wall. The
contact point C is located at the midpoint of this segment.

806 to the surface contact and r ), is the relative position of the two shapes in contact
807 pointing towards shape s, kblo 4y Tepresents the spring constant and }/#0 dy the damping
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intensity in the normal direction for body-body contacts.

* A force, tangential to the contact surface that acts in the direction opposite to the slip. A
straightforward way to model this force is through the Coulomb interaction to describe
the stick and slip mechanism, and a damped spring to more precisely describe the stick
phase. It can be written as:

Il v || Il dyn L contact :
body body ij body body l) body |~ s()—s®
k }f if k os+ y < U \F \ (stick)
||contact — N (A 1)
s> .
J_contact u : :
ubody onsd ‘ ‘.‘.‘ otherwise (slip)
ij
COI'lta'Ct ”
where 6s represents the spring elongation and can be written as 6s = f(f“ra“"“ \& jdt

and ugzgy denotes the dynamic friction coefficient. The force can be reshaped in a more
condensed way as follows:
||contact

i =min(k]|3|0 os + ybody

s s

1 contact
s(N—s®

) ) (A.2)

i ] 'u body

» A self-propelling force F,, that converts decisions into actions;

* A fluid friction force, encompassing the effective backward friction with the ground
over a simulation step cycle, controlled by the deformation of the body (biomechanical
dissipation) expressed as —m; v;/t(™D where t(aD js the characteristic relaxation
time to the rest state.

A.1.2 Torque for rotation of a pedestrian

The rotational motion of a pedestrian is obtained by applying the angular momentum theorem
to the pedestrian’s Center of Mass (CoM). This is done in its principal inertia base, projected
along the z-axis (the out-of-plane axis). The pedestrian experiences torque due to the forces
that are normal and tangential to the contact surface:

) - [lcontact 1 contact
16,5005 = {ri—>C X (Fs(;)_m(z) +F ) s u, (A.3)

The self-propelling force and the fluid friction force act directly on the CoM, resulting in zero
torque. To account for decision-making, a decisional torque 7, is applied. Finally, analogous
to the CoM equation, a fluid friction force accounting for floor contact and all mechanical
dissipation mechanisms (including biomechanical effects) is incorporated as —I; w; /Y. The
computation of the moment of inertia I; is detailed in App. A.2.

A.2 Moment of inertia calculation

Each pedestrian in our synthetic crowd is represented as a combination of five disks. While an
analytical formula for the moment of inertia of such a configuration can be derived, it is quite
cumbersome to write and implement numerically. Instead, we approximate the pedestrian’s
boundary using an N-sided polygon, defined by the set of vertices:

{(x1,¥1), (X2, ¥2), -+ o5 (N1, Y1) 1 (51, 1) = (v g1, Yn 1)) (A.4)

where (x1,Y1) = (Xy4+1,Yn+1) ensures the polygon is closed. Assuming pedestrian i’s mass
m; is uniformly distributed within the polygon (yielding homogeneous mass density
p; = m;/Polygon Area), the moment of inertia I; can be calculated via [57]:

N

p.
I, = 1—5 Z (xjyjﬂ —xjﬂyj) (sz + X541 + x]?H + yj2 +YiYjs t yj2+1) . (A.5)
=1

24



SciPost Physics Codebases Submission

830 A.3 Mechanical equations summary

ss0 Pedestrian CoM dynamics

m dvi F —m V; n Z (F||contact +FJ_contaCt)

iqr P I ¢(transl) sos@ T g0
0),50) € cPV

| (A.6)
2 : contact 1 contact
+ (Fw—)s(i) + Fw—)g(i) )
: (wall)
(w,s) € ¢!
sa1 Interaction forces with a pedestrian
ol
|lcontact __ __ . I I Il dyn 1 contact ij
s — TN kbody s + Ybody vij ’ ‘ubody Fs(i)—m(” I
V).
ij
1 contact __ plcontact | contact
F F
sD—os® spring’s(j)—)s(i) damping’s(j)—)s(f)
1 . . (A.7)
L contact _ kbody hywsi N5 if Agogey > 0 (i.e. an overlap occurs)
spring, s)—>s(® 0 otherwise
L L . .
L contact _ ) T body Vi if hywsy > 0 (i.e. an overlap occurs)
damping,s()=s® " | g otherwise
s42  where
hywst) = Rew + Rytn — |55 |
contact
duration I
os = Vi dt
0
[ _
Vi =V vi
1 _
Vi i = (Vi it Ils(i)ﬁs(j)) () 50)
Vij = Vic ~Vje (A.8)
Vic =Vitw; XTi¢
e = A0 T oo
| YOIINNG))
o) = T
|I‘5<imsu) |
T s0) = T + Aj_>s(j) - (ri + Ai—)s(i))
hyos
NON6)
Ic = (Rsm R N0 ()
sa3 Interaction forces with wall
Il
!
lcontact __ __. I [ I dyn J_contact| iw
FW*}S(i) = min kwall 5SW + Ywall Vs(i)w ) ‘uwall Fw—>s(i) I
Viw
1 contact __ gLcontact 1 contact
w—s@ T " spring, w—s® damping, w—s(®
n . . (A.9)
Leontact ) Kwan Psow My if Ry, > 0 (i.e. an overlap occurs)
spring, w—s() 0 otherwise
Leontact _|=ri v, if hy, >0 (i.e. an overlap occurs)
damping, w—s(® 0 otherwise
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where

Ry = Ry — |F50 ol

contact
duration

0s,, = Vilwdt
0

[ — -
Viw = Vice 7 Vi

1 _
Viw = (Vi,C : Ils(i)_)w) i)y
Vic =Vitw; XTi¢ (A.10)
L) —w
LN —
|rs(i)4>w|

Tine = Ajs0 T o

[ )
SWw
T = (Rs(i) ) N4y

Iy, = the vector from the center of s to its nearest point on the wall w

Rotational dynamics

T L)
fdt =% L ((rot) + TG, ,st)—s®

j i (ped)
(s0),s@) e C;

(A.11)

+ z : TG, , w—s®

(s0),s0)) e Clgwall)
Torques
— [lcontact | contact
TG, si—s) = {ri—>C X (Fs(ﬂ—»s(” + Fs(j)—m(") -, (A12)
— x Fllcontact +FJ_contact . :
TG, ,wos® = Timsc Wess® Woss(@ u,

B Mechanical layer: agent shortlisting

To save computational power, the mechanical layer begins by identifying a subset of agents,
dubbed the “mechanically active agents”, for which a collision is likely/possible. The
remaining agents are thereby considered as having no chance to collide with anything else
during the execution of the code, and will therefore see their position evolve according to the
“relaxation” part of equation (1) only. The shortlisting is performed in two steps:

(i) For each agent i, we establish a list of neighbouring agents and walls based on

* the radius R; of the agent — that is, the radius of the circle C; centred on the agent’s
centre of mass, of which the agent’s global shape is circumscribed;
* a global constant: the maximum - running — speed v,,,x = 7m/s of a pedestrian.

Agent neighbours of i will be defined as agents j for which the smallest distance between
the borders of the circles C; and C; is smaller than the distance traveled by both agents
at speed v, in a time TimeStep (ie twice the distance traveled at speed v, in a time
TimeStep).

Wall neighbours of i will be defined as walls for which the smallest distance between the
border of the circle C; and the wall is smaller than the distance travelled at speed v,
in a time TimeStep).

(i) We look at new positions of all agents after a uniform motion over time TimeStep, with
velocity and angular velocity equal to
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V(O) e(target) — & t(transl) and ol)(0) — E t(rot)’
m; I;

and check for overlaps with neighbours. In case of overlap with a wall neighbour, the
agent is considered “mechanically active”, and in case of an overlap with an agent
neighbour, both agents are considered “mechanically active”. Furthermore, at the end
of this process, we also add the agent neighbours of “mechanically active” agents.

Finally, agents with a significant difference between the three velocity components above
and the ones of their current state —i.e. above 1cm/s, are added to the list.

C Configuration files example

Parameters.xml file

<?xml version="1.0" encoding="utf-8"7>
<Parameters>
<Directories Static="./static/" Dynamic="./dynamic/"/>
<Times TimeStep="0.05" TimeStepMechanical="2e-6"/>
</Parameters>

Geometry.xml file

<?xml version="1.0" encoding="utf-8"7>
<Geometry>
<Dimensions Lx="2.0526750" Ly="1.11766"/>
<Wall Id="0" Materialld="concrete">
<Corner Coordinates="-0.2,-0.57395"/>
<Corner Coordinates="1.7526750,-0.57395"/>
<Corner Coordinates="1.7526750,0.543710"/>
<Corner Coordinates="-0.2,0.543710"/>
<Corner Coordinates="-0.2,-0.57395"/>
</Wall>
</Geometry>

Materials.xml file

<?xml version="1.0" encoding="utf-8"7>
<Materials>
<Intrinsic>
<Material Id="concrete" YoungModulus="1.70e+9" ShearModulus="7.10e+8"/>
<Material Id="human_clothes" YoungModulus="3.1e+06" ShearModulus="9e+05"/>
<Material Id="human_naked" YoungModulus="4.0e6" ShearModulus="1379310.3"/>
</Intrinsic>
<Binary>
<Contact Idl="concrete" Id2="concrete" GammaNormal="1.30e+03" GammaTangential="1.30e+03" KineticFriction="0.50"
— />
<Contact Idil="concrete" Id2="human_clothes" GammaNormal="1.30e+03" GammaTangential="1.30e+03" KineticFriction="
— 0.50"/>
<Contact Idi="concrete" Id2="human_naked" GammaNormal="1.23e+03" GammaTangential="1.23e+03" KineticFriction="
— 0.50"/>
<Contact Idi="human_clothes" Id2="human_clothes" GammaNormal="1.30e+03" GammaTangential="1.30e+03"
< KineticFriction="0.50"/>
<Contact Idl="human_clothes" Id2="human_naked" GammaNormal="1.30e+03" GammaTangential="1.30e+03" KineticFriction

s =|10'50H/>
<Contact Idl="human_naked" Id2="human_naked" GammaNormal="0.7e3" GammaTangential="0.7e3" KineticFriction="0.4"/>
</Binary>
</Materials>

Agents.xml file

<?xml version="1.0" encoding="utf-8"7>

<Agents>
<Agent Type="pedestrian" Id="0" Mass="89.0" Height="1.794" MomentOfInertia="1.85" FloorDamping="4.50" AngularDamping
— ="4.50">

<Shape Type="disk" Radius="0.09495" Materialld="human_naked" Position="-0.015458,0.153544"/>
<Shape Type="disk" Radius="0.13058" Materialld="human_naked" Position="0.008692,0.067374"/>
<Shape Type="disk" Radius="0.1365" Materialld="human_naked" Position="0.013532,4e-06"/>
<Shape Type="disk" Radius="0.13058" MaterialId="human_naked" Position="0.008692,-0.067376"/>
<Shape Type="disk" Radius="0.09495" Materialld="human_naked" Position="-0.015458,-0.153546"/>
</Agent>
<Agent Type='"pedestrian" Id="1" Mass="63.0" Height="1.740" MomentOfInertia="1.02" FloorDamping="4.50" AngularDamping
— ="4.50">
<Shape Type="disk" Radius="0.07826" MaterialId="human_naked" Position="-0.012738,0.144246"/>
<Shape Type="disk" Radius="0.10762" Materialld="human_naked" Position="0.007162,0.063296"/>
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<Shape Type="disk" Radius="0.1125" Materialld="human_naked" Position="0.011152,-4e-06"/>
<Shape Type="disk" Radius="0.10762" Materialld="human_naked" Position="0.007162,-0.063294"/>
<Shape Type="disk" Radius="0.07826" Materialld="human_naked" Position="-0.012738,-0.144244"/>
</Agent>
<Agent Type="pedestrian" Id="2" Mass="86.0" Height="1.905" MomentOfInertia="1.78" FloorDamping="4.50" AngularDamping
— ="4.50">
<Shape Type="disk" Radius="0.08591" MaterialId="human_naked" Position="-0.013986,0.168084"/>

<Shape Radius="0.11814" Materialld="human_naked" Position="0.007864,0.073754"/>
<Shape Radius="0.1235" Materialld="human_naked" Position="0.012244,4e-06"/>
<Shape Radius="0.11814" Materialld="human_naked" Position="0.007864,-0.073756"/>
<Shape Type="disk" Radius="0.08591" Materialld="human_naked" Position="-0.013986,-0.168086"/>
</Agent>
<Agent Type='"pedestrian" Id="3" Mass="68.0" Height="1.902" MomentOfInertia="1.26" FloorDamping="4.50" AngularDamping
S =14.50">

<Shape Type="disk" Radius="0.09565" Materialld="human_naked" Position="-0.015572,0.13435"/>
<Shape Type="disk" Radius="0.13153" Materialld="human_naked" Position="0.008758,0.05895"/>
<Shape Type="disk" Radius="0.1375" Materialld="human_naked" Position="0.013628,0"/>
<Shape Type="disk" Radius="0.13153" Materialld="human_naked" Position="0.008758,-0.05895"/>
<Shape Type="disk" Radius="0.09565" Materialld="human_naked" Position="-0.015572,-0.13435"/>
</Agent>
<Agent Type="pedestrian" Id="4" Mass="78.0" Height="1.725" MomentOfInertia="1.63" FloorDamping="4.50" AngularDamping
— ="4.50">
<Shape Type="disk" Radius="0.09391" MaterialId="human_naked" Position="-0.01529,0.156092"/>

<Shape Radius="0.12914" Materialld="human_naked" Position="0.0086,0.068492"/>
<Shape Radius="0.135" Materialld="human_naked" Position="0.01338,2e-06"/>
<Shape Radius="0.12914" MaterialId="human_naked" Position="0.0086,-0.068498"/>
<Shape Type="disk" Radius="0.09391" MaterialId="human_naked" Position="-0.01529,-0.156088"/>
</Agent>
</Agents>
AgentDynamics.xml file
<Agents>

<Agent Id="0">

<Kinematics Position="0.000,0.000" Velocity="0.00,0.00" Theta="0.0" Omega="0.0"/>
<Dynamics Fp="0.00,0.0" Mp="0.0"/></Agent>
<Agent Id="1">

<Kinematics Position="0.279,0.030" Velocity="0.00,0.00" Theta="0.0" Omega="0.0"/>
<Dynamics Fp="0.00,0.0" Mp="0.0"/></Agent>
<Agent Id="2">

<Kinematics Position="0.692,-0.067" Velocity="0.00,0.00" Theta="0.0" Omega="0.0"/>
<Dynamics Fp="0.00,0.0" Mp="0.0"/></Agent>
<Agent Id="3">

<Kinematics Position="1.070,0.037" Velocity="0.00,0.00" Theta="0.0" Omega="0.0"/>
<Dynamics Fp="0.00,0.0" Mp="0.0"/></Agent>
<Agent Id="4">

<Kinematics Position="1.448,0.012" Velocity="0.00,0.00" Theta="0.0" Omega="0.0"/>
<Dynamics Fp="0.00,0.0" Mp="0.0"/></Agent>

</Agents>

AgentInteractions.xml file for t =2.65s

<?xml version="1.0" encoding="utf-8"7>
<Interactions>
<Agent Id="0">
<Agent Id="1">
<Interaction ParentShape="2" ChildShape="2" TangentialRelativeDisplacement="6.12494e-08,-5.00732e-07" Fn="
— -42.4307,-5.19011" Ft="-0.734183,6.00217" />
</Agent>
</Agent>
</Interactions>

D Packing algorithm within the streamlit app

The pack_agents_with_forces method, detailed in Algorithm 1, simulates the
arrangement of agents within a bounded environment by iteratively applying
physics-inspired, force-based interactions to resolve overlaps and enforce boundary
constraints. Additionally, a temperature-based cooling mechanism is used to gradually
reduce the magnitude of rotation, helping the system to stabilise. The algorithm relies on the
following forces:

Agent-agent repulsive force
For every pair of agents i and j, a repulsive force is computed that decays exponentially with
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Algorithm 1: Agent packing with a force-based algorithm

1 Method pack_agents_with_forces (repulsion_length, desired_direction,
variable_orientation) :

2 foreach agent do
3 ‘ RotateTo(agent, desired_direction)
4 end
5 T 1.0 > Initial temperature
6 for iteration « 1 to MAX NB_ITERATIONS do
7 foreach agent i do
8 forces < [0,0,0] > [x, y, rotation]
9 foreach agent j #i do
10 forces,, +=repulsive_force(i, j,repulsion_length) > Ffjp
11 if overlap(i, j) then
12 forces,, += contact_force(i, j) > Fpontact
13 forces,,, +=rotational_force(T) > frot
14 end
15 end
16 if boundary exists and (agent i is in contact with or outside the boundary)
then
17 ‘ forces +=boundary_forces(i, T) » FPound
18 end
19 if variable_orientation then
20 ‘ 0; < 0; + forces,; > Update orientation
21 end
22 Tnew = Feurrent + fOTCes,y if valid_position(tye,,) then
23 ‘ T; < Thew > Update position
24 end
25 end
26 T <« max(0,T —0.1) > Cooling
27 end
101 the distance between their centroids:
—|r—r;|/a LTt if lr:—r.
fjp= e |ri—r;] p— if |rl r]| >0 ©.1)
random small vector otherwise
102 Wwhere r; is the centroid of agent i and A is the repulsion length.
1003
104 Contact force
w05 If two agents’ shapes overlap, a contact force is applied to push them apart:
ri:rj if |rl-—r-| >0
Feontact _ |ri—] J (D.2)

v random small vector otherwise

106 Where k is the contact intensity.

1007

1008 Rotational force

1000  When rotational dynamics are enabled, a random angular adjustment is applied, scaled by the
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temperature T of the system:

' = Uniform(—a,a) - T (D.3)
where o is the maximum rotational intensity.

Boundary forces
If an agent is outside the boundaries or in contact with a force F*®"™ is computed to push it
back inside, expressed as the sum of:
* a contact force (as above) between the agent’s centroid and the closest point on the
boundary of the agent’s centroid.
* a rotational force (as above), scaled by the current temperature.

E Contributing

To ensure that our open-source platform, written in Python and C++, remains high quality
and easy to maintain, we rely on a continuous integration (CI) pipeline that runs a series of
automated checks on every contribution submitted via a GitHub pull request. The complete
contribution workflow is described in detail in the CONTRIBUTING.md file in the repository,
which is written to be accessible even to contributors who are not familiar with GitHub. All
checks can be executed locally during development; the same checks are also run
automatically on every pull request by the pre-commit.ci service and by GitHub Actions on
both macos-latest and ubuntu-latest runners. To run all these tests locally from the
project root, execute:

uv run pre-commit run --all-files
cd ./tests/mechanical_layer
./run_mechanical_tests.sh

These automated checks fall into two broad categories: (i) style and quality checks, which
enforce formatting, coding conventions, documentation rules, and basic static analysis; and
(ii) functional checks, which run tests to verify that the numerical behaviour of the functions
is correct. For the Python code, we use:

» Ruff [58]: This tool performs both linting and formatting. It therefore detects common
mistakes and violations of established Python practices, such as logical errors, overly
complex functions, undeclared variables, and deprecated constructs. It also
automatically formats the code (indentation, spacing, and comments), keeping the
Python interface consistently structured and easy to read.

*» Mypy [59]: This static type checker verifies that the types of variables and function
signatures are used consistently throughout the code. It checks that the runtime usage
of variables is compatible with the declared type hints in the code and in the function
documentation, helping to catch errors where an incorrect value is passed, returned, or
propagated.

* NumPydoc validation [60]: This hook ensures that all public Python functions and
classes have docstrings that follow a clear and standardised NumPy-style format.

» Pytest: This tool runs a comprehensive suite of unit and integration tests on the
Python wrapper (including both configuration files generation and mechanical layer
tests) and on the Jupyter notebooks. Any unexpected behaviour or failing test is
immediately reported.

For the C++ files, we use:
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* clang-format [61]: This tool formats the C++ source code according to the formatting
rules recommended by Google. In particular, it enforces consistent indentation, spacing,
and line breaks, and it places curly brackets according to the Allman style.

* clang-tidy [62]: This static analysis tool examines the C++ code to catch common
programming mistakes and potential bugs before execution. It identifies issues such as
violations of coding style, incorrect use of interfaces (for example, calling functions
with incompatible arguments), and type-related problems that can be detected purely
from the source code.

» cpplint [63]: This tool checks that the C++ code adheres to the full set of coding style
guidelines recommended by Google, complementing clang-format with higher-level
style rules (for example, file organisation, naming conventions, and header usage).

For the shell scripts, we use shfmt [64] to format them uniformly. To detect and correct
common misspelt words across the whole project, we use the CodeSpell [65] tool. Rather
than checking against a full dictionary, it targets a curated list of frequent typographical errors.
We also use the nbqa [66] tool in Jupyter notebooks, and our own scripts to check for Doxygen
documentation errors and check that the copyright headers are present and correctly formatted
across all project files.

Acronyms
ANSURII  ANthropometric SURvey 2. 3, 5, 6, 11, 13, 15,
17
CoM Center of Mass. 22, 24, 25
EORCA  Elliptical Optimized Reciprocal Collision
Avoidance. 4
NHANES National Health and Nutrition Examination
Surveys. 6
Us United States of America. 5, 6
VHP Visible Human Project. 5
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