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Abstract

The control of antiferromagnetic order can pave the way to large storage capacity as well
as fast manipulation of stored data. Here achieving a steady-state of sublattice magne-
tization after switching is crucial to prevent loss of stored data. The present theoretical
approach aims to obtain instantaneous stable states of the order after reorienting the
Néel vector in open quantum antiferromagnets using time-dependent Schwinger boson
mean-field theory. The Lindblad formalism is employed to couple the system to the en-
vironment. The quantum theoretical approach comprises differences in the effects of
dephasing, originating from destructive interference of different wave vectors, and spin-
lattice relaxation. We show that the spin-lattice relaxation results in an exponentially
fast convergence to the steady-state after full ultrafast switching.
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1 Introduction20

The ultrafast spin-dynamics and the absence of stray fields in antiferromagnets propose their21

application in spintronics devices [1]. The usage of antiferromagnets for data storage has the22

potential to improve the information processing time scale by a factor of 1000 and significantly23

enlarge storage capacity [2–4]. However, the existence of intrinsic terahertz (THz) frequen-24

cies does not automatically guarantee ultrafast switching due to the difficulty of efficiently25

and fully controlling the magnetization at the microscopic level. Studies are ongoing to exten-26

sively explore the fast dynamics in antiferromagnets, with the primary focus on the efficient27

manipulation and control of their magnetic state in the THz regime [5–7].28

The deflection of the Néel vector by 30◦ has been experimentally obtained in Mn2Au at29

ultrafast time scale through the action of so-called spin-orbit torques and the results are con-30

sistent with the micromagnetic model [8]. Moreover, atomistic spin dynamics simulations31

predicts the possibility for exchange-enhanced switching of the Néel vector by 90◦ and 180◦32

using novel laser optical torques [9]. The classical Landau-Lifshitz-Gilbert equations also con-33

firmed the stable current-induced precession of Néel vector [10,11].34

A quantum approach has been developed to study the switching in quantum antiferro-35

magnets driven by external magnetic fields, based on time-dependent Schwinger boson mean-36

field theory [12–14]. This approach has demonstrated that control of the Néel vector can be37

achieved through the application of strong uniform fields [12,13]. Moreover, staggered mag-38

netic fields in neighboring sublattices generate exchange field enhancement and switching39

occurs for significantly lower [14], because the internal exchange fields are several orders of40

magnitude larger than the driving external fields and assist to reorient the order [8,11,15,16].41

Additionally, despite the quantum system being closed, the dynamics of sublattice magnetiza-42

tion after switching is not coherent, but a slow decay of the oscillations is observed. This43

phenomenon has been claimed to be a dephasing effect caused by the numerous different fre-44

quency modes in the system [12–14]. The effect of dissipation has not yet been considered,45

where the spin system can exchange an energy with its environment, e.g. with a thermal bath46

such as generated by all lattice vibrations.47

For the practical application of this technology, the magnetic state needs to be robust48

against external noise effects to keep stored information safe and secure. The effect of the49

environment is of particular significance and inevitable, especially if one aims at reaching the50

switched coherent stationary state of the system quickly. For large magnetic samples, the dy-51

namics of the magnetization can be well described by quantum excitations involving numerous52

lattice sites. Describing the dynamics of open many-body quantum system is a substantial chal-53

lenge for modern physics. A powerful tool to analyze dissipative many-body quantum system54

is the Lindblad approach [17]. Therefore, we employ quantum theory to analyze sublattice55

magnetization switching processes in quantum antiferromagnets, taking into account spin-56

lattice relaxations derived from the Lindblad formalism. To this end, we use time-dependent57

Schwinger boson mean-field theory at finite temperature and the magnetization control is ob-58

tained directly via an external magnetic field.59
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System Environment

Quantum Antiferromagnet

Bath
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Figure 1: The illustration of the system that is weakly coupled to tan environment,
e.g., lattice vibrations and hence spin-phonon interactions are taken into account.

The objective of this study is to obtain coherent steady-state in quantum antiferromagnets60

after switching of the sublattice magnetization. The dissipation can speed up the decay of os-61

cillations in magnetization after switching, as it drives the system towards a new ground state.62

Consequently, we extend the investigation of exchange-enhanced switching in quantum anti-63

ferromagnets [14] by incorporating environmental effects in the framework of open quantum64

systems (Figure 1). In the present paper, we consider the quantum antiferromagnetic square65

lattice as an exemplary model. It can be extended to other lattice structure, especially to 3d66

lattices, in future works.67

The realization of seemingly impossible local fields that alternate their orientation between68

the sublattices of the antiferromagnet can be envisaged by utilizing global field which act lo-69

cally different on each sublattice due to the anisotropy of the system [8, 16]. For example,70

the theoretical approach [15] and experimental observations [18, 19] show that globally ap-71

plied current-induced spin orbit torques can exhibit a Néel-type character, manifesting itself72

as locally alternating fields between the two sublattices. Furthermore, the g
=

tensor can be73

anisotropic due to the large spin-orbit coupling so that it differs between the two sublattices,74

i.e., g
=
|A ̸= g

=
|B. Consequently, a globally applied external magnetic field generates locally al-75

ternating components. Thus, the local control of sublattice magnetization using global fields76

is a key prerequisite for making antiferromagnetic spintronics feasible [3].77

The paper is organized as follows. In Section 2, we provide a theoretical model for switch-78

ing and define the equilibrium state of the system. The switching in closed quantum anti-79

ferromagnets is discussed in Section 3 to show the effect of dephasing only. In Section 4,80

we investigate an open quantum antiferromagnet and the role of dissipation on magnetiza-81

tion switching. Section 5 is devoted to the conclusion, together with an outlook of the future82

directions envisioned for the current research.83

2 Time-dependent Schwinger boson mean-field theory84

We use a spin-1/2 anisotropic Heisenberg model with nearest-neighbor interactions on a square85

lattice quantum antiferromagnet and its Hamiltonian is given by86

H0 = J
∑

〈i, j〉

�

χ

2
(S+i S−j + S−i S+j ) + Sz

i Sz
j

�

, (1)
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where χ = Jx y/Jz ∈ [0,1] is an anisotropy parameter and J is the coupling constant 1.87

An external magnetic field is included as a Zeeman term to manipulate the system. To this88

end, it has been demonstrated that staggering fields can reorient the Neél vector efficiently due89

to intrinsic induced exchange enhancement [11,14]. In this context, we aim for the switching90

at low fields with the corresponding term in the Hamiltonian reading91

Hm = −h ·
∑

i

(−1)iSi . (2)

The switching implies strong fluctuations which drive the system far from equilibrium. The92

Schwinger boson representation is chosen as an appropriate approach to describe the switch-93

ing process [12, 13], because Schwinger bosons can capture magnetic orders with arbitrary94

orientation [20, 21]. In this representation, the spin operators are expressed in terms of two95

bosonic species, which together are capable of capturing any possible orientation of the spin,96

as97

S+i = a†
i bi , S−i = b†

i ai , Sz
i =

1
2

�

a†
i ai − b†

i bi

�

, (3)

including the constraint on the bosonic number98

a†
i ai + b†

i bi = 2S. (4)

The above local constraint restricts the Fock space of the bosons to the meaningful physical99

subspace of spin S. It is important to note that the elementary excitations differ here from the100

conventional magnons in spin-wave theory, as the Schwinger boson Hamiltonian is quartic in101

bosonic operators, thereby the interactions are incorporated into the theory. The sublattice102

magnetization can be calculated as103

m= 〈Sz
i 〉=

1
2

�

〈a†
i ai〉 − 〈b

†
i bi〉

�

. (5)

It can be seen that the orientation of sublattice magnetization can be controlled by control-104

ling the bosonic occupation number in the lattice site. For this purpose, we first determine105

a proper equilibrium state of the system, i.e., the initial mean-occupation number of bosonic106

species in sublattices. Subsequently, the external switching field is applied that can induce107

non-equilibrium dynamics by changing the boson numbers in the system. The equations for108

the mean occupation number of bosons will be constructed using the Heisenberg equation of109

motion.110

2.1 An equilibrium state of the system111

We start by rotating the spins of one sublattice by 180◦ about S y
j

2 to obtain a uniform de-112

scription of the system. This is a canonical transformation and it preserves the constraint in113

Eq. (4) [20, 22]. Consequently, S x
j undergoes a sign change and the lattice sites experience114

the alternating external field in Eq. (2) along the x direction as though it were uniform. In115

parallel, this considerably simplifies our analyses because the staggered field in Eq. (2) be-116

comes homogeneous. Next, we replace the spin operators in Eq. (1) by Schwinger bosons117

from Eq. (3) and a bilinear Hamiltonian results after the mean-field approximation [12]. The118

1Throughout this work, J is chosen as the unit of energy, and is henceforth set to unity.
2Rotation in one sublattice with index j in Eq. (1) which applies for Schwinger bosons a j →−b j , b j → a j .
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mean-field Hamiltonian in momentum space becomes119

HMF
0 = E0 −

1
2

∑

k

γk

�

C−a†
ka†
−k + C+b†

kb†
−k + C∗−aka−k + C∗+bkb−k

�

+λ
∑

k

�

a†
kak + b†

kbk

�

,

(6a)

HMF
m = −

h
2

∑

k

�

a†
kbk + b†

kak

�

, (6b)

HMF =HMF
0 +HMF

m , (6c)

where A := 〈aia j + bi b j〉, B := 〈aia j − bi b j〉 and C± := A(1+χ)∓B(1−χ) with A, B ∈ C. E0 is120

the constant energy and the wave factor γk includes the wave vector as γk =
1
z

∑

δ eik·δ. The121

Lagrange term with the Lagrange parameter λ is included in the Hamiltonian to restrict the122

number of bosons per site and ensure that the constraint in Eq. (4) is fulfilled on average. One123

should note that as a result of the sublattice rotation, the bond operators become effectively124

translationally invariant, namely A= 〈Ai j〉, B = 〈Bi j〉 and A∗ = 〈A†
i j〉, B∗ = 〈B†

i j〉.125

The above mean-field Hamiltonian is diagonalized by introducing bosonic Bogoliubov op-126

erators127

α†
k = cosh(θ a

k )a
†
k − e−iφa

k sinh(θ a
k )a−k, (7a)

β†
k = cosh(θ b

k )b
†
k − e−iφb

k sinh(θ a
k )b−k. (7b)

The Bogoliubov angles θ a,b
k necessary for the diagonalization condition can be represented as128

tanh2θ a
k =

C−γke−iφa
k

λ
, tanh 2θ b

k =
C+γke−iφb

k

λ
. (8)

Then, the dispersion relations read129

ω±k =
Ç

λ2 − |C±|2γ2
k, (9)

where ω−k and ω+k correspond to the αk and βk bosons, respectively. The spin gap130

∆ :=∆+ −∆− =ω+k |k=0 −ω−k |k=0 (10)

functions as a energy barrier and is of particular relevance to obtain the switching [12, 13]131

because the system requires an energy input sufficient to surpass the potential barrier associ-132

ated with the transition between opposite antiferromagnetic orders. Overcoming this barrier133

is achieved through the applied switching field in the Hamiltonian (6b) and we assume that134

the field is turned on at time t = 0 and switched off at t = 10 J−1.135

From the diagonalization conditions in Eq. (8), one can construct self-consistent equations136

to find the mean-field parameters and the Lagrange parameter as137











A= 〈aia j〉+ 〈bi b j〉=
1
N

∑

k γk

�

〈aka−k〉+ 〈bkb−k〉
�

B = 〈aia j〉 − 〈bi b j〉=
1
N

∑

k γk

�

〈aka−k〉 − 〈bkb−k〉
�

2S = 〈a†
i ai〉+ 〈b

†
i bi〉=

1
N

∑

k

�

〈a†
kak〉+ 〈b

†
kbk〉

�

,

(11)

where138



























〈a†
kak〉=

λ
ω−k

�

n(ω−k ) +
1
2

�

− 1
2

〈b†
kbk〉=

λ
ω+k

�

n(ω+k ) +
1
2

�

− 1
2

〈aka−k〉=
C−γk
ω−k

�

n(ω−k ) +
1
2

�

〈bkb−k〉=
C+γk
ω+k

�

n(ω+k ) +
1
2

�

(12)
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with n(ω±k ) =
�

exp (βω±k )− 1
�−1

being the Bose distribution function. These equations com-139

plete the system’s initialization for finding the proper initial state given by the thermal equi-140

librium in the mean-field description.141

3 Exchange-enhanced switching in closed systems including de-142

phasing effect143

We construct a closed set of differential equations using Heisenberg’s equations of motion to144

analyze the non-equilibrium of the system under applied pulses. The equations read145







































∂t〈a
†
kak〉= −iγk

�

C∗−〈aka−k〉 − C−〈a
†
ka†
−k〉
�

+ i h
2

�

〈a†
kbk〉 − 〈b

†
kak〉

�

∂t〈b
†
kbk〉= −iγk

�

C∗+〈bkb−k〉 − C+〈b
†
kb†
−k〉
�

− i h
2

�

〈a†
kbk〉 − 〈b

†
kak〉

�

∂t〈aka−k〉= iγkC−(2〈a
†
kak〉+ 1)− 2λi〈aka−k〉+ ih〈akb−k〉

∂t〈bkb−k〉= iγkC+(2〈b
†
kbk〉+ 1)− 2λi〈bkb−k〉+ ih〈akb−k〉

∂t〈a
†
kbk〉= −iγk

�

C∗−〈akb−k〉 − C+〈a
†
kb†
−k〉
�

− i h
2

�

〈b†
kbk〉 − 〈a

†
kak〉

�

∂t〈akb−k〉= iγk

�

C−〈a
†
kbk〉+ C+〈b

†
kak〉

�

− 2λi〈akb−k〉+ i h
2

�

〈aka−k〉+ 〈bkb−k〉
�

.

(13)

The above equations are solved for each momentum k in the first Brillouin zone using the146

Boost Odeint library. Now, the time evolution of spin expectation values can be calculated as147











〈S x〉= 1
N

∑

k γkℜ〈a
†
kbk〉

〈S y〉= 1
N

∑

k γkℑ〈a
†
kbk〉

m= 〈Sz〉= 1
2N

∑

k

�

〈a†
kak〉 − 〈b

†
kbk〉

�

.

(14)

The spin gap in Eq. (10) primarily controls the stiffness of the magnetization, meaning that148

the system requires some minimum external energy for switching to overcome the potential149

barrier. The threshold value of an external uniform switching field corresponds closely to the150

spin gap in a lattice [12,13]. Reorientation of the order can be achieved under fairly low exter-151

nal staggered fields due to exchange enhancement [14]. Additionally, our findings indicated152

that dephasing, caused by the destructive interference of many modes at different frequencies153

in a large closed system, leads to a temporal slow decay of sublattice magnetization oscilla-154

tions after switching [13, 14]. Although the main aim of the present work is to distinguish155

the effect of dephasing and relaxation, we start by presenting the results of efficient switching156

without relaxation to highlight once more the exchange enhancement and dephasing effect.157

The next section will be dedicated to relaxation.158

Figure 2(a) shows the dynamics of the spin expectation values obtained from Eqs. (14)159

for χ = 0.9. The expectation value 〈Sz〉, i.e., the sublattice magnetization m exhibits the160

switching behavior accompanied by the dephasing effect after switching. The dephasing effect161

slows down the oscillations after full switching and the system attempts to reach a steady162

state. The dynamics of 〈Sx〉 shows also Larmor precession around the field with a decrease163

in amplitude. Here we see the exchange-enhanced switching as follows; the Schwinger boson164

mean-field calculations show that the spin gap for a square lattice at anisotropy χ = 0.9 has165

a value ≈ 0.86 J . Thus, one can estimate that a field of similar size is necessary for switching.166

However, the applied staggered field is h= 0.08 J in Figure 2(a) which is much lower than the167

potential barrier. Thus, the system benefits from strong internal exchange fields to reorient168

the magnetization.169

Figure 2(b) illustrates the processes of exchange enhancement during the switching. Firstly,170

antiparallel spins in two neighboring sublattices cant slightly in different directions from their171

6
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Figure 2: (a) The temporal evolution of spin expectation values under the effect
of dephasing without relaxation. The switching field is present in the time interval
0 < t < 10 J−1 and its strength is h = 0.08 J . The anisotropy parameter is χ = 0.9
and temperature is set to zero. (b) The illustration of exchange-enhanced switching
from t = 0 till switching. The initial state is shown by the arrows in the first circles
on the left, the final state in the last circles on the right. The orange and blue arrows
in the circles show the directions of the antiferromagnetic sublattice magnetizations.
Applied staggered magnetic fields are shown with red arrows. The spins cant slightly
after the magnetic field is applied and at the same time they form a resulting strong
effective field (black arrow) due to the exchange interaction. Consequently, the spins
rotate (green curved arrows show the direction of rotation ) around the resulting
effective field, i.e, the switching occurs.

antiparallel equilibrium state because of the applied staggered field (red arrows) resulting in172

a magnetic moment (black arrow). Due to the exchange coupling the spins rotate about the173

induced magnetic moment. In other words, the Néel vector rotates around this internal strong174

exchange field and switching occurs. During the switching interval, the y component of the175

spin is positive. Afterwards, it displays a small oscillating behavior. Indeed, the dynamics of176

〈S y〉 in Figure 2(a) confirms our claim of exchange enhancement. It shows small canting until177

the system encounters full switching (around t = 12.5 J−1) and then displays very narrow178

oscillating behavior around the y axis.179

However, one can see that a decrease in the oscillations due to the dephasing alone is180

insufficient to achieve the static behavior of magnetization after switching. This is not very181

promising for practical applications because data processing requires fast relaxation of the182

switched magnetic state, which guarantees stored data safety and to avoid unintentional back183

switching. Having exchange-enhancement and dephasing in mind, our objective is to include184

an additional effect of the environment on the switching process in our operator formalism185

approach. To this end, we propose implementing Lindblad dissipators while studying the186

switching in quantum antiferromagnets to improve the static behavior after switching.187

4 Switching in dissipative quantum systems188

No physical system is truly closed. Especially, since we are claiming the practical application189

of quantum antiferromagnets for data storage, the effect of an environment is inevitable. The190

energy transfer between spins and the lattice is of paramount importance in the control of191

sublattice magnetizations. For example, the interaction of localized spins with phonons in a192

lattice can affect the temporal evolution of the magnetization. Consequently, we analyze the193

dynamics of the sublattice magnetization taking into account the effect of the environment.194

The state of the open system changes as a consequence of its internal dynamics and of its195

7
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interaction with the environment. Although we are not able to follow the dynamics of the196

environment, our goal is to understand its additional impact on the system of interest.197

In this regard, we investigate the dynamics of the system that is weakly coupled to the bath198

using the Lindblad formalism, namely the adjoint quantum master equation [17] of the form199

d
d t
〈O(t)〉= i〈[H, O(t)]〉+

∑

l

ηl〈
�

L†
l O(t)Ll −

1
2

O(t)L†
l Ll −

1
2

L†
l LlO(t)

�

〉 (15)

for the expectation value of an observable 〈O(t)〉, where the Hamiltonian H corresponds to the200

system without environment. The Lindblad operators {Ll} describe the system-bath interaction201

and the parameters ηl denote the relaxation rates and have the dimension of an inverse time.202

We choose the Lindblad operators such that Ll excites the system by an energy ωl and L†
l203

de-excites it by the same energy. Then, to ensure convergence to the thermal equilibrium, the204

relaxation rates of excitation and de-excitation are related by the bosonic occupation number205

[23] and master equation reads206

d
d t
〈O(t)〉= i〈[H, O(t)]〉+

1
2

∑

l

ηl

�

〈[Ll ,O(t)]L
†
l 〉+ 〈L

†
l [O(t), Ll]〉

�

+

1
2

∑

l

ηl n(ωl)
�

〈[Ll , [O(t), L†
l ]]〉+ 〈[L

†
l , [O(t), Ll]]〉

�

, (16)

where n(ωl) is the bosonic occupation function. Since we are using a bosonic representation207

to study the spin system, it is plausible that Lindblad operators modify the energy of the system208

for instance by creating and annihilating the Schwinger bosons, i.e., we treat the Schwinger209

bosons as the energy quanta of damped harmonic oscillators with Ll = α
†
k or Ll = β

†
k . This210

is illustrated in Figure 3. For simplicity, the damping rate is considered to be the same for all211

bosonic species, allowing only one damping parameter η.212

Figure 3: Illustration of an open quantum antiferromagnet. The red springs, con-
nected to magnetization arrows, represent coupling of the spins to the environment,
e.g. lattice vibrations and the gray layer represents the bath.

4.1 The equations of motions for the dissipative system213

Having established the model, we can now compute a closed set of differential equations for214

the expectation values from Eq. (16) as follows215

8
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

























































∂t〈a
†
kak〉 = i〈[HMF, a†

kak]〉+η
�

λ
ω−k

�

n(ω−k ) +
1
2

�

− 1
2 − 〈a

†
kak〉

�

∂t〈b
†
kbk〉 = i〈[HMF, b†

kbk]〉+η
�

λ
ω+k

�

n(ω+k ) +
1
2

�

− 1
2 − 〈b

†
kbk〉

�

∂t〈aka−k〉 = i〈[HMF, aka−k]〉+η
�

C−γk
ω−k

�

n(ω−k ) +
1
2

�

− 〈aka−k〉
�

∂t〈bkb−k〉 = i〈[HMF, bkb−k]〉+η
�

C+γk
ω+k

�

n(ω+k ) +
1
2

�

− 〈bkb−k〉
�

∂t〈a
†
kbk〉 = i〈[HMF, a†

kbk]〉 −η〈a
†
kbk〉

∂t〈akb−k〉 = i〈[HMF, akb−k]〉 −η〈akb−k〉.

(17)

The first commutators in all the above equations have been already obtained in Eqs. (13). This216

solvable closed set of differential equations enables us to analyze the magnetization switching217

behavior of the quantum antiferromagnet coupled to the environment.218

However, we treat the system as a damped harmonic oscillator [17], which results in a219

decrease of the bosonic occupation number, which no longer satisfies the constraint in Eq. (4).220

Moreover, bosonic operators are time-dependent in our model and they modify the bosonic221

occupation number in a time-dependent manner. Therefore, we incorporate a time-dependent222

Lagrange parameter λ in our approach to compensate for these fluctuations. One can adjust λ223

so that the total number of bosons remains constant and the constraint in bosonic occupation224

number is fulfilled on average in each sublattice as225

1
N

∑

k

�

〈a†
kak〉+ 〈b

†
kbk〉

�

= 2S. (18)

In this framework, we construct another differential equation by summing the first two equa-226

tions in the Eqs. (17) over all momenta k227

0
!
= ∂t

 

1
N

∑

k

�

〈a†
kak〉+ 〈b

†
kbk〉

�

!

= i〈[HMF,
1
N

∑

k

�

a†
kak + b†

kbk

�

]〉

+
η

N

∑

k

�

λ

ω−k

�

n(ω−k ) +
1
2

�

−
1
2
+
λ

ω+k

�

n(ω+k ) +
1
2

�

−
1
2

�

−
η

N

∑

k

�

〈a†
kak〉+ 〈b

†
kbk〉

�

. (19)

The first term on the right hand side vanishes and the last term in the second line is constant.228

By differentiating the remaining terms on the second line with respect to time, we obtain the229

following equation230

d
dt





η

N

∑

k

�

λ

ω−k

�

n(ω−k ) +
1
2

�

−
1
2
+
λ

ω+k

�

n(ω+k ) +
1
2

�

−
1
2

�





︸ ︷︷ ︸

D

=
dD
dt
= 0, (20)

where we have again used that the total occupation number does not change in time according231

to the constraint in Eq.(18). At this stage, it is important to note that the mean-field averages232

A and B in Eq.(9) are also time dependent. Therefore, one can see that D = D(A, B,λ) which233

leads to the following new differential equation234

dλ
dt
= −

1
∂ D
∂ λ

�

∂ D
∂ A

dA
dt
+
∂ D
∂ B

dB
dt

�

. (21)
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This completes the required set of differential equations that can be solved for each mo-235

mentum with the time-dependent Lagrange parameter. Furthermore, in order to determine236

a suitable initial value of the magnetization that is compatible with the infinite system 3, we237

treat the initial system such that there are more “a” Schwinger bosons than “b” type. This is238

reached by condensation of one boson flavor [20]. For the finite-size system at zero tempera-239

ture, this corresponds to a very tiny energy gap for the former boson flavor and a large energy240

gap for the latter (∆+≫∆− ≥ 0).241

In the solution, numerical instabilities might occur in the equations because the expression242

for the energy gaps has the form243

∆± =
r

λ2 −
�

�C±
�

�

2
. (22)

The gaps ∆± appear in denominators of expectation values in Eq. (12) at k = k0 = 0, π⃗.244

These modes contribute macroscopically to the occupation of bosons, i.e., they scale with245

the size of the cluster which is an unexpected feature of single modes. Thus, it is essential246

to carefully consider this aspect while solving differential equations. Nevertheless, we have247

now established all the analytical relations necessary to solve the equations at each k point248

in the two-dimensional Brillouin zone and thereby determine the non-equilibrium properties249

of the system. There one still needs to deal with two-dimensional sums, which are integrals250

in the thermodynamic limit. However, all equations for expectation values in (11), (12) and251

differential equations in (17) depend on γk, not explicitly on k. Hence we replace the integrals252

over all wave vectors with a single integral over γ and discretize the γ ∈ [−1,1] space for the253

efficiency of the numerical calculations, provided that the density of states is known. Details of254

the transformation can be found in Refs. [13,14]. Furthermore, the fourth-order Runge-Kutta255

algorithm is employed to obtain the numerical solution of the differential equations with the256

time step ∆t = 10−4 J−1. This small step size is chosen to mitigate the potential numerical257

instabilities arising from the presence of the tiny gaps of the specific k0 = 0, π⃗ modes.258

5 Results and discussions259

5.1 The sublattice magnetization dynamics with relaxation at zero temperature260

Now, we start to analyze the non-equilibrium properties of antiferromagnets coupled to a bath,261

as a result of Eqs. (17) and (21). A finite, non-zero staggered field is applied in the interval of262

0 < t < 10 J−1 in all analyses. Indeed, this is the case in practical applications as one aims at263

switching with finite pulses. For typical antiferromagnetic exchange couplings, this time scale264

still corresponds to the THz regime, meaning t ≤ 1 ps.265

Figure 4 sketches one of our main results in this work. The dynamics of the bosonic occupa-266

tion numbers and the sublattice magnetization are shown in Figure 4(a). According to Eq.(5),267

the mean occupation numbers of the Schwinger bosons define the spin expectation value 〈Sz〉268

and thus also the sublattice magnetization m. So we expect the Schwinger bosons’ occupa-269

tions to be swapped during the switching. Since condensation of the a bosons is assumed in270

the initial state (orange line), the b bosons should be condensed (blue line) after switching the271

sublattice magnetization. Most importantly, the relaxation results in almost static sublattice272

magnetization immediately after full switching (red line). The constraint in Eq. (4) is also273

fulfilled at all times (dashed green line). A similar plot to that in Figure 2(a) is presented274

in Figure 4(b), but now with relaxation. One can see the immediate convergence of the or-275

der to the reoriented stable magnetization state with a remaining very weak decaying Larmor276

3The desired initial sublattice magnetization for a square lattice at zero temperature is m0(χ = 0) = 0.3034 [20].
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Figure 4: (a) The dynamics of the mean occupation of the Schwinger bosons, as
well as the resulting sublattice magnetization. (b) The time evolution of the spin
expectation values under the effect of relaxation for the rate η= 0.05 J . The applied
external field is h= 0.09 J and the anisotropy parameter is χ = 0.9.

precession. This is precisely how the dissipation is expected to impact the spin dynamics. Fur-277

thermore, the time evolution of spin expectation values supports the realization of exchange278

enhancement in the system as it was illustrated in Figure 2(b). Our mean-field approach is279

therefore able to accurately model exchange enhancement in switching processes, including280

dephasing and relaxation.281

Figure 5(a) shows the sublattice magnetization dynamics atχ = 0.9 for different relaxation282

rates. One can see that in all cases the oscillations decay after switching and the damping rate283

is essentially given by the decay rate. The system without damping (η= 0), i.e., the effects of284

dephasing only, displays a very slow decay while maintaining continuous magnetization oscil-285

lations (red line in Figure 5(a)). On the other hand, spin-lattice relaxation derived from the286

Lindblad formalism induces relaxation of the oscillation exponentially. Eventually, the system287

with stronger dissipation yields fast convergence to the static state with full switching (zoom288

in plot in Figure 5(a)). Moreover, the order quickly reaches a coherent static state that is289

opposite to the initial order, for example at η = 0.08 J . Note that dissipation increases the290

threshold value of the necessary switching field compared to the case of η = 0. This is natu-291

ral, as dissipation decrements the energy of the system and thus affects the non-equilibrium292

dynamics. Therefore, we choose the switching field so that the switching occurs for all the293

selected relaxation rates. For example, the threshold value of the staggered field is actually294

hthr = 0.079 J at the anisotropy of χ = 0.9 for a closed antiferromagnetic square lattice [14],295

but we have chosen h= 0.094 J in Figure 5(a).296

For the sake of completeness, we provide Figure 5(b) to validate the qualitative difference297

in the damping between the closed system and the system coupled to the bath. The change in298

amplitude of magnetization, denoted by ∆m= m0−|mmax(t i)|, is extracted from Figure 5(a),299

where mmax(t i) is the value of magnetization at the maxima of oscillations at time t i and m0 is300

the initial magnetization. Note that Figure 5(b) has a logarithmic scale on the y axis. An alter-301

native plot is presented in Appendix A with both axes in logarithmic scale. On the one hand,302

one can see that the closed system shows a very slow decrease in∆m (the data with red trian-303

gles in Figure 5(b)). The fitting with the power law function ∆mfit,1 = C/tαfit,1 also confirms304

its steady decrease with a small exponent value of αfit,1 ≈ 0.345 (solid red line). Furthermore,305

another possible fit function∆mfit,2 = C/ ln(αfit,2 t) works equally well and supports our claim306

of a very slow, non-exponential damping solely due to dephasing with αfit,2 ≈ 0.142 J (dashed307

red line). On the other hand, the system with finite relaxation shows an exponential decrease308

in ∆m. Indeed, the curves are fitted by the exponential function ∆mfit,3 = Ce−ηfit t and the309
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Figure 5: (a) The dynamics of the sublattice magnetization of an antiferromagnet
coupled to the environment for different relaxation rates at χ = 0.9. The static
staggered magnetic field is present in the time interval 0 < t < 10 J−1 with the
value h = 0.094 J . The zoom is included to show the decay of oscillations more
clearly at different decay rates. The panel (b) shows the damping of the oscillations
of the magnetization in (a). We define ∆m= m0− |mmax(t i)| where m0 is the initial
magnetization at t = 0 and mmax(t i) is the value of the magnetization when the
oscillations reach a peak at time t i . The fitting functions are: ∆mfit,1 = C/tαfit,1 with
αfit,1 ≈ 0.345 and ∆mfit,2 = C/ ln(αfit,2 t) with αfit,2 ≈ 0.142 J ; ∆mfit,3 = Ce−ηfit t

with ηfit ≈ 0.022 J for η = 0.02 data, ηfit ≈ 0.042 J for η = 0.04, ηfit ≈ 0.061 J
for η = 0.06 and ηfit ≈ 0.082 J for η = 0.08 case. The fitting for η = 0 is done in
the interval 75 J−1 < t < 200 J−1. The nonlinear part of the data in η = 0.06 J and
η = 0.08 J are neglected during the fitting, because very small values appear due to
the numerical inaccuracies only.

fitting parameter ηfit is in close agreement with the corresponding decay rate in the Lindblad310

formalism. For example, the data for the coupling of η = 0.04 J shows an exponential de-311

cay of oscillations in magnetization with a fitting parameter of ηfit ≈ 0.042 J in the exponent312

(green triangles and green line in Figure 5(b)). Similar analyses for the anisotropy parameter313

of χ = 0.98 are provided in Figure 8 in Appendix B, thereby substantiating the conclusions of314

this subsection. Consequently, these findings ensure the reliability of our quantum approach315

in capturing dephasing and relaxation on equal footing.316

In fact, the observed exponential decay in oscillations of switched magnetization is actually317

a combination of dephasing and relaxation effects. Indeed, we couple the quantum antifer-318

romagnet to the environment, which already shows the effects of dephasing. Therefore, the319

relaxation of sublattice magnetization toward the next energetically favorable orientation is320

the result of internal and external quantum effects, i.e., dephasing and spin-lattice relaxation.321

These are really promising observations of our quantum theoretical model because the static,322
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non-oscillatory state after switching in antiferromagnets guarantees ultrafast and safe data323

storage in practice. We claim that there is strong potential for experimental realizations.324

5.2 The singular behavior in relaxation325

The switching process is characterized by closing the spin gap in Eq. (10) at the instant of326

switching, followed by its reopening afterwards as the Néel vector reorients. Therefore, for327

completeness, we also analyze the dynamics of the energy gaps in Eq. (22).328

The dominating contribution comes from the k0 = 0, π⃗modes in the differential equations329

in (17) because we started our simulations from the state with macroscopic occupation of one330

boson type (a bosons in our initialization). This implies that there is only a tiny energy gap at331

the points k0. The minimum excitation energy reduces to a small value332

lim
k→k0

ω−(k) =∆− ≈
J
M

(23)

where M is the number of points in discretized γ space and we consider up to M = 500333

points in our simulations. These gaps appear in the denominators in dissipation part of the334

differential equations in (17). Therefore, singularities can emerge while solving them together335

with Eq. (21). We observe numerical instabilities, that is, anomalously large values scaling336

with the system size, in the solutions at specific high-symmetry points, particularly at k0 = 0, π⃗.337

Indeed, these points correspond to the zone center and the zone boundary, respectively, and338

are associated with singular behavior in our model due to dissipation. In plain words, the339

macroscopically occupied modes are damped particularly strongly. Already an arbitrary small340

amount of dissipation leads to a qualitatively different behavior. As a result of this singularity,341

the macroscopic occupation of one bosonic flavor at these modes is always present in the342

sublattice at all times. This is a characteristic feature of dissipative switching in our model.343

Figure 6 confirms this behavior with the dynamics of energy gaps ∆− and ∆+ for a and b

0 10 20 30 40 50

t/J−1

0.0

0.2

0.4

0.6

0.8

1.0

∆
±
/J

∆−, η =0

∆+ η =0

∆−, η =0.05 J

∆+ η =0.05 J

Figure 6: The time evolution of the energy gaps with and without relaxation for
χ = 0.9. The applied switching field strength is h = 0.09 J . The solid and dashed
vertical black arrows indicate the instant of switching with and without relaxation,
respectively.

344

Schwinger bosons, respectively. In the system without dissipation, the energy gap for the a345

bosons continuously increases, whereas it starts to decrease continuously for the b bosons and346

they intersect in the course of switching (dashed lines). The interchange of bosons occurs347

after switching. In contrast, the dynamics of the energy gaps are qualitatively different for the348

dissipative system. Initially, the macroscopic occupation of a bosons is present in the system349

with a very small gap of ∆−(t = 0) ≈ 2 · 10−3 J and this tiny gap remains almost unchanged350
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(solid green line) until magnetization reaches zero. Then, the macroscopic occupation occurs351

for the b bosons after switching (solid red line). Another significant difference is that both352

gaps asymptotically approach distinct, quasi-stationary values in the dissipative case, and no353

further oscillations occur. Again, this phenomenon can be attributed to the effect of dissipation354

induced by the environment. Actually, Figure 4 and the solid lines in Figure 6 describe the same355

physical process in different quantities. The dynamics of the energy gaps and the change in356

the bosonic occupation numbers are totally consistent in these graphs, in accordance with the357

crossings of different bosonic occupations in the course of switching.358

The effective energy gaps increase at finite temperature due to thermal fluctuations [12].359

However, the distinct behavior of the gaps with or without dissipation persists there as well.360

We provide finite-temperature results for the energy gap in the Appendix C, including magne-361

tization dynamics at different system-bath coupling strengths.362

So far, we have used the simplest case of relaxation by assuming Schwinger bosons as363

damped harmonic oscillators. Furthermore, more complex dissipation can be considered as364

well to analyze the existence of singular effects in more depth. For instance, the decay rate365

can acquire a momentum dependence or the relaxation can be chosen to conserve the total366

spin. But this is beyond the scope of the present work and left to future research.367

6 Conclusion368

We studied the switching processes in quantum antiferromagnetic square lattice with spin-369

1/2, coupled to an environment. The approach is based on time-dependent Schwinger boson370

mean-field theory and the effect of the environment is derived from the Lindblad formalism.371

The primary objective of the approach was to obtain efficient and stable reorientation of the372

antiferromagnetic order and to highlight the distinct effects of dephasing and relaxation in373

switching processes.374

Our simulations, which incorporate all magnonic modes in a large finite system with all375

wave vectors, enable us to capture the effects of dephasing which manifests itself as a slow376

power-law decrease in the magnetization oscillations after switching. In addition, the effect377

of the dissipation on the dynamics of the magnetization was found to be of paramount im-378

portance because spin-lattice relaxation induces a fast exponential decay of the oscillations.379

The reoriented magnetization dynamics settle into a static state, which indicates that post-380

switching oscillations in the sublattice magnetization are completely suppressed due to the381

dissipation after a short time. However, a singular behavior was observed in the switching382

process with relaxation, characterized by the significantly strong damping of particular modes383

with their macroscopic occupation. This phenomenon requires further investigation, partic-384

ularly in the context of more complex dissipation, given our present treatment of Schwinger385

bosons as energy quanta of damped harmonic oscillators.386

Our results show that exchange-enhancement allows for low external fields to switch the387

sublattice magnetization and relaxation can drive coherent magnon dynamics in open quan-388

tum antiferromagnets, thereby enabling ultrafast reorientation of the magnetization without389

post-switching oscillations. Indeed, this is the central goal of antiferromagnetic spintronics to390

store the information efficiently and safely at the THz regime. The stable switched state is391

obtained under the field value of h = 0.09 J for the anisotropy of χ = 0.9 and the relaxation392

rate of η= 0.05 J , which corresponds to roughly 8 T if we assume J = 10 meV. The time taken393

for the full switching t ≈ 10 J−1 corresponds to ≈ 0.65 ps in our results, which is within THz394

regime. One can still reduce the threshold field for weaker anisotropies [14]. Nevertheless, the395

estimated numbers already indicate the realistic possibility of the observation in the laboratory396

to confirm efficient control of sublattice magnetization at ultrafast scale. In summary, these397
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results and the method developed to obtain them pave the way to a better understanding of398

magnetization dynamics and hence to sustainable information processing based on quantum399

antiferromagnetism.400

These findings provide key insights for the development of novel spintronic devices. The401

fast and robust switching in this study is very promising result for practical applications. The402

topic requires deeper theoretical investigations to further explore the magnetization control403

for specific systems. One can consider different anisotropies of the quantum antiferromagnets404

with higher spins. The combination of external alternating and uniform fields is another pos-405

sible issue to tackle. In addition, alternative numerical approaches are needed to support the406

findings of mean-field approximations that have been used mainly so far.407
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7 Appendix412

A Distinct effect of dephasing and relaxation on switching413

To show the decay of oscillations with and without dissipation more clearly, we provide an al-414

ternative version of Figure 5(b). The same data are depicted in Figure 7 in a log-log plot. One415

can clearly see the difference between the effect of dephasing and relaxation. The dephasing416

results in a slow power-law decrease in the oscillations whereas the relaxation shows an ex-417

ponential fast decline. The power law fitting ∆mfit,1 = C/tαfit,1 with the small decay exponent418

of αfit,1 ≈ 0.345 also confirms the slow decay of oscillations in sublattice magnetization of the419

antiferromagnet without dissipation.420
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Figure 7: The decrease in sublattice magnetization oscillations with the same param-
eters as in Figure 5(b), but with logarithmic scale on both axes. Fitting functions:
∆mfit,1 = C/tαfit,1 with αfit,1 ≈ 0.345 and ∆mfit,2 = C/ ln(αfit,2 t) with αfit,2 ≈ 0.142 J
; ∆mfit,3 = Ce−ηfit t with the same ηfit values from Figure 5(b).
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B Switching in dissipative system at low anisotropy421

Here we present the results for a different anisotropy (χ = 0.98) and concomitantly at lower422

switching field (h = 0.025 J), but with the same value for the decay rate parameters as in423

Figure 5. In fact, other values of the anisotropy parameter have been studied as well, and it424

was found that they also corroborate the results presented in the main text. Therefore, there425

exists a large interval of anisotropy parameters to obtain and to confirm the main conclusions426

of the work.
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Figure 8: (a) The dynamics of the sublattice magnetization of an antiferromagnet
coupled to the environment for different decay rates at χ = 0.98. The static stag-
gered magnetic filed is applied in the time interval 0 < t < 10 J−1 with the value
h= 0.025 J . The zoom is included to show the decay of the oscillations more clearly
at different rates. Panel (b) shows the damping of the oscillations of magnetization
in (a). ∆m is defined in the same way as in Figure 5. The fitting functions read:
∆mfit,1 = C/tαfit,1 with αfit,1 ≈ 0.531 and ∆mfit,2 = C/ ln(αfit,2 t) with αfit,2 ≈ 0.054 J
; ∆mfit,3 = Ce−ηfit t with ηfit ≈ 0.021 J for η = 0.02 data, ηfit ≈ 0.04 J for η = 0.04,
ηfit ≈ 0.061 J for η= 0.06 and ηfit ≈ 0.082 J for η= 0.08 case. The fitting for η= 0
is done in the interval 75 J−1 < t < 200 J−1. The downturn of the data in η= 0.06 J
and η= 0.08 J is neglected in the fitting, since it appears at very small values due to
numerical issues. Panel (c) contains the same data as panel (b), but with logarithmic
scale on both axes.

427

The dynamics of the magnetization is slower at low anisotropies because of the required428

lower switching fields, as one can see from Figure 8(a). Furthermore, the η = 0 case clearly429

shows the effect of dephasing after switching with power-law decrease in the oscillations (red430

line in Figure 8(a) and red triangles in Figure 8(b)). The fitting function ∆mfit,1 = C/tαfit,1431

also implies a small exponent, where αfit,1 ≈ 0.531 for solid red line in Figure 8(b). The in-432

clusion of relaxation decreases the oscillations more rapidly and eventually implies saturation433
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in a steady-state. Moreover, the fitting function ∆mfit,3 provides in close agreement between434

fitting parameters ηfit and the actual dissipation rates η (see the caption in Figure 8). Figure435

8(c) presents clearly distinct effects of dephasing and relaxation with their power-law and436

exponential decrease on ∆m, respectively.437

C Finite temperature438

The behavior of switching in open quantum antiferromagnet at finite temperature is highly439

relevant when it comes to practical applications. At finite temperature, thermal fluctuations440

contribute to the reduction of the spin gap, thereby a lower threshold magnetic field is required441

for magnetization switching [12].442

Figure 9(a) demonstrates the dynamics of the sublattice magnetization at T = 0.4 J for the443

anisotropy parameter of χ = 0.9, where TNeel = 0.704 J holds at this particular value of the444

anisotropy [12]. Slightly lower fields are sufficient to obtain switching compared to the zero445

temperature results in Figure 5(a). It can be seen that the system that is not coupled to the
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Figure 9: (a) The dynamics of the magnetization for different damping parameters
at T = 0.4 J , and χ = 0.9. The switching field is static with the strength of and
h = 0.09 J and it is present in the interval 0 < t < 10 J−1. (b) The temporal evo-
lution of the spin gap for the closed (dashed lines) and open (solid lines) quantum
antiferromagnetic square lattice with the same set of parameters as in panel (a).

446

environment shows small-amplitude oscillations around the reoriented static state. However,447

oscillations decrease considerably faster after switching as the decay rates increase. Moreover,448

the steady-state of the system after switching occurs almost immediately in an open quantum449

system due to spin-lattice relaxation.450

The singular behavior of the relaxation persists at finite temperature as well, but with451

larger spin gaps. Figure 9(b) illustrates the temporal dynamics of the energy gaps ∆− and452

∆+ under two distinct conditions: a closed system (η = 0) and an open system coupled453

to an environment (η = 0.08 J). The energy gap values are ∆−(t = 0) ≈ 0.0243 J and454

∆+(t = 0) ≈ 0.8 J and are essentially interchanged upon switching. Initially, the two gaps455

evolve in opposite directions: one gap decreases while the other increases. In contrast, the456

macroscopic occupation of one bosonic mode at corresponding momenta k0 = 0, π⃗ is present in457

the dissipative system over the entire time evolution while these occupations evolve gradually458

in the absence of relaxation.459
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