

The effect of dephasing and spin-lattice relaxation during the switching processes in quantum antiferromagnets

Asliddin Khudoyberdiev ^{*}, Götz S. Uhrig [†]

Condensed Matter Theory, TU Dortmund University, Otto-Hahn-Straße 4, 44227 Dortmund, Germany

^{*} asliddin.khudoyberdiev@tu-dortmund.de, [†] goetz.uhrig@tu-dortmund.de

Abstract

The control of antiferromagnetic order can pave the way to large storage capacity as well as fast manipulation of stored data. Here achieving a steady-state of sublattice magnetization after switching is crucial to prevent loss of stored data. The present theoretical approach aims to obtain instantaneous stable states of the order after reorienting the Néel vector in open quantum antiferromagnets using time-dependent Schwinger boson mean-field theory. The Lindblad formalism is employed to couple the system to the environment. The quantum theoretical approach comprises differences in the effects of dephasing, originating from destructive interference of different wave vectors, and spin-lattice relaxation. We show that the spin-lattice relaxation results in an exponentially fast convergence to the steady-state after full ultrafast switching.

Copyright attribution to authors.

This work is a submission to SciPost Physics Core.

License information to appear upon publication.

Publication information to appear upon publication.

Received Date

Accepted Date

Published Date

1

2 Contents

3	1	Introduction	2
4	2	Time-dependent Schwinger boson mean-field theory	3
5	2.1	An equilibrium state of the system	4
6	3	Exchange-enhanced switching in closed systems including dephasing effect	6
7	4	Switching in dissipative quantum systems	7
8	4.1	The equations of motions for the dissipative system	8
9	5	Results and discussions	10
10	5.1	The sublattice magnetization dynamics with relaxation at zero temperature	10
11	5.2	The singular behavior in relaxation	13
12	6	Conclusion	14
13	7	Appendix	15
14	A	Distinct effect of dephasing and relaxation on switching	15

15	B Switching in dissipative system at low anisotropy	16
16	C Finite temperature	17
17	References	18
18		
19		

20 1 Introduction

21 The ultrafast spin-dynamics and the absence of stray fields in antiferromagnets propose their
22 application in spintronics devices [1]. The usage of antiferromagnets for data storage has the
23 potential to improve the information processing time scale by a factor of 1000 and significantly
24 enlarge storage capacity [2–4]. However, the existence of intrinsic terahertz (THz) frequen-
25 cies does not automatically guarantee ultrafast switching due to the difficulty of efficiently
26 and fully controlling the magnetization at the microscopic level. Studies are ongoing to exten-
27 sively explore the fast dynamics in antiferromagnets, with the primary focus on the efficient
28 manipulation and control of their magnetic state in the THz regime [5–7].

29 The deflection of the Néel vector by 30° has been experimentally obtained in Mn_2Au at
30 ultrafast time scale through the action of so-called spin-orbit torques and the results are con-
31 sistent with the micromagnetic model [8]. Moreover, atomistic spin dynamics simulations
32 predicts the possibility for exchange-enhanced switching of the Néel vector by 90° and 180°
33 using novel laser optical torques [9]. The classical Landau-Lifshitz-Gilbert equations also con-
34 firmed the stable current-induced precession of Néel vector [10, 11].

35 A quantum approach has been developed to study the switching in quantum antiferro-
36 magnets driven by external magnetic fields, based on time-dependent Schwinger boson mean-
37 field theory [12–14]. This approach has demonstrated that control of the Néel vector can be
38 achieved through the application of strong uniform fields [12, 13]. Moreover, staggered mag-
39 netic fields in neighboring sublattices generate exchange field enhancement and switching
40 occurs for significantly lower [14], because the internal exchange fields are several orders of
41 magnitude larger than the driving external fields and assist to reorient the order [8, 11, 15, 16].
42 Additionally, despite the quantum system being closed, the dynamics of sublattice magnetiza-
43 tion after switching is not coherent, but a slow decay of the oscillations is observed. This
44 phenomenon has been claimed to be a dephasing effect caused by the numerous different fre-
45 quency modes in the system [12–14]. The effect of dissipation has not yet been considered,
46 where the spin system can exchange an energy with its environment, e.g. with a thermal bath
47 such as generated by all lattice vibrations.

48 For the practical application of this technology, the magnetic state needs to be robust
49 against external noise effects to keep stored information safe and secure. The effect of the
50 environment is of particular significance and inevitable, especially if one aims at reaching the
51 switched coherent stationary state of the system quickly. For large magnetic samples, the dy-
52 namics of the magnetization can be well described by quantum excitations involving numerous
53 lattice sites. Describing the dynamics of open many-body quantum system is a substantial chal-
54 lenge for modern physics. A powerful tool to analyze dissipative many-body quantum system
55 is the Lindblad approach [17]. Therefore, we employ quantum theory to analyze sublattice
56 magnetization switching processes in quantum antiferromagnets, taking into account spin-
57 lattice relaxations derived from the Lindblad formalism. To this end, we use time-dependent
58 Schwinger boson mean-field theory at finite temperature and the magnetization control is ob-
59 tained directly via an external magnetic field.

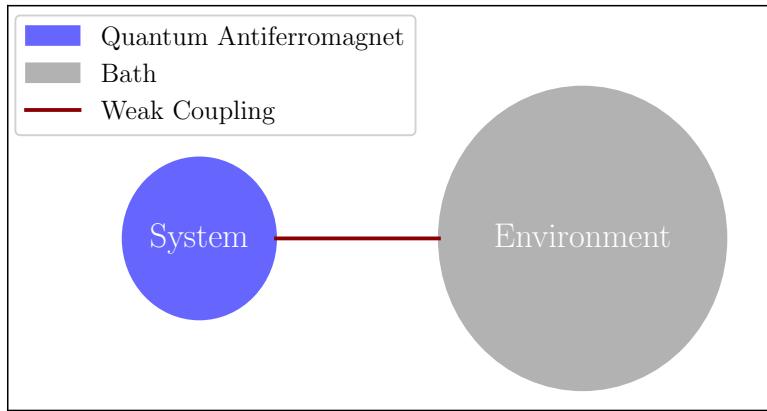


Figure 1: The illustration of the system that is weakly coupled to an environment, e.g., lattice vibrations and hence spin-phonon interactions are taken into account.

60 The objective of this study is to obtain coherent steady-state in quantum antiferromagnets
 61 after switching of the sublattice magnetization. The dissipation can speed up the decay of os-
 62 cillations in magnetization after switching, as it drives the system towards a new ground state.
 63 Consequently, we extend the investigation of exchange-enhanced switching in quantum anti-
 64 ferromagnets [14] by incorporating environmental effects in the framework of open quantum
 65 systems (Figure 1). In the present paper, we consider the quantum antiferromagnetic square
 66 lattice as an exemplary model. It can be extended to other lattice structure, especially to 3d
 67 lattices, in future works.

68 The realization of seemingly impossible local fields that alternate their orientation between
 69 the sublattices of the antiferromagnet can be envisaged by utilizing global field which act lo-
 70 cally different on each sublattice due to the anisotropy of the system [8, 16]. For example,
 71 the theoretical approach [15] and experimental observations [18, 19] show that globally ap-
 72 plied current-induced spin orbit torques can exhibit a Néel-type character, manifesting itself
 73 as locally alternating fields between the two sublattices. Furthermore, the $\underline{\underline{g}}$ tensor can be
 74 anisotropic due to the large spin-orbit coupling so that it differs between the two sublattices,
 75 i.e., $\underline{\underline{g}}|_A \neq \underline{\underline{g}}|_B$. Consequently, a globally applied external magnetic field generates locally al-
 76 ternating components. Thus, the local control of sublattice magnetization using global fields
 77 is a key prerequisite for making antiferromagnetic spintronics feasible [3].

78 The paper is organized as follows. In Section 2, we provide a theoretical model for switch-
 79 ing and define the equilibrium state of the system. The switching in closed quantum anti-
 80 ferromagnets is discussed in Section 3 to show the effect of dephasing only. In Section 4,
 81 we investigate an open quantum antiferromagnet and the role of dissipation on magnetiza-
 82 tion switching. Section 5 is devoted to the conclusion, together with an outlook of the future
 83 directions envisioned for the current research.

84 2 Time-dependent Schwinger boson mean-field theory

85 We use a spin-1/2 anisotropic Heisenberg model with nearest-neighbor interactions on a square
 86 lattice quantum antiferromagnet and its Hamiltonian is given by

$$\mathcal{H}_0 = J \sum_{\langle i,j \rangle} \left[\frac{\chi}{2} (S_i^+ S_j^- + S_i^- S_j^+) + S_i^z S_j^z \right], \quad (1)$$

87 where $\chi = J_{xy}/J_z \in [0, 1]$ is an anisotropy parameter and J is the coupling constant ¹.

88 An external magnetic field is included as a Zeeman term to manipulate the system. To this
 89 end, it has been demonstrated that staggering fields can reorient the Neél vector efficiently due
 90 to intrinsic induced exchange enhancement [11, 14]. In this context, we aim for the switching
 91 at low fields with the corresponding term in the Hamiltonian reading

$$\mathcal{H}_m = -\mathbf{h} \cdot \sum_i (-1)^i \mathbf{s}_i. \quad (2)$$

92 The switching implies strong fluctuations which drive the system far from equilibrium. The
 93 Schwinger boson representation is chosen as an appropriate approach to describe the switching
 94 process [12, 13], because Schwinger bosons can capture magnetic orders with arbitrary
 95 orientation [20, 21]. In this representation, the spin operators are expressed in terms of two
 96 bosonic species, which together are capable of capturing any possible orientation of the spin,
 97 as

$$S_i^+ = a_i^\dagger b_i, \quad S_i^- = b_i^\dagger a_i, \quad S_i^z = \frac{1}{2} (a_i^\dagger a_i - b_i^\dagger b_i), \quad (3)$$

98 including the constraint on the bosonic number

$$a_i^\dagger a_i + b_i^\dagger b_i = 2S. \quad (4)$$

99 The above local constraint restricts the Fock space of the bosons to the meaningful physical
 100 subspace of spin S . It is important to note that the elementary excitations differ here from the
 101 conventional magnons in spin-wave theory, as the Schwinger boson Hamiltonian is quartic in
 102 bosonic operators, thereby the interactions are incorporated into the theory. The sublattice
 103 magnetization can be calculated as

$$m = \langle S_i^z \rangle = \frac{1}{2} (\langle a_i^\dagger a_i \rangle - \langle b_i^\dagger b_i \rangle). \quad (5)$$

104 It can be seen that the orientation of sublattice magnetization can be controlled by controlling
 105 the bosonic occupation number in the lattice site. For this purpose, we first determine
 106 a proper equilibrium state of the system, i.e., the initial mean-occupation number of bosonic
 107 species in sublattices. Subsequently, the external switching field is applied that can induce
 108 non-equilibrium dynamics by changing the boson numbers in the system. The equations for
 109 the mean occupation number of bosons will be constructed using the Heisenberg equation of
 110 motion.

111 2.1 An equilibrium state of the system

112 We start by rotating the spins of one sublattice by 180° about S_j^y ² to obtain a uniform de-
 113 scription of the system. This is a canonical transformation and it preserves the constraint in
 114 Eq. (4) [20, 22]. Consequently, S_j^x undergoes a sign change and the lattice sites experience
 115 the alternating external field in Eq. (2) along the x direction as though it were uniform. In
 116 parallel, this considerably simplifies our analyses because the staggered field in Eq. (2) be-
 117 comes homogeneous. Next, we replace the spin operators in Eq. (1) by Schwinger bosons
 118 from Eq. (3) and a bilinear Hamiltonian results after the mean-field approximation [12]. The

¹Throughout this work, J is chosen as the unit of energy, and is henceforth set to unity.

²Rotation in one sublattice with index j in Eq. (1) which applies for Schwinger bosons $a_j \rightarrow -b_j$, $b_j \rightarrow a_j$.

119 mean-field Hamiltonian in momentum space becomes

$$\mathcal{H}_0^{\text{MF}} = E_0 - \frac{1}{2} \sum_{\mathbf{k}} \gamma_{\mathbf{k}} (C_- a_{\mathbf{k}}^\dagger a_{-\mathbf{k}}^\dagger + C_+ b_{\mathbf{k}}^\dagger b_{-\mathbf{k}}^\dagger + C_-^* a_{\mathbf{k}} a_{-\mathbf{k}} + C_+^* b_{\mathbf{k}} b_{-\mathbf{k}}) + \lambda \sum_{\mathbf{k}} (a_{\mathbf{k}}^\dagger a_{\mathbf{k}} + b_{\mathbf{k}}^\dagger b_{\mathbf{k}}), \quad (6a)$$

$$\mathcal{H}_m^{\text{MF}} = -\frac{h}{2} \sum_{\mathbf{k}} (a_{\mathbf{k}}^\dagger b_{\mathbf{k}} + b_{\mathbf{k}}^\dagger a_{\mathbf{k}}), \quad (6b)$$

$$\mathcal{H}_{\text{MF}} = \mathcal{H}_0^{\text{MF}} + \mathcal{H}_m^{\text{MF}}, \quad (6c)$$

120 where $A := \langle a_i a_j + b_i b_j \rangle$, $B := \langle a_i a_j - b_i b_j \rangle$ and $C_{\pm} := A(1 + \chi) \mp B(1 - \chi)$ with $A, B \in \mathbb{C}$. E_0 is
 121 the constant energy and the wave factor $\gamma_{\mathbf{k}}$ includes the wave vector as $\gamma_{\mathbf{k}} = \frac{1}{z} \sum_{\delta} e^{i\mathbf{k} \cdot \delta}$. The
 122 Lagrange term with the Lagrange parameter λ is included in the Hamiltonian to restrict the
 123 number of bosons per site and ensure that the constraint in Eq. (4) is fulfilled on average. One
 124 should note that as a result of the sublattice rotation, the bond operators become effectively
 125 translationally invariant, namely $A = \langle A_{ij} \rangle$, $B = \langle B_{ij} \rangle$ and $A^* = \langle A_{ij}^\dagger \rangle$, $B^* = \langle B_{ij}^\dagger \rangle$.

126 The above mean-field Hamiltonian is diagonalized by introducing bosonic Bogoliubov op-
 127 erators

$$\alpha_{\mathbf{k}}^\dagger = \cosh(\theta_{\mathbf{k}}^a) a_{\mathbf{k}}^\dagger - e^{-i\phi_{\mathbf{k}}^a} \sinh(\theta_{\mathbf{k}}^a) a_{-\mathbf{k}}, \quad (7a)$$

$$\beta_{\mathbf{k}}^\dagger = \cosh(\theta_{\mathbf{k}}^b) b_{\mathbf{k}}^\dagger - e^{-i\phi_{\mathbf{k}}^b} \sinh(\theta_{\mathbf{k}}^b) b_{-\mathbf{k}}. \quad (7b)$$

128 The Bogoliubov angles $\theta_{\mathbf{k}}^{a,b}$ necessary for the diagonalization condition can be represented as

$$\tanh 2\theta_{\mathbf{k}}^a = \frac{C_- \gamma_{\mathbf{k}} e^{-i\phi_{\mathbf{k}}^a}}{\lambda}, \quad \tanh 2\theta_{\mathbf{k}}^b = \frac{C_+ \gamma_{\mathbf{k}} e^{-i\phi_{\mathbf{k}}^b}}{\lambda}. \quad (8)$$

129 Then, the dispersion relations read

$$\omega_{\mathbf{k}}^\pm = \sqrt{\lambda^2 - |C_{\pm}|^2 \gamma_{\mathbf{k}}^2}, \quad (9)$$

130 where $\omega_{\mathbf{k}}^-$ and $\omega_{\mathbf{k}}^+$ correspond to the $\alpha_{\mathbf{k}}$ and $\beta_{\mathbf{k}}$ bosons, respectively. The spin gap

$$\Delta := \Delta^+ - \Delta^- = \omega_{\mathbf{k}}^+|_{\mathbf{k}=0} - \omega_{\mathbf{k}}^-|_{\mathbf{k}=0} \quad (10)$$

131 functions as a energy barrier and is of particular relevance to obtain the switching [12, 13]
 132 because the system requires an energy input sufficient to surpass the potential barrier associ-
 133 ated with the transition between opposite antiferromagnetic orders. Overcoming this barrier
 134 is achieved through the applied switching field in the Hamiltonian (6b) and we assume that
 135 the field is turned on at time $t = 0$ and switched off at $t = 10J^{-1}$.

136 From the diagonalization conditions in Eq. (8), one can construct self-consistent equations
 137 to find the mean-field parameters and the Lagrange parameter as

$$\begin{cases} A = \langle a_i a_j \rangle + \langle b_i b_j \rangle = \frac{1}{N} \sum_{\mathbf{k}} \gamma_{\mathbf{k}} (\langle a_{\mathbf{k}} a_{-\mathbf{k}} \rangle + \langle b_{\mathbf{k}} b_{-\mathbf{k}} \rangle) \\ B = \langle a_i a_j \rangle - \langle b_i b_j \rangle = \frac{1}{N} \sum_{\mathbf{k}} \gamma_{\mathbf{k}} (\langle a_{\mathbf{k}} a_{-\mathbf{k}} \rangle - \langle b_{\mathbf{k}} b_{-\mathbf{k}} \rangle) \\ 2S = \langle a_i^\dagger a_i \rangle + \langle b_i^\dagger b_i \rangle = \frac{1}{N} \sum_{\mathbf{k}} (\langle a_{\mathbf{k}}^\dagger a_{\mathbf{k}} \rangle + \langle b_{\mathbf{k}}^\dagger b_{\mathbf{k}} \rangle), \end{cases} \quad (11)$$

138 where

$$\begin{cases} \langle a_{\mathbf{k}}^\dagger a_{\mathbf{k}} \rangle = \frac{\lambda}{\omega_{\mathbf{k}}^-} \left(n(\omega_{\mathbf{k}}^-) + \frac{1}{2} \right) - \frac{1}{2} \\ \langle b_{\mathbf{k}}^\dagger b_{\mathbf{k}} \rangle = \frac{\lambda}{\omega_{\mathbf{k}}^+} \left(n(\omega_{\mathbf{k}}^+) + \frac{1}{2} \right) - \frac{1}{2} \\ \langle a_{\mathbf{k}} a_{-\mathbf{k}} \rangle = \frac{C_- \gamma_{\mathbf{k}}}{\omega_{\mathbf{k}}^-} \left(n(\omega_{\mathbf{k}}^-) + \frac{1}{2} \right) \\ \langle b_{\mathbf{k}} b_{-\mathbf{k}} \rangle = \frac{C_+ \gamma_{\mathbf{k}}}{\omega_{\mathbf{k}}^+} \left(n(\omega_{\mathbf{k}}^+) + \frac{1}{2} \right) \end{cases} \quad (12)$$

139 with $n(\omega_k^\pm) = (\exp(\beta\omega_k^\pm) - 1)^{-1}$ being the Bose distribution function. These equations com-
 140 plete the system's initialization for finding the proper initial state given by the thermal equi-
 141 librium in the mean-field description.

142 3 Exchange-enhanced switching in closed systems including de- 143 phasing effect

144 We construct a closed set of differential equations using Heisenberg's equations of motion to
 145 analyze the non-equilibrium of the system under applied pulses. The equations read

$$\begin{cases} \partial_t \langle a_k^\dagger a_k \rangle = -i\gamma_k (C_-^* \langle a_k a_{-k} \rangle - C_- \langle a_k^\dagger a_{-k}^\dagger \rangle) + i\frac{\hbar}{2} (\langle a_k^\dagger b_k \rangle - \langle b_k^\dagger a_k \rangle) \\ \partial_t \langle b_k^\dagger b_k \rangle = -i\gamma_k (C_+^* \langle b_k b_{-k} \rangle - C_+ \langle b_k^\dagger b_{-k}^\dagger \rangle) - i\frac{\hbar}{2} (\langle a_k^\dagger b_k \rangle - \langle b_k^\dagger a_k \rangle) \\ \partial_t \langle a_k a_{-k} \rangle = i\gamma_k C_- (2\langle a_k^\dagger a_k \rangle + 1) - 2\lambda i \langle a_k a_{-k} \rangle + i\hbar \langle a_k b_{-k} \rangle \\ \partial_t \langle b_k b_{-k} \rangle = i\gamma_k C_+ (2\langle b_k^\dagger b_k \rangle + 1) - 2\lambda i \langle b_k b_{-k} \rangle + i\hbar \langle a_k b_{-k} \rangle \\ \partial_t \langle a_k^\dagger b_k \rangle = -i\gamma_k (C_-^* \langle a_k b_{-k} \rangle - C_+ \langle a_k^\dagger b_{-k}^\dagger \rangle) - i\frac{\hbar}{2} (\langle b_k^\dagger b_k \rangle - \langle a_k^\dagger a_k \rangle) \\ \partial_t \langle a_k b_{-k} \rangle = i\gamma_k (C_- \langle a_k^\dagger b_k \rangle + C_+ \langle b_k^\dagger a_k \rangle) - 2\lambda i \langle a_k b_{-k} \rangle + i\frac{\hbar}{2} (\langle a_k a_{-k} \rangle + \langle b_k b_{-k} \rangle). \end{cases} \quad (13)$$

146 The above equations are solved for each momentum \mathbf{k} in the first Brillouin zone using the
 147 Boost Odeint library. Now, the time evolution of spin expectation values can be calculated as

$$\begin{cases} \langle S^x \rangle = \frac{1}{N} \sum_{\mathbf{k}} \gamma_{\mathbf{k}} \Re \langle a_{\mathbf{k}}^\dagger b_{\mathbf{k}} \rangle \\ \langle S^y \rangle = \frac{1}{N} \sum_{\mathbf{k}} \gamma_{\mathbf{k}} \Im \langle a_{\mathbf{k}}^\dagger b_{\mathbf{k}} \rangle \\ m = \langle S^z \rangle = \frac{1}{2N} \sum_{\mathbf{k}} (\langle a_{\mathbf{k}}^\dagger a_{\mathbf{k}} \rangle - \langle b_{\mathbf{k}}^\dagger b_{\mathbf{k}} \rangle). \end{cases} \quad (14)$$

148 The spin gap in Eq. (10) primarily controls the stiffness of the magnetization, meaning that
 149 the system requires some minimum external energy for switching to overcome the potential
 150 barrier. The threshold value of an external uniform switching field corresponds closely to the
 151 spin gap in a lattice [12, 13]. Reorientation of the order can be achieved under fairly low exter-
 152 nal staggered fields due to exchange enhancement [14]. Additionally, our findings indicated
 153 that dephasing, caused by the destructive interference of many modes at different frequencies
 154 in a large closed system, leads to a temporal slow decay of sublattice magnetization oscilla-
 155 tions after switching [13, 14]. Although the main aim of the present work is to distinguish
 156 the effect of dephasing and relaxation, we start by presenting the results of efficient switching
 157 without relaxation to highlight once more the exchange enhancement and dephasing effect.
 158 The next section will be dedicated to relaxation.

159 Figure 2(a) shows the dynamics of the spin expectation values obtained from Eqs. (14)
 160 for $\chi = 0.9$. The expectation value $\langle S^z \rangle$, i.e., the sublattice magnetization m exhibits the
 161 switching behavior accompanied by the dephasing effect after switching. The dephasing effect
 162 slows down the oscillations after full switching and the system attempts to reach a steady
 163 state. The dynamics of $\langle S^x \rangle$ shows also Larmor precession around the field with a decrease
 164 in amplitude. Here we see the exchange-enhanced switching as follows; the Schwinger boson
 165 mean-field calculations show that the spin gap for a square lattice at anisotropy $\chi = 0.9$ has
 166 a value $\approx 0.86J$. Thus, one can estimate that a field of similar size is necessary for switching.
 167 However, the applied staggered field is $h = 0.08J$ in Figure 2(a) which is much lower than the
 168 potential barrier. Thus, the system benefits from strong internal exchange fields to reorient
 169 the magnetization.

170 Figure 2(b) illustrates the processes of exchange enhancement during the switching. Firstly,
 171 antiparallel spins in two neighboring sublattices cant slightly in different directions from their

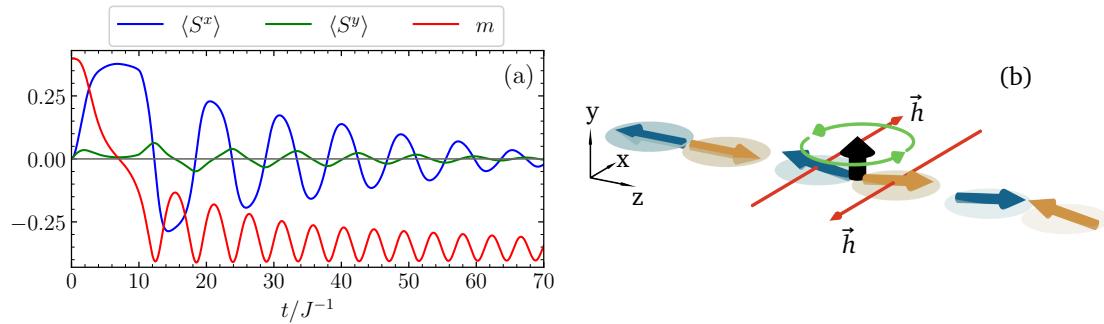


Figure 2: (a) The temporal evolution of spin expectation values under the effect of dephasing without relaxation. The switching field is present in the time interval $0 < t < 10 J^{-1}$ and its strength is $h = 0.08 J$. The anisotropy parameter is $\chi = 0.9$ and temperature is set to zero. (b) The illustration of exchange-enhanced switching from $t = 0$ till switching. The initial state is shown by the arrows in the first circles on the left, the final state in the last circles on the right. The orange and blue arrows in the circles show the directions of the antiferromagnetic sublattice magnetizations. Applied staggered magnetic fields are shown with red arrows. The spins cant slightly after the magnetic field is applied and at the same time they form a resulting strong effective field (black arrow) due to the exchange interaction. Consequently, the spins rotate (green curved arrows show the direction of rotation) around the resulting effective field, i.e, the switching occurs.

172 antiparallel equilibrium state because of the applied staggered field (red arrows) resulting in
 173 a magnetic moment (black arrow). Due to the exchange coupling the spins rotate about the
 174 induced magnetic moment. In other words, the Néel vector rotates around this internal strong
 175 exchange field and switching occurs. During the switching interval, the y component of the
 176 spin is positive. Afterwards, it displays a small oscillating behavior. Indeed, the dynamics of
 177 $\langle S^y \rangle$ in Figure 2(a) confirms our claim of exchange enhancement. It shows small canting until
 178 the system encounters full switching (around $t = 12.5 J^{-1}$) and then displays very narrow
 179 oscillating behavior around the y axis.

180 However, one can see that a decrease in the oscillations due to the dephasing alone is
 181 insufficient to achieve the static behavior of magnetization after switching. This is not very
 182 promising for practical applications because data processing requires fast relaxation of the
 183 switched magnetic state, which guarantees stored data safety and to avoid unintentional back
 184 switching. Having exchange-enhancement and dephasing in mind, our objective is to include
 185 an additional effect of the environment on the switching process in our operator formalism
 186 approach. To this end, we propose implementing Lindblad dissipators while studying the
 187 switching in quantum antiferromagnets to improve the static behavior after switching.

188 4 Switching in dissipative quantum systems

189 No physical system is truly closed. Especially, since we are claiming the practical application
 190 of quantum antiferromagnets for data storage, the effect of an environment is inevitable. The
 191 energy transfer between spins and the lattice is of paramount importance in the control of
 192 sublattice magnetizations. For example, the interaction of localized spins with phonons in a
 193 lattice can affect the temporal evolution of the magnetization. Consequently, we analyze the
 194 dynamics of the sublattice magnetization taking into account the effect of the environment.
 195 The state of the open system changes as a consequence of its internal dynamics and of its

196 interaction with the environment. Although we are not able to follow the dynamics of the
 197 environment, our goal is to understand its additional impact on the system of interest.

198 In this regard, we investigate the dynamics of the system that is weakly coupled to the bath
 199 using the Lindblad formalism, namely the adjoint quantum master equation [17] of the form

$$\frac{d}{dt} \langle O(t) \rangle = i \langle [\mathcal{H}, O(t)] \rangle + \sum_l \eta_l \left(\left\langle L_l^\dagger O(t) L_l - \frac{1}{2} O(t) L_l^\dagger L_l - \frac{1}{2} L_l^\dagger L_l O(t) \right\rangle \right) \quad (15)$$

200 for the expectation value of an observable $\langle O(t) \rangle$, where the Hamiltonian \mathcal{H} corresponds to the
 201 system without environment. The Lindblad operators $\{L_l\}$ describe the system-bath interaction
 202 and the parameters η_l denote the relaxation rates and have the dimension of an inverse time.
 203 We choose the Lindblad operators such that L_l excites the system by an energy ω_l and L_l^\dagger
 204 de-excites it by the same energy. Then, to ensure convergence to the thermal equilibrium, the
 205 relaxation rates of excitation and de-excitation are related by the bosonic occupation number
 206 [23] and master equation reads

$$\begin{aligned} \frac{d}{dt} \langle O(t) \rangle = i \langle [\mathcal{H}, O(t)] \rangle + \frac{1}{2} \sum_l \eta_l \left(\langle [L_l, O(t)] L_l^\dagger \rangle + \langle L_l^\dagger [O(t), L_l] \rangle \right) + \\ \frac{1}{2} \sum_l \eta_l n(\omega_l) \left(\langle [L_l, [O(t), L_l^\dagger]] \rangle + \langle [L_l^\dagger, [O(t), L_l]] \rangle \right), \end{aligned} \quad (16)$$

207 where $n(\omega_l)$ is the bosonic occupation function. Since we are using a bosonic representation
 208 to study the spin system, it is plausible that Lindblad operators modify the energy of the system
 209 for instance by creating and annihilating the Schwinger bosons, i.e., we treat the Schwinger
 210 bosons as the energy quanta of damped harmonic oscillators with $L_l = \alpha_k^\dagger$ or $L_l = \beta_k^\dagger$. This
 211 is illustrated in Figure 3. For simplicity, the damping rate is considered to be the same for all
 212 bosonic species, allowing only one damping parameter η .

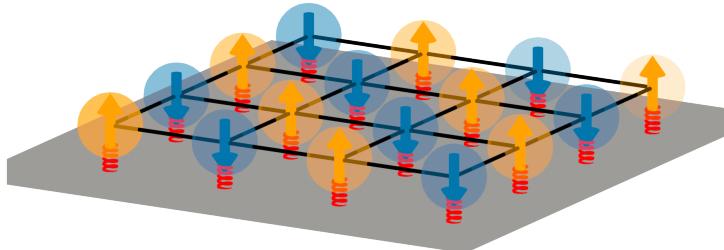


Figure 3: Illustration of an open quantum antiferromagnet. The red springs, connected to magnetization arrows, represent coupling of the spins to the environment, e.g. lattice vibrations and the gray layer represents the bath.

213 **4.1 The equations of motions for the dissipative system**

214 Having established the model, we can now compute a closed set of differential equations for
 215 the expectation values from Eq. (16) as follows

$$\left\{ \begin{array}{lcl} \partial_t \langle a_k^\dagger a_k \rangle & = i \langle [\mathcal{H}_{\text{MF}}, a_k^\dagger a_k] \rangle + \eta \left(\frac{\lambda}{\omega_k^-} \left(n(\omega_k^-) + \frac{1}{2} \right) - \frac{1}{2} - \langle a_k^\dagger a_k \rangle \right) \\ \partial_t \langle b_k^\dagger b_k \rangle & = i \langle [\mathcal{H}_{\text{MF}}, b_k^\dagger b_k] \rangle + \eta \left(\frac{\lambda}{\omega_k^+} \left(n(\omega_k^+) + \frac{1}{2} \right) - \frac{1}{2} - \langle b_k^\dagger b_k \rangle \right) \\ \partial_t \langle a_k a_{-k} \rangle & = i \langle [\mathcal{H}_{\text{MF}}, a_k a_{-k}] \rangle + \eta \left(\frac{C_- \gamma_k}{\omega_k^-} \left(n(\omega_k^-) + \frac{1}{2} \right) - \langle a_k a_{-k} \rangle \right) \\ \partial_t \langle b_k b_{-k} \rangle & = i \langle [\mathcal{H}_{\text{MF}}, b_k b_{-k}] \rangle + \eta \left(\frac{C_+ \gamma_k}{\omega_k^+} \left(n(\omega_k^+) + \frac{1}{2} \right) - \langle b_k b_{-k} \rangle \right) \\ \partial_t \langle a_k^\dagger b_k \rangle & = i \langle [\mathcal{H}_{\text{MF}}, a_k^\dagger b_k] \rangle - \eta \langle a_k^\dagger b_k \rangle \\ \partial_t \langle a_k b_{-k} \rangle & = i \langle [\mathcal{H}_{\text{MF}}, a_k b_{-k}] \rangle - \eta \langle a_k b_{-k} \rangle. \end{array} \right. \quad (17)$$

216 The first commutators in all the above equations have been already obtained in Eqs. (13). This
 217 solvable closed set of differential equations enables us to analyze the magnetization switching
 218 behavior of the quantum antiferromagnet coupled to the environment.

219 However, we treat the system as a damped harmonic oscillator [17], which results in a
 220 decrease of the bosonic occupation number, which no longer satisfies the constraint in Eq. (4).
 221 Moreover, bosonic operators are time-dependent in our model and they modify the bosonic
 222 occupation number in a time-dependent manner. Therefore, we incorporate a time-dependent
 223 Lagrange parameter λ in our approach to compensate for these fluctuations. One can adjust λ
 224 so that the total number of bosons remains constant and the constraint in bosonic occupation
 225 number is fulfilled on average in each sublattice as

$$\frac{1}{N} \sum_k \left(\langle a_k^\dagger a_k \rangle + \langle b_k^\dagger b_k \rangle \right) = 2S. \quad (18)$$

226 In this framework, we construct another differential equation by summing the first two equations
 227 in the Eqs. (17) over all momenta \mathbf{k}

$$\begin{aligned} 0 \stackrel{!}{=} \partial_t \left(\frac{1}{N} \sum_k \left(\langle a_k^\dagger a_k \rangle + \langle b_k^\dagger b_k \rangle \right) \right) &= i \langle [\mathcal{H}_{\text{MF}}, \frac{1}{N} \sum_k (a_k^\dagger a_k + b_k^\dagger b_k)] \rangle \\ &+ \frac{\eta}{N} \sum_k \left(\frac{\lambda}{\omega_k^-} \left(n(\omega_k^-) + \frac{1}{2} \right) - \frac{1}{2} + \frac{\lambda}{\omega_k^+} \left(n(\omega_k^+) + \frac{1}{2} \right) - \frac{1}{2} \right) - \frac{\eta}{N} \sum_k \left(\langle a_k^\dagger a_k \rangle + \langle b_k^\dagger b_k \rangle \right). \end{aligned} \quad (19)$$

228 The first term on the right hand side vanishes and the last term in the second line is constant.
 229 By differentiating the remaining terms on the second line with respect to time, we obtain the
 230 following equation

$$\frac{d}{dt} \underbrace{\left[\frac{\eta}{N} \sum_k \left(\frac{\lambda}{\omega_k^-} \left(n(\omega_k^-) + \frac{1}{2} \right) - \frac{1}{2} + \frac{\lambda}{\omega_k^+} \left(n(\omega_k^+) + \frac{1}{2} \right) - \frac{1}{2} \right) \right]}_D = \frac{dD}{dt} = 0, \quad (20)$$

231 where we have again used that the total occupation number does not change in time according
 232 to the constraint in Eq.(18). At this stage, it is important to note that the mean-field averages
 233 A and B in Eq.(9) are also time dependent. Therefore, one can see that $D = D(A, B, \lambda)$ which
 234 leads to the following new differential equation

$$\frac{d\lambda}{dt} = -\frac{1}{\frac{\partial D}{\partial \lambda}} \left(\frac{\partial D}{\partial A} \frac{dA}{dt} + \frac{\partial D}{\partial B} \frac{dB}{dt} \right). \quad (21)$$

235 This completes the required set of differential equations that can be solved for each mo-
 236 mentum with the time-dependent Lagrange parameter. Furthermore, in order to determine
 237 a suitable initial value of the magnetization that is compatible with the infinite system³, we
 238 treat the initial system such that there are more “a” Schwinger bosons than “b” type. This is
 239 reached by condensation of one boson flavor [20]. For the finite-size system at zero tempera-
 240 ture, this corresponds to a very tiny energy gap for the former boson flavor and a large energy
 241 gap for the latter ($\Delta^+ \gg \Delta^- \geq 0$).

242 In the solution, numerical instabilities might occur in the equations because the expression
 243 for the energy gaps has the form

$$\Delta^\pm = \sqrt{\lambda^2 - |C_\pm|^2}. \quad (22)$$

244 The gaps Δ^\pm appear in denominators of expectation values in Eq. (12) at $\mathbf{k} = \mathbf{k}_0 = 0, \vec{\pi}$.
 245 These modes contribute macroscopically to the occupation of bosons, i.e., they scale with
 246 the size of the cluster which is an unexpected feature of single modes. Thus, it is essential
 247 to carefully consider this aspect while solving differential equations. Nevertheless, we have
 248 now established all the analytical relations necessary to solve the equations at each \mathbf{k} point
 249 in the two-dimensional Brillouin zone and thereby determine the non-equilibrium properties
 250 of the system. There one still needs to deal with two-dimensional sums, which are integrals
 251 in the thermodynamic limit. However, all equations for expectation values in (11), (12) and
 252 differential equations in (17) depend on $\gamma_{\mathbf{k}}$, not explicitly on \mathbf{k} . Hence we replace the integrals
 253 over all wave vectors with a single integral over γ and discretize the $\gamma \in [-1, 1]$ space for the
 254 efficiency of the numerical calculations, provided that the density of states is known. Details of
 255 the transformation can be found in Refs. [13, 14]. Furthermore, the fourth-order Runge-Kutta
 256 algorithm is employed to obtain the numerical solution of the differential equations with the
 257 time step $\Delta t = 10^{-4} J^{-1}$. This small step size is chosen to mitigate the potential numerical
 258 instabilities arising from the presence of the tiny gaps of the specific $\mathbf{k}_0 = 0, \vec{\pi}$ modes.

259 5 Results and discussions

260 5.1 The sublattice magnetization dynamics with relaxation at zero temperature

261 Now, we start to analyze the non-equilibrium properties of antiferromagnets coupled to a bath,
 262 as a result of Eqs. (17) and (21). A finite, non-zero staggered field is applied in the interval of
 263 $0 < t < 10 J^{-1}$ in all analyses. Indeed, this is the case in practical applications as one aims at
 264 switching with finite pulses. For typical antiferromagnetic exchange couplings, this time scale
 265 still corresponds to the THz regime, meaning $t \leq 1 \text{ ps}$.

266 Figure 4 sketches one of our main results in this work. The dynamics of the bosonic occupa-
 267 tion numbers and the sublattice magnetization are shown in Figure 4(a). According to Eq.(5),
 268 the mean occupation numbers of the Schwinger bosons define the spin expectation value $\langle S^z \rangle$
 269 and thus also the sublattice magnetization m . So we expect the Schwinger bosons’ occupa-
 270 tions to be swapped during the switching. Since condensation of the a bosons is assumed in
 271 the initial state (orange line), the b bosons should be condensed (blue line) after switching the
 272 sublattice magnetization. Most importantly, the relaxation results in almost static sublattice
 273 magnetization immediately after full switching (red line). The constraint in Eq. (4) is also
 274 fulfilled at all times (dashed green line). A similar plot to that in Figure 2(a) is presented
 275 in Figure 4(b), but now with relaxation. One can see the immediate convergence of the or-
 276 der to the reoriented stable magnetization state with a remaining very weak decaying Larmor

³The desired initial sublattice magnetization for a square lattice at zero temperature is $m_0(\chi = 0) = 0.3034$ [20].

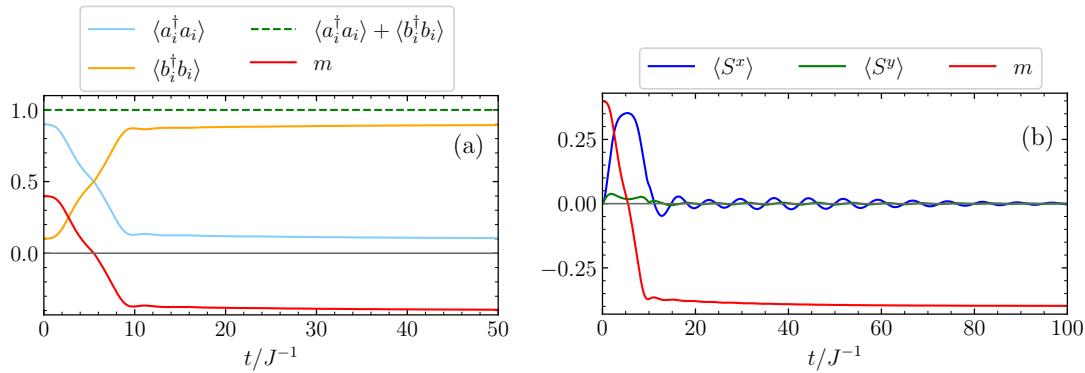


Figure 4: (a) The dynamics of the mean occupation of the Schwinger bosons, as well as the resulting sublattice magnetization. (b) The time evolution of the spin expectation values under the effect of relaxation for the rate $\eta = 0.05 J$. The applied external field is $h = 0.09 J$ and the anisotropy parameter is $\chi = 0.9$.

277 precession. This is precisely how the dissipation is expected to impact the spin dynamics. Furthermore, the time evolution of spin expectation values supports the realization of exchange 278 enhancement in the system as it was illustrated in Figure 2(b). Our mean-field approach is 279 therefore able to accurately model exchange enhancement in switching processes, including 280 dephasing and relaxation.

281 Figure 5(a) shows the sublattice magnetization dynamics at $\chi = 0.9$ for different relaxation 282 rates. One can see that in all cases the oscillations decay after switching and the damping rate 283 is essentially given by the decay rate. The system without damping ($\eta = 0$), i.e., the effects of 284 dephasing only, displays a very slow decay while maintaining continuous magnetization oscillations (red line in Figure 5(a)). On the other hand, spin-lattice relaxation derived from the 285 Lindblad formalism induces relaxation of the oscillation exponentially. Eventually, the system 286 with stronger dissipation yields fast convergence to the static state with full switching (zoom 287 in plot in Figure 5(a)). Moreover, the order quickly reaches a coherent static state that is 288 opposite to the initial order, for example at $\eta = 0.08 J$. Note that dissipation increases the 289 threshold value of the necessary switching field compared to the case of $\eta = 0$. This is natural, 290 as dissipation decrements the energy of the system and thus affects the non-equilibrium 291 dynamics. Therefore, we choose the switching field so that the switching occurs for all the 292 selected relaxation rates. For example, the threshold value of the staggered field is actually 293 $h_{\text{thr}} = 0.079 J$ at the anisotropy of $\chi = 0.9$ for a closed antiferromagnetic square lattice [14], 294 but we have chosen $h = 0.094 J$ in Figure 5(a).

295 For the sake of completeness, we provide Figure 5(b) to validate the qualitative difference 296 in the damping between the closed system and the system coupled to the bath. The change in 297 amplitude of magnetization, denoted by $\Delta m = m_0 - |m_{\text{max}}(t_i)|$, is extracted from Figure 5(a), 298 where $m_{\text{max}}(t_i)$ is the value of magnetization at the maxima of oscillations at time t_i and m_0 is 299 the initial magnetization. Note that Figure 5(b) has a logarithmic scale on the y axis. An alter- 300 native plot is presented in Appendix A with both axes in logarithmic scale. On the one hand, 301 one can see that the closed system shows a very slow decrease in Δm (the data with red tri- 302 angles in Figure 5(b)). The fitting with the power law function $\Delta m_{\text{fit},1} = C/t^{\alpha_{\text{fit},1}}$ also confirms 303 its steady decrease with a small exponent value of $\alpha_{\text{fit},1} \approx 0.345$ (solid red line). Furthermore, 304 another possible fit function $\Delta m_{\text{fit},2} = C/\ln(\alpha_{\text{fit},2} t)$ works equally well and supports our claim 305 of a very slow, non-exponential damping solely due to dephasing with $\alpha_{\text{fit},2} \approx 0.142 J$ (dashed 306 red line). On the other hand, the system with finite relaxation shows an exponential decrease 307 in Δm . Indeed, the curves are fitted by the exponential function $\Delta m_{\text{fit},3} = C e^{-\eta_{\text{fit}} t}$ and the 308

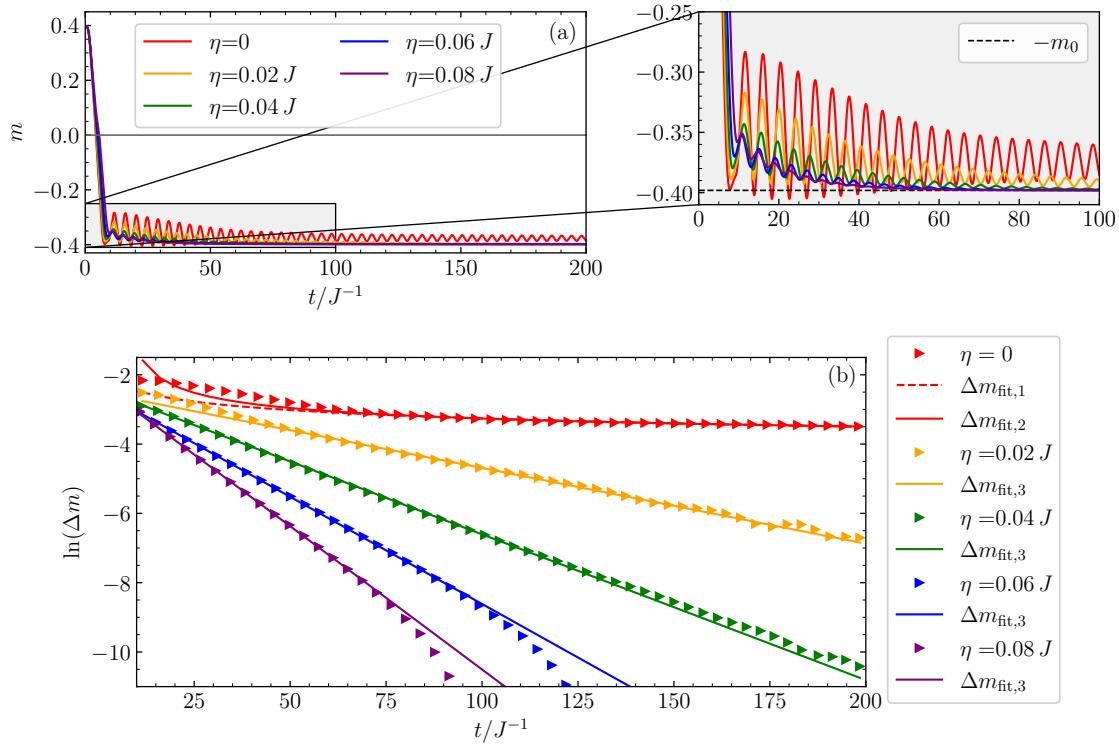


Figure 5: (a) The dynamics of the sublattice magnetization of an antiferromagnet coupled to the environment for different relaxation rates at $\chi = 0.9$. The static staggered magnetic field is present in the time interval $0 < t < 10J^{-1}$ with the value $h = 0.094J$. The zoom is included to show the decay of oscillations more clearly at different decay rates. The panel (b) shows the damping of the oscillations of the magnetization in (a). We define $\Delta m = m_0 - |m_{\max}(t_i)|$ where m_0 is the initial magnetization at $t = 0$ and $m_{\max}(t_i)$ is the value of the magnetization when the oscillations reach a peak at time t_i . The fitting functions are: $\Delta m_{\text{fit},1} = C/t^{\alpha_{\text{fit},1}}$ with $\alpha_{\text{fit},1} \approx 0.345$ and $\Delta m_{\text{fit},2} = C/\ln(\alpha_{\text{fit},2}t)$ with $\alpha_{\text{fit},2} \approx 0.142J$; $\Delta m_{\text{fit},3} = Ce^{-\eta_{\text{fit}}t}$ with $\eta_{\text{fit}} \approx 0.022J$ for $\eta = 0.02$ data, $\eta_{\text{fit}} \approx 0.042J$ for $\eta = 0.04$, $\eta_{\text{fit}} \approx 0.061J$ for $\eta = 0.06$ and $\eta_{\text{fit}} \approx 0.082J$ for $\eta = 0.08$ case. The fitting for $\eta = 0$ is done in the interval $75J^{-1} < t < 200J^{-1}$. The nonlinear part of the data in $\eta = 0.06J$ and $\eta = 0.08J$ are neglected during the fitting, because very small values appear due to the numerical inaccuracies only.

fitting parameter η_{fit} is in close agreement with the corresponding decay rate in the Lindblad formalism. For example, the data for the coupling of $\eta = 0.04J$ shows an exponential decay of oscillations in magnetization with a fitting parameter of $\eta_{\text{fit}} \approx 0.042J$ in the exponent (green triangles and green line in Figure 5(b)). Similar analyses for the anisotropy parameter of $\chi = 0.98$ are provided in Figure 8 in Appendix B, thereby substantiating the conclusions of this subsection. Consequently, these findings ensure the reliability of our quantum approach in capturing dephasing and relaxation on equal footing.

In fact, the observed exponential decay in oscillations of switched magnetization is actually a combination of dephasing and relaxation effects. Indeed, we couple the quantum antiferromagnet to the environment, which already shows the effects of dephasing. Therefore, the relaxation of sublattice magnetization toward the next energetically favorable orientation is the result of internal and external quantum effects, i.e., dephasing and spin-lattice relaxation. These are really promising observations of our quantum theoretical model because the static,

323 non-oscillatory state after switching in antiferromagnets guarantees ultrafast and safe data
 324 storage in practice. We claim that there is strong potential for experimental realizations.

325 **5.2 The singular behavior in relaxation**

326 The switching process is characterized by closing the spin gap in Eq. (10) at the instant of
 327 switching, followed by its reopening afterwards as the Néel vector reorients. Therefore, for
 328 completeness, we also analyze the dynamics of the energy gaps in Eq. (22).

329 The dominating contribution comes from the $\mathbf{k}_0 = 0, \vec{\pi}$ modes in the differential equations
 330 in (17) because we started our simulations from the state with macroscopic occupation of one
 331 boson type (a bosons in our initialization). This implies that there is only a tiny energy gap at
 332 the points \mathbf{k}_0 . The minimum excitation energy reduces to a small value

$$\lim_{\mathbf{k} \rightarrow \mathbf{k}_0} \omega^-(\mathbf{k}) = \Delta^- \approx \frac{J}{M} \quad (23)$$

333 where M is the number of points in discretized γ space and we consider up to $M = 500$
 334 points in our simulations. These gaps appear in the denominators in dissipation part of the
 335 differential equations in (17). Therefore, singularities can emerge while solving them together
 336 with Eq. (21). We observe numerical instabilities, that is, anomalously large values scaling
 337 with the system size, in the solutions at specific high-symmetry points, particularly at $\mathbf{k}_0 = 0, \vec{\pi}$.
 338 Indeed, these points correspond to the zone center and the zone boundary, respectively, and
 339 are associated with singular behavior in our model due to dissipation. In plain words, the
 340 macroscopically occupied modes are damped particularly strongly. Already an arbitrary small
 341 amount of dissipation leads to a qualitatively different behavior. As a result of this singularity,
 342 the macroscopic occupation of one bosonic flavor at these modes is always present in the
 343 sublattice at all times. This is a characteristic feature of dissipative switching in our model.
 Figure 6 confirms this behavior with the dynamics of energy gaps Δ^- and Δ^+ for a and b

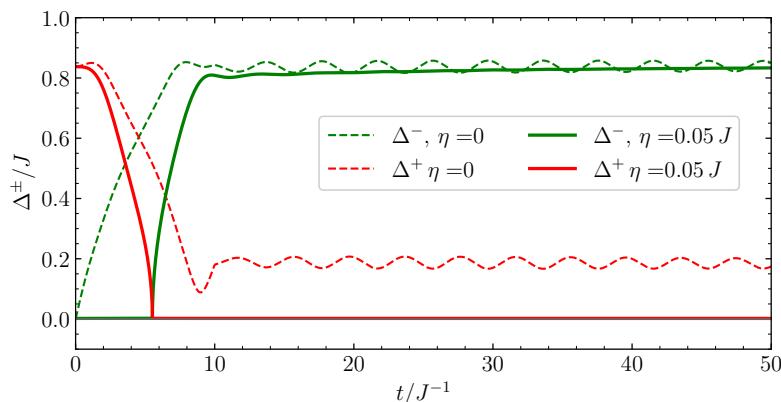


Figure 6: The time evolution of the energy gaps with and without relaxation for $\chi = 0.9$. The applied switching field strength is $h = 0.09 J$. The solid and dashed vertical black arrows indicate the instant of switching with and without relaxation, respectively.

344
 345 Schwinger bosons, respectively. In the system without dissipation, the energy gap for the a
 346 bosons continuously increases, whereas it starts to decrease continuously for the b bosons and
 347 they intersect in the course of switching (dashed lines). The interchange of bosons occurs
 348 after switching. In contrast, the dynamics of the energy gaps are qualitatively different for the
 349 dissipative system. Initially, the macroscopic occupation of a bosons is present in the system
 350 with a very small gap of $\Delta^-(t = 0) \approx 2 \cdot 10^{-3} J$ and this tiny gap remains almost unchanged

351 (solid green line) until magnetization reaches zero. Then, the macroscopic occupation occurs
352 for the b bosons after switching (solid red line). Another significant difference is that both
353 gaps asymptotically approach distinct, quasi-stationary values in the dissipative case, and no
354 further oscillations occur. Again, this phenomenon can be attributed to the effect of dissipation
355 induced by the environment. Actually, Figure 4 and the solid lines in Figure 6 describe the same
356 physical process in different quantities. The dynamics of the energy gaps and the change in
357 the bosonic occupation numbers are totally consistent in these graphs, in accordance with the
358 crossings of different bosonic occupations in the course of switching.

359 The effective energy gaps increase at finite temperature due to thermal fluctuations [12].
360 However, the distinct behavior of the gaps with or without dissipation persists there as well.
361 We provide finite-temperature results for the energy gap in the Appendix C, including magne-
362 tization dynamics at different system-bath coupling strengths.

363 So far, we have used the simplest case of relaxation by assuming Schwinger bosons as
364 damped harmonic oscillators. Furthermore, more complex dissipation can be considered as
365 well to analyze the existence of singular effects in more depth. For instance, the decay rate
366 can acquire a momentum dependence or the relaxation can be chosen to conserve the total
367 spin. But this is beyond the scope of the present work and left to future research.

368 6 Conclusion

369 We studied the switching processes in quantum antiferromagnetic square lattice with spin-
370 1/2, coupled to an environment. The approach is based on time-dependent Schwinger boson
371 mean-field theory and the effect of the environment is derived from the Lindblad formalism.
372 The primary objective of the approach was to obtain efficient and stable reorientation of the
373 antiferromagnetic order and to highlight the distinct effects of dephasing and relaxation in
374 switching processes.

375 Our simulations, which incorporate all magnonic modes in a large finite system with all
376 wave vectors, enable us to capture the effects of dephasing which manifests itself as a slow
377 power-law decrease in the magnetization oscillations after switching. In addition, the effect
378 of the dissipation on the dynamics of the magnetization was found to be of paramount im-
379 portance because spin-lattice relaxation induces a fast exponential decay of the oscillations.
380 The reoriented magnetization dynamics settle into a static state, which indicates that post-
381 switching oscillations in the sublattice magnetization are completely suppressed due to the
382 dissipation after a short time. However, a singular behavior was observed in the switching
383 process with relaxation, characterized by the significantly strong damping of particular modes
384 with their macroscopic occupation. This phenomenon requires further investigation, partic-
385 ularly in the context of more complex dissipation, given our present treatment of Schwinger
386 bosons as energy quanta of damped harmonic oscillators.

387 Our results show that exchange-enhancement allows for low external fields to switch the
388 sublattice magnetization and relaxation can drive coherent magnon dynamics in open quan-
389 tum antiferromagnets, thereby enabling ultrafast reorientation of the magnetization without
390 post-switching oscillations. Indeed, this is the central goal of antiferromagnetic spintronics to
391 store the information efficiently and safely at the THz regime. The stable switched state is
392 obtained under the field value of $h = 0.09 J$ for the anisotropy of $\chi = 0.9$ and the relaxation
393 rate of $\eta = 0.05 J$, which corresponds to roughly 8 T if we assume $J = 10$ meV. The time taken
394 for the full switching $t \approx 10 J^{-1}$ corresponds to ≈ 0.65 ps in our results, which is within THz
395 regime. One can still reduce the threshold field for weaker anisotropies [14]. Nevertheless, the
396 estimated numbers already indicate the realistic possibility of the observation in the laboratory
397 to confirm efficient control of sublattice magnetization at ultrafast scale. In summary, these

398 results and the method developed to obtain them pave the way to a better understanding of
 399 magnetization dynamics and hence to sustainable information processing based on quantum
 400 antiferromagnetism.

401 These findings provide key insights for the development of novel spintronic devices. The
 402 fast and robust switching in this study is very promising result for practical applications. The
 403 topic requires deeper theoretical investigations to further explore the magnetization control
 404 for specific systems. One can consider different anisotropies of the quantum antiferromagnets
 405 with higher spins. The combination of external alternating and uniform fields is another pos-
 406 sible issue to tackle. In addition, alternative numerical approaches are needed to support the
 407 findings of mean-field approximations that have been used mainly so far.

408 Acknowledgments

409 We are thankful to T. Gräßer and P. Bieniek for useful discussions and suggestions.

410 **Funding information** This work has been funded by the Deutsche Forschungsgemeinschaft
 411 (German Research Foundation) in project UH 90/14-2.

412 7 Appendix

413 A Distinct effect of dephasing and relaxation on switching

414 To show the decay of oscillations with and without dissipation more clearly, we provide an al-
 415 ternative version of Figure 5(b). The same data are depicted in Figure 7 in a log-log plot. One
 416 can clearly see the difference between the effect of dephasing and relaxation. The dephasing
 417 results in a slow power-law decrease in the oscillations whereas the relaxation shows an ex-
 418 ponential fast decline. The power law fitting $\Delta m_{\text{fit},1} = C/t^{\alpha_{\text{fit},1}}$ with the small decay exponent
 419 of $\alpha_{\text{fit},1} \approx 0.345$ also confirms the slow decay of oscillations in sublattice magnetization of the
 420 antiferromagnet without dissipation.

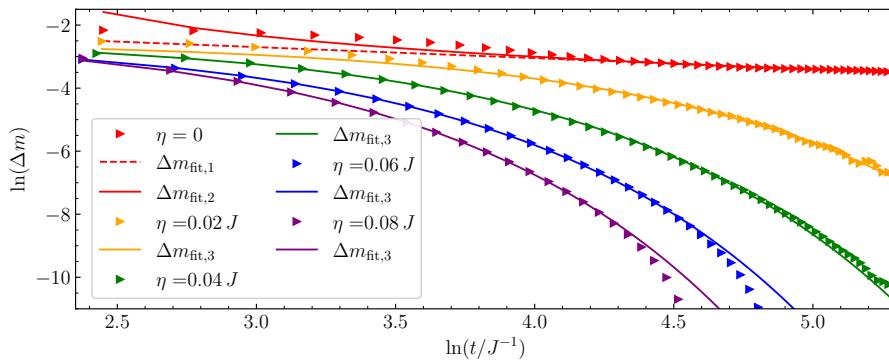


Figure 7: The decrease in sublattice magnetization oscillations with the same param-
 eters as in Figure 5(b), but with logarithmic scale on both axes. Fitting functions:
 $\Delta m_{\text{fit},1} = C/t^{\alpha_{\text{fit},1}}$ with $\alpha_{\text{fit},1} \approx 0.345$ and $\Delta m_{\text{fit},2} = C/\ln(\alpha_{\text{fit},2}t)$ with $\alpha_{\text{fit},2} \approx 0.142J$
 $\Delta m_{\text{fit},3} = Ce^{-\eta_{\text{fit}}t}$ with the same η_{fit} values from Figure 5(b).

421 B Switching in dissipative system at low anisotropy

422 Here we present the results for a different anisotropy ($\chi = 0.98$) and concomitantly at lower
 423 switching field ($h = 0.025J$), but with the same value for the decay rate parameters as in
 424 Figure 5. In fact, other values of the anisotropy parameter have been studied as well, and it
 425 was found that they also corroborate the results presented in the main text. Therefore, there
 426 exists a large interval of anisotropy parameters to obtain and to confirm the main conclusions
 of the work.



Figure 8: (a) The dynamics of the sublattice magnetization of an antiferromagnet coupled to the environment for different decay rates at $\chi = 0.98$. The static staggered magnetic field is applied in the time interval $0 < t < 10J^{-1}$ with the value $h = 0.025J$. The zoom is included to show the decay of the oscillations more clearly at different rates. Panel (b) shows the damping of the oscillations of magnetization in (a). Δm is defined in the same way as in Figure 5. The fitting functions read: $\Delta m_{\text{fit},1} = C/t^{\alpha_{\text{fit},1}}$ with $\alpha_{\text{fit},1} \approx 0.531$ and $\Delta m_{\text{fit},2} = C/\ln(\alpha_{\text{fit},2}t)$ with $\alpha_{\text{fit},2} \approx 0.054J$; $\Delta m_{\text{fit},3} = Ce^{-\eta_{\text{fit}}t}$ with $\eta_{\text{fit}} \approx 0.021J$ for $\eta = 0.02$ data, $\eta_{\text{fit}} \approx 0.04J$ for $\eta = 0.04$, $\eta_{\text{fit}} \approx 0.061J$ for $\eta = 0.06$ and $\eta_{\text{fit}} \approx 0.082J$ for $\eta = 0.08$ case. The fitting for $\eta = 0$ is done in the interval $75J^{-1} < t < 200J^{-1}$. The downturn of the data in $\eta = 0.06J$ and $\eta = 0.08J$ is neglected in the fitting, since it appears at very small values due to numerical issues. Panel (c) contains the same data as panel (b), but with logarithmic scale on both axes.

427
 428 The dynamics of the magnetization is slower at low anisotropies because of the required
 429 lower switching fields, as one can see from Figure 8(a). Furthermore, the $\eta = 0$ case clearly
 430 shows the effect of dephasing after switching with power-law decrease in the oscillations (red
 431 line in Figure 8(a) and red triangles in Figure 8(b)). The fitting function $\Delta m_{\text{fit},1} = C/t^{\alpha_{\text{fit},1}}$
 432 also implies a small exponent, where $\alpha_{\text{fit},1} \approx 0.531$ for solid red line in Figure 8(b). The in-
 433 clusion of relaxation decreases the oscillations more rapidly and eventually implies saturation

434 in a steady-state. Moreover, the fitting function $\Delta m_{\text{fit},3}$ provides in close agreement between
 435 fitting parameters η_{fit} and the actual dissipation rates η (see the caption in Figure 8). Figure
 436 8(c) presents clearly distinct effects of dephasing and relaxation with their power-law and
 437 exponential decrease on Δm , respectively.

438 C Finite temperature

439 The behavior of switching in open quantum antiferromagnet at finite temperature is highly
 440 relevant when it comes to practical applications. At finite temperature, thermal fluctuations
 441 contribute to the reduction of the spin gap, thereby a lower threshold magnetic field is required
 442 for magnetization switching [12].

443 Figure 9(a) demonstrates the dynamics of the sublattice magnetization at $T = 0.4J$ for the
 444 anisotropy parameter of $\chi = 0.9$, where $T_{\text{Neel}} = 0.704J$ holds at this particular value of the
 445 anisotropy [12]. Slightly lower fields are sufficient to obtain switching compared to the zero
 temperature results in Figure 5(a). It can be seen that the system that is not coupled to the

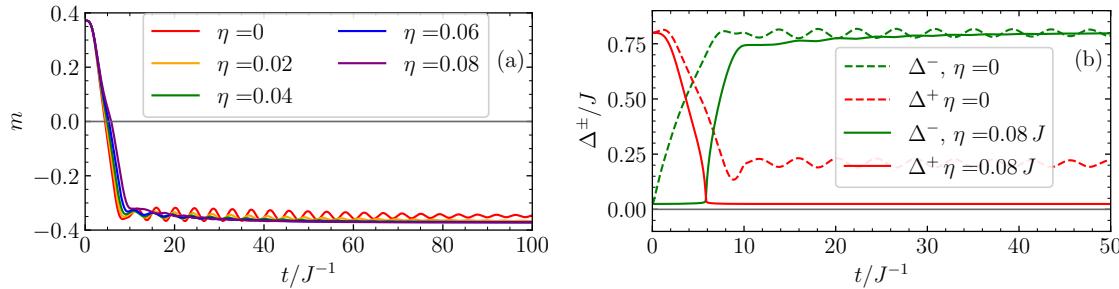


Figure 9: (a) The dynamics of the magnetization for different damping parameters at $T = 0.4J$, and $\chi = 0.9$. The switching field is static with the strength of and $h = 0.09J$ and it is present in the interval $0 < t < 10J^{-1}$. (b) The temporal evolution of the spin gap for the closed (dashed lines) and open (solid lines) quantum antiferromagnetic square lattice with the same set of parameters as in panel (a).

446
 447 environment shows small-amplitude oscillations around the reoriented static state. However,
 448 oscillations decrease considerably faster after switching as the decay rates increase. Moreover,
 449 the steady-state of the system after switching occurs almost immediately in an open quantum
 450 system due to spin-lattice relaxation.

451 The singular behavior of the relaxation persists at finite temperature as well, but with
 452 larger spin gaps. Figure 9(b) illustrates the temporal dynamics of the energy gaps Δ^- and
 453 Δ^+ under two distinct conditions: a closed system ($\eta = 0$) and an open system coupled
 454 to an environment ($\eta = 0.08J$). The energy gap values are $\Delta^-(t = 0) \approx 0.0243J$ and
 455 $\Delta^+(t = 0) \approx 0.8J$ and are essentially interchanged upon switching. Initially, the two gaps
 456 evolve in opposite directions: one gap decreases while the other increases. In contrast, the
 457 macroscopic occupation of one bosonic mode at corresponding momenta $\mathbf{k}_0 = 0, \vec{\pi}$ is present in
 458 the dissipative system over the entire time evolution while these occupations evolve gradually
 459 in the absence of relaxation.

460 **References**

461 [1] V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono and Y. Tserkovnyak, *Antiferromagnetic*
462 *spintronics* **90**, 015005 (2018), doi:[10.1103/RevModPhys.90.015005](https://doi.org/10.1103/RevModPhys.90.015005).

463 [2] A. V. Kimel, B. A. Ivanov, R. V. Pisarev, P. A. Usachev, A. Kirilyuk and T. Rasing,
464 *Inertia-driven spin switching in antiferromagnets*, *Nature Physics* **5**, 727 (2009),
465 doi:[10.1038/nphys1369](https://doi.org/10.1038/nphys1369).

466 [3] T. Jungwirth, X. Marti, P. Wadley and J. Wunderlich, *Antiferromagnetic spintronics*, *Nature*
467 *Nanotechnology* **11**, 231 (2016), doi:[10.1038/nnano.2016.18](https://doi.org/10.1038/nnano.2016.18).

468 [4] A. Kimel, T. Rasing and B. Ivanov, *Optical read-out and control of antiferromagnetic Néel*
469 *vector in altermagnets and beyond*, *Journal of Magnetism and Magnetic Materials* **598**,
470 172039 (2024), doi:<https://doi.org/10.1016/j.jmmm.2024.172039>.

471 [5] O. Gomonay, T. Jungwirth and J. Sinova, *Concepts of antiferromagnetic*
472 *spintronics*, *Physica Status Solidi (RRL)* **11**(4), 1700022 (2017),
473 doi:<https://doi.org/10.1002/pssr.201700022>.

474 [6] C. Schmitt, A. Rajan, G. Beneke, A. Kumar, T. Sparmann, H. Meer, B. Bednarz,
475 R. Ramos, M. A. Niño, M. Foerster, E. Saitoh and M. Kläui, *Mechanisms of elec-*
476 *trical switching of ultrathin CoO/Pt bilayers*, *Nano Letters* **24**(5), 1471 (2024),
477 doi:[10.1021/acs.nanolett.3c02890](https://doi.org/10.1021/acs.nanolett.3c02890), PMID: 38216142.

478 [7] M. Zhu, M. Jalali, Z. Zhang, R. F. L. Evans, J. L. Ross, R. W. Chantrell and Y. Liu, *An-*
479 *tiferrromagnetic dynamics of Mn₂Au driven by spin current pulses with perpendicular spin*
480 *polarization*, *Applied Physics Letters* **126**(22), 222401 (2025), doi:[10.1063/5.0266902](https://doi.org/10.1063/5.0266902).

481 [8] Y. Behovits, A. L. Chekhov, S. Y. Bodnar, O. Gueckstock, S. Reimers, Y. Lytvynenko, Y. Sk-
482 ourska, M. Wolf, T. S. Seifert, O. Gomonay, M. Kläui, M. Jourdan *et al.*, *Terahertz Néel*
483 *spin-orbit torques drive nonlinear magnon dynamics in antiferromagnetic Mn₂Au* **14**, 6038
484 (2023), doi:[10.1038/s41467-023-41569-z](https://doi.org/10.1038/s41467-023-41569-z).

485 [9] J. L. Ross, P-I. Gavriloaea, F. Freimuth, T. Adamantopoulos, Y. Mokrousov, R. F. L. Evans,
486 R. Chantrell, R. M. Otxoa and O. Chubykalo-Fesenko, *Ultrafast antiferromagnetic switch-*
487 *ing of Mn₂Au with laser-induced optical torques*, *npj Computational Materials* **10**, 234
488 (2024), doi:[10.1038/s41524-024-01416-1](https://doi.org/10.1038/s41524-024-01416-1).

489 [10] H. V. Gomonay and V. M. Loktev, *Spin transfer and current-induced switching in antiferro-*
490 *magnets*, *Physical Review B* **81**, 144427 (2010), doi:[10.1103/PhysRevB.81.144427](https://doi.org/10.1103/PhysRevB.81.144427).

491 [11] O. Gomonay, T. Jungwirth and J. Sinova, *High antiferromagnetic domain wall ve-*
492 *locity induced by Néel spin-orbit torques*, *Phys. Rev. Lett.* **117**, 017202 (2016),
493 doi:[10.1103/PhysRevLett.117.017202](https://doi.org/10.1103/PhysRevLett.117.017202).

494 [12] K. Bolsmann, A. Khudoyberdiev and G. S. Uhrig, *Switching the magnetization in quantum*
495 *antiferromagnets* **4**, 030332 (2023), doi:[10.1103/PRXQuantum.4.030332](https://doi.org/10.1103/PRXQuantum.4.030332).

496 [13] A. Khudoyberdiev and G. S. Uhrig, *Switching of magnetization in quantum anti-*
497 *ferromagnets with time-dependent control fields*, *Phys. Rev. B* **109**, 174419 (2024),
498 doi:[10.1103/PhysRevB.109.174419](https://doi.org/10.1103/PhysRevB.109.174419).

499 [14] A. Khudoyberdiev and G. S. Uhrig, *Exchange-enhanced switching by alternat-*
500 *ing fields in quantum antiferromagnets*, *Phys. Rev. B* **111**, 064408 (2025),
501 doi:[10.1103/PhysRevB.111.064408](https://doi.org/10.1103/PhysRevB.111.064408).

502 [15] J. Železný, H. Gao, K. Výborný, J. Zemen, J. Mašek, A. Manchon, J. Wunderlich, J. Sinova and T. Jungwirth, *Relativistic Néel-Order Fields Induced by Electrical Current in Antiferromagnets*, Physical Review Letters **113**, 157201 (2014), doi:[10.1103/PhysRevLett.113.157201](https://doi.org/10.1103/PhysRevLett.113.157201).

506 [16] P. Wadley, B. Howells, J. Železný, C. Andrews, V. Hills, R. P. Campion, V. Novák, K. Olejník, F. Maccherozzi, S. S. Dhesi, S. Y. Martin, T. Wagner *et al.*, *Electrical switching of an antiferromagnet*, Science **351**, 587 (2016), doi:[10.1126/science.aab1031](https://doi.org/10.1126/science.aab1031).

509 [17] H.-P. Breuer and F. Petruccione, *The Theory of Open Quantum Systems*, Clarendon Press, Oxford, doi:[10.1093/acprof:oso/9780199213900.001.0001](https://doi.org/10.1093/acprof:oso/9780199213900.001.0001) (2006).

511 [18] K. Olejník, T. Seifert, Z. Kašpar, V. Novák, P. Wadley, R. P. Campion, M. Baumgartner, P. Gambardella, P. Němec, J. Wunderlich, J. Sinova, P. Kužel *et al.*, *Terahertz electrical writing speed in an antiferromagnetic memory*, Science Advances **4**(3), eaar3566 (2018), doi:[10.1126/sciadv.aar3566](https://doi.org/10.1126/sciadv.aar3566).

515 [19] S. Y. Bodnar, L. Šmejkal, I. Turek, T. Jungwirth, O. Gomonay, J. Sinova, a. A. Sapozhnik, H.-J. Elmers, M. Kläui and M. Jourdan, *Writing and reading antiferromagnetic Mn₂Au by Néel spin-orbit torques and large anisotropic magnetoresistance* **9**, 348 (2018), doi:[10.1038/s41467-017-02780-x](https://doi.org/10.1038/s41467-017-02780-x).

519 [20] A. Auerbach, *Interacting Electrons and Quantum Magnetism*, Graduate Texts in Contemporary Physics. Springer, New York, doi:[10.1007/978-1-4612-0869-3](https://doi.org/10.1007/978-1-4612-0869-3) (1994).

521 [21] A. S. T. Pires, *Theoretical Tools for Spin Models in Magnetic Systems*, 2053-2563. IOP Publishing, ISBN 978-0-7503-3879-0, doi:[10.1088/978-0-7503-3879-0](https://doi.org/10.1088/978-0-7503-3879-0) (2021).

523 [22] A. Auerbach and D. P. Arovas, *Schwinger Bosons Approaches to Quantum Antiferromagnetism*, pp. 365–377, Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN 978-3-642-10589-0, doi:[10.1007/978-3-642-10589-0_14](https://doi.org/10.1007/978-3-642-10589-0_14) (2011).

526 [23] M. Yarmohammadi, C. Meyer, B. Fauseweh, B. Normand and G. S. Uhrig, *Dynamical properties of a driven dissipative dimerized S = 1/2*, Phys. Rev. B **103**, 045132 (2021), doi:[10.1103/PhysRevB.103.045132](https://doi.org/10.1103/PhysRevB.103.045132).