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Abstract

The recently predicted unconventional magnets offer a new ground for exploring the for-
mation of nontrivial spin states due to their inherent nonrelativistic momentum-dependent
spin splitting. In this work, we consider unconventional magnets with d- and p-wave
parities, and investigate the effect of time-periodic light drives for inducing the forma-
tion of spin-triplet phases in the normal and superconducting states. In particular, we
consider unconventional magnets without and with conventional superconductivity un-
der linearly and circularly polarized light drives and treat the time-dependent problem
within Floquet formalism, which naturally unveils photon processes and Floquet bands
determining the emergent phenomena. We demonstrate that the interplay between un-
conventional magnetism and light gives rise to a non-trivial light-matter coupling which
governs the emergence of Floquet spin-triplet states with and without superconductivity
that are absent otherwise. We find that photon-assisted processes promote the forma-
tion of spin densities and spin-triplet Cooper pairs between different Floquet sidebands.
More precisely, the Floquet sidebands offer an additional quantum number, the Floquet
index, which considerably broadens the classification of superconducting correlations
that lead to Floquet spin-triplet Cooper pairs as an entirely dynamical phenomenon due
to the interplay between light and unconventional magnetism. Furthermore, we dis-
cuss how the number of photons is connected to the symmetry of Cooper pairs and also
explore how the distinct light drives can be used to manipulate them and probe the an-
gular symmetry of unconventional magnets. Our results therefore unveil the potential of
unconventional magnets for realizing nontrivial light-induced superconducting states.
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1 Introduction

Unconventional magnets have recently emerged as a new class of magnetic systems beyond
the conventional dichotomy of ferromagnets and antiferromagnets [ 1-6]. This so-called third
class of magnetism exhibits spin-split Fermi surfaces similar to ferromagnets [7, 8], yet main-
tains zero net magnetization due to compensated magnetic ordering akin to antiferromag-
nets [9-11]. Interestingly, depending on the momentum-space parity of their magnetization,
unconventional magnets can be classified into various angular momentum channels that in-
clude even- and odd-parity symmetries [4,6]; see also Refs. [12-14] for prior works. Among
the odd-parity unconventional magnets, we find e.g., p- and f-wave, while d-, g-, and i-wave
for even-parity magnets; these even-parity magnets are often called altermagnets [15, 16],
while odd-parity magnets are simply referred to as either p-wave [17, 18] or f-wave mag-
nets [17] depending on their symmetry; see also Refs. [19-26] for recent studies. Further-
more, unconventional magnets with even-parity (e.g., d-, g-, and i-wave) break both rota-
tional and time-reversal symmetry but preserve their combined symmetry, while odd-parity
magnets (e.g., p- and f-wave) only break rotational symmetry with the time-reversal sym-
metry preserved [4,6]. These unique properties of unconventional magnets have motivated
several studies since their prediction [ 1-6], with exotic phenomena that include the prediction
of a giant magnetoresistance [27], anomalous Hall effects [ 28-33], spin-orbit torques [34,35],
spin filtering effects [4,36-47], strongly correlations in Mott insulators [48], non-linear trans-
port [22], non-Hermitian effects [49, 50], multipoles [51], spin Edelstein [52] among other
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phenomena [53-57]; see Refs. [1-6] for recent reviews. With numerous candidate materials,
including RuO, [28,31,58,59], MnTe [30,60], MnsSi; [32,61], CrSb [62], and Mn,Au [63],
exploring unconventional magnets open a new avenue for realizing magnetic phenomena in
systems without net magnetization.

The promising properties of unconventional magnets have made a particular impact when
combining with superconductors [6,64], where a plethora of unconventional superconducting
phases have been reported [65-81]. One of the key consequences of the interplay between
superconductivity and unconventional magnetism is the appearance of superconducting cor-
relations defining Cooper pairs with spin and angular properties inherent to unconventional
magnets [6,65,72-75,77,82-85]. In this regard, unconventional magnets with superconduc-
tivity not only induce a spin-singlet to spin-triplet conversion but also transfer their parity to the
emergent superconducting correlations, giving rise to Cooper pairs with spin-triplet symmetry
and higher angular momentum [6,72,74,75]. In junctions with conventional s-wave supercon-
ductors, unconventional magnets have been shown to produce novel effects such as the super-
conducting diode effect [86-91], nonlinear superconducting magnetoelectric effects [92,93],
superconducting spin-splitter behavior [94], and various Josephson effects [74,95-102] re-
lated to Andreev reflections [103-110]. Furthermore, unconventional magnets have been
used for realizing Majorana zero modes in topological superconductors [111-114] as well as
in higher-order topological superconductors [115, 116] without the need for external mag-
netic fields [71,111,117-121]. All these emergent phases largely stem from the nontrivial
spin-momentum coupling in unconventional magnets, suggesting that coupling them to exter-
nal fields could give rise to even more exotic states.

One prominent example of external fields that uniquely couple to matter is light, which
not only enables control over intrinsic properties but also drives the emergence of novel non-
equilibrium states that are absent in the static regime. Of particular interest are time-periodic
light drives, which, through the framework of Floquet theory [122-124], provide a power-
ful approach to design dynamic phases via Floquet engineering [125-127]. In the normal
state, the application of light-drives via Floquet engineering has permitted the realization of
light-induced Hall effects [128-135], Floquet topological insulators [ 136-145], light-induced
Weyl semimetals [146-148], Floquet time crystals [149-152], among other dynamic phases
[125-127,153-156]. Moreover, Floquet engineering in the normal state has also enabled ul-
trafast control of spin and magnetic textures on picoseconds or sub-picoseconds timescales,
giving rise to the field of ultrafast spintronics [157-161]. In superconducting systems, light
fields within Floquet theory have also been proven to be a key tool to design unique non-
equilibrium phenomena. For instance, this involves Floquet Majorana modes [162-174],
Floquet Majorana time-crystals [162-164, 175], the detection of topological phase transi-
tions via the Josephson effect [176,177], Floquet-Andreev states [178-183], light-controlled
Higgs modes [184, 185], dynamic spin-triplet superconductivity [186], and Floquet Cooper
pairs [184,187]. Very recently, the effect of light drives on unconventional magnets with su-
perconductivity has also been addressed, but then the few existent studies mostly consider
high-frequency light drives [75,188]. As a result and despite all these advances, the role of
Floquet sidebands on emergent light-induced superconducting effects in unconventional mag-
nets remains largely unexplored.

In this work, we consider time-periodic light drives in unconventional magnets with spin-
singlet s-wave superconductivity and investigate the emergence of light-induced Floquet Cooper
pairs. In particular, we consider p- and d-wave unconventional magnets under time-periodic
circularly and linearly polarized light drives, as schematically shown in Fig. 1. We first discuss
how unconventional magnetism induces a spin density and spin-triplet Cooper pairs in the
static regime of normal and superconducting states (Fig.2). We then demonstrate that the
interplay between light and unconventional magnetism gives rise to a nontrivial light-matter
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interaction that is the key for realizing light-induced Floquet spin-triplet states, which are ab-
sent in the static regime. We unveil that these Floquet spin-triplet states appear as a result
of the Floquet sidebands, hence involving single- and two-photon assisted processes. In the
normal state, the Floquet spin density can be directly used to identify the strength of unconven-
tional magnetism (Fig. 3 and Fig. 4). We find that this is also possible in the superconducting
state and, additionally, in this case, we obtain that the Floquet spin-density is directly tied to
the emergence of Floquet Cooper pairs with spin-singlet and spin-triplet configurations. These
Floquet Cooper pairs are allowed due to the extra quantum number, the Floquet sideband in-
dex, which broadens the classification of superconducting symmetries into Floquet classes that
coexist between different Floquet sidebands through the absorption or emission of photons;
see Fig.5 and Table 1. Among the Cooper pairs symmetry classes, we identify two types of
Floquet spin-singlet Cooper pairs induced purely due to the effect of the light field on the par-
ent spin-singlet superconductor, and two emergent types of Floquet spin-triplet Cooper pairs
arising entirely due to the combined interaction of light, unconventional magnetism, and spin-
singlet superconductivity.

We further show that the number of photons involved in the formation of Floquet Cooper
pairs is crucial for classifying the different pairing classes (Fig. 6), which reveals distinct parity
pairs in driven d-wave (Fig. 7) and p-wave magnets (Fig. 8). This also permits us to conclude
that all pair amplitudes involving an odd number of photons are entirely induced by the light
drive, while those involving an even number of photons can exist even in the static phase due
to their link to the parent superconductor (Figs.9 and 10). Finally, we obtain that the Cooper
pair amplitude can be controlled through the competition between the polarization direction
of linearly polarized light and the orientation of the unconventional magnetic order, providing
a potential approach for identifying the angular symmetry of unconventional magnetism in
both the high-frequency [75] and the low-frequency regimes (Fig. 11). We stress that, while
our results focus on p-wave and d-wave unconventional magnets, the presented methodology
and outcome are applicable to other types of unconventional magnets, such as those with
higher angular momentum symmetries (Appendix A) and higher unconventional magnetic
fields (Appendix B). Our findings demonstrate that unconventional magnets are rich systems
for realizing light-induced superconducting states by means of Floquet engineering.

This paper is organized as follows. In Sec.2, we present the models for unconventional
magnets with and without spin-singlet s-wave superconductivity in the static regime; here we
examine the spin density and spin-triplet Cooper pairs, with a particular focus on d-wave and
p-wave unconventional magnets. In Sec. 3, we analyze the nontrivial light-matter interactions
and their Floquet description in unconventional magnets with and without superconductivity.
Sec.4 and 5 present a detailed analysis of the Floquet spin density and Floquet Cooper pairs.
The conclusions are summarized in Sec. 7. In appendices A and B, we discuss higher angular
momentum symmetries and d-wave altermagnets at stronger exchange fields, respectively.

2 Unconventional magnets in the static regime without and with
superconductivity

In this section, we introduce the simplest models to describe unconventional magnets with and
without spin-singlet s-wave superconductivity in the static regime. In both cases, we discuss
how the unconventional magnetism induces a spin density and, in the superconducting part,
we additionally show the emergence of spin-triplet Cooper pairs; these results are summarized
in Fig. 2.
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Figure 1: (a) Schematics of an unconventional magnet (gray) under a time-periodic
light drive A(t) (wiggle yellow arrows). (b) An unconventional magnet in proximity
to a conventional spin-singlet s-wave superconductor (violet) under a time-periodic
light drive. (c) Illustration of circularly and linearly polarized light drives, with com-
ponents A, ,. Here, ¢, denotes the linear polarization angle. (d) Spin-split Fermi
surfaces in the k,~k, plane for d-wave and p-wave unconventional magnets, with
6, representing the orientation angle measured from the x-axis. The blue and red
colors correspond to up and down spins. (e) Sketch of the isotropic order parameter
of a conventional spin-singlet s-wave superconductor.

2.1 Unconventional magnets in the normal state

To model unconventional magnets, we consider the following low-energy Hamiltonian [6]
HY (k) = & + 0, (k), (W

where the Néel vector is chosen along z, 0 = +1 (—1) denotes the spin-up (spin-down),
k= (kx, ky), & = Bk*—p is the kinetic energy with k = , [k2 + k§ and the chemical potential
u. Moreover, J, is the field characterizing unconventional magnetism and described by [6]

Jq (k):aqkq COS[Q(Qk—QJ)], (2)

where a, represents the strength of unconventional magnetism, 6 = arctan (ky / kx), and 6;
is the magnetic direction, see Fig. 1(d). Eq.(2) is anisotropic depending on the crystalline
momentum orientation 6; and 6;. Different unconventional magnets are categorized by the
order of momentum, g, in Eq. (2). In particular, for ¢ = {0,1,2,3,4,6}, the field J, (k)
describes s-wave, p-wave, d-wave, f-wave, g-wave, or i-wave magnets, respectively; see
Refs. [5,6,15-19,66] and App. A. The s-wave case, with g = 0, is a conventional ferromag-
net breaking time-reversal symmetry 7. In other g-even magnets, time-reversal symmetry
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Figure 2: (a,b) Energy dispersion (a) and spin density (b) for a dxz_yz-wave alter-
magnet in the normal state (A = 0) at k, = 0, while in (c,d) the same is plotted
but for a p,-wave magnet. The blue and red colors in (a,c) indicate spin-up and
spin-down bands, respectively, while in (b,d) the blue and red colors indicate the
positive and negative values of the spin density. In (b,d), the frequency is chosen as
2=0+i1073. (e,f) Energy dispersion and real part of the spin-triplet pair amplitude
for a d,2_>-wave altermagnet with spin-singlet s-wave superconductivity. (g,h) The
same quantities as in (e,f) but for a p,-wave magnet with spin-singlet s-wave super-
conductivity. In (e,g), the superconducting energy bands formed by spin-up electrons
and spin-down holes are depicted in blue, while the bands formed by spin-down elec-
trons and spin-up holes are shown in red. The blue and red colors in (f,h) mark the
positive and negative values of the real part of the spin-triplet pair amplitude; here
2z =0.1A+i1073. Parameters: B =1, ag = a, =0.5, 6, =0, u=1; in (e-h) we
also consider A = 0.7u for the d,>_,»-wave altermagnet and A = 0.1u for p,-wave
magnet.

T and rotational symmetry C,, are broken, but the joint operation of 7 and Cy, preserved
characterizing the so-called altermagnetism [15, 16,66]. While the g-odd magnets in their
simplest forms only break C,, but preserve 7 due to the coupling between spin and odd-order
momentum, which are considered as p- and f -wave unconventional magnetism [17,18]. Con-
sidering more complicated models with noncoplanar spins and distinct sublattices, however,
time-reversal symmetry is broken [6, 17, 18]. Nevertheless, Eq. (2) is sufficient for describ-
ing the parity of the magnetization and the resulting anisotropic spin splitting [6, 18]. It is
worth noting that Eq. (2) has a nonrelativistic origin [4,6,15,17,18,66], even though it is akin
to the common relativistic spin-orbit coupling [189, 190]; this implies that the spin-splitting
in unconventional magnets can be much larger than those due to the relativistic spin-orbit
coupling [4].

As noted above, a key unconventional magnetic feature captured by Eq. (2) is the mo-
mentum dependence of the field, which leads to an anisotropic spin splitting in the bands, see
below. Under general conditions, for 6, = 6, + nm/q (n € Z), the unconventional magnetic
effect is most pronounced and the spin-splitting depends solely on a,k?, while it vanishes for
Or = 0, + (2n + 1)7/ (2q) and gives spin-degenerate bands. To further inspect the spin split-
ting in the bands, we focus on two typical unconventional magnets having p-wave (¢ = 1) and
d-wave (q = 2) parity, which are often referred to as p-wave magnets [17, 18] and d-wave
altermagnets [15], respectively. For completeness, in App. A, we also explore unconventional
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magnets with higher angular momentum. Hereafter, we focus on d- and p-wave unconven-
tional magnets. Thus, by expanding Eq. (2), Eq. (1) for p- and d-wave unconventional magnets
are given by

HY (k) = &g + 0, 4(K), 3)
where J ,(k) = J; 5(k) are obtained from Eq. (2) and read

Ja(k) = aq[ 2Kk, sin26, + (k2 —k2) cos 26, |,

4
Jp(k)=a, [kx cos 0y + k,, sin 9J] .

Here, we have two types of d-wave altermagnets: for 6; = 7/4, we have a d,-wave alter-
magnet; for 6; = 0, we have a d,._,»-wave altermagnet. Similarly, for p-wave magnets at
0, = 0 we have a p,-wave magnet, while a p,-wave magnet for 6, = /2.

To further assess the spin splitting in unconventional magnets modeled by Eq. (3) and
Eq. (4), we obtain the eigenvalues of Eq. (3), which are given by

Eg’p(k)zgk'i_o-‘]d,p(k) (5)

These energies are plotted in Figs. 2(a,c) for a d,»_,2-wave magnet and a p,-wave magnet,
respectively, which demonstrate the momentum-dependent spin splitting of energy bands. As
already discussed before, the bands are degenerate in spin when 6, = 6; +(2n+1)n/4 for d-
wave altermagnets and 6, = 6;+(2n+1)n/2 for p-wave magnets, hence further unveiling the
anisotropic spin splitting. Moreover, the momentum-dependent spin splitting and spin texture
can be revealed in the spin density along z, which can be obtained as

2Jd,p (k)
J3, ()~ (o +i0 —&)¥

S,(w, k) = —%ImTr[GZG(aHriOJr,k)]:%Im (6)

where G(z,k) = [z—Hgy ,(k)]™!, with H; = diag(HJ?L,Hj_), j=(d,p), and z = w+i0" defines
the retarded Green'’s function. Eq. (6) clearly shows that the spin-triplet spin density S,(w, k)
is directly determined by unconventional magnetism via J4 ,(k). To see the effect of J; ,(k),
in Figs. 2(b,d) we show S, (w, k) as a function of momenta for d,>_ .- and p,-wave unconven-
tional magnets. We clearly observe that the spin densities develop d- and p-wave symmetries,
with spin-polarized Fermi surfaces, thus revealing a key feature of unconventional magnets.
We stress that, since Eq. (6) is not limited to d- and p-wave unconventional magnets, the be-
havior of the spin density is expected to characterize the parity in other angular momentum
unconventional magnets, such as f -, g- and i-wave magnet, which we further discuss in App. A.

2.2 Unconventional magnets with conventional superconductivity

Having discussed unconventional magnets in the normal state, this part addresses them when
conventional spin-singlet s-wave superconductivity is induced by the proximity effect, see
Fig.1(b,d,e). We model this system by the following Bogoliubov-de Gennes (BdG) Hamil-
tonian
vJq(k)To, g-even,
Hy (k) =&, + VAT, + , @)
vJq(k)T,, q-odd,

where v = +(—) for the Nambu spinor (v 1(), llﬁik m))T, while 7; is the i-th Pauli matrix in
Nambu space. The BAG spectrum is then given by

vg(k)+74/E7 + A2, g-even,
E;j" (k)= , (8)
2
y\/[ik + qu(k)] + A2, g-odd,

7
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where y = £1.

In Fig. 2(e,g), we plot E; T (k) as a function of momentum for a dy2_y2- and p,-wave mag-
net with conventional superconductivity. Already from the energy dispersions, one can draw
some interesting conclusions about the nature of Cooper pairs in unconventional magnets. In
the g-even unconventional magnets with superconductivity, spin-dependent finite momentum
Cooper pairs [191, 192] are formed due to different momenta between the paired electrons
and holes with opposite spin. This can be seen in the BAG spectrum of a d,._,2-wave magnet
with superconductivity in Fig. 2(e), where spin-dependent finite Cooper pair momentum is
given by K = k/—k; ”, with k? = +/u/(B + T vay) determined by the zero-energy momentum
of electrons and holes with 7 =41 and 7 = —1, respectively. Such spin-dependent finite mo-
mentum moves the superconducting gap centers resulting in Doppler energy shifts [191,192],
which can lead to a gapless superconductor with hybridization gaps [68,193,194] when the
superconducting order parameter is below the critical value A, = agk k;” = agu/4/B? — ai.
On the contrary, in the q-odd case, there is no shift in the superconducting gap center due to
the absence of Doppler energy shifts as demonstrated in Fig. 2(g). In this case, although the
spin-degeneracy is lifted, time-reversal symmetry is preserved due to the odd-order momen-
tum term, resulting in zero-momentum Cooper pairs. Consequently, the superconducting gap
remains centered at zero energy, similar to non-magnetic superconducting systems.

A key consequence of the superconducting state is the formation of Cooper pairs, which
are characterized by superconducting pair amplitudes [195-201]. These pair amplitudes can
be directly obtained from the anomalous electron-hole Green’s function, which corresponds to
the off-diagonal elements of the Green’s function associated with the BAG Hamiltonian

v v — Gv(z’k) Fv(z’k)
G'(z,k) = [z—H (k)] 1=( FY(z,k) G"(z,k) ) ®

with z representing complex frequencies and H;’(k) given by Eq. (7). Moreover, G"(z,k)
and G”(z,k) are the normal Green’s functions, while F”(z,k) and F”(z,k) are the anoma-
lous Green’s functions. While the normal Green’s functions enable to calculation of the den-
sity of states and spin densities, the anomalous Green’s functions characterize the supercon-
ducting pair amplitudes [120, 198-201]. In this regard, the functional dependence of the
pair amplitudes on the present quantum numbers determines the symmetry of emergent su-
perconducting correlation [120, 198-201], which must be antisymmetric under the total ex-
change of quantum numbers as dictated by Fermi-Dirac statistics. To identify the spin sym-
metry of the Cooper pairs we calculate the even and odd combination in spin indices as
FO(z,k) = [F*(z,k) F F(2,k)]/2 since F”(z,k) with v = + (—) represents the pairing
between spin up (down) and down (up) fermions. Thus, we find spin-singlet and spin-triplet
pair amplitudes given by [6,72]

. A
F (00 = 5o [22—82 — A2+ (1172 (k)] (10)
and
ZAJq (k) z, g-even,
Fi(z,k)= —3 7« , (11)
DGz ~&e, g-odd,
where
D)= [[z—E" ®)]. (12)
g,y
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is an even function in z. Thus, spin-singlet and spin-triplet superconducting correlations co-
exist in unconventional magnets with spin-singlet s-wave superconductivity. While the spin-
singlet pairing results from the parent superconductor being spin-singlet s-wave, the spin-
triplet component arises entirely due to the interplay between unconventional magnetism
and superconductivity. In fact, the spin-triplet pairing is directly proportional to the field
Jq(k) of the unconventional magnet [Eq. (11)], which, besides influencing the spin-singlet
to spin-triplet conversion, also plays a key role on the parity and frequency symmetries. This
can be seen by noting that the spin-triplet pair amplitude F'(z,k) in Eq.(11) can be even
or odd in momentum k (as well as in frequency z) depending on J,(k). On one hand, for
g-even, Jy(k) = J,(—k), which leads to a spin-triplet pair amplitude with even-parity and
odd-frequency. On the other hand, for g-odd, J,(k) = —J,(—k), implying that the spin-triplet
pair amplitude is odd-parity and even-frequency. The spin-triplet Cooper pairs in p- and f -
wave magnets with spin-singlet s-wave superconductivity exist with time-reversal symmetry,
which is akin to the cases of Rashba superconductors [6,201-205]. For a d-wave altermagnet
(g = 2), the induced spin-triplet pair amplitude has odd-frequency spin-triplet d-wave sym-
metries, while even-frequency spin-triplet even-parity for a p-wave magnet (g = 1). Hence,
the momentum parity of the unconventional magnet is transferred to the emergent spin-triplet
pair amplitude [6,72]. It is worth noting that, while odd-frequency spin-triplet Cooper pairs
have been studied before [172,204,206-221], such studies did not addressed the momentum
parity transfer as it happens in unconventional magnets [6,72]. To further visualize the mo-
mentum dependence of the spin-triplet pair amplitude F'(z, k), in Figs. 2(f,h) we plot its real
part a function of k, and k,, for a d,2_,»- wave altermagnet and p,-wave magnet, respectively.
The first feature to notice is that F*(z, k) exhibits the parity of the underlying unconventional
magnet, see also the normal state spin-densities in Figs. 2(b,d). We can therefore conclude
that, although the parent superconductor is spin-singlet s-wave, unconventional magnetism is
able to induce spin-triplet Cooper pairs as well as spin densities as two important characteristic
effects. In the next sections, we explore how these two properties respond to the effect of a
time-periodic light drive.

3 Nontrivial light-matter interaction in unconventional magnets
and its Floquet description

In this section, we explore the effect of applying a time-periodic light drive on unconventional
magnets without and with spin-singlet s-wave superconductivity. We consider two types of
time-periodic light drives, involving circularly polarized light (CPL) and linearly polarized light
(LPL), in systems with d-wave and p-wave magnetic order. Moreover, we show how these time-
periodic systems are described within Floquet formalism in an extended frequency space.

3.1 Driven unconventional magnets in the normal state

We consider time-periodic CPL and LPL drives applied to unconventional magnets. The effects
of CPL and LPL are described, respectively, by time-dependent vector potentials as

E,
Ac(t) Eo(cosﬂt,nsinﬂt), (13)
E,
A (t) = Eocosﬂt(cosqu,sinq’)A), (14)

where n = +1 (—1) indicates right-handed (left-handed) circular polarization [222], ¢, rep-
resents the real-space polarization direction [223] as denoted in Fig. 1(c), E, is the field
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amplitude, and Q = 27/T the frequency of the drive with period T. Then, the effect of the
light drives is incorporated in the Hamiltonian describing the unconventional magnets [Eq.
(3)] via the minimal coupling or Pierls substitution [224] as k — k + e¢/hA(t), where e is the
elementary charge. This leads to a time-dependent Hamiltonian Hg(k, t)= Hg [k+e/RA(t)],
which, for d-wave magnet and p-wave unconventional magnets, reads

Hg(k, 1) = HY (k) + V7, (1), (15)

where j = {p,d} denotes the type of unconventional magnet, H;’(k) describes the static un-
conventional magnets and is given by Eq. (3), while \/jf’ﬁ(t) characterizes the effects of the
drives with = {CPL, LPL} in d- and p-wave unconventional magnets. For d-wave altermag-
nets under CPL and LPL, V7,(¢) is given by

P
Viep(t) = 2Bkakcos(6 —n<t)
+20aykak cos(0, —26; + nQt) (16)
+0adkf\ cos(26; —2nQt),
Vip(t) = 2Bkak cos(6x — ¢4) cos 2t + Bk cos® Qt
+20agkak cos(0y + ¢, —26;) cosQt 17)

+Gadkf\ cos(26; —2¢,) cos* Qt

while for driven p-wave magnets under CPL and LPL, respectively, we obtain

Viep(t) = 2Bkgkcos(6; —nQt) +Bk; (18)
+02a,ky cos(6; —nQkt),
Vp‘,’LPL(t) = 2Bkyk cos(6; — ¢4) cosQt + ka\ cos® Qt
+02a,ky cos(0; — p,) cosQ, (19)
with E
€Lg
ka=—=" 20
A% 75 (20)

At this point, it is important to understand the nature of the elements in Egs.(16)-(19).
For this purpose, we note that, under general conditions, in a Hamiltonian with k?-order
terms, Peierls substitution implies that the canonical momentum is of the form as [k + A(t)]? ~

1 kI A ~ D1 k9T"k} . Since ¢ —n > 0 is naturally required, the result of light-
matter interaction in the Hamiltonian is expected to include terms proportional to k with
n=20,1,---,q. Asis expected, in the driven unconventional magnet with ¢ > 0, there are
more non-trivial light-matter interactions related to ca.k? "k, and 6;, n or ¢,. Particularly,
the terms with kg are momentum-independent, as seen in Eq. (20). Based on this general
understanding, one can observe that all the first lines of Eqs. (16-19), proportional to Bk,
originate from the coupling between light and kinetic energy (~ Bk?), which are expected in
a wide range of materials hosting parabolic dispersions and thus considered as trivial. Inter-
estingly, the second and the third lines of Egs. (16-19) involve the coupling between light,
unconventional magnetism, and momentum via k4, 0aq ,, and k, respectively, which unveil
a rather non-trivial interaction due to the interplay between light and unconventional mag-
netism.

In the driven d-wave altermagnets, the non-trivial light-matter interaction includes both
momentum-dependent term, o a k,k [the second line of Eq. (16) and (17)], and momentum-
independent terms, o ay kf1 [the third line of Eq. (16) and (17)], both of which depend on the
spin via 0. In the CPL case, these elements are also determined by the angle 6, the uncon-
ventional magnetic direction 6}, the left/right handed polarization defined by 1, while for LPL

10
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they are determined by 6, the real space polarization direction ¢4, and 6;. The momentum-
dependent light-matter interactions, o a ksk, appear with a linear dependence in momentum
k and in the magnetic strength a,, which behaves as the Rashba spin-orbit coupling or the
p-wave magnet field. Moreover, the momentum-independent terms, oadki, clearly behave
as a Zeeman-like (s-wave-magnet-like) effect. We remark that without the drive or altermag-
netism, i.e., ky = 0 or ay = 0, these momentum-dependent and momentum-independent
contributions vanish, which clearly demonstrates that they originate from the interplay be-
tween light and altermagnetism. In the case of p-wave magnets, the result of coupling them
to the light drive only gives rise to a Zeeman-like effect proportional to o2a,k, [the second
line of Eq. (18) and (19)], which occurs due to the linear dependence of momentum in the
static p-wave magnet Such a light-matter effect is also considered to be non-trivial because
it generates a momentum-independent effect related to the unconventional p-wave field and
the light amplitude, which is also determined by 0;, n or ¢,. As a result, in both p- and
d-wave unconventional magnets, the application of a light drive induces a non-trivial light-
matter interaction. It is worth noting that, due the choice of the Néel vector along z axis,
the light induced terms preserve the spin direction, but our results above can be easily gener-
alized for any direction [119,225] or perhaps using a more realistic modelling that involves
sublattices [6,17,18,66]. A consequence of modifying the spin texture in momentum space
by light could introduce rotating fields that promote a spin precession [129], thus enriching
the emergent physics.

We close this part by stressing that light drives induce non-trivial light-matter interactions
in unconventional magnets. These interactions are governed by the Fermi surface symmetry
of the underlying unconventional magnet, as well as by the specific properties of the driv-
ing field. Similar effects are also observed in unconventional magnets with higher angular
momentum, characterized here by g > 2; see App. A. Driven unconventional magnets thus
offer an interesting platform for exploring light-induced spin-dependent phenomena, which,
in combination with other phases such as superconductivity, can further lead to states that are
absent in equilibrium.

3.2 Driven unconventional magnets with conventional superconductivity

As in the previous subsection, we derive the time-dependent Hamiltonian for d-wave and p-
wave unconventional magnets with conventional superconductivity by incorporating the light
drives via Peierls substitution in Egs. (7). We obtain

Hj gk, 0) =Hj (k) + V] (1), ey

j ={p,d} denotes the type of unconventional magnet, H}’(k) is the static Hamiltonian for an
unconventional magnet with superconductivity given by Egs. (7), and Vj’j 5 (t) characterizes the
light-induced effect due to the drive denoted by = {LPL,CPL}. Here, for d-wave magnets
with conventional superconductivity under CPL and LPL, we obtain V].’jﬂ(t) given by

c;,CPL(t) = 2Bkykcos (6, —mQt) T,
+2vagkyk cos (0, —260; + nQt) T, (22)
+vadk§cos(29j—2nﬂt)fo,

awpL () = 2Bkakcos (6, —nQt) 7o
+2vagkyk cos (0 —260; + nQt) T, (23)

+vadkf\ cos(260; —2nQt) 1.

11
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Similarly, for p-wave magnets with superconductivity under CPL and LPL, respectively, we
obtain

V;,CPL(t) = ZBkAkCOS(Gk—T)Qt)TO-FBkiTZ 24)
+v2apk, cos(0; —nQt) T,

V;’LPL(t) = 2BkAkCOS(0k—¢A)COSQtTO+Bk§COSZQtTZ
+2vapkAcos(9p—qu)cothTz, (25)

At this point, we remark that Egs. (21)-(25) acquire the same contributions, with the same
parameters, as Eq. (15)-(19), including including both trivial and non-trivial light-matter
interactions in relation to Bk, 7, and vag , k,, respectively. Nevertheless, Egs. (21)-(25) unveil
interesting properties in relation to superconductivity. A key effect is that the non-trivial light-
matter interactions have different effects on quasielectrons and quasiholes, which is evident
by noting the appearance of the Pauli 7, matrix since it is in Nambu electron-hole space. This
effect appears, for instance, in the momentum-dependent term of the d-wave case proportional
to 2va k,kt,, see the second line of Egs. (22) and (23)]; this term provides a p-wave-like spin-
momentum coupling as we discussed in the previous subsection. Moreover, in the p-wave case,
only the momentum-independent term, proportional to 2va,k,T, develops the opposite light-
induced effect on quasielectrons and quasiholes, see the second lines of Egs. (24) and (25).
The features thus suggest a very likely impact on the emergent superconducting properties,
such as on the spin-triplet densitity and Cooper pair symmetries, of driven unconventional
magnets with conventional superconductivity.

3.3 Floquet description

To further investigate the interplay effect of the time-periodic drive on unconventional mag-
netism, we employ Floquet theory by mapping the time-dependent system into a time-independent
representation in extended frequency (Floquet) space. Floquet theory exploits the periodicity
introduced by the time-periodic drives. Thus, since the time-periodic Hamiltonian in Egs. (15)
and (21) are periodic in time, Hg(k, t)= Hg(k, t+T) with period T = 27/, the correspond-
ing solutions of the time-dependent Schrodinger equation

iho,¥(k,t)= Hg(k, t)W(k,t), (26)

are written as '
W(k,t)=e Mok, 1), (27)

where € is the quasienergy and ®(k,t) = ®(k,t + T) is the time-periodic Floquet mode
[128,226-228]. Substituting into the Schrodinger equation, the Floquet state satisfies the
eigenvalue equation

[HZ(k,0)— i3, | @(k, 1) = e @(k, 1). (28)

We now use the periodicity of ®(k, t) and expand it in Fourier series as

b(k,t) = e ", (k). (29)

n

The same is done for the Hamiltonian Hg(k, t). Then, the problem becomes an eigenvalue
matrix equation in Floquet space,

H7(k)®(k) = e ®(k), (30)

12
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where &(k) = (---,®7,, 97,97, - )T is a vector of Floquet modes, while H{ (k) is the Floquet
Hamiltonian and given by

. HJ+2rQ  HY,  HY, ' '
H°,  HJ+hQ HY,  HY,
Hp(k)=| . HT, H°, HS HY HY, KT (31)
H°, H° HJ—-hQ  Hy
H°, H°  HJ—2rQ .

We see that the Floquet Hamiltonian Hy (k) has infinite dimension, with time-independent
components akin to a tight-binding lattice in frequency space. Here, the matrix elements are
defined as

T
HY (k) = %J dtHY (k, )™, (32)
0

describe processes involving absorption (n > 0) or emission (n < 0) of |n| photons, coupling
Floquet states &, to ®,,,,, [226] and H"” (k) are obtained through H*? (k) = [HY(k)]". The
diagonal elements of Hy (k) are shifted by ni2 and are coupled by the drive via the emission
and absorption of one (two) photons.

The Floquet approach discussed above applies to unconventional magnets without and
with superconductivity, whose Floquet Hamiltonian we denote, respectively, as Hg’o(k) and
Hg’v(k). In the following, we detail the explicit forms of the Floquet components HZ:g(k) and

”HZ’;;(k) under light drives denoted by 3 = {CPL, LPL}, focusing specifically on d-wave and p-
wave unconventional magnets without and with superconductivity. For d-wave altermagnets
in the normal state, we find that the elements of the Floquet Hamiltonian are given by

do _ HY(k)+Bk3, for B = CPL,
0F | HS(k)+ 5k%[B + oaycos(20; —2¢,)], for p =LPL,
g Be'% + ga e (000 | for 3 = CPL, (33)
+Lp T A Bcos(6 — ¢pu) + oaycos(6, —20; + ¢,), for p =LPL,
o _ 1, o2a,e0r for f = CPL,
26 474" |B4+oaycos(26;, —2¢,), for f =LPL,
while for p-wave normal state magnets we obtain
2 —
PO Hg(k) + Bkj, for 3 = CPL,
0, HY (k) +Bk3/2, for p =L1PL,
oy kBe'% + oa,e'® for p = CPL, 34)
= X
TLp T A kB cos (0 — ¢a) + oa,cos(0; —¢u), for f=LPL,
gPo 0, for = CPL,
*2 | Bk2/4, for B =LPL.

13
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For d-wave altermagnets with conventional superconductivity, we obtain

207 = H (k) +Bkit,, for p = CPL,
0. H (k) + %kf‘ [BT, + vaycos(20; —2¢4)Te], for f =LPL
2407 —k, Bel%ty + vayelG0—0r for B = CPL, 35)
LA Bcos(6 — ) To+ vagcos (6 —260;, + ) T,, for f =LPL
2y — 1k2 y v2a e, for B = CPL,
2 47A7 | Br, + vaycos (20, —2¢4) Ty, for = LPL,
and, for p-wave magnets with conventional superconductivity, we find,
P H,(k) +Bk;T,, for B = CPL,
OF | H)(k) +BK3/27,, for f=LPL,
kBelekT +va, e, for p = CPL,
MYy = ka 0 p (36)
’ kB cos (0 — $a) T + va, cos(0; —da) 7o, for f=LPL,
2P = 0, for = CPL,
*2 | Bk2/4t,, for B =LPL.
D,o . d,o _ d, T
We remind that H® 1( 2.6 and H Clayp Are obtained through H~; (k) = [H;°(k)]" and

HP7 (k) = [HE (k)] respectively.

Before going further, it is useful to stress some properties of the Floquet elements glven
Egs. (33)-(36). While HJ 7 and ’H] involve zero photon processes, H” +1( 1206 and H”” L1426
involve one (two) photon processes These elements exhibit a rich functionality depending on
the type of drive and unconventional magnet. In the case of n = 0 Floquet terms, we first note
that there appears a uniform chemical potential shift given by Bk2 under CPL and ka\ /2 under
LPL of the normal and superconducting regimes, see H] 0p and ’HJ in Egs. (33)-(36). This is
often referred to as the self-doping effect [226], which originates from the light-induced renor-
malization of the kinetic energy and is hence considered to be trivial. Another feature of the
n = 0 Floquet terms is that the LPL drive induces an effective Zeeman-like field in the normal
state of d-wave altermagnets, which is, however, absent in p-wave magnets; see e.g., H /5
for B = LPL in Egs. (33) and Egs. (34). These Zeeman-like fields characterize momentum-
independent spin splittings arising from the interplay among the light intensity k2, the d-wave
altermagnetic strength a4, and the angular mismatch between the magnetic orientation 9;
and the polarization angle ¢,. This emergent spin-dependent field is finite only when the po-
larization direction deviates from the spin-degenerate axes, i.e., when ¢, —0; # (2n+1)7/4
for n € Z. This unveils that, while d-wave altermagnets intrinsically have zero net magnetiza-
tion, light is able to induce a Zeeman-like field that is likely to affect the magnetization and is
sensitive to ag and 8;. This effect could have an interesting consequence as it offers a way to
probe the underlying d-wave altermagnetic order and provides a practical route to probe its
strength and orientation [75]. We have also verified that similar Zeeman-like fields appear in
unconventional magnets with higher angular momentum, see App. A for a detailed discussion.

For the terms involving one photon n = +1, the d-wave systems without and with super-
conductivity develop linearly momentum-dependent terms inherited from the time-dependent
Hamiltonian. This enables a photon-induced p-wave-like field by combining d-wave altermag-
netism and light by absorbing or emitting one photon. In the LPL case, this p-wave-like term
depends on the angle between the d-wave magnet orientation 6; and the linearly polarized
direction ¢,, which provides a tuning knob to control the single-photon process. In relation
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to the one-photon terms (n = +1) in the driven p-wave case, momentum-independent con-

tributions emerge without and with superconductivity, see H _pHa P and Hi’lv 5 in Egs. (33)-(36).

Similar to d-wave systems under LPL, the Hﬁ’f 1 py and ’Hilv ;py in driven p-wave magnets are
determined by the direction between the p-wave orientation 6; and the linear polarization ¢,.
When it comes to two-photon processes, effects combining driving field and magnetism only
appear in d-wave altermagnets, see the n = 2 sectors in Egs. (33)-(36).

Moreover, all Floquet components with |n| > 3 vanish in driven d- and p-wave unconven-
tional magnets, which is a direct consequence of the momentum order q of the static Hamil-
tonian. In a system where the static Hamiltonian contains terms up to order k9, the Peierls
substitution modifies the canonical momentum as k — k + e/HA(t), resulting in an expansion
of the form Zzzo kT "k}. This expansion inherently restricts the light-matter interaction terms
to powers k, withn =0,1,...,q, as the requirement ¢ —n > 0 must be satisfied. Since the
Floquet components HY (k) and #; (k) encode processes involving the absorption or emission
of n photons, only harmonics up to order n < q appear in the driven system. Consequently,
all higher-order photon processes with |n| > q are strictly forbidden (see App. A), as the
corresponding powers of k, are absent in the expansion of the light-matter interaction [187].

We close this section by noting that Floquet theory offers a useful ground to study the
effect of time-periodic light drives on unconventional magnets, where the inherent interplay
between light and unconventional magnetism is fully captured. With this at hand, we are ready
to explore how light affects the spin density and superconducting correlations in unconven-
tional magnets. For computational purposes, in the following sections we truncate the Floquet
Hamiltonian [Eq.(31)] and consider 11 Floquet sidebands with n € [—5,5]; we verified that
this consideration does not affect the main messages of our work.

4 Light-induced Floquet spin density in the normal state

We now use the Floquet Hamiltonian [Eq. (31)] discussed in the previous section and inspect
the emergence of spin density in driven unconventional magnets without superconductivity.
We obtain the Floquet spin density along z as

Spa(w, k)= —%ImTr[GZGF(w +i0", k)], (37)

where
Gp(z,k) =[z—Hp(k)]", (38)

is the Floquet Green’s function associated to the Floquet Hamiltonian Hy = diag(Hy , Hy ), with
Hj defined in Eq. (31) with z = w+i0" and o, is the thrid Pauli matrix in Floquet space. Using
the Floquet components in Sec. 3.3, the Floquet spin density Sg,(w, k) is obtained in driven
unconventional magnets.

To visualize the Floquet spin density, in Fig. 3 we plot S, (w, k) as a function of k, and k,,
for d,»_,2-wave altermagnets and p,-wave magnets under CPL and LPL. In the case of d-wave
altermagnets [Fig. 3(a,c)] under CPL and LPL, Sg,(w, k) develops large values over a series
of concentric vertical and horizontal ellipses with positive and negative spin density values,
respectively. In the case of p,-wave magnets, the spin density forms a series of circles shifted
to positive and negative k,, acquiring negative and positive spin density values, respectively;
see Fig. 3(b,d). This implies that the vertical and horizontal ellipses (shifted circles) are spin
polarized, akin to what happens with the spin density in the static regime of unconventional
magnets [Fig. 2]. The series of ellipses (circles) represent Floquet replicas and arise from
the formation of Floquet sidebands, tied to the diagonal elements of the Floquet Hamiltonian
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Figure 3: (a) Floquet spin density S, as a function of momenta for d,._,2-wave

—v2
altermagnets under CPL with n = +1. (b) The same as in (a) but for a 5X-Wave
magnet. (c,d) The same as in (a,b) but under LPL with ¢, = 0. The black dashed
lines in (a) connect the spin-degenerate nodes between the n™ and the m™ Floquet
sidebands and 6n = n—m [Eq. (42) and (43)]. Parameters: B = 1, aq, = 0.5,
6, =0,u=1,92/u=1, ks/kp = 0.5, and kr = v/u/B = 1; 11 Floquet sidebands
are considered with n € [-5, 5].

shifted by nQ [Eq. (31)]. It is important to remark some differences between CPL- and LPL-
driven cases. For instance, for the d-wave altermagnet under LPL, the size of the ellipses with
the negative spin density is larger, while it is smaller for the positive spin density; this originates
from the contribution of the Zeeman-like effect of the light drive, i.e. U%kﬁad cos(20; —2¢,)

in the n = 0 sector Hamiltonian (Hg’;; ) in Egs. (33). In contrast to the d-wave cases, for p-

wave magnets under CPL and LPL, the size of the circular spin densities is the same, see Hg:g
in Egs. (34). Furthermore, another difference between the effects of CPL and LPL is that, for
the n = 0 Floquet sector of the d- and p-wave unconventional magnets driven by CPL, the spin
density develops finite values within the ellipses and circles, respectively, unlike the vanishing
values for LPL-driven cases. It is also worth noting that the presence of Floquet replicas leads
to a larger number of spin-degenerate nodes due to additional intersections between opposite-
spin Fermi surfaces associated with different Floquet indices, as indicated by overlaid dashed
curves in [Fig. 3(a)]. We remind that, in the static case, the d-wave (p-wave) unconventional

magnets host four (two) spin-degenerate nodes in momentum space, as shown in Fig. 2(b,d).
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To understand the origin of spin-degenerate nodes in the Floquet spin density discussed
above, we consider an effective model involving two arbitrary Floquet sidebands (2FSB) with
opposite spin orientations. The reduced Floquet Hamiltonian in the subspace spanned by the

two sidebands (¢g(k), <1>;"(k))T is given by

HY (k) + nh 0 ) 39)

Harsp ~ ( 0 H3° (k) + mhQ

where the absence of off-diagonal terms reflects the lack of spin-mixing terms in the unconven-
tional magnets, see Eq. (1). In principle, identifying spin-degenerate nodes between opposite-
spin Floquet sidebands would require solving the full Floquet Hamiltonian in the infinite Flo-
quet space [Eq. (31)]. To overcome this difficulty and to provide a transparent analytical de-
scription of the momentum-space distribution of these nodes, we extract two opposite-spin
diagonal blocks of the full Floquet Hamiltonian [Eq. (31)] and neglect the off-diagonal Floquet
couplings, such as Hy; and H.,. This procedure yields an approximate effective description
of two opposite-spin Floquet sidebands, which is given by Eq. (39). Despite this approxima-
tion, Eq. (39) accurately captures the locations of the spin-degenerate nodes between arbitrary
opposite-spin Floquet sidebands, as shown below.

To find the condition for spin degeneracy between Floquet sidebands (¢ and &, ?), we
set the diagonal to be equal and obtain

0Jgp(k)+oM(ks, da) + 6nhQ/2=0, (40)

where 6n = (n—m) and M(k,, ¢,4) is a light-induced Zeeman-like term. M (ky, ¢,) is defined
as

1. 12 .
sagks cos(20; —2¢,), for LPL-driven d-wave altermagnets,
M(ka, ) = 4 2747 T4 (41)
0, other cases,
and appears only under LPL in d-wave systems.
For a d,»_,2-wave altermagnet with 6; = 0, Eq. (40) reduces to
aad(ki—k§)+0M(kA, ¢a)=06nhQ/2, (42)

which describes a family of spin-degenerate parabolas in the k,—k, plane, see Figs. 3(a,c).
When M(ky4, ¢4) =0, as in a d-wave altermagnet under CPL, for 6n = 0, the spin degeneracy
occurs along the nodal lines k, = £k, serving as asymptotes for these parabolas. By contrast,
for a driven p,-wave magnet with 8; = 0, where the magnetic order is linear in momentum,
the degeneracy condition simplifies to

apkx =—6nhq, (43)

corresponding to a series of equally spaced vertical lines in momentum space, separated by
fQ2/a,, see Figs. 3(b,d).

We can thus conclude that unconventional magnets under time-periodic drives acquire
a Floquet spin-triplet density due to Floquet sidebands, exhibiting properties that can help
identify the type of unconventional magnetism. We verified that these results are valid for
strong d-wave altermagnets, see Appendix B.

4.1 Floquet spin density projected onto the zero-photon subspace

To further investigate the influence of higher-order Floquet components H #O(k), it is instruc-
tive to project the Floquet spin density onto the zero-photon states. The projected Floquet spin
density is defined as

1 :
SEO)(CO,k) :—EImTr[O'ZPTGF(w+iO+)P:|, (44)
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(d) Few

kalkp kalkp

Figure 4: (a,c) Floquet spin density projected to the zero-photon subspace (Séo)) for
dxz_yz-wave altermagnets (a) and p,-wave magnets, both under CPL. (b,d) Sgo) as a
function of the driving amplitude k, for the cases shown in (a,b) at k, = 0 and k,
indicated in (a); k, is given by Eq. (45) for (b), while by Eq. (46) for (d). Parameters
as in Fig. 4.

where P = (---,0,®,(k),0,---)T is a projector onto the n = 0 Floquet sector, the Green’s
function Gy is defined in Eq. (38). This formulation enables us to isolate the contribution of
photon-assisted processes, including absorption and emission, thereby revealing the impact of
inter-sideband coupling encoded in the off-diagonal Floquet terms. The projected spin density
S;O)(co, k) for d- and p-wave unconventional magnets under CPL is shown in Fig. 4(a,c). While
qualitatively similar to the full Floquet spin density presented in Fig. 3(a), Séo)(w, k) in Fig.
4(a,c) primarily captures contributions from the zeroth-order Floquet sector Hg (k) and it
also possesses information about the coupling between nearest-neighbor and next-nearest-
neighbor sidebands, determined by H, (k) and HY, (k), respectively. To visualize the effect of
these one- and two-photon absorption/emission processes, we note that SZ(,O)(co, k) develops
positive and negative values, which can be interpreted as peaks and dips, respectively. In this
regard, for d-wave altermagnets under CPL, one can estimate the momenta at which the peaks
(Sgo) > 0) and dips (Sgo) < 0) happen: at k, = 0, the peaks/dips happen at

w —nf2
K =\ 45
on B+oay (45)

where n = 0, £1, £2 labels the Floquet sidebands and o = +; the peak is obtained for o = +,
while the dip for 0 = —. The k{  in Eq. (45) are obtained by solving H{ (k) + nhQ2 = 0 in
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Eq. (39). In Fig.4(b,d), we plot the Sgo)(a),k) as a function of k, at ky = 0 and k, given
by Eq. (45) for d-wave altermagnets under CPL. As the driving amplitude k, increases, the
weight at k7 ; is suppressed in a spin-dependent manner due to the magnetic character of
the two-phofon Floquet terms H{,(k). Simultaneously, the peaks at kg’ 41 become dominant,
overtaking the central peak at strong driving as the effect HY, (k) becomes significant [Fig.
4(b)]. Similar behavior is observed in the CPL-driven p-wave magnet case shown in Figs.

4(c)-(d). In this case, the projected spin density peaks/dips are located at

+u—nQ
K, ==\ %+aap, (46)

reflecting the linear p-wave dispersion. Unlike the d-wave case, the absence of H, (k) terms in
the p-wave magnet under light eliminates the spin-dependent suppression, yet the one-photon
Floquet replicas kg’ 41 still dominate in the strong driving regime, as seen in Fig. 4(d).

Compared to CPL-driven unconventional magnets, LPL introduces anisotropic driving ef-
fects that depend on the polarization direction ¢,. The peaks and dips of the projected spin
density for k, = 0 occur at

k,fn:i% co+,u+0M(kA,¢A)—nQ’ 47)

B+oay

where M(ky, $4) [Eq. (41)] is the effective light-induced Zeeman field introduced by the
LPL drive. In particular, when ¢, = m/2, the driving field becomes orthogonal to the k,
axis, resulting in a suppression of HY, and thereby reducing the sideband-induced features.
This anisotropy is also evident in the LPL-driven p-wave magnet. Although no light-induced
Zeeman field appears in this case, the amplitude of S, , at kg’ 41 is modulated as cos ¢, and
vanishes at ¢, = 7/2, consistent with H{, ~ cos ¢4 [Eq. (34)].

In conclusion, the Floquet spin densities and their zero-photon projections reveal the roles
of different Floquet components. The diagonal components H{ (k) give rise to multiple spin-
degenerate nodes in momentum space, modifying the magnetic structure beyond that of the
static unconventional magnet. Meanwhile, the off-diagonal components H_ 7é0(k) encode the
photon-assisted processes that dress the quasiparticle states. Both the Floquet spin density and
its projection to the zero-photon subspace unveil properties of the underlying unconventional
magnet. We have also verified that the same is true for the spin density in driven uncon-
ventional magnets with conventional superconductivity and a d-wave magnet with a strong
exchange field, see Appendix B.

5 Light-induced Floquet spin-triplet Cooper pairs

In this part, we inspect the Floquet BdG spectrum and the emergence of spin-triplet Cooper
pairs in unconventional magnets with spin-singlet s-wave superconductivity subjected to time-
periodic drives.

5.1 Floquet BAG spectrum

To obtain the Floquet BAG spectrum, we diagonalize the Floquet Hamiltonian ;. (k) discussed
in Sec. 3.3 and given by Eq. (31), whose matrix elements are given by Egs. (35) and (36) for
d- and p-wave unconventional magnets. In Fig. 5(a,b), we present the Floquet BdG spectrum
as a function of k, for d- and p-wave unconventional magnets with spin-singlet s-wave super-
conductivity under CPL. Compared with the static regime in Fig. 2(e,g), the Floquet spectra
in Fig. 5(a,b) support multiple bands which then hybridize and develop gaps. This originates
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from the fact that Bogoliubov quasiparticles are composed of electrons in the n-photon state
pairing with holes in the m-photon states mediated by absorption or emission of [n — m| pho-
tons.

To better understand the induced gaps between Floquet sidebands, we consider an effec-
tive model involving two sidebands in Nambu space (@;’ (k),@;”"r (k))T. The two Floquet
sideband model (2FSB) is given by

H”(k) + nhQ A
q( ) o ), (48)

Harsn ™ ( A¥L —H (K] +mhQ

where the index v = + (v = —). Given by basis of Eq. (48), it describes Bogoliubov quasi-
particles formed by spin-up (spin-down) electrons in the n™ Floquet sideband and spin-down
(spin-up) holes in the m™ Floquet sideband by emitting/absorbing |n—m| photons. Moreover,
Ap m in Eq. (48) characterizes the multiple superconducting gaps between Floquet sidebands,
in addition to the static pair potential 2A, o = A. We observe that gaps between Floquet bands
(Ap ) decay with increasing photon number difference |n—m|, consistent with the perturba-
tive nature of higher-order Floquet processes. The behavior of the multiple gaps can be seen
in Fig. 5(a) for a d,»_,2-wave altermagnet with conventional superconductivity under CPL.
By equating the quasielectron and quasihole bands in the n- and m-photon sectors from the
diagonal terms in Eq. (48), respectively, the momenta at which the gap opens can be found.
In particular, for k, = 0, the induced gaps open at

kx,én =+ \ %’ (49)

with 6n = n —m. The energy at these intersection points defines the gap center energies at
k, =0,
EV

nen = (B+ vad)kién — u+ nhQ, (50)
which are spin-dependent due to the unconventional magnetic term a4. At this point, it is
also worth noting that, in the LPL-driven case, we verified that the gap centers acquire ad-
ditional spin-dependent shifts via the effective Zeeman-like field M (k,, ¢,) as a result of the
light-matter interaction [Eq. (40)]. For d,,-wave altermagnets with 6, = /4, the unconven-
tional magnetic field vanishes along the k, axis [see Eq. (4)]. This results in a spin-degenerate
Floquet BdG spectrum in the E-k, plane, which is similar to the driven s-wave superconduc-
tors [187]. Thus, the spin dependence in Eq. (50) vanishes and the multiple band gaps are
symmetrically located around energies E = (n 4+ m)hQ/2, governed purely by the photon en-
ergy difference between two paired Floquet sidebands, which can be obtained from Egs. (50)
with ag = 0.

In the CPL-driven p,-wave magnet with conventional superconductivity, multiple super-
conducting gaps also emerge in the Floquet BdG spectrum, as shown in Fig. 5(b). Unlike
the d-wave case, the center of each superconducting gap appears at energy E = 6n a2, where
on = n—m denotes the difference in photon numbers between paired electron and hole states.
However, the gap-opening momenta are spin-split and, for k,, = 0, are located at

a a,\? —(6n)AQ
k;ﬁn:—v5p+\J(Ep) +%, (51)

where v = & denotes the spin orientation and the shift originates from a,,. For p,-wave magnet
with 6; = mt, the magnetic effect vanishes in E-k, plane [see Eq. (4)], which results in a spin-
degenerate Floquet BAG spectrum similar to the driven s-wave superconductor [187] and d,, -
wave altermagnets with 6; = /4 along k, mentioned above. Thus, the spin-dependence of
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Figure 5: (a) Floquet BAG spectrum of a CPL-driven d,2_,»-wave magnet with s-wave
superconductivity with ) = +1 and 8; = 0. The centers of the superconducting gaps,
defined by Eq. (50), are marked by blue and red circles corresponding to v = + and
v = —, respectively. (b) Floquet BAG spectrum of a CPL-driven p,-wave magnet with
s-wave superconductivity. Thin gray solid (dashed) lines represent electron (hole)
branches. In both panels, the driving amplitude is ak, = 0.5 and the photon energy
is iQ2 = 1. All other magnetic and superconducting parameters are identical to those
used in Fig. 2; 11 Floquet sidebands are considered with n € [—5, 5].

the gap-opening momenta vanishes, which can be obtained from Eq. (51) with a, = 0. We
also verified that the effect of the multiple superconducting gaps in the CPL-driven p-wave
magnet is maintained in the LPL-driven cases, since the interpretation of these gaps is related
to the n = 0 sector of the Floquet Hamiltonian [Egs. (36)], which is shared by both the CPL
and LPL cases except for the shift chemical potential.

We thus conclude this part by noting that Floquet unconventional magnets with conven-
tional superconductivity develop a Floquet spectrum with gaps due to photon-assisted coupling
between quasielectron and quasihole states in different Floquet sidebands. This situation thus
suggests the emergence of superconducting correlations between Floquet sidebands, which we
address in the next subsection.

5.2 Floquet Cooper pairs

We now focus on the formation of Cooper pairs between Floquet sidebands in Floquet uncon-
ventional magnets with spin-singlet s-wave superconductivity modelled by Eq. (31) in Sec. 3.3.
For this purpose, we characterize Cooper pairs by using the anomalous Green’s function, which
is obtained from the electron-hole component of the total Floquet Green’s function in Nambu
space associated with the Floquet Hamiltonian [Eq. (31)].
For a pedagogical purpose, we start by defining the anomalous Green’s function [195,196,
199],
Fov2(ky, kos t1, t5) = —i (T Cr o, (¢1) Chy o, (), (52)

where 7~ denotes the time-ordering operator, and C,o(t) is the annihilation operator for an
electron with momentum k and spin o at time t. Since the paired quasiparticles are fermions,
Fermi-Dirac statistics imposes the following antisymmetry condition [120,200,201],

Fgl’gz(kl, kz; tl, tz) = _FO—Z’O—l (kz, k].’ tz, t]_). (53)
which is the key to the emergence of distinct superconducting symmetries. Since the systems

we are interested in are periodic in time, in what follows, we would like to exploit such time-
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periodicity within the Floquet framework. In this regard, we expand the anomalous Green’s
function as [187,229]

/2
d ; .
Fov%2(ky, ko ty,t) = ZJ %Figaz(kl,kz; w) e~ HletnDn pilotm)e, (54)
—a/2

n,m

where w € [—Q/2,02/2], Q is the frequency of the drive, and F,? 192 represent the Floquet
pair amplitudes between electrons in the n and m™ sidebands by the absorption/emission of
|n—m| photons. The antisymmetry condition [Eq. (53)], combined with the Floquet expansion
[Eq. (54)], imposes the constraint for Floquet pair amplitudes given by

FIr02(ky, ky; @) = —FI57 (ky, by —w), (55)
after a total exchange of Floquet indices (n,m) <« (—m,—n), spins 0; <> 05, momentum
k,; < k,, and frequency w <— —w. This generalized antisymmetry condition allows the
appearance of eight distinct classes of Floquet Cooper pairs, comprising four spin-singlet and
four spin-triplet types, thus broadening the symmetries of superconducting correlations in
Floquet systems [187].

In the BdG formalism employed here [Eq. (8)], we simplify notation by introducing the
index v to denote the spin configuration of Cooper pairs, rather than explicitly writing (o1, 7).
Specifically, v = + (—) labels spin-up (spin-down) electrons paired with spin-down (spin-up)
holes. As noted at the beginning of this subsection, the Floquet pair amplitudes are encoded in
the anomalous components of the Floquet Green’s function in Nambu space, associated with
the Floquet BdG Hamiltonian via [187]. More precisely, the Floquet Nambu Green’s function

is obtained as
Gp(w,k) FY(ow, k))

_ - (56)
F'(w, k) Gplw,k)

Gl k) =[w—HLK)] ' = (
where GI}’ and G}’ are the normal (electron-electron and hole-hole) Green’s functions, while
F” and F” denote the anomalous (electron-hole and hole-electron) components. The Floquet
pair amplitudes an, n(w, k) correspond to the (n,m) Fourier components of the anomalous
block F¥(w, k). As noted above, the symmetry of the Floquet pair amplitudes gives the type
of the Cooper pairs, which requires identifying symmetry classes fulfilling the antisymmetry
condition under the total exchange of the quantum numbers of the paired electrons. Under
the exchange of Floquet indices, we find

Fre(w,k)==[F) (w,k)£F" _ (w,k)], (57)

N| -

where the transformation (n,m) «— (—m,—n) reflects the exchange symmetry between the
two Floquet indices [187]. Below, we refer to F>* and F as even-Floquet and odd-Floquet,
respectively. To separate spin symmetry, we further claséify spin-singlet and spin-triplet pair
amplitudes as [218]

Fot(w,k) = = [FrE(w,k)—F *(w,k)], (58)

NIk N

Fi(wk) = —[Fle(wk)+F, 2 (w,k)], (59)

’+ " . . .
where F;,m (Ffl’m) correspond to spin-singlet even-Floquet (odd-Floquet) components, while

F.* (FL) denote spin-triplet even-Floquet (odd-Floquet) pairings. Similarly, we can decom-
pose the symmetry in frequency and momentum, where the Floquet pair amplitudes can be
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even/odd under the individual exchange of frequency and momentum. Thus, this decompo-
sition enables a systematic analysis of all Cooper pair symmetry classes in time-periodically
driven d- and p-wave unconventional magnets with conventional superconductivity. By ana-
lyzing the Floquet pair amplitudes, we identify eight distinct classes of Floquet Cooper pairs
that fulfill the antisymmetry condition given by Eq. (55) under the exchange of spins, Floquet
indices, frequency, and momentum. These Floquet pair symmetry classes are summarized in
Table 1.

More specifically, we define the amplitude for each pair symmetry class (C) by summing
the corresponding Floquet components, where pairing occurs between electrons residing in
the same Floquet band or between Floquet bands; the processes happen by the emission and
absorption of an even/odd number of photons. Taking this into account, for an even number
of photons processes, the pair amplitudes are described by FZ/ Tff;m; the m = 0 case represents
intra-sideband pairing while m # 0 corresponds to inter-sideband pairing, both involving an
even number of photons. Similarly, for odd-number photon processes, the pair amplitudes
between Floquet bands are given by Ffl/ r::z mt1> Where only inter-sideband pairing is involved.
Therefore, there exist two types of Floquet pair amplitudes that become relevant, namely,

s/tE s/t x e pS/tE e : th
F iom and F romst- While F, rom Tepresents pairing between electrons in the n" and

(n+2m)™ Floquet sidebands, Ffl/ ;ffz ni1 Characterizes the pairing between n™ and (n+2m+1)®
sidebands. As already mentioned above, these Floquet pairings characterize the emergence of
Floquet Cooper pairs via the absorption or emission of |2m| and |2m+ 1| photons, which corre-
spond to an even and odd number of photons, respectively. Since the Floquet pair amplitudes
(Ffl/ nt+i2m and Ffl/ r::zm +1) determine the type of Floquet pair symmetry classes, below we write
them all for unconventional magnets with conventional superconductors. For d- and p-wave

magnets, we obtain four spin-singlet classes given by

S,j s,+ _ St S+
FCl - ZFn,n+2m - FOQ + FZQ + ’
n,m
$,J __ s,+ _ ST+ s+ .
FC2_ZFn,n+2m+1 =Fq tFgt+,
n,m

. (60)
S,] S,— S S,—
Fgy= E :Fn,n+2m_FOQ +Fyy -0,

n,m
S, _ s~ — ST $,—
FC4_ZFn,n+2m+1 =Fg +Fq t+-,
n,m
where j = {d,p} and the employed Floquet components are assumed to correspond to each

type of unconventional magnet, although for simplicity we do not explicitly write the j index
in the Floquet components. Note that the Floquet pair amplitudes after the second equality

are written as &= _ and F&* _ _ where the subscript index labels the difference between the
[2m|Q2 :||:2m+1|Q N
. . . S, S, . .
two Floquet indices in Foiom and Foomts respectively. This way helps us understand the

even/odd number of photons involved in the emergence of the distinct Floquet pair symmetry
classes.
For the d-wave altermagnets, we find four spin-triplet classes given by

t,d _ t,+ _ pt+ t+ .
FCS - Z Fn,n+2m - FOQ + FZQ + ’
n,m
t,d __ t,+ _ ptt+ t+ .
FC6 - ZFn,n+2m+1 - FlQ + F3Q + ’
n,m
Cc7 n,n+2m (019 20 ’

n,m
t,d _ t— _ pt— t— ...
FCS - ZFn,n+2m+1 - FlQ + FSQ + ’
n,m
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Table 1: Pair symmetry classes of the Floquet pair amplitudes in d-wave (p-wave) un-
conventional magnets with spin-singlet s-wave superconductivity under light drives.
Both d- and p-wave systems host identical classification for the spin-singlet classes
(1-4), but the spin-triplet classes (5-8) switch depending on the momentum par-
ity of the underlying unconventional magnetism. The symmetries related to d-wave
(p-wave) unconventional magnets are also valid for higher angular momentum even-
parity (odd-parity) unconventional magnets.

Floquet Spin Floquet Frequency Momentum Class
Components o, <> 0, (n,m)e (—m,—n) w—w k, &k,

Ffl: o Singlet Even Even Even 1
Fyromi Singlet Even 0dd 0dd 2
Ffl; o (M#0)  Singlet 0dd 0dd Even
Fiomi Singlet 0dd Even 0dd 4
F;‘: o Triplet Even 0Odd (Even) Even (0dd) 5 (6)
F;:LZTH " Triplet Even Even (Odd) 0Odd (Even) 6 (5)
Fyiam (m#0)  Triplet 0dd Even (Odd) Even (Odd) 7 (8)
F;:;Zm “ Triplet 0Odd Odd (Even) 0Odd (Even) 8 (7)

and also four spin-triplet classes for p-wave magnets given by

tp _ t+ —gbtt Ly L.
Fes _ZFn,n+2m+1_FIQ tFq +o0,
n,m
tp _ t+ gttt L+ .
FC6 - ZFn,n+2m - FOQ +FZQ + ’
n,m

(62)

tp _ t— _pt— , pt—

Fer _ZFn,n+2m+1 =Fjg tF;q +,
n,m

t,p _ t,— _ pt— t— 4 ...
FC8 - Z Fn,n+2m - FOQ + FZQ + :
n,m

Thus, F S5 FY4 and FYF correspond to Floquet Cooper pair amplitudes involving an

c1,c3> Y¢5,c7° C6,C8
. s,j t,d t,p :
even number of photon processes, while Féycq F C6.C8° and F 5,07 involve an odd number

of photon processes. Depending on the momentum parity, the frequency symmetry might
differ in d- and p-wave magnets, see Table 1. Notably, the zero-photon components F(s)g)’i
remain finite even in static systems when the driving is absent. In contrast, the dominant
components for odd-photon processes, such as F ig)’i, require at least one photon to facilitate
pairing, triggered by the drive. We therefore conclude that all pair amplitudes involving odd-
photon processes are induced by the driving field, while their even-photon counterparts can
exist even in the absence of periodic driving. The even/odd number of photons involved in the
pair amplitudes also have an effect on the type of spin symmetries they acquire (Table 1). For
instance, the spin-singlet pair amplitudes in p- and d-wave unconventional magnets can be
formed by involving an even (or odd) number of photon processes, see Egs. (60). In contrast,
to form spin-triplet pair amplitudes, the involved number of photon processes depends on
the type of unconventional magnet, which can lead to Floquet Cooper pairs with different
symmetry classes but using the same photon parity, see Egs. (61) and (62).

An example of the above discussion is that the even-photon processes induce spin-singlet
pair symmetries that belong to spin-singlet classes 1 and 3 in both driven d- and p-wave mag-
net; but the same even photon parity leads to spin-triplet pairs belonging to classes 5 and 7 in
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Figure 6: Illustration of Floquet Cooper pair amplitudes arising from photon-assisted
processes. (a) Even-photon processes involve virtual transitions between Floquet
sidebands that preserve the initial and final sideband indices (F, ), mediated by,

e.g., processes of abosorbing one photon transitting from the n to (n+ 1)™ Floquet
s1deband via 7—[11, then emitting one jumping back to the n™ Floquet sideband via

H ;. (b) Odd-photon processes involve virtual transitions between neighboring Flo-
quet sidebands, mediated by single-photon processes H* 11> producing off-diagonal
pairing amplitudes such as F : 1+1- Blue and red circles with arrows indicate spin-up
and spin-down electrons, respectively. The thin dashed arrows represent photon ab-
sorption or emission, while wavy lines denote the photons. Pair amplitudes F = with
v = + (v = —) characterize Cooper pairs between electrons with spin up (spln down)

and electrons with spin down (spin up) are encircled by green (violet) ellipses.

a driven d-wave altermagnet or classes 6 and 8 in a driven p-wave magnet, see Table 1. This
different classification in spin-triplet Floquet Cooper pairs originates from the contrasting par-
ity of d-wave and p-wave magnetic orders, which, as already anticipated, relates to the parity
of photons involved in forming Cooper pairs. To understand this effect, let us consider the
case with m = 0 as an example, with a schematic diagram shown in Fig. 6. Under general con-
ditions, intra-sideband and inter-sideband Floquet pair amplitudes involve the contribution of
different Floquet bands and therefore involve a different number of photons; these photon-
assisted processes can be formally derived from Dyson’s perturbation expansion [187], but
here we simply use the diagram shown in Fig. 6. For instance, the intra-sideband Floquet pair
amplitude (F:, ) can appear due to electrons pairing without undergoing transitions to any
other sideband, representing a first-order correction that does not involve the emission or ab-
sorption of photons; this process leads to the Floquet Cooper pair indicated the greens ellipse
in Fig. 6. Since light couples differently to d- and p-wave unconventional magnets, the mo-
mentum parity of such Floquet Cooper pairs is necessarily different, which is why there exists
a difference between classes 5 and 7 in a driven d-wave altermagnet and classes 6 and 8 in
p-wave magnets. When nearest-neighbor sidebands come into play, the electron forming the
Cooper pairs can transition onto those sidebands and then return back the n sideband thanks
to H},, thereby emitting and absorbing a photon, respectively; see the blue and red dashed
arrows as well as wiggle yellow arrows in Fig. 6(a). As a result, the Floquet pair amplitude
F : . gets a contribution from these photon-assisted processes whose number is even; for the
next-nearest-neighbor sidebands (and beyond), similar even photon processes occur, but the
number increases. As already noted before, the spin-singlet symmetry stems from the inter-
play between light and the spin-singlet parent superconductor but without any effect due to
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unconventional magnets; their existence involving an even number of photons is tied to the
finite value of the Floquet components %}, and #, in Eqs. (35-36). For this reason, the re-
sulting classification of spin-singlet Floquet pair amplitudes for d- and p-wave unconventional
magnets is identical, see Egs. (60). For the spin-triplet Floquet pairs, however, unconventional
magnetism is necessary, and the Floquet bands ensure their existence due to Floquet transitions
involving an even number of photons in this case.

A similar discussion can be done for the formation of Floquet pair amplitude due to an odd
number of photon processes, as schematically shown in Fig. 6(b). The finite coupling between
Floquet sidebands gives rise to spin-singlet classes 2 and 4 in both driven unconventional mag-
nets [Egs. (60) ], while to spin triplet classes 6 and 8 in driven d-wave altermagnets [Egs. (61) ]
and spin-triplet classes 5 and 7 in driven p-wave magnets [Egs. (62]. However, unlike the even-
photon processes enabling both intra-sideband and inter-sideband Floquet Cooper pairs, only
inter-sideband pairing is allowed in the odd-photon processes. This can be easily understood

by noting that the m = 0 component of the generic Floquet pair amplitude F) ., ;, namely,
F v

+ na1» is formed by pairing electrons from n™ and (n + 1)™ Floquet sidebands; this process
involves the absorption or emission of one photon via },, see the blue and red dashed arrow
and as well as wiggle yellow arrows in Fig. 6(b). This represents a first-order correction of
Dyson’s perturbation expansion [187] that involves the emission or absorption of one single
photon, and gives rise to inter-sideband Floquet Cooper pairs indicated by the green and violet
ellipses in Fig. 6(b). By including more sidebands, a higher odd number of photons processes
participate and contribute to the Floquet pair amplitude F,Z ntam+1- allowing for the sideband
n—1, the pair amplitude F T:’ 14+1 acquires the contribution of a pair amplitude involving three
photons, which result from a transition to the sideband n — 1 by emitting one photon assisted
by H”, and then transits to the (n + 1)™ Floquet sideband by absorbing two photons via
H?},. The resulting pairing involves a total of three photons, which leads to the second-order
correction of Dyson’s perturbation expansion [187]. As a result, the Floquet pair amplitude
F : 1+ 8ets a contribution from these photon-assisted processes whose number is odd; for the
pairing involving higher sidebands, similar odd photon processes occur, but the odd number
of photons increases. We remark that the Floquet pairs with odd number of photons with
spin-singlet symmetry (classes 2 and 4) result from the interplay between light and the parent
superconductor; while this might seem similar to the even photon case of the previous para-
graph, the odd-photon Floquet pairs do not exist in the static regime since they require at least
one photon to exist. Moreover, the spin-triplet Floquet Cooper pairs due to an odd number of
photons entirely result from the effect of light, unconventional magnetism, and conventional
superconductivity, but, unlike the even-photon pairs, these odd-Floquet pairs do not exist in
the static regime. Their origin comes from the non-trivial light matter interactions, i.e. azkak
in ’Hi’lv and a,k, in ”Hi’lv, see Egs. (35-36), which demonstrate a distinct momentum parity
inherited from the unconventional magnetism: odd-parity for the driven d-wave magnet but
even-parity for the driven p-wave magnet.This momentum parity, accompanied by the Floquet
indices, frequency, and present spins, results in the symmetry classification of the spin-triplet
Floquet Cooper pairs depending on the type of unconventional magnet, even if the same odd
number of photons is involved.

Moreover, Fig. 6 illustrates that the Cooper pairs mediated by even-photon processes in-
volve pairing within the same Floquet sideband, which can already exist in the static (non-
driven) system (zero-photon); since at least one photon is involved, the odd-photon processes
indicate the necessity of the driving field. Fig.6(a) demonstrates the example of forming
Cooper pairs in the n = 0 Floquet sideband. For pairing with an electron in the n = 0 Flo-
quet sideband, the partner electron may either interact directly without involving photons,
corresponding to the static zero-photon process, or undergo a two-photon process in which
it absorbs a photon to reach the n = +1 sideband and subsequently emits a photon to return

26



SciPost Physics Submission

to n = 0 before pairing within the n = 0 sideband. As a result, even-photon processes natu-
rally mix with equilibrium pairing correlations. In contrast, as shown in Fig. 6(b), odd-photon
processes necessarily involve pairing between different Floquet sidebands. The lowest-order
odd-photon contribution corresponds to a one-photon process, in which an electron in the
n = 0 Floquet sideband absorbs a photon and pairs with an electron in the n = +1 sideband.
Such pairing channels vanish in the absence of the driving field and therefore represent purely
light-induced correlations. This distinction explains why odd-photon processes generate pair-
ing channels that have no static counterpart.

Thus, the momentum parities inherited from the underlying unconventional magnet, ac-
companied by the Floquet indices, frequency, and present spins, determine the type of emer-
gent Floquet Cooper pair symmetry classes listed in Table 1. Based on this classification, we
conclude that among the eight symmetry classes of Cooper pairs listed in Table 1, two spin-

singlet classes, Féé( cqp AT induced solely by the driving field. Two spin-triplet classes, F é’g( c8)
t’p

for the d-wave altermagnet and F C5(C7) for the p-wave magnet, arise from the interplay be-
tween the drive and the underlying unconventional magnetism. The remaining triplet and
singlet pair symmetry classes for each unconventional magnet are pair correlations that orig-
inate from those in the static regime, see Subsec.2.2. In the following, we analyze several
specific Floquet Cooper pair amplitudes to characterize (i) Cooper pairs induced by the drive
[Sec. 5.2.1], (ii) identify the role of multi-photon processes [Sec. 5.2.2], and (iii) unveil the
impact of linearly polarized light.

5.2.1 Inspecting the symmetries of Floquet Cooper pairs

As already anticipated above, the eight Floquet Cooper pair symmetries presented in Table 1
exhibit a certain symmetry with respect to the exchange of spins, Floquet indices, frequency,
and momentum. Out of these classes, the interplay of drive and unconventional magnetism
promotes two classes of spin-singlet Cooper pairs possessing odd parity, which correspond to
classes 2 and 4 in Table 1 and emerge due to an odd number of photon processes. These
two classes are odd (even) functions under the exchange of Floquet indices, which is tied to
the evenness (oddness) under frequency in order to fulfill the antisymmetry condition. The
odd-frequency and odd-parity symmetries of Fég are demonstrated in Fig. 7(a,b) for d,>_.-
wave altermagnet with 6; = 0 under CPL, see arrows in Fig. 7(a,b). The pair symmetry
class Fé’g , with odd-frequency spin-singlet odd-parity, is unexpected in the static case without
breaking translational invariance [200], but here it appears thanks to the additional quantum
number offered by the Floquet sidebands [Eq. (53)]. The same behavior is observed in the
dxy-wave magnet with 6; = m/4 under CPL, as shown in Fig. 7(c,d). We have also verified
the corresponding symmetries of the pair symmetry class F 2’2, which exhibits a spin-singlet
odd-Floquet even-frequency odd-parity symmetry and arises due to an odd number of photon
processes like Fég . As for the Floquet pair classes 2 and 4 in p-wave magnets, they possess
the same symmetries as for d-wave altermagnets and their dependences are demonstrated in
Figs. 8(a,b) for p,- and p,-wave magnets.

In addition to the spin-singlet Cooper pairs, Floquet unconventional magnets also host
four spin-triplet pair symmetry classes, with two classes entirely coming from the interplay
among light, unconventional magnetism, and conventional superconductivity. These emerging
spin-triplet Cooper pairs are characterized by classes 6 and 8 in Table 1 and require an odd
number of photons. These Floquet spin-triplet classes are odd in momentum and develop
even-frequency (class 6) or odd-frequency (class 8) symmetries depending on the symmetry
under exchange of Floquet indices. Similar to spin-triplet Cooper pairs in the static state, these
Floquet spin-triplet pairs originate from the d-wave magnetism [6,72,74]. However, unlike the
static case, the Floquet spin-triplet pairs additionally require odd-photon processes [Eq. (61)],
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Figure 7: (a,c,e,g) Real part of Floquet Cooper pair amplitudes (Fé’g and F é’g )asa
function of w and k, in d,2_,.-wave altermagnets with 6; = 0 (a,c) and d,,-wave
magnets with 6, = 7/4 (e,g), both under CPL. In (a,e), k, = 0 is fixed, while in (c,g)
ky /kgp = 0.5. (b,d,f,h) The same quantity as in (a,c,e,g) but as a function of k, and ky
at fixed frequency w = 0.592. Black dashed arrows in all panels indicate the evenness
and oddness of the pair amplitudes with respect to frequency and momentum. Other
parameters: B=1,ky =1, u=1, ky/kp =0.5, a3 = 0.2, and A = 1.5A,.
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Figure 8: (a,c,e,g) Real part of the Floquet Cooper pair amplitudes (Fé’g and F éé) ) as

functions of w and k, in p,-wave magnets with 6, = 0 (a,c) and p,-wave magnets
with 6; = /2 (e,g), both under CPL. In (a,e), ky = 0, while in (c,g) ky/kF =0.5.
(b,d,f,h) The same quantity as in (a,c,e,g) but as a function of k, and k, at fixed
frequency w = 0.59. Black dashed arrows in all panels indicate the evenness and
oddness of the pair amplitudes with respect to frequency and momentum. Other
parameters: B=1,ky =1, u=1, k4/ky = 0.5, a, =0.2, and A =0.3u.
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making their formation entirely due to the interplay among light, d-wave altermagnetism, and
conventional superconductivity. Figs. 7(e-h) show the frequency and momentum dependences
of F é’g for d,2_ .- and d, , altermagnets under CPL, which are consistent with Table 1. In the
case of p-wave magnets shown in Fig. 8, we find that the classes 5 and 7 entirely appear due
to the effect of light on p-wave magnets with conventional superconductivity: these classes
exhibit spin-singlet even-Floquet (odd-Floquet), even-frequency (odd-frequency), and even-
parity symmetry. The evenness in parity of the Floquet spin-triplet pairs in p-wave magnets is
opposite to what occurs in driven d-wave altermagnets and also different from the static spin-
triplet pairs in p-wave magnets, which inherently carry odd parity due to the odd parity of
p-wave magnets. Under the light drive, however, the evenness in momentum is compensated
by the symmetry due to the Floquet indices, which also adjusts the frequency dependence in
order to fulfill Fermi-Dirac statistics.

As a result, the spin-triplet Floquet Cooper pair symmetries (classes 6 and 8 for d-wave
and 5 and 7 for p-wave) are intrinsic to the interplay between the time-periodic drive and
the unconventional magnetism with spin-singlet s-wave superconductivity. Overall, this ex-
panded classification demonstrates how periodic driving can unlock novel superconducting
pairing channels, offering new avenues to manipulate and engineer superconducting states in
unconventional magnetic systems.

5.2.2 Photon contribution

We have seen that, depending on the number of photon processes involved in the formation of
Floquet pair amplitudes, the emergent Cooper pairs acquire distinct symmetries. This is better
seen in the pair amplitudes written as F fv(g’i after the second equality in Egs. (60)-(62), where
N here labels the number of photons involved in the emergence of Floquet Cooper pairs. By
looking at the Table 1 for d-wave altermagnets, we clearly identify that classes 1, 3, 5, and 7
involve an even number of photons since N = |2m|; an odd number of photons are involved
for classes 2, 4, 6, and 8 since N = |2m+1|. In the case of p-wave magnets, classes 1, 3, 6, and
8 involve an even number of photons, while classes 2, 4, 5, and 7 require an odd number of
photons, see Table 1. To quantify the contributions of the respective Floquet pair amplitudes
with a certain number of photons, we compare the magnitude of the respective classes with the
contribution coming from the lowest photon process. We focus on two representative classes
in d- and p-wave unconventional magnets: |Fé’f | and |F é’g | in d-wave altermagnets, while on
IF¢y

In Fig.9(a,b), we show |Fé’f | and its zero-photon component IF(‘;’;{I as functions of fre-

t,py
and |F ;| in p-wave magnets.

. s,d
quency w and momentum k, at k, =0 in a d,2_2-wave altermagnet under CPL. Both |F;

and |F(s)’ér | display Floquet replicas due to Floquet sidebands, which imposes a periodicity in
frequency space such that |F¢;(w)| = |F¢1(w + nQ)|, see also Fig. 7. Both quantities reveal
multiple superconducting gaps arising from coupling between different Floquet sidebands and
exhibit nearly the same intensity, which further suggests the dominant contribution of the zero-
photon pair amplitude (FS’S;r ) to the total Floquet pair class (Fé’f). This is further supported
by noting that the largest of these induced gaps appears near w = nf2, where the zero-photon
contribution dominates. This dominant behavior of F(S)g arises because it is determined by
Hy [Eq. (35) and Eq. (36)], which is related to the static cases, and hence insentive to the
driving, while pairings with higher even number of photons, such as for |F§Q+ |, scale with
higher even powers in k, which then give a tiny contribution at reasonable frequency of the
drive Q. Further insights on the role of the drive and d-wave altermagnetic strength (a;) can
be obtained in Fig. 9(c), where we plot the pair amplitude class 1 integrated in momentum
|F(S)’5(co)| = f dlef)’;(o))l/(Zn)2 as a function of w and distinct values of a;. Here, we can see
that the integrated pair amplitude II:"(S)’K;r | is finite without both drive and altermagnetism, but a
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Figure 9: (a,b) Magnitude of the Floquet pair symmetry class |Fé’f| and its zero-
photon component F 35 as functions of w and k, forad,._,»-wave altermagnet under
CPL at k,, = 0. (c) Frequency dependence of the integrated zero-photon component
Fg’g for different values of the drive amplitudes k, and strengths of the d-wave al-
termagnetic field ay. The arrows in (c) indicate peaks in Fgg corresponding to the
superconducting gap edges centered around w = nQ. (d,e,f) The same as in (a,b,c)
but for the Floquet pair symmetry class |F é’gl and its one-photon component F 1t§2+. In
(f), a vanishing value of either k, and a; leads to F fs;r = 0, indicated by the vertical
line. The horizontal dashed lines indicate that ng is dominant around w = nQ/2,
where pairing between neighboring Floquet sidebands occurs. Parameters: same as
in Fig. 7.

nonzero value of them introduces interesting features [Fig. 9(c)]. For instance, |13"3’£;r exhibits
larger values within the first Floquet zone [—2/2,Q/2] and develops symmetric peaks below
and above w = n. Its existence without d-wave altermagnetism, depicted by gray and blue
curves in Fig. 9(c), is because |13(s)g | has spin-singlet even-parity symmetry (class 1), which
is the same symmetry of the parent superconductor. Moreover, the nonzero IFS’;{ without
external driving (k, = 0) also explains the dominant contribution of the zero-photon pair am-
plitude, see gray and red curves in Fig. 9(c). A similar analysis holds for other classes involving
an even number of photons. For instance, Fig. 10(a-c) displays the spin-singlet class 1 |Fé’f
in a p,-wave magnet under a CPL and shows the dominant contribution of its zero-photon
component as well as the appearance of induced gaps between Floquet sidebands.

In relation to the Floquet pair amplitudes due to an odd number of photons, in Figs. 9(d,e)
we show class 6 |F é’gl and its one-photon component |F fg | as functions of w and k, at k, = 0.
Unlike the even-photon case in Fig. 9(a), which is distributed across all k,, the odd-photon
Floquet pair magnitudes |F é’g | and |F1t§2+| develop large intensities around the Fermi points
k,/kr ~ 1, following a very similar behavior that unveils the dominant contribution of |F {g s
see Fig. 9(d,e). Integrating this component over momentum yields the quantity |F 1t§2+|, shown
in Fig. 9(f) as a function of w. This integrated pair magnitude reaches maxima near w = nQ2/2,
where coupling between the n™ and the (n + 1)™ Floquet sidebands becomes significant, as
indicated by the horizontal dashed lines in Fig. 9(f). We have also verified that |F1tQ+ |, and the

overall class 6 pair magnitude |Fé’6d| arise from the interplay between the driving field ampli-
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Figure 10: (a,b) Magnitude of the Floquet pair symmetry class IFé’f | and its zero-
photon component FS’;{ as functions of w and k, for a p,-wave magnet under CPL at
k, = 0. (c) Frequency dependence of the integrated zero-photon component F(S)’;{ for
different values of the drive amplitudes k, and strengths of the d-wave altermagnetic
field a,. The arrows in (c) indicate peaks in FS’;{ corresponding to the superconduct-
ing gap edges centered around w = nQ2. (d,e,f) The same as in (a,b,c) but for the
Floquet pair symmetry class |F éé’ | and its one-photon component F 1t’Q+. In (f), a van-
ishing value of either k4 and a, leads to Fltg = 0, indicated by the vertical line.
The horizontal dashed lines indicate that Flt; is dominant around w = nf)/2, where
pairing between neighboring Floquet sidebands occurs. Parameters are the same as
in Fig. 7. Parameters: same as in Fig. 8.

tude k4 and the strength of d-wave magnetism a,, becoming finite only when both parame-
ters are nonzero. This is consistent with our argument that spin-triplet, odd-photon-assisted
Cooper pairs require the presence of both the external drive and d-wave magnetic order. In the
case of p-wave magnets, Fig. 10(d-f) shows class 5 IFé’é’ and its dominant contribution from
the lowest one-photon pair amplitude |F1t’9+|, which only exist due to the interplay between
light and p-wave magnetism. A small superconducting gap opens at w = nf)/2, originating
from coupling between electrons and holes mediated by the absorption or emission of a single
photon, which leads to strong pair amplitudes; see Fig. 10(d,e) and horizontal dashed line in
Fig. 10(f).

Overall, these results highlight how, depending on the number of photons, emergent Flo-
quet Cooper pairs in driven unconventional magnets develop distinct dependences. Even-
photon processes, such as those contributing to |F;|, largely preserve the properties of the
static spin-singlet superconducting state and are relatively insensitive to the drive and mag-
netism. In contrast, odd-photon-assisted spin-triplet pairings, such as |Fé’5 , emerge due to
the interplay between the periodic drive and the unconventional magnetic order. These odd-
photon contributions manifest distinct features in both frequency and momentum space, and
their appearance near w = nf)/2 underscores the critical role of Floquet sideband mixing in
enabling new pairing channels. Thus, the number of photon fundamentally shapes the sym-
metry and spectral characteristics of Cooper pairs in driven unconventional magnets.

31



SciPost Physics Submission

d-wave p-wave

(@ 2 mmmmpe[FLl]| ()| m=—r=mmpe[r} ]| (C) | mmm=——=mmmpe[rlP] (d) | mm=—=—r—=mpe[r7]

------ Oy=n/4---6,=m/2

¢A/7T ¢A/T[

Figure 11: Upper panel: (a) and (b): The light-induced spin-triplet, even-Floquet,
even-frequency, odd-momentum Cooper pair amplitude Re[F gé] ind,2_,2-wave mag-
nets with 6; = 0 and d,,-wave magnets with 6, = 7/4, respectively, driven by lin-
early polarized light with ¢, = 0. (c) and (d): The light-induced spin-triplet, even-
Floquet, odd-frequency, even-momentum Cooper pair amplitude Re[ F gs] in p,-wave
magnets with 6; = 0 and p,-wave magnets with 6, = 7/2, respectively, driven by
linearly polarized light with ¢, = 0. In all cases, the momentum parity is preserved.
Lower panel: The integrated one-photon contribution to the Cooper pair magnitude,
|F lt’QJ’l, in driven (e) d-wave and (f) p-wave magnets, shown for various values of 0;.
Parameters are the same as in Figs. 7 and 8 for the driven d-wave and p-wave cases,
respectively.

5.2.3 Effects of linearly polarized light

While the Floquet pair symmetries presented in Table 1 are present in unconventional magnets
under CPL and LPL, we have so far explored them under CPL. For this reason, here we would
like to inspect further the effect of LPL. We first start by noting that, under LPL, the elements
of the Floquet Hamiltonian in Egs. (35) and (36) depend explicitly on the polarization direc-
tion of the LPL field ¢4. To be more precise, in the zero-photon sector of the driven d-wave
altermagnet with superconductivity (’Hg’v), an effective Zeeman field is induced and given by
k2[ vay cos(20; —2¢4)7¢1/2 [Egs. (35)], which gives rise to a finite spin density and a finite
spin-triplet Cooper pair amplitude in the high-frequency limit [75]. Moreover, the components
involving single photons are ”Hi’l” = vkak a g cos (6, —26; + ¢p,) T,, which reflects that they de-
pend sensitively on the relative orientation between the d-wave order parameter (6;) and the
LPL polarization direction (¢,), see Egs. (35); these contributions can vanish along specific
momentum directions where 0, satisfies 6, —26; + ¢, = (2n + 1) /2. Furthermore, the two-
photon terms are momentum-independent but also modulated by 6; and the LPL polarization
angle ¢, via ka\ad cos(260; —2¢,), see Egs. (35). Unlike all these d-wave Floquet compo-
nents, in p-wave magnets under LPL, the nontrivial light-matter interaction arises primarily
from single-photon processes given by vk,a, cos(6; —¢,) and is momentum-independent,
see Eq. (36). These anisotropic couplings between Floquet sidebands due to the polarization
angle ¢4 are absent in CPL-driven systems, as discussed in Secs. 5.2.1-5.2.2; see also Figs. 7
and 8.
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To visualize a representative Floquet pair amplitude, in Fig. 11(a,b) we show ReFé’g as
a function of momenta for d,>_,.- and d,,-wave altermagnets under LPL at ¢, = 0. Here,
ReF g6 vanishes whenever the condition 6, —260; + ¢, = (2n+ 1) /2 is satisfied, indicating
the role of LPL and distinct from what is shown in Fig. 7 for d-wave altermagnets under CPL.
Consequently, in a d,>_,»-wave magnet with 6; = 0 driven by linearly polarized light with po-
larization angle ¢, = O (i.e., polarization along the x-axis), the Cooper pair amplitude vanishes
at k, = 0 (corresponding to 6, = 7/2). In contrast, for a d,,-wave magnet with 6, = /4,
the Cooper pair amplitude vanishes at k, =0 (i.e., 6 = 0). The competition between the LPL
polarization direction (¢4) and the orientation of the unconventional magnetic order (6;) is
also evident in p-wave magnets under LPL, as demonstrated in Figs. 11(c,d), where we plot
the momentum dependence of ReF gs at ; = 0and 6; = /2 for to p,- and p,-wave magnets,
respectively. In this case, when the polarization direction is parallel to the p-wave magnetic
orientation, the effect of the drive becomes pronounced but it is minimal when ¢, and 6; are
perpendicular to each other, leading to a vanishing Cooper pair amplitude ReF 55 along the
polarization direction. This relationship between LPL polarization direction and p-wave mag-
netic orientation is embodied in the nontrivial light-matter coupling in Eq. (36), which takes
the form vk,a, cos(6; — ¢,), yielding vanishing coupling when 6; — ¢, = (2n+1)7/2. Thus,
the interplay between magnetic anisotropy and the polarization of the LPL leads to character-
istic angular patterns in the induced Cooper pair amplitudes.

Further insights on the interplay between the LPL polarization direction (¢4) and 6; can
be obtained from Figs. 11(e,f), where the classes discussed above but integrated in momentum
and denoted as |F é’g | and |F éé’ | for d- and p-wave unconventional magnets at distinct 6;. We

see that |F é’g | is largely insensitive to variations of 6; and ¢ ,, which is a result of the integration
since it averages over momenta; see Fig. 11(e) and its y-axis. It is thus challenging to identify
the type of d-wave altermagnetism by measuring the response of |F é’g | with respect to the LPL
polarization angle ¢, in low-frequency LPL drives. In the case of p-wave magnets shown in
Fig. 11(f), the integrated pair amplitude |F éé’ | acquires a more pronounced dependence with
respect to ¢, and 6;. The momentum-independence of the single-photon processes in the
p-wave magnets under LPL [Eq. (36)] enables the orientation 8; to introduce a phase shift in
|F gSI as a function of ¢,, which follows the relation cos(6; — ¢,); this also allows to identify
the orientation angle 6; for low frequency LPL drives. We can thus close this part by stressing
that the response of Floquet-induced Cooper pairs to LPL reveals rich symmetry properties
and provides a way to probe the orientation of unconventional magnetism in superconducting

systems.

6 Discussion

Sections above have systematically demonstrated the theoretical proposal of Floquet engineer-
ing spin density in the normal state and Cooper pair correlation in the superconducting states
of unconventional magnets. Below, the experimental accessibility of emergent effects and lim-
itations for the Floquet formalism are discussed in Sec. 6.1 and 6.2, respectively.

6.1 Experimental observability and feasibility

The main experimentally accessible results proposed in this work are (i) the Floquet-engineered
spin density in the normal state (Figs.3 and 4) and (ii) the emergent spin-triplet pairing am-
plitude in the superconducting state (Figs.9-11). Both effects can be generated by apply-
ing a mid-infrared (MIR) pump field [130, 142,230, 231] to unconventional magnets, where
superconductivity can be induced by proximity to a conventional spin-singlet s-wave. More-
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over, these light-induced quantities can be detected using time- and angle-resolved photoe-
mission spectroscopy (TrARPES) [142, 230, 231], and also by time-resolved transport mea-
surements [130]. Below, we elaborate on the relevant experimental conditions for detecting
the predicted signatures.

6.1.1 Generation of Floquet sidebands

The observability of the Floquet-engineered spin density and spin-triplet pairing is controlled
by the effectiveness of the light-matter interaction. This interaction is characterized by the
dimensionless parameter k,/ky; = eEy/(HQky), where e is the elementary charge, i is the
Planck constant, Q is the driving frequency, E, is the electric-field amplitude, and k; is the
Fermi wave vector, see Eq. (20). The field amplitude is related to the driving intensity via
I = ceEg /2, where c is the speed of light and € is the vacuum permittivity [223]. Hence,
suitable choices of Q, E,, and I are required to generate measurable spin splitting and spin-
triplet correlations.

Experimentally, Floquet sidebands are commonly realized using MIR pump pulses [130,
142,230, 231]. Typical photon energies are 12 ~ 10?>meV, corresponding to Q ~ 10 THz,
a driving period T = 27/ ~ 102fs, and a wavelength of order 10 um. For typical Fermi
wave vectors kp ~ 108-10° m™! [232], achieving k,/kr = 0.5, the value used in the currnet
work, requires an electric field E, ~ 10°~108 V/m, corresponding to intensities I ~ 10—
10*W/m?2. Moreover, throughout the this work, we use aq, =0.5/ kf,, corresponding to an
altermagnetic strength scale of order 100 meV. Since altermagnetic splittings can reach values
upto~ 1eV[16,17], even lower driving field intensities and frequencies may suffice in realistic
materials for measurable signals.

Our calculations assume a spatially homogeneous driving field. This approximation is
justified because the typical lateral size of fabricated samples is of order 10? um? [34, 35],
while the pump spot size is typically of comparable or larger area: 10? um x 10% um with full
width at half maximum, [ 130,230,233]. The spatially homogeneous assumption is reasonable,
and the edge effects can therefore be neglected.

Therefore, the generation of the Floquet sidebands reported in this work is expected to be
achieved under realistic conditions. Once the conditions for generating Floquet sidebands are
achieved, they immediately imply the emergence of Floquet superconducting pair amplitudes.

6.1.2 Detection of Floquet spin density and Cooper pair correlations

The Floquet-engineered spin density in the normal state (Figs.3 and4) can be probed using
TrARPES with an ultraviolet probe [ 142,230,231]. TrARPES provides energy- and momentum-
resolved spectral information, allowing direct observation of multiple Floquet-induced Fermi
surfaces in Figs. 3 and 4. To further resolve the spin splitting explicitly, spin-resolved TrARPES
measurements are required [234,235] to observe the Floquet-engineered spin density.

While TrARPES probes the normal component of the Green’s function theoretically, it can-
not directly probe the Floquet spin-triplet pairs residing in the anomalous Green’s function
part [see, e.g., Eq. (9)]. Thus, TrARPES is not an ideal technique to detect the Floquet-induced
spin-triplet Cooper pairs. Since the anomalous Green’s function is related to the Andreev con-
ductance [172,215,236-238], we expect that the emergent Floquet spin-triplet pairing can be
detected via time-resolved transport experiments [ 130].

The relation between Andreev conductance and pair amplitude is direct since they satisfy
G, o< |F|?, where F is the anomalous Green’s function containing both even- and odd-photon
processes, i.e., F = F°d=2 peven— 4 iljustrated in Fig. 6. The even-photon contribution per-
sists in the absence of driving due to the existence of the zero-photon (static-state) component,
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whereas the odd-photon contribution is induced by the pump field. Consequently, the photon-
induced pairing strength can be estimated from the difference between the conductance in the
driven and static states: |[F°4=%2 ~ G, (k) — Ga(ky — 0) ~ |FOdd—2 4 peven—Q2 __ peven—2
which includes both spin-singlet and spin-triplet Cooper pair correlations.

Further inspection of the Andreev conductance can distinguish the contribution from the
spin-singlet and triplet states. As shown in Figs.9 and 10, spin-singlet correlations manifest
as symmetric conductance peaks near eV = nf), reflecting even-parity pairing, whereas spin-
triplet correlations give rise to nearly plateau-like features near eV = n2/2, where coupling
between adjacent Floquet sidebands becomes significant. Thus, the spin-singlet and triplet cor-
relations contribute to the Andreev conductance in different energy windows, hence offering
a solid way for their detection.

Detecting the conductance anisotropy is an alternative way to distinguish the contribution
from the spin-singlet and triplet states in the transport measurements [130]. The spin-triplet
Cooper pair amplitude is strongly anisotropic due to the directional spin splitting of the uncon-
ventional magnet, whereas the spin-singlet component is weakly anisotropic as it scales with
the proximity-induced gap A, see Eq. (11). These distinct features allow singlet and triplet
contributions to be distinguished by comparing conductance measurements along different
bias and probe directions.

In summary, the proposed Floquet-induced spin splitting and spin-triplet Cooper pairing
can be realized using MIR pump fields with frequencies Q ~ 10 THz and intensities I ~ 10'°—
10 W/m?2, which are well within current experimental capabilities [130, 142, 230, 231].
TrARPES provides direct access to the spin-resolved Floquet band structure in the normal
state, while time-resolved transport measurements enable detection of the spin-triplet pair-
ing correlations in the superconducting state. TrARPES has already been successfully applied
to Floquet-Bloch states in graphene [142,231], topological surface states [230], and antiferro-
magnets [239, 240]; Time-resolved transport experiments have been employed to probe Flo-
quet Majorana modes [241] and anomalous Hall conductance [130]. These advances demon-
strate that the proposed Floquet spin-triplet Cooper pairs are experimentally accessible under
present conditions.

6.2 Limitations of the Floquet formalism and mitigation strategies

Finally, we remark that heating and the resulting Floquet band occupation, which indeed con-
stitute a central limitation of the present Floquet formalism. These challenges are intrinsic to
Floquet engineering of quantum phases and can be mitigated by extending the duration of the
long-lived prethermal states that emerge before the irradiated system is completely heated up
and can be described effectively by the Floquet formalism [242]. Below, we clarify the role of
prethermalization [ 126,242] and discuss how heating effects and the redistribution of Floquet
states can be minimized in realistic experimental settings [243,244].

In a closed periodically driven system, photon absorption leads to heating of the electronic
systems. After an initial relaxation stage, the system may approach an infinite-temperature-
like quasisteady state, characterized by maximal local entropy density subject to conservation
laws, such that electrons in the driving system are distributed in all Floquet sidebands. In this
regime, nonuniversal details of the Floquet spectrum within each sideband, such as the spin
density and pairing, are washed out, while global features remain observable [126].

To avoid heating into the infinite-temperature regime while retaining experimentally ob-
servable Floquet engineering effects with minimized electron redistribution, the temporal pro-
file of the driving pulse must be carefully designed to achieve the prethermalized regime
[243,244]: (i) The pulse must be sufficiently short to generate the desired Floquet spin density
and spin-triplet correlations before significant heating sets in; (ii) It must be, however, long
enough for the system to enter a regime that can be described by a Hamiltonian in the so-called
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prethermalized regime. Furthermore, to approximate the ground state of the prethermalized
Hamiltonian, the driving field should be switched on adiabatically, favoring a slowly rising
pulse with an appropriate duration. Although a complete description of the prethermalized
Hamiltonian remains challenging [126], the Floquet formalism used in this work provides a
reliable, effective description of the prethermalized state [242], consistent with experimental
observations [130, 142,230,231].

In typical TrARPES experiments employing a mid-infrared (MIR) pump (T ~ 100fs) to
drive unconventional magnets, followed by an ultraviolet (UV) probe, conditions (i) and (ii)
can be naturally satisfied. A pump pulse duration of order 10T ~ 1 ps is sufficient to establish
Floquet-induced spin splitting and Floquet pair correlations [ Condition (ii) ], while remaining
much shorter than the lifetime of the prethermal regime, which can persist up to ~ 10*T [242]
[Condition (i) ]. Moreover, solid-state systems are not perfectly isolated, and dissipation to the
environment is unavoidable [245]. Energy absorbed from the driving field can be partially
transferred to the substrate and other degrees of freedom, such as phonons, which further
extends the lifetime of the prethermalized state and mitigates runaway heating [126,242].

In summary, although thermalization and carrier redistribution pose intrinsic limitations
to Floquet descriptions, their impact can be substantially reduced by choosing suitable driv-
ing pulse shapes and durations. Under these conditions, the system remains in a long-lived
prethermal regime. While the precise form of the prethermal distribution remains an open
problem [126], the Floquet formalism employed in the current manuscript captures the es-
sential properties of the prethermal state and is supported by existing experimental results
[130,142,230,231,242].

7 Conclusions

We have studied the effect of time-periodic light drives on p- and d-wave unconventional mag-
nets with and without spin-singlet s-wave superconductivity. In particular, we have considered
circularly and linearly polarized drives and uncovered a nontrivial light-matter interaction en-
tirely tied to the way light interacts with unconventional magnetism. We then demonstrated
that this nontrivial interaction generates Floquet spin density and Floquet spin-triplet Cooper
pairs that do not exist in the static regime and can be used to identify the type of unconven-
tional magnetism. Moreover, we found that the emergence of Floquet Cooper pairs, accompa-
nied by a Floquet spin density, is intrinsic to the Floquet sidebands ,which provide an additional
quantum number (the Floquet sideband index) that broadens the classification of supercon-
ducting symmetries into Floquet classes that coexist between different sidebands through the
absorption or emission of photons. Particularly, we identified two spin-singlet Floquet pair
classes that arise due to the time-periodic field and conventional superconductivity, while two
types of spin-triplet Floquet Cooper pairs are generated by the combined effect of unconven-
tional magnetism, conventional superconductivity, and time-periodic driving. As a result, the
classification of the spin-triplet Floquet Cooper pairs highly depends on the distinct momentum
parities inherited from the p- and d-wave unconventional magnets. We further showed that
the distinct Floquet Cooper pairs can be controlled by exploiting the light polarization and the
orientation of the unconventional magnetic order, offering a direct way to probe the symme-
tries of unconventional magnetism. Our findings demonstrate that unconventional magnets
represent a versatile platform for realizing light-induced Cooper pairs by means of Floquet en-
gineering. These results also raise natural questions, such as how robust are the light-induced
superconducting pairs against realistic conditions where disorder [198, 220, 246-251] and
dissipation [214, 252-255] are very likely effects that cannot be avoided; to answer these
questions, a detailed investigation is needed.
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A Hamiltonian and Floquet components in higher-order-momentum
unconventional magnet

To demonstrate a pedagogic example of the Floquet engineering unconventional magnet, d-
wave and p-wave magnets are considered in the main text, see Eq. (4). Our results about the
multiple spin degenerate nodes, Floquet spin density, and the driving induced Floquet Cooper
pairs can be applied to all kinds of unconventional magnets, whose anisotropic spin split effect
is captured by Eq. (2). For completeness, in this appendix, we present the Floquet components
of all types of unconventional magnets subjected to CPL and LPL. By expanding Eq. (2), the
explicit forms of the unconventional magnetic terms are given as:

Jo(k) = a; s-wave
J1(k) = a,(k, cos 0; + k,, sin 6;) p-wave
Jo(k) = ay [(ki—ki)cosZQJ + 2k, k,, sinZGJ] d-wave
Js(k) =ay [kx(ki — Bk}z,)cos 360, + ky(k}z, — Bki) sinBGJ] f-wave (A.1)

Jo(k) = ag [ (k& — 6k2K2 + k?) cos 46, + 4k k, (k2 —k2)sin46, | g-wave
Jo(k) = a; [ (k& — 15Kk2Kk? + 15k2k? — k8) cos 66,
+ 2Kk, (3k?} — 10Kk2K2 + 3k?) sin 66 | i-wave

Here, J, corresponds to the conventional Zeeman interaction, while J5 is forbidden due to
the incompatibility of five-fold rotational symmetry with crystalline symmetries in periodic
lattices. The d-wave and p-wave cases are Eq. (4) in the main text.

Further classification within each wave type depends on the orientation of the magnetic
lobes, parameterized by the angle 6;. For example, in the f-wave magnet, the term J3(k)
corresponds to the fy(y2_3,2)-wave configuration when 6; = 0, and to the f)(,2_3.2)-wave
configuration when 6; = /6.

One can verify that along the momentum directions defined by 6; = 6,+nn/q (n € Z), the
unconventional magnetic effect is maximized, resulting in spin-splitting that depends solely on
the radial momentum magnitude as a;k9. In contrast, along directions 6 = 0,+(2n+1)m/(2q),
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the magnetic term vanishes identically, leading to spin-degenerate band structures. These
nodal and anti-nodal structures are directly inherited from the symmetry of the underlying
magnet.

By implementing the Floquet formalism in Eq. (32), the Floquet components of a CPL-
driven unconventional magnet take the following forms:

H}’ =H, +Bkj, (A.2)

. _ ! 4 _

HEY = BkAe”’(’k(Sn’l + craqemqu m (ke_mek)q " ki, (A.3)
where Hg’a includes the zero-photon contribution, incorporating a self-doping term Bkﬁ that
effectively shifts the chemical potential (which we gauge away in our analysis). The n-photon
Floquet components Hi, describe light-matter interaction processes. In particular, all com-
ponents with |n| > 1 are non-trivial and arise from the interplay between the external driving
and the unconventional magnetism, encoding higher-order photon-assisted transitions unique
to these systems. Similar results can be obtained in the superconducting states.

In the LPL-driven case, the Floquet components become complicated, which are

1
HYO =HY + EBkj +oagkimg, (A.4)
Hif =BkAkcos(9k—¢A)+oaqkAmg, (A.5)
1
40 _ 2 2.4q
HY, = ZBkA + oaqkAmZ, (A.6)
( 0, others

§c0s (36, —3¢,), f-wave

HYJ = oagkx { tkcos(46, —3¢,—6y), g-wave , (A7)

2 [8k?cos (60, — 3¢, —36)
\ +3k§cos(69J—5¢A—9k)], i-wave

o

, others

11—6 cos(460; —4¢,), g-wave
2 [k2cos (60, —6¢4)

+ 10k% cos (60, —4¢p,—26,)], i-wave

00 0, others
Hls =1 3 5 . s (A.9)
1g0a;k; cos(60; —5¢p,—6;), i-wave

HY] = aaqkj X , (A.8)

and
0.0 0, others
Hi =4 1 6 ~ ’ (A.10)
gz0a;k, cos(60; —6¢,), i-wave
with
0, p-wave
%cos(29j—2¢A), d-wave
3
skcos(36;, —2¢p,—6), -wave
R A fawave:
2 [k2 cos (40, —4¢,) + 8k*cos (40, —2¢,—26,)], g-wave
= [k} cos(66; —6¢4) + 24k cos (60, —2¢, — 46;)
\ + 18k3k? cos (66; —4¢A—29k)], i-wave
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[ 5cos(6;—da), p-wave

kcos(20; —pa—6i), d-wave

= 4 g[kﬁcos(BOJ—3¢A)+4k2 cos(39J—¢A—29k):|, f-wave
1 >

3k [4Kk? cos (40, — pn—36:) + 3k2 cos (40, —3pa— 61) ], g-wave
3k [8k* cos (66 — s — 56)) + 20k2k? cos (60, — 3¢ — 36;)

L + Ski cos(660; —5¢,— Gk)], i-wave
and
(0, p-wave
%, cos(26; —2¢,), d-wave
3
2kcos(30;, —2¢,—6,), -wa
mi={ 3 c0s (30, ~ 264~ 04 f-viave (A.12)

% [kf\ cos (40, —4¢4) + 6k cos (40, —2¢p4 — 29k)] , g-wave
2[k2 cos (60, —6¢,) + 16k? cos (60, — 2, — 46;)
+ k§(681—4qu—29k):|, i-wave

Among all Floquet components in the LPL-driven case, particular attention is drawn to the
zero-photon sector in Eq. (A.4), which contains an effective magnetic contribution encoded in
mg [see Eq. (A.11)]. This term reveals that light-induced corrections to the static Hamiltonian
can emulate effective unconventional magnetic fields of different symmetry classes, depending
on the underlying magnet and the polarization direction ¢,. For example, in an LPL-driven
i-wave magnet, the zero-photon contribution includes effective magnetic terms such as a g-
wave-like component k* cos(60,—2¢,—46,), an f -wave-like component k2 cos(68,—4¢p,—26;),
and an s-wave-like term kj cos(60; —6¢,). The relative strengths of these components can
be selectively tuned by adjusting the light intensity k, and the linear polarization angle ¢,,
thereby enabling the emulation of lower-order unconventional magnets from higher-order
ones. This mechanism offers a route for engineering effective magnetism with tailored spa-
tial symmetries via Floquet driving, even in the absence of those magnetic orders in the static
system [75].

B Effect of the strength of d-wave magnet a,

The results obtained in the driven normal state for the spin density in Sec. 4 and in the su-
perconducting state for the Cooper pair amplitude in Sec. 5 are based on a d-wave magnet
with a; < B, which is referred to as a weak d-wave magnet [37,75]. Such a system hosts
two upward-opening parabolas with spin- and direction-dependent curvature in the disper-
sion, resulting in two closed spin-dependent elliptical Fermi surfaces with orthogonal prin-
cipal axes [37]. Our numerical results confirm that all results discussed above remain valid
for the strong d-wave magnet with ay; > B, where the dispersion features a saddle point at
(kx, ky) = (0, 0) and spin-dependent bands that open in opposite directions.

In the driven strong d-wave magnet with arbitrary 8;, our numerical results confirm that
the main findings persist, including the presence of multiple spin-degenerate nodes in the
Floquet spin density, the structure of the Floquet BAG spectrum, the symmetry classification of
the Cooper pair amplitude, the contributions from various photon processes, and the effects
of linearly polarized light. This indicates that our results are universal for d-wave magnets of
arbitrary strength.

In summary, both weak and strong d-wave magnets exhibit the same rich Floquet-engineered
phenomena, underscoring the generality and robustness of the symmetry-based classification
and light-induced effects presented in this work.
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