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Abstract

Ultra-fast, precise, and controlled amplitude surrogates are essential for future LHC
event generation. First, we investigate the noise reduction and biases of network en-
sembles and outline a new method to learn well-calibrated systematic uncertainties for
them. We also establish evidential regression as a sampling-free method for uncertainty
quantification. In a second part, we tackle localized disturbances for amplitude regres-
sion and demonstrate that learned uncertainties from Bayesian networks, ensembles,
and evidential regression all identify numerical noise or gaps in the training data.
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1 Introduction

Understanding the fundamental forces and particles that shape our universe demands in-
creasingly precise theoretical predictions and experimental measurements. All across parti-
cle physics, even minor discrepancies between theory and data can hint at physics beyond
the Standard Model. The LHC experiments are already producing vast amounts of extremely
complex data, and this volume is expected to increase significantly with the upcoming High-
Luminosity LHC (HL-LHC). Correspondingly, precise and reliable first-principle simulations
are becoming a central challenge for particle theory.

Modern machine learning (ML) has emerged as a transformative tool for addressing this
challenge [1,2]. From accelerating phase-space sampling [3–12] to evaluating complex scat-
tering amplitudes [13–25], generating full events [26–30], or simulating detectors with un-
precedented speed [31–54], ML plays a crucial role in every aspect of a sophisticated simula-
tion chain.

Many critical ML improvements include surrogate and generative models capable of learn-
ing and reproducing the complex structures found in collider data [55–57]. For high-precision
tasks such as amplitude regression, it is essential that these models not only predict the mean
with high accuracy but also provide a calibrated local uncertainty estimate. Even when un-
certainties are not directly propagated into experimental analyses, they are vital to justify the
replacement of traditional calculations with ML surrogates. In a complementary approach [58–
60], potential biases or inaccuracies of the surrogate can be avoided at the price of a secondary
reweighting.

A range of methods exists to learn uncertainties of ML predictions, including Bayesian
neural networks (BNNs) [61–63], repulsive ensembles (REs) [64–66], and more recently, ev-
idential deep learning [67–70]. Each method has its strengths and weaknesses in terms of
computational efficiency, interpretability, and calibration quality. Previously [23], we demon-
strated that neural surrogates can reproduce loop-induced scattering amplitudes with per-mille
level precision, while also learning calibrated uncertainties. However, we found that repulsive
ensembles, which are promising for capturing network uncertainty, did not adequately cali-
brate uncertainties in particular regions of phase space.

In this study, we aim to clarify whether repulsive ensembles can serve as reliable poste-
rior estimators for amplitude regression. We examine how the repulsive kernel affects un-
certainty calibration and propose improvements to mitigate biases as well as to obtain well-
calibrated uncertainties. Beyond ensembles, we study evidential regression (ER) as an al-
ternative method that avoids sampling over neural weights and instead places priors on the
hyperparameters of the predictive likelihood. This offers an efficient way to disentangle sys-
tematic and statistical uncertainties, eliminating the need for large ensemble sizes. Moreover,
we explore challenging scenarios involving threshold smearing and gaps in the training data
— effects that mimic the numerical instabilities or incomplete coverage often encountered in
amplitude calculations near physical thresholds. We compare different ways to learn uncer-
tainties for clean and for smeared datasets, to assess how well these methods can capture and
calibrate uncertainties under realistic conditions.

This paper is organized as follows: In Sec. 2, we summarize the methods for repulsive
ensembles and evidential regression and introduce standard observables to quantify the cali-
bration of the estimated uncertainty. In Secs. 3 and 4, we present detailed studies of repulsive
ensembles and evidential regression, respectively. Results for various localized learning chal-
lenges, including smearing and gap scenarios, are presented in Secs. 5.
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2 Probabilistic amplitude regression

We approach amplitude regression from a probabilistic perspective, allowing us to predict the
amplitude A(x) and its variance σ2(x). We describe the amplitude prediction for a given
phase-space point x as a distribution p(A|x), which implicitly depends on the training data
Dtrain = {Atrain, xtrain}. It reflects data and network uncertainties and is induced by a posterior
p(θ |Dtrain) over the neural network weights,

p(A|x) =
∫

dθ p(θ |Dtrain) p(A|x ,θ )≈
∫

dθ q(θ ) p(A|x ,θ ) , (1)

where p(A|x ,θ ) is the likelihood of observing amplitude A at input x , given specific network
parameters θ . In the last step, we replace the true but usually intractable posterior with an ap-
proximate distribution q(θ ), obtained either via variational inference or network ensembling.
For notational simplicity, we omit the explicit conditioning on Dtrain and simply write p(A|x),
q(θ ), etc., with the dependence on training data understood implicitly.

Given p(A|x), we compute both the mean amplitude prediction and the associated uncer-
tainty as

ANN(x) =

∫
dA A p(A|x)

=

∫
dθ q(θ ) A(x ,θ ) with A(x ,θ ) =

∫
dA A p(A|x ,θ ) ,

σ2
tot(x) =

∫
dA [A− ANN]

2 p(A|x)

=

∫
dθ q(θ )

�
σ2(x ,θ ) +

�
A(x ,θ )− ANN(x)

�2�

≡ σ2
syst(x) +σ

2
stat(x) with σ2(x ,θ ) =

∫
dA
�
A− A(x ,θ )

�2
p(A|x ,θ ) . (2)

In the last line, we split the total uncertainty into a systematic and a statistical part [2]. They
are defined as

σ2
syst(x) =

∫
dθ q(θ ) σ2(x ,θ ) ,

σ2
stat(x) =

∫
dθ q(θ )

�
A(x ,θ )− ANN(x)

�2
. (3)

What we denote as systematic uncertainty here is systematic in effect, but typically arises
from stochasticity in the data. This component is irreducible and persists even with infinite
data. However, the same systematic uncertainty may also absorb residual model mismatch, for
example, due to limited network expressivity [23]. This contribution is, in principle, reducible
and may decrease with improved network capacity or more suitable architectural choices.
Different sources of systematic uncertainties cannot be separated from the structure of the
learned systematics.

In contrast, what we denote as statistical uncertainty has a statistical origin. It may orig-
inate from either network-related causes, like too few training samples, or network-related
limitations, like poor prior choices or underfitting. This component is reducible and vanishes
in the limit of infinite data and optimal training. Importantly, the statistical uncertainty is also
model-dependent, in the same way as the parameter-induced uncertainty in classical curve
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fitting. For example, fitting a straight line to two data points yields a vanishing statistical
uncertainty, whereas fitting a parabola results in an infinite uncertainty. This example illus-
trates that statistical uncertainty is not only data-driven but also strongly affected by the un-
derlying model choice. More generally, our physics-inspired definition of uncertainties mixes
data-related (aleatoric) and network-related (epistemic) components, and is mathematically
defined by Eq.(3).

Our probabilistic model cannot capture systematic biases present within the data itself,
such as a constant shift applied to all training examples. They remain undetectable without
additional assumptions, external calibration, or domain knowledge. This form of uncertainty
is often referred to as dataset bias or systematic data error in the literature.

To train the model and infer a predictive distribution that captures these uncertainty com-
ponents, we need to specify a likelihood p(A|x ,θ ) and an optimization procedure for the pa-
rameters θ . In the simplest case, we treat θ as fixed and minimize the negative log-likelihood
over the training set

L= −
¬

log p(A|x ,θ )
¶

x∼Dtrain
. (4)

The exact form of this training objective depends on the form of the likelihood p(A|x ,θ ).

2.1 Uncertainty estimation

To track a systematic uncertainty, our network has to predict not only a mean amplitude but
also an input-dependent uncertainty that captures the intrinsic variability of the data. The
simplest ansatz is a Gaussian likelihood with input-dependent mean and variance,

p(A|x ,θ ) =N (A|A(x ,θ ),σ2(x ,θ )) , (5)

Both, A(x ,θ ) and σ2(x ,θ ) are network outputs. This allows the network to extract systematic
uncertainty directly from the data. The variance σ2(x ,θ ) can, for example, reflect irreducible
noise at each input point x and corresponds to the systematic component σ2

syst(x) in Eq.(2).
As part of Eq.(4) this likelihood defines the heteroscedastic loss

Lhet =

�
(Atrain(x)− A(x ,θ ))2

2σ2(x ,θ )
+ logσ(x ,θ )

�

x∼Dtrain

. (6)

Although typical amplitude regression assumes noise-free labels, i.e. Atrain(x) = Atrue(x), the
heteroscedastic loss still allows us to capture the uncertainty, for instance, from limited net-
work expressivity. Moreover, it can stabilize the training and lead to better accuracy and gen-
eralization compared to an MSE loss, as discussed below.

Statistical uncertainties

To fully capture the total uncertainty in Eq.(2), we must also account for the statistical uncer-
tainty. It arises from our limited knowledge of the optimal network parameters due to finite
training datasets or imperfect training. To model it, we return to p(A|x) defined in Eq.(1).
The integration over the network parameters uses an approximate form of q(θ ). It allows us
to estimate σstat(x) by sampling over network configurations.

Several methods have been proposed to approximate the weight posterior p(θ |Dtrain) via
a tractable distribution q(θ ). These include Bayesian neural networks (BNNs) [61–63, 65],
which learn a posterior over weights using variational inference, and repulsive ensembles [64–
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66], which approximate q(θ ) through network replicas. Evidential regression [67,68] follows
a different paradigm by predicting a distribution over possible outputs rather than sampling
weights directly. It aims to capture both systematic and statistical uncertainties in a single
forward pass.

In the present work, we concentrate on repulsive ensembles and evidential regression,
which will be discussed in detail in Sections 3 and 4, respectively. For completeness, we also
include BNNs as a benchmark in our studies of smeared data, but we do not revisit their
methodology here, as BNNs have already been extensively studied in the context of amplitude
regression in Refs. [18,23].

Accuracy, calibration, and pulls

We measure the accuracy of the network prediction using the local relative accuracy

∆(x) =
ANN(x)− Atrue(x)

Atrue(x)
. (7)

To assess the calibration of the predicted uncertainty, we define the pull

t(x) =
ANN(x)− Atrain(x)

σtot(x)
, (8)

where σtot(x) captures the total predictive uncertainty at each phase-space point x . For a
calibrated network the pull follows a unit Gaussian N (0,1) In the limit σstat ≪ σsyst the pull
simplifies to

tsyst(x) =
ANN(x)− Atrain(x)

σsyst(x)
, (9)

referred to as the systematic pull. To evaluate the calibration of the statistical uncertainty
alone, we compare the network prediction to the noise-free truth

tstat(x) =
ANN(x)− Atrue(x)

σstat(x)
. (10)

Here, Atrain(x) denotes the target values used during training, which may include numerical
or stochastic noise (e.g. from Monte-Carlo integration), while Atrue(x) refers to the underly-
ing noise-free deterministic amplitude. In the absence of training noise, the two coincide,
Atrain(x) = Atrue(x). Hence, the systematic pull probes deviations with respect to the noisy
training targets, whereas the statistical pull isolates fluctuations around the underlying truth.
Assuming the network prediction has no systematic biases due to a lack in expressivity, this
statistical pull of a calibrated network should also follow a unit Gaussian. Note that evaluat-
ing this quantity requires knowledge of Atrue(x), which is only accessible for simulated data. A
more detailed discussion of pull-based calibration can be found in Appendix D.3 of Ref. [65].

2.2 Extended likelihood parametrizations

So far, our discussion has been restricted to the standard heteroscedastic Gaussian likelihood
of Eq.(6). While this formulation is well motivated from statistical principles, it might lead to
unexpected behavior during training and is limited to unimodal distributions. To address these
shortcomings, several modifications have been proposed in the literature. In the following, we
discuss two such extensions. First, we consider the so-called natural parametrization of the
Gaussian likelihood that has been suggested as a remedy for unstable optimization. Second, we
outline how mixtures of Gaussians can be used to move beyond the single-Gaussian assumption
and allow for multi-modal predictions.
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Natural parametrization

It has been pointed out in the literature [71–74] that a heteroscedastic loss can behave un-
expectedly during numerical optimization even though it is directly derived from statistical
principles. This can be understood, if we remember how the heteroscedastic loss from Eq.(6)
is parametrized in terms of the mean and variance

Lhet ≡ LA,σ2

het =

�
(Atrain(x)− A(x ,θ ))2

2σ2(x ,θ )
+ logσ(x ,θ )

�

x∼Dtrain

. (11)

Then, the gradients of the loss with respect to the mean and variance are

∇AL
A,σ2

het =

�
A(x ,θ )− Atrain(x)

σ2(x ,θ )

�

x∼Dtrain

∇σ2LA,σ2

het =

�
σ2(x ,θ )− (Atrain(x)− A(x ,θ ))2

2σ4(x ,θ )

�

x∼Dtrain

, (12)

where the scaling with σ−2 in both gradients quickens learning for low-variance points and
can thus be biased in regions where the mean predictions are poor. Here, a network may use
high variance to explain poor mean estimates instead of improving them. This can create a
‘rich-get-richer’ dynamic, where points with lower predictive variance continuously provide
the largest learning signal.

Among other solutions proposed in Refs. [72,73], the most elegant solution is based on a
simple reparametrization of the loss function. In Ref. [74], they propose to parametrize the
heteroscedastic loss in terms of natural parameters

η1(x ,θ ) =
A(x ,θ )
σ2(x ,θ )

and η2(x ,θ ) = − 1
2σ2(x ,θ )

≤ 0 , (13)

which can be understood as the signal-to-variance ratio and the negative precision (inverse
variance). With these parameters, the heteroscedastic loss can then be written as

Lnatural
het ≡ Lη1,η2

het =

�
−η2(x ,θ )

�
Atrain(x) +

η1(x ,θ )
2η2(x ,θ )

�2

− 1
2

log (−2η2(x ,θ ))

�

x∼Dtrain

. (14)

Taking the gradients of this loss with respect to ηi and then relating it to A and σ2, we obtain

∇η1
Lη1,η2

het =
­
− η1(x ,θ )

2η2(x ,θ )
− Atrain(x)

·

x∼Dtrain

=


A(x ,θ )− Atrain(x)

�
x∼Dtrain

∇η2
Lη1,η2

het =

�
η1(x ,θ )2

4η2(x ,θ )2
− 1

2η2(x ,θ )
− A2

train(x)

�

x∼Dtrain

=


σ2(x ,θ )− (A2

train(x)− A(x ,θ )2)
�

x∼Dtrain
. (15)

This reformulation is desirable because the gradients decouple the residuals for mean and
variance. The mean is now updated by the prediction error, while the variance is updated by
the mismatch between predicted and empirical second moments. In contrast to the standard
parametrization, this avoids disproportionate weighting of low-variance points and leads to
more balanced learning dynamics.
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Figure 1: Comparison of MSE, heteroscedastic, and natural-heteroscedastic losses.

We tested whether the natural parametrization also improves optimization in practice. To
this end, we trained our surrogates on the amplitude dataset introduced in Sec. 2.3 and com-
pared the performance of three objectives: standard MSE, the conventional heteroscedastic
loss, and the natural heteroscedastic loss, as shown in Fig. 1.

The most striking difference appears in the variance predictions (right panel). The natural
parametrization leads to a much narrower distribution. This behavior is consistent with the
fact that η2 = −1/(2σ2) enforces a direct optimization of the precision, which tends to sta-
bilize training by concentrating predictions around a typical variance value. In contrast, the
conventional parametrization allows a broader spread of variance estimates.

Turning to accuracy (left panel), the conventional heteroscedastic loss performs best, fol-
lowed by MSE, while the natural parametrization gives the worst results in the zero-noise
case. This shows that heteroscedastic training is in principle helpful — since the conventional
heteroscedastic loss outperforms MSE — but that the additional stabilization of the natural
parametrization can come at the cost of reduced accuracy when no noise is present.

This outcome is not surprising. In the absence of noise, all residual variance originates
from model uncertainty. In the natural parametrization, this model uncertainty is implicitly
distributed between both natural parameters (η1,η2), making optimization more convoluted
than in the conventional parametrization, where mean and variance are disentangled more
directly.

We further validated this behavior on a dataset with homogeneous noise (5% everywhere,
not shown). In this case, both heteroscedastic variants perform similarly, while MSE remains
inferior. These results suggest that the natural parametrization may only become advanta-
geous in settings with heterogeneous noise across the training set, where its stricter control of
variance could help balance the learning of mean and variance more effectively.

Gaussian mixture model

A limitation of the simple Gaussian likelihood in Eq.(5) is that it cannot capture multi-modality,
heavy tails, or other non-Gaussian structures. A more expressive choice is therefore a Gaussian
mixture model (GMM) with K modes, where the likelihood is modeled as

pGMM(A|x ,θ ) =
K∑

k=1

ωk(x ,θ )N
�
A
��Ak(x ,θ ), σ2

k(x ,θ )
�

, with
K∑

k=1

ωk(x ,θ ) = 1 . (16)
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Here, the network has 3K outputs corresponding to the mixture means Ak(x ,θ ), the variances
σ2

k(x ,θ ), and the mixture weightsωk(x ,θ ). The weights are typically parameterized through
a softmax layer to guaranteeωk ≥ 0 and proper normalization. The mean and variance of the
GMM are then obtained from the mixture distribution as

AGMM(x ,θ ) =
K∑

k=1

ωk(x ,θ ) Ak(x ,θ ) ,

σ2
GMM(x ,θ ) =

K∑
k=1

ωk(x ,θ )
�
σ2

k(x ,θ ) + A
2
k(x ,θ )

�
− �AGMM(x ,θ ))

�2
. (17)

In addition to the mixture mean and variance, one may also consider the maximum a posteriori
(MAP) estimate, defined as

AMAP
GMM(x ,θ ) = argmax

A
pGMM(A|x ,θ ) , (18)

which corresponds to the largest mode of the predictive distribution. The MAP estimate can
be more representative in cases where the mixture distribution is multi-modal and the mean
lies in a region of low likelihood between distinct modes. In general, the MAP for a Gaussian
mixture has no closed analytic form and must be obtained numerically, for example through
grid evaluation or local optimization of pGMM(A|x ,θ ). As part of Eq.(4), the Gaussian mixture
model defines the negative log-likelihood loss

LGMM = −
*

log




K∑
k=1

ωk(x ,θ )q
2πσ2

k(x ,θ )
exp

�
−(Atrain(x)− Ak(x ,θ ))2

2σ2
k(x ,θ )

�

+

x∼Dtrain

. (19)

In the special case K = 1, this expression reduces to the heteroscedastic loss in Eq.(6).

2.3 Dataset and network architecture

As in Ref. [23], we learn the loop-induced squared amplitude for the partonic process [15,18]

g g → γγg , (20)

as our benchmark. The dataset contains 1.1M unweighted events and is generated with
SHERPA [75] and the NJET library [76]. The detector acceptance and object definition is mim-
icked by a set of basis cuts,

pT, j > 20 GeV |η j|< 5 R jγ,γγ > 0.4

pT,γ > 40,30 GeV |ηγ|< 2.37 . (21)

If not mentioned otherwise, we use 70% of the dataset for training. 10% of the dataset are used
for validation and selecting the best network; 20%, for testing. By default, we train for 1000
epochs. Figure 2 shows a histogram of the absolute magnitudes of the squared amplitudes in
our dataset, illustrating the dynamic range of the regression task, spanning approximately five
orders of magnitude.

In our previous study [23], we investigated various network architectures, including a
simple multi-layer perceptron (MLP), a deep sets [77] inspired architecture, as well as a fully
Lorentz and permutation-equivariant network architecture [20–22,78]. While increasing net-
work complexity allows for more accurate amplitude predictions, it usually also increases the
required training and evaluation time. In the same study, we have seen that a GELU activation
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Figure 2: Distribution of the squared amplitudes A in the dataset used for training
and evaluation.

function gives the best results. Since the focus of this work is on the proper description of un-
certainties, we stick to a simple MLP with carefully chosen input features and a GELU activation
function. This is GPU efficient and provides sufficiently high accuracy. All hyperparameters
are summarized in App. B.

As network input, we use the 4-vectors of the involved particles. We complement them
with all possible (logarithmic) Mandelstam invariants

zi j = log pi p j . (22)

We also apply a logarithmic transformation to the squared amplitudes to better capture the
large variations across different phase-space points. All inputs and transformed targets are
then standardized to mean zero and unit variance. The inverse transformation, including
error propagation, is described in App. A.
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3 (Repulsive) Ensembles

Repulsive ensembles approximate the posterior p(θ |Dtrain) by training an ensemble of neural
networks, where the distribution of ensemble members encodes the statistical uncertainty. To
avoid a collapse of members to the same loss minimum, a repulsive term encourages parameter
diversity around the loss minimum. For a training dataset of size N , evaluated in batches B,
and Nens ensemble members, the loss is

LRE =
Nens∑
i=1


−1

B

B∑
b=1

log p(A|xb,θi) +
β

N

∑Nens
j=1 K(A(x ,θi), Â(x ,θ j))∑Nens
j=1 K(Â(x ,θi), Â(x ,θ j))

+
|θ⃗i|2

2Nσ2
prior


 . (23)

Here, K is a kernel function, typically a radial basis function (RBF) that measures the similarity
between predictions of ensemble members. The hat symbol denotes a stop-gradient operation,
which prevents backpropagation through the comparison targets. The coefficient β controls
the strength of the repulsive interaction; we use β = 1 unless stated otherwise. The final term
acts as a weight decay, corresponding to a Gaussian prior with standard deviation σprior on the
network weights; we use σprior = 1. For a detailed derivation of this loss and its connection to
Bayesian inference, we refer to Refs. [2,23].

3.1 Impact of the repulsive kernel

For a jointly trained ensemble, we would like to know what the influence of the repulsive
prefactor β , defined in Eq.(23), on the training and uncertainty estimate is. Therefore, we
vary the repulsive prefactor β and simultaneously the number of training points Ntrain

β = {10−5, 0.01,0, 1,10} , Ntrain = {1.2%, 3.4%,10.3%, 30.5%,80%} × 1.1 · 106 , (24)

where the quoted values of Ntrain arise from choosing uniformly spaced points in log space,
while keeping the size of the test and validation data set fixed. Figure 3 shows the results
for these different sets of β and Ntrain. In the upper panel of plots, we observe a spread in
the relative size of σsyst/A for smaller training data sets. This spread vanishes for Ntrain larger
than 105 points, or 10% of the full dataset. For the relative statistical uncertainty σstat/A, this
spread is slightly smaller for smaller training data sets, but vanishes again once we use more
than 10% of the data for training purposes. The lower panel displays the mean accuracy 〈∆〉
of the ensemble prediction and the mean value for the systematic pull, 〈tsyst〉. For smaller
training data sets, using less than 30% of the complete data set for training, we observe larger
error bands for 〈∆〉. However, the results still agree with zero. These error bands are obtained
by training the ensemble set up multiple times. These larger error bands for smaller Ntrain can
lead to a potential bias in the ensemble predictions towards non-zero values. It can also be
observed that the choice of β has only a small impact on the bias of 〈∆〉, since a spread is
observed for every choice of β . Overall, when taking the results for every Ntrain into account,
the spread of the error bands is the most negligible for β = 0. The behavior of the ensemble
towards a bias in its prediction will be discussed further in Sec. 3.2. The mean pull 〈tsyst〉 also
fluctuates for smaller Ntrain for all choices of β , but again stabilizes for larger Ntrain.

These observations suggest that the impact of the repulsive kernel is only visible for small
training data sets. If the size of the training set surpasses 10% of the overall data set, the impact
of β becomes negligible. For the relative uncertainties σsyst/A and σstat/A, the effect vanishes
completely, while for 〈∆〉 it is getting smaller and completely disappears when including more
than 30% of the data for training. The spread observed for smaller amounts of data used for
training purposes is related to the training dynamics of the system rather than the spread of
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Figure 3: Relative uncertainty versus training dataset size for different kernel pref-
actors β . The plots show the relative systematic and statistical uncertainty, the mean
accuracy 〈∆〉, and the mean systematic pull 〈tsyst〉. The error bars are calculated
based on five independent runs.

ensemble members. This spread of ensemble members is linked to β as a repulsive prefactor in
the loss function. However, this diversity in the spread of ensemble members is only connected
to the relative size of the uncertainty estimation and not its spread. The spread of uncertainties
and predictions is mainly influenced by the number of data points used for training. Including
fewer points leads towards a more sensitive prediction based on the samples drawn, which
can be described in analogy to artificial noise. With this, the prediction gets noisier and the
relative uncertainty shows a larger spread compared to larger training data sets, where the
training distribution converges more towards the actual data distribution.

3.2 Bias as the limitation of ensembling

Ensembles are often used to achieve accurate network predictions when individual network
training lacks accuracy or stability. The implicit assumption is that a local ensemble mean
provides an improved prediction, independent of the ensemble variance. As long as we are
dominated by the training statistics, this is justified. For systematics, we need to ensure that
there is no bias in the ensemble.

In the previous section, we observed a slight bias in the repulsive ensemble for small train-
ing datasets, independent of the repulsive kernel. The same bias can be observed for indi-
vidually trained deterministic networks using a simple MLP architecture, confirming that the
repulsive kernel is not related to the potential bias.
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Figure 4: ∆ distribution for a repulsive ensemble trained for 100 epochs with one
hidden layer of dimension 32. The gray lines represent the individual ensemble mem-
bers, while the red curve displays the mean over all members.

To test this effect in more detail, we employ different setups, varying the training length
and the network depth in terms of the number of layers and dimensionality. The number of
training points is fixed to the relative large number Ntrain = 777102, or roughly 70% of the full
set. Tab. 1 shows the percentage of phase space points with a negative or a positive bias, as
well as the sum over the bias for both sides. An ideal network would return∆= 0 everywhere.
For ∆ < 0 the network underestimates ANN relative to Atrue, for ∆ > 0 it overestimates it. A
calibrated network should give equal numbers of points with negative and positive shifts, and
the overall sum should lead to 0.

As the best-performing setup in Tab. 1, an ensemble with three layers and 128 dimensions,
trained for 1000 epochs, shows almost no bias. If we reduce the number of layers to one and
the dimensionality to 32, but keep the number of training epochs fixed, we observe a bias
towards more positive ∆. There, the network overestimates the amplitudes. Also, reducing
the training time from 1000 epochs by a factor of 10 to 100 epochs has no significant impact
on the bias. Additionally, considering all ensemble members and averaging them versus only
taking single members into account does not influence the bias. This highlights the negligible
impact of the ensemble compared to a single deterministic network in terms of the bias.

Figure 4 shows the distribution of the relative precision ∆ (left) and its absolute value |∆|
(right) for the smallest training setup, using a single hidden layer with 32 units trained for
100 epochs. In the left panel, the dashed vertical line marks the unbiased optimum at ∆= 0.
The peak of the distribution is shifted towards positive values, indicating that the network
systematically overestimates the amplitude. This bias appears both in the individual ensemble
members (gray curves) and in their mean (red curve). In contrast, the right panel shows that

ensemble configuration mean neg. ∆ sum neg. ∆ pos. ∆ sum pos. ∆

1 hl, 32 dim, 1000 epochs all 45.40% -9235.19 54.60% 32455.27
1 hl, 32 dim, 100 epochs all 44.48% -11565.01 55.52% 32080.50
1 hl, 32 dim, 100 epochs single 44.48% -11565.01 55.52% 32080.50
3 hl, 128 dim, 1000 epochs all 49.85% -221.02 50.15% 219.62

Table 1: Relative accuracy ∆ for every predicted amplitude, separated into positive
and negative contributions varying the expressivity of the network. ‘all’ indicates the
mean over all ensemble members, ‘single’ only for a single member.
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Figure 5: Mean value for ∆ calculated bin-wise for the true amplitudes Atrue. Left:
Comparing a full ensemble with its single member contribution. Right: Showing
different network sizes and configurations in training length.

the absolute relative precision |∆| is essentially the same for both individual members and the
mean prediction. We conclude that while the network exhibits a small positive bias, it still
maintains its predictive precision.

To further investigate the origin of the bias, we analyze how it depends on the size of the
true amplitude Atrue. For this purpose, we bin the amplitude space and compute the mean
relative precision 〈∆〉 in each bin, as shown in Fig. 5. The left panel shows the results for
the small ensemble setup already used in Fig. 4. Both the individual ensemble members (gray
curves) and the mean prediction (red curve) exhibit the same behavior: very small amplitudes
are slightly underestimated, intermediate amplitudes up to Atrue ∼ 10−6 are mildly overesti-
mated, and large amplitudes are strongly overestimated, with a bias reaching 〈∆〉≲ 100. The
right panel compares different network configurations. Increasing the training time from 100
to 1000 epochs does not affect the bias, indicating that it is not due to insufficient training.
In contrast, enlarging the network capacity (three hidden layers with 128 units) substantially
reduces the bias at large amplitudes by up to two orders of magnitude. This demonstrates that
the bias is primarily a consequence of limited model expressivity. The effect is most pronounced
at large amplitudes, where the training data become sparse (see Fig. 2); in this regime, a small
residual bias persists even for larger networks.

Overall, small network setups yield biased deterministic predictions. This bias cannot be
removed by using an ensemble: as shown in Fig. 4, it is present in each individual ensemble
member and does not cancel when averaging over them. Moreover, extending the training
time does not mitigate the effect. Only increasing the network expressivity reduces the bias
significantly. Importantly, this behavior is not an artifact of fitting in log-amplitude space and
transforming back: given the extremely small typical relative deviations (〈|∆|〉 ∼ 10−5), the
exponential mapping is effectively linear in the relevant regime. We have explicitly verified
that the same bias persists when analyzing the predictions directly in log space, confirming that
its origin lies in limited model expressivity rather than in the post-processing transformation.

3.3 Systematics from repulsive ensembles

The occurrence of biases has an immediate effect on the calibration of the systematic uncer-
tainty of an ensemble.

The naive heteroscedastic loss for Nens repulsive ensemble members trained on batches
with B was given by Eq.(23), where A(x ,θi) andσ(x ,θi) are the two outputs for each ensemble
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member. The combined predictions from the ensemble are

ANN(x) =
1

Nens

Nens∑
i=1

A(x ,θi) σ2
syst(x) =

1
Nens

Nens∑
i=1

σ2(x ,θi) . (25)

This implementation leads to the miscalibration of the systematic uncertainty if the dominant
source of systematic uncertainties is not the noise of the data. To understand this, we consider
our training data to be generated as

Atrain(x)∼N (Atrue,σ2
train) , (26)

whereσtrain encodes the noise of the data. In a simple NN learning process, we further assume
that the mean prediction of each ensemble member does not perfectly reproduce the under-
lying truth. It deviates by a fixed bias term σbias due to limited expressivity of the network,
and fluctuates around it with an additional Gaussian uncertainty σstat arising from imperfect
training:

A(x ,θi)∼N (Atrue +σbias,σ
2
stat) . (27)

The residuals entering the heteroscedastic loss are then given by the difference between the
noisy training data and the imperfect network prediction,

Atrain(x)− A(x ,θi)∼N (σbias,σ
2
train +σ

2
stat) . (28)

Consequently, the predicted variance converges towards

σ2(x ,θi)≃ σ2
bias +σ

2
train +σ

2
stat , (29)

showing explicitly that the heteroscedastic output absorbs both the data noise and the network-
induced residual uncertainty. Here, we implicitly assume that the bias contribution can be rep-
resented as a Gaussian random effect since the heteroscedastic loss relies on a Gaussian like-
lihood. However, in practice, the loss absorbs all residual variance into σ2(x ,θi), regardless
of its true underlying structure. Hence, if the bias exhibits non-Gaussian features — e.g. fixed
offsets, skewness, or multi-modality — the Gaussian likelihood cannot properly capture these
effects, and the resulting pulls become miscalibrated. Now, we can consider two limiting cases:

1. σ2
train≫ σ2

stat +σ
2
bias: The residuals between the training data and the NN predictions are

dominated by the noise in the training labels,

Atrain(x)− A(x ,θi)∼N (0,σ2
train) . (30)

In this regime, the network still learns the underlying truth Atrue(x), but the residuals with
respect to the noisy labels are driven by σ2

train. Because this data-noise contribution is
shared across all members, ensemble averaging does not reduce it, i.e.

Atrain(x)− ANN(x)∼N (0,σ2
train) . (31)

Moreover, each σ(x ,θi) predicted by the heteroscedastic loss converges to σtrain. Conse-
quently, the averaged ensemble output for σsyst from Eq.(25) correctly approaches σtrain,
and the systematic uncertainty is well calibrated, as shown numerically in Ref. [23].

2. σ2
train ≪ σ2

stat +σ
2
bias: In this regime, the residuals are dominated by model-induced un-

certainties,

Atrain(x)− A(x ,θi)∼N (σbias,σ
2
stat) . (32)
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In an ideal scenario, the statistical part would be captured entirely by the spread of ensem-
ble predictions, as defined in Eq.(3). In practice, however, the heteroscedastic loss tends
to also absorb some fraction of the statistical uncertainty and the variance predictions are
given by

σ2(x ,θi) ≈ σ2
bias + εhetσ

2
stat with 0≤ εhet < 1 . (33)

If the ensemble members behave approximately as independent Gaussian estimators, the
residual of the ensemble mean is distributed as

Atrain(x)− ANN(x)∼N (σbias,σ
2
mean) with σ2

mean =
εhetσ

2
stat

Nens
. (34)

In contrast, the averaged ensemble output from Eq.(25) remains atσ2
syst = σ

2
bias+εhetσ

2
stat,

which does not follow the correct scaling with Nens. This mismatch leads to a miscalibration
of the systematic uncertainty for Nens > 1, in agreement with Ref. [23].

As an alternative to a simple average, one may combine the outputs of the ensemble members
with inverse-variance weighting,

ANN(x) = σ
2
syst(x)

Nens∑
i=1

A(x ,θi)
σ2(x ,θi)

with σ2
syst(x) =

�Nens∑
i=1

1
σ2(x ,θi)

�−1

. (35)

In principle, this approach incorporates the expected 1/
p

Nens scaling of the statistical com-
ponent. However, as discussed in Sec. 3.2 the ensemble members are not unbiased estima-
tors of Atrue(x) for the g g → γγg process. Consequently, even with weighted averaging, the
systematic uncertainties remain miscalibrated in either the network-error–dominated or the
data-noise–dominated regime.

Globally learned systematic uncertainty

A possible solution is to first train the ensemble with the original loss of Eq.(23). Then, in a sec-
ond step, we train an additional NN with parameters φ to directly predict a global systematic
uncertainty σ2

syst(x ,φ) within the loss

Lσ =
1
B

B∑
b=1

�
|Atrain(xb)− ANN(xb)|2

2σ2
syst(xb,φ)

+ logσsyst(xb,φ)

�
, (36)

where ANN is the averaged output of the ensemble trained in the first step, as defined in
Eq.(35). The statistical uncertainty is still determined from the variance of the ensemble mem-
bers trained in the first step. In practice, we can also combine the normal repulsive ensemble
loss and the Lσ into one loss

L= LRE +λσLσ , (37)

where we typically choose λσ = Nens to balance both loss terms. We find that the simultaneous
training of the repulsive ensemble and the systematic uncertainty for the ensemble mean is
useful to prevent mode collapse in the training of σ2

syst(x ,φ).

The accuracy for the γγg amplitude regression is shown in the left panel of Fig. 6 for the
zero noise case. Here, each member is a simple MLP with invariants and four vectors as input.
With an increasing number of ensemble members, the accuracy of the ensemble improves.
As expected, using the separately trained σsyst does not affect the accuracy of the ensemble.
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Figure 6: Relative accuracy |∆| comparing the overall σsyst for different ensemble
sizes Nens (solid lines) with the averaged σsyst for Nens = 128 (blue dashed). The
two Nens = 128 results coincide within plotting resolution, causing the dashed curve
to be hidden behind the solid red one. Right: Mean relative accuracy as a function
of the number of ensemble members. The error bars indicate the standard deviation
computed over five different runs.

Moreover, the right panel of Fig. 6 shows the mean relative accuracy — averaged over the
test dataset — as a function of the ensemble size. The accuracy improves with Nens but levels
off at around ∼ 5 · 10−5. The behavior is well described by an inverse square-root scaling
with a constant offset. The 1/

p
Nens term demonstrates that the ensemble members act as

approximately independent estimators, so that the statistical component decreases with en-
semble size. In contrast, the constant offset corresponds to the irreducible bias, which cannot
be reduced by ensembling. This numerical result directly confirms the conceptual decompo-
sition discussed above: the ensemble reduces the statistical part as expected, but a bias floor
remains.

Next, we discuss in Fig. 7, the learned systematic uncertainties of the ensemble. For the
zero-noise case shown in the left panel, it is clearly visible that using the averaged system-
atic uncertainties from the ensemble members leads to overestimated uncertainties. We also
checked that scaling the average by 1/

p
Nens — or equivalently using the weighted average
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Figure 7: Left: systematic pull comparing the implementation with individual σi for
each ensemble member and the globalσ of Eq.(36) for different number of ensemble
members. Right: same comparison using smeared data.
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Figure 8: Distribution of the weights ωk for a GMM with two modes. The orange
line represents the distribution of ω1 for the first mode, and the blue line represents
the distribution of ω2, corresponding to the second mode. The bold lines show the
mean of ω1 or ω2 over all ensemble members Nens.

of Eq.(35) — underestimates the uncertainties. Using instead a separately trained global
σsyst drastically improves the calibration. For Nens ≳ 100, however, two peaks start to ap-
pear roughly at tsyst ∼ ±1. For this high number of ensemble members, the noisy part of
the prediction is reduced to a level at which the biases of the learned prediction become
clearly visible. If the noise in the amplitude prediction is low enough, the NN predicting
σsyst(x) can directly fit |ANN(x)− Atrain(x)|, which is the actual minium of the heteroscedas-
tic loss — see also App. D.3 of Ref. [65]. Consequently, for larger ensembles with low noise,
tsyst = (ANN(x)−Atrain(x))/σsyst(x)∼ ±1 explaining the appearance of the peaks. This signals
that the uncertainty is not Gaussian distributed anymore.

In the case of noisy data, as shown in the right panel of Fig. 7, both the averaged and the
separately learned global σsyst lead to well-calibrated uncertainties. This behavior is fully con-
sistent with the data-noise–dominated scenario discussed above, where the irreducible noise
contribution is shared across all ensemble members and is therefore not reduced by averaging.

Gaussian mixture model

Instead of assuming a Gaussian likelihood, we can also employ a Gaussian mixture model
(GMM), as introduced in Sec. 2.2. For this, we use a repulsive ensemble architecture, as in
Sec. 3.3, consisting of 32 or 128 ensemble members and train them with a GMM likelihood
featuring two modes, i.e. K = 2 in Eq.(19). In contrast to the Gaussian case, where the mean
A(x ,θ ) enters Eq.(25), we always use the MAP estimate AMAP

GMM(x ,θ ) for each ensemble mem-
ber, since this provides a more stable prediction in the multi-modal case, as discussed below
Eq.(18). The ensemble combination therefore becomes

ANN(x) =
1

Nens

Nens∑
i=1

AMAP
GMM(x ,θi) σ2

syst(x) =
1

Nens

Nens∑
i=1

σ2
GMM(x ,θi) , (38)

where σ2
GMM and AMAP

GMM are defined in Eqs.(17) and (18), respectively.

In Fig. 8, we show the distribution of the weights ω for the different modes. On the left-
hand side, we show the results for a repulsive GMM model with 32 ensemble members; on the
right-hand side, for 128 ensemble members. The blue lines indicate the weight distribution for
one of the two Gaussian modes, and the orange lines indicate the second Gaussian mode. We
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display the distribution of ω for every individual ensemble member. The bold line represents
the mean ofω over all ensemble members, Nens. For both setups, we observe a clear separation
of weights for both GMM modes. With this behavior, we conclude that only one Gaussian is
necessary to model the likelihood, confirming our initial assumption of a Gaussian likelihood
shape. This also confirms that the observed bias is indeed driven by model expressivity and
not by a wrong likelihood assumption during the fit.
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4 Evidential regression

While repulsive ensembles and BNNs encode the posteriors of the network parameters, evi-
dential regression (ER) estimate statistical and systematic uncertainties without ensembling
or sampling. Instead it places a prior over the likelihood describing parameters. To better
understand this, we start by assuming again a Gaussian likelihood [67],

p(A|x ,λ) =N
�
A|A(x),σ2(x)

�
, (39)

where the likelihood parameters λ= (A,σ2) are not treated as fixed network outputs anymore
but as random variables. Similar to Eq.(1), we can then parametrize a predictive distribution
p(A|x) as

p(A|x) =
∫

dλ p(A|x ,λ) p(λ|Dtrain)≈
∫

dλ p(A|x ,λ) p(λ|m) . (40)

In the last line, we approximate the intractable posterior p(λ|Dtrain)with p(λ|m), parametrized
by m. As p(λ|m) serves as a higher-order distribution compared to the likelihood, it is denoted
as evidential distribution and its parameters are called evidential parameters. Ideally, we want
to choose this distribution such that it comes from the same distribution family as the posterior
which makes them conjugate distributions. In this case, p(λ|m) becomes the conjugate prior of
the likelihood p(A|x ,λ). This implies that we can learn the parameters m from the training
data without changing the form of the distribution.

Given that we have chosen p(A|x ,λ) to be a Gaussian, the conjugate prior is mathematically
given by the Normal-Inverse-Gamma (NIG) distribution

p(λ|m) = βα
p

v

Γ (α)
p

2πσ2

�
1
σ2

�α+1

exp

�
−2β + v(γ− A)2

2σ2

�
, (41)

where Γ (·) is the gamma function. The evidential parameters

m≡ m(x ,θ ) = {γ, v,α,β} (x ,θ ) with v > 0,α > 1,β > 0 . (42)

are the outputs of a network with weights θ , which is why it is denoted as evidential regression.

The conjugacy of the NIG distribution allows interpreting the parameters m in the following
way [79]: The sample mean γ is estimated from v observations. The corresponding variance
is derived from α observations with mean γ and the sum of squared deviations being 2v. The
combined NIG prior allows us to compute the mean amplitude and its two uncertainties as

ANN(x) =

∫
dA A p(A|x)

=

∫
dA dσ2 A(x) p(λ|m) = γ ,

σ2
tot(x) =

∫
dA (A− ANN)

2 p(A|x)

=

∫
dA dσ2

�
σ2(x) +

�
A(x)− ANN(x)

�2�
p(λ|m) , (43)

where the systematic and statistical uncertainty is thus given by

σ2
syst(x) =

∫
dA dσ2 σ2(x) p(λ|m) = β

α− 1
,

σ2
stat(x) =

∫
dA dσ2

�
A(x)− ANN(x)

�2
p(λ|m) = β

v(α− 1)
. (44)
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Using the NIG distribution, the evidential likelihood for the amplitude can be obtained analyt-
ically. As shown in the appendix of Ref. [67], the evidential likelihood is given by

p(A|x , m) =

∫
dλ p(A|x ,λ) p(λ|m)

=

∫ ∞

0

dσ2

∫ ∞

−∞
dA p(A|A,σ2) p(A,σ2|γ, v,α,β)

=

∫ ∞

0

dσ2

∫ ∞

−∞
dA

�
1p

2πσ2
exp

�
−(A− A)2

2σ2

��

×
�

βα
p

v

Γ (α)
p

2πσ2

�
1
σ2

�α+1

exp

�
−2β + v(γ− A)2

2σ2

��

=

∫ ∞

0

dσ2 βασ−3−2α

p
2π
p

1+ 1/vΓ (α)
exp

 
−2β + v(A−γ)2

1+v

2σ2

!

=
Γ (α+ 1/2)
Γ (α)

s
v
π
(2β(1+ v))α

�
v(A− γ)2 + 2β(1+ v)

�−α− 1
2

= St

�
A

����γ,
β(1+ v)

vα
, 2α

�
. (45)

where St(A|µSt,σ
2
St, vSt) denotes the Student-t distribution with location µSt, scale σ2

St and vSt
degrees of freedom. For simplicity, we suppressed the dependence on the phase space point x
in this derivation. The log-likelihood loss directly follows as

LSt = −
∑

i

log p(A|x i , mi)

= −
∑

i

log

�
St

�
A

����γi ,
βi(1+ vi)

viαi
, 2αi

��

=
∑

i

��
αi +

1
2

�
log

�
vi (Atrain(x i)− γi)

2 +Ωi

�
+ log

Γ (αi)

Γ
�
αi +

1
2

� + 1
2

log
π

vi
−αi logΩi

�

with Ωi = 2βi(1+ vi) . (46)

Since the Student-t distribution depends on only three effective parameters, minimizing the
likelihood alone does not uniquely constrain the four outputs (γ, v,α,β). This leads to a de-
generacy in the learned evidential parameters. To address this, we introduce the regularization
loss [67]

LR =
∑

i

|Atrain(x i)− γi| ·Φi =
∑

i

|Atrain(x i)− γi| · (2vi +αi) , (47)

where Φ is the total evidence encoding the strength of belief in the predicted parameters.
The regularization loss discourages the network from assigning high evidence to incorrect
predictions. Specifically, when the predicted mean γ deviates significantly from the target, the
loss penalizes large values of the total evidence. Conversely, when the prediction is accurate,
high evidence is not penalized. The combined evidential regression loss is

LR
ER = LSt +λR LR , (48)

where λR is a tunable hyperparameter. We set λR = 0.01 by default.
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Figure 9: Evidential regression results for unsmeared g g → γγg dataset. The results
with regularization loss are compared to the results setting 2α= ν.

An alternative to using the regularization loss is to constrain the evidential parameters
directly. Following Ref. [68], we can fix the ratio between α and v via

2α= rv , (49)

with a constant r. One can show that in the limit of vanishing statistical uncertainty — corre-
sponding to ν→∞— the predictive likelihood should converge to a Gaussian. This requires
α → ∞ as well, which is automatically ensured by this constraint. In this case, the loss is
given by the same negative log-likelihood as in Eq.(46), with v replaced by 2α/r,

LER =
∑

i

��
αi +

1
2

�
log

�
2αi

r
(Atrain(x i)− γi)

2 +Ωi

�

+ log
Γ (αi)

Γ
�
αi +

1
2

� + 1
2

log
πr
2αi
−αi logΩi

�
with Ωi = 2βi(1+ (2αi/r)) . (50)

If not mentioned otherwise, we choose r = 1.

Performance

We now apply evidential regression to the g g → γγg dataset and compare two approaches for
breaking the degeneracy in the base loss. The results are summarized in Fig. 9. The upper left
panel shows the distribution of the absolute relative deviation from the true amplitudes. Both
approaches achieve nearly identical precision with 〈|∆|〉 ∼ 3·10−5, comparable to the accuracy
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obtained with a deterministic or Bayesian neural network [23]. The systematic calibration
curves in the upper right panel confirm that the uncertainties are well calibrated. The lower left
panel further shows the ratio σsyst/ANN, which is in close agreement with the results reported
in Ref. [23]. We also find the predicted statistical uncertainties to be significantly smaller than
the systematic ones. This is reflected in the broad statistical pull distributions in the lower
right panel and mirrors the behavior observed for BNNs in Ref. [23]. Finally, enforcing the
constraint 2α = v yields slightly smaller statistical uncertainties than the alternative with an
additional regularization loss.

Although not shown here, we also verified that applying a universal Gaussian smearing to
the entire dataset yields well-calibrated uncertainties, consistent with the findings of Ref. [23]
for repulsive ensembles and Bayesian NNs.

Gaussian mixture model

Instead of using a GMM only for a repulsive ensemble, one can, in principle, also integrate the
GMM into the evidential regression setup. Based on the results from the repulsive ensemble
GMM and the evidential regression network in Fig. 9, it is well motivated to assume that the
evidential GMM would yield a similar outcome. We therefore only outline the conceptual setup
here and refer to Ref. [80] for related work.

We start by replacing the single Gaussian in Eq.(39) with a K-component GMM,

pGMM(A|x , {λk}) =
K∑

k=1

ωk(x)N
�
A
��Ak(x),σ

2
k(x)

�
,

K∑
k=1

ωk(x) = 1 , (51)

where each component λk = {Ak,σk} has its own conjugate NIG prior

p(λk|mk) =
β
αk
k
p

vk

Γ (αk)
q

2πσ2
k

�
1

σ2
k

�αk+1

exp

�
−2βk + vk(γk − Ak)2

2σ2
k

�
, (52)

with evidential parameters mk = {γk, vk,αk,βk}. Since the prior factorizes over components,
the evidential likelihood becomes a weighted mixture of Student-t distributions,

pGMM(A|x , {mk}) =
K∑

k=1

ωk St
�

A
���γk,
βk(1+ vk)

vkαk
, 2αk

�
. (53)

The corresponding loss function is simply the negative log-likelihood of this mixture,

LER-GMM = −
∑

i

log pGMM(A|x i , {mk}i)

= −
∑

i

log
K∑

k=1

ωki St
�

A
���γki ,

βki(1+ vki)
vkiαki

, 2αki

�
. (54)
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5 Localized learning challenges

So far, we have only considered the case of simple Gaussian noise in all of phase space. For
realistic settings, numerical noise will, however, typically be localized in phase space — for
instance, in regions where loop integrals become harder to compute. Thresholds are candidate
structures because the amplitude can turn from a real to a complex number. In the following,
we test whether our uncertainty estimation can reliably identify localized noise.

5.1 Flat-box threshold smearing

As a first test, we emulate numerical noise close to a threshold by applying Gaussian smearing
with the relative strength ε to all amplitudes with an invariant mass of the final state particles
mγγg close to the artificial threshold mthresh within a box of width w,

Atrain(x) =

¨
N (Atrue(x),εAtrue(x)) if |mγγg(x)−mthresh|< w

Atrue if |mγγg(x)−mthresh| ≥ w
. (55)

For our numerical investigation, we use mthresh = 200 GeV and vary ε and w.

Repulsive ensemble
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Figure 10: Upper left: |∆| distributions for various choices of the threshold smearing
strength ε and the threshold smearing window width w. Upper right: learned system-
atic error over learned amplitude as a function of mγγg for different choices of w and
ε. The gray horizontal lines indicate the smearing window around mthresh = 200GeV.
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The results using repulsive ensembles are shown in Fig. 10. As expected, with induced
noise the overall surrogate prediction gets worse compared to the noise-free case, as shown
in the upper left panel. Especially for larger ε values and a larger box width, a second peak
appears in the |∆| distribution originating from the smeared amplitudes.

To investigate whether the learned systematic uncertainty correctly identifies the smeared
phase-space region, we show in the upper right panel median σsyst/A binned in the invariant
mass mγγg . For a perfectly trained NN, σsyst/A should follow exactly the box form defined in
Eq.(55). For all tested ε values, we indeed observe the NNs predictions to almost perfectly
follow the expected box form. Outside of the smearing window, the curves fall back to the
systematic uncertainty predicted without any applied smearing.

The systematic pull distributions — taking into account only events within the smearing
box — are shown in the lower left panel. For ε = 0.1, the systematic uncertainty is almost
perfectly calibrated. For ε= 0.01 and ε= 0.001, the tsyst distribution is not perfectly Gaussian
anymore, which is likely due to the sharp edges in the smearing function.

In the lower right panel, we moreover test how the NN predictions behave for a shrinking
smearing window. Up to w = 1 GeV, the extracted noise level almost perfectly matches the
expected form.

Evidential regression

For evidential regression, we now solely focus on the variant without the regularization loss,
but imposing 2α= v, as shown in the results in Fig. 11. We find that the variant with regular-
ization loss gives significantly worse results.
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Figure 11: Evidential regression results for the box smearing approach.
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The precision of the evidential regression is comparable to the repulsive ensemble, as visi-
ble in the upper left panel of Fig. 11. For ε= 0.001, the evidential regression, however, is not
able to predict the sharp edges of the flat box smearing, as shown in the upper right panel. For
ε = 0.01 and ε = 0.1, the expected shapes are recovered. As visible in the lower left panel,
the systematic uncertainties are well calibrated for all considered ε values. When lowering
the window width w, see lower right panel, the evidential regression correctly captures the
boundaries of the smearing box but struggles to extract the amount of smearing within the
box for lower w values.

Bayesian neural network

Additionally, we present the results for a BNN, in conjunction with the repulsive ensemble
and evidential regression. As seen in the previous study [23], the BNN provides competitive
results in terms of precision and uncertainty estimation compared to the repulsive ensemble.
Fig. 12 shows that the BNN is as good as the repulsive ensemble in terms of the relative sys-
tematic uncertainty σsyst/A for various choices of ε and w. Additionally, the BNN provides a
better-calibrated systematic uncertainty, as seen in the pull distribution in the lower left plot,
which follows a Gaussian distribution. Comparing the precision of the amplitude estimation
represented by |∆|, the BNN performs equally well as the evidential regression approach and
thus is a well-justified and motivated approach to consider in these different localized learning
challenges.
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Figure 12: BNN results for the box smearing approach.
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Figure 13: Left side: learned systematic uncertainty over learned amplitude as a
function of mγγg for different choices of ε comparing repulsive ensemble results (up-
per row), evidential regression results (middle), and BNN results (lower row). Right
side: learned statistical uncertainty over learned amplitude, displayed as described
for the learned systematic uncertainty. The gray vertical line indicates the chosen
threshold; the dashed lines, the expected behavior.
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Figure 14: Results for the systematic pull distributions for events in the threshold re-
gion — 195GeV< mγγg < 205 GeV — comparing repulsive ensemble results (upper
left), evidential regression results (upper right), and BNN results (lower center).

5.2 Peaked threshold smearing

Next, we consider a more complicated noise profile for which the amount of noise increases
close to the threshold value. Concretely, we use the smearing function

Atrain(x)∼N
�

A; Atrue(x),
εmthresh

|mγγg(x)−mthresh|
Atrue(x)

�
, (56)

where we again choose mthresh = 200 GeV.

In the left column of Fig. 13, the median σsyst/A for the binned mγγg distribution is shown
for different values of ε using the repulsive ensemble (top), evidential regression (middle),
and BNN approach (bottom). While evidential regression is able to capture the induced noise
at least approximately, it struggles close to the threshold. In contrast, the repulsive ensemble
is able to almost perfectly extract the noise. Only for ε= 10−5, the sharp increase in noise very
close to the threshold is not perfectly captured. The BNN overestimates the relative systematic
uncertainty for larger ε, as shown for ε= 10−3. For the other choices of ε, the BNN performs
better than the evidential regression approach, but still has problems capturing the regions
close to the threshold region correctly.

The right column shows the results for the relative statistical uncertainty σstat/A using the
same setup as in the left column, where the learned relative uncertainty (solid) is compared
to its expected behavior from the underlying noise model (dashed). The predicted statistical
uncertainty is consistently smaller than the expected noise level, showing that the networks
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can learn an accurate amplitude prediction even in the presence of strong local smearing. This
reflects a clear benefit of interpolation. Information from the surrounding clean regions sta-
bilizes the prediction in the noisy region, enabling the networks to disentangle the smooth
underlying amplitude from the localized noise. Comparing the three methods, we find that
for a given ε the repulsive ensemble (top) yields a uniformly smaller σstat/A than evidential
regression (middle), with the BNN (bottom) providing the smallest relative statistical uncer-
tainty σstat/A.

From a technical point of view, it is important not to use early stopping for small values
of ε. In this regime, only events very close to the threshold are significantly smeared. This
can lead to outlier events being present in the training but not in the validation dataset or
vice versa. As a result, the validation loss may temporarily increase while the training loss
continues to decrease, without indicating actual overfitting.

In addition, Fig. 14 displays the systematic pull distributions for events of a mγγg -range
within 195GeV and 205GeV. Comparing these different pull distributions, the case without
any smearing applied is well-calibrated for both the evidential regression and the BNN ap-
proach. In the case of smearing, the uncertainties are overestimated by all three approaches,
particularly for evidential regression using ε= 10−5.

5.3 Threshold gap

Instead of locally smearing the true amplitude values, we now consider a different scenario:
the absence of events in certain phase-space regions. In practice, such gaps can arise when
the evaluation of the true amplitude fails, for instance near thresholds. Here, however, we
deliberately enlarge the missing region to create a more severe case. While this setup is ad-
mittedly artificial, it serves as a valuable test for the statistical uncertainty prediction, which
should increase significantly within regions lacking training data.

In particular, we remove events within |mγγg(x) − mthresh| < 40 GeV from the training
and validation datasets. In contrast, the test dataset still contains events within the threshold
region.

Here, we focus only on the repulsive ensemble and the BNN approach. The repulsive
ensemble accuracy is shown in the left panel of Fig. 15 and the accuracy for the BNN is shown
in the right panel. While the removal of events in the threshold region does affect the accuracy,
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Figure 15: |∆| distributions for the runs for the full training dataset (solid) and the
events within the threshold gap (dashed). Left: repulsive ensemble results. Right:
BNN results
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Figure 16: Upper panel: Invariant mass distribution of truth dataset (green), or
reweighted using the surrogates trained on the dataset with (orange) or without
(blue) gap. All three curves completely overlap. Lower panel: relative deviation from
truth with uncertainty bands including the systematic and statistical uncertainties.

the effect is relatively modest for both approaches. Remarkably, the accuracy for the events in
the threshold region (dashed orange curve) is not much worse than the overall accuracy for the
whole test dataset (solid orange curve). This behavior highlights again the strong interpolation
capability of neural networks, which can maintain reasonable accuracy even within regions not
covered during training.

This is also visible in the mγγg distributions shown in the upper panels of Fig. 16, where we
weight all events by ANN(x)/Atrue(x) to emulate event generation with the trained surrogate.
Again, we show the results for the repulsive ensemble and the BNN in the left and right plots,
respectively. The shown truth curve overlaps with the prediction of both networks, whether
trained on the full dataset or with the gap, thereby underpinning the previous result. We
traced this behavior back to the amplitude being very flat in the considered mγγg region. We
expect significantly worse predictions in cases with larger variations within the gap region.

Turning to the uncertainty estimate, the lower panel of Fig. 16 shows the relative deviation
∆ together with the predicted total uncertainty indicated by shaded bands. While the average
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Figure 17: Left: Statistical uncertainty as a function of the invariant mass comparing
repulsive ensemble and BNN results trained on the full or gap datasets. Right: Same
as left, but the systematic uncertainty is shown. The gap region is indicated by dashed
vertical lines.
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deviation remains very small, i.e. |∆| ≲ 10−4, the uncertainty bands are considerably larger,
pointing to an overestimation of the total uncertainty. As expected, the predicted uncertainty
for the dataset with a gap is larger than for the dataset without a gap in the excluded region,
although the difference is relatively modest.

We further investigate this behavior in the left panel of Fig. 17, showing the median sta-
tistical uncertainty as a function of mγγg . Compared to the “no gap” result, we find that the
repulsive ensemble correctly exhibits an increase of statistical uncertainty localized to the gap
region, as indicated by the vertical lines. Outside the gap region, the uncertainty decreases
again to the baseline level. For comparison, the BNN prediction shows a different pattern. Al-
though the statistical uncertainty also increases inside the gap, it remains elevated across the
entire invariant-mass range, indicating that the gap affects the BNN prediction more globally
rather than locally. To test the robustness of these results, we also trained the surrogates with
varying network sizes and different activation functions, finding similar results in all cases.

Naively, one might expect the statistical uncertainties predicted by the repulsive ensemble
and the BNN to agree, since both approaches are based on the same underlying network ar-
chitecture. In practice, however, two important aspects lead to differences. First, the training
dynamics differ: even with the same model class, the two approaches converge to different
minima and weight configurations, resulting in effectively different trained models. Second,
the methods approximate the posterior in distinct ways, which directly affects how the statis-
tical uncertainty is computed. These combined effects explain why the statistical uncertainties
shown in Fig. 17 differ between the two approaches. We leave a more detailed understanding
of these differences in a particle physics context for future work.

For the systematic uncertainty, shown in the right panel of Fig. 17, the behavior for the
BNN and repulsive ensemble is similar to each other. Both architectures exhibit an increased
systematic uncertainty in the gap region and outside the gap revert to the relative systematic
uncertainty of the “no gap” case. However, while we can see that the repulsive ensemble es-
timates a larger statistical uncertainty than the BNN, the opposite is true for the systematic
uncertainty. There, the BNN overall estimates a larger uncertainty compared to the repul-
sive ensemble. In both cases, the methods do not fully disentangle statistical from systematic
effects, as seen from the rise of σsyst where ideally only σstat should be affected.

We also tested evidential regression for the considered gap scenario. While it shows equally
good interpolation capabilities in the gap region, we find the estimated statistical and system-
atic uncertainty to be a flat function of mγγg .
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6 Conclusions

Surrogate amplitudes are an important ingredient for speeding up high-precision Monte Carlo
event generation. The key requirements are speed, precision, and control. In this paper,
we have worked towards these goals by investigating three different approaches — repulsive
ensembles, evidential regression, and Bayesian neural networks — and testing their behavior
in scenarios with locally noisy or missing data.

Repulsive ensembles are a collection of networks including a repulsive interaction. The
spread of ensemble members provides an approximation of the posterior predictive distribu-
tion, thereby serving as a measure of statistical uncertainty. We first studied how the strength
of the repulsive interaction affects amplitude prediction and uncertainty estimation, finding
its effect to be negligible for sufficiently large datasets. Moreover, we studied whether en-
sembling improves accuracy. While it reduces noise in the network predictions, it does not
alleviate systematic biases. Building on this, we revisited the miscalibration of systematic un-
certainties identified in earlier work. We traced this to a mismatch: while the ensemble mean
prediction is more accurate than the individual members, the corresponding mean of the un-
certainty estimates does not improve in the same way, leading to miscalibration. To address
this, we proposed a method to learn a systematic uncertainty directly for the ensemble mean
prediction. This approach yielded well-calibrated uncertainties for small ensemble sizes. For
larger ensembles, however, it indicated residual biases. We traced these back to non-Gaussian
effects that are not captured by the Gaussian ansatz used in the likelihood. Such issues can
be mitigated by employing more expressive networks, improved training strategies, or a more
general likelihood formulation.

In addition to repulsive ensembles, we investigated evidential regression as an alternative
approach that encodes all uncertainties directly in the network outputs, without requiring an
ensemble. This method is computationally more efficient, and for the unsmeared amplitude
dataset, it gave results consistent with the repulsive ensemble approach. Moreover, when
comparing two variants of evidential regression, we observed that constraining two of the
network outputs, i.e. α= 2ν, outperforms the version with an additional regularization loss.

Afterwards, we investigated whether the trained networks can capture localized noise or
gaps in the dataset — mimicking numerical instabilities in amplitude evaluations, such as near
particle thresholds — and appropriately quantify this through their predicted uncertainties.
Focusing first on smearing in a small, box-shaped region of the invariant mass distribution,
we found that both methods can effectively identify and describe this region. While the re-
pulsive ensemble followed the expected behavior of the systematic uncertainty more closely,
the evidential regression and Bayesian neural networks provided a better calibration of the
uncertainty. As a next step, we investigated a smearing effect that becomes increasingly pro-
nounced near a particle mass threshold. Here again, all approaches followed the expected
behavior very well, with the repulsive ensemble and Bayesian neural networks slightly outper-
forming the evidential regression approach. Finally, we considered a data gap in the invariant
mass distribution, i.e. a localized region in which no training data is provided. Despite the ab-
sence of data, the networks produced good predictions in the gap because the amplitude varies
only slowly in that region. As expected, repulsive ensembles and Bayesian neural networks
predicted an increased uncertainty in the gap region.

Overall, we have extended our toolkit and deepened our understanding of amplitude sur-
rogates. Repulsive ensembles capture uncertainty more reliably but at a higher computational
cost, while evidential regression is more efficient and can yield well-calibrated uncertainties
in specific scenarios. These insights guide the future development of robust surrogate models
for next-generation Monte Carlo event generators.
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A Non-linear error propagation

When training the network, we actually fit the preprocessed amplitudes, obtained by applying
a logarithm and subsequent standardization,

ℓtrain(x) =
log Atrain(x)−µtrain

strain

with µtrain =



log Atrain(x)
�

strain =
Æ

Var(log Atrain(x)) . (57)

The network then predicts for each phase-space point x

NN(x ,θ ) =

�
ℓ(x ,θ )

logσ2
ℓ
(x ,θ )

�
, (58)

where ℓ(x ,θ ) denotes the predicted mean of the standardized log-amplitude and σ2
ℓ
(x ,θ ) its

variance. Averaging over the weight posterior approximation q(θ ) as in Eq.(2), the predictive
mean and variance in ℓ-space are given by

ℓNN(x) =

∫
dθ q(θ )ℓ(x ,θ )

σ2
ℓ,tot(x) =

∫
dθ q(θ )

h
σ2
ℓ(x ,θ ) +

�
ℓ(x ,θ )− ℓNN(x)

�2i
, (59)

with the usual decomposition

σ2
ℓ,syst(x) =

∫
dθ q(θ ) σ2

ℓ(x ,θ ) , σ2
ℓ,stat(x) =

∫
dθ q(θ )

�
ℓ(x ,θ )− ℓNN(x)

�2
. (60)

Transforming back to amplitude space, the inverse for a single network pass is

A(x ,θ ) = exp
�
strain ℓ(x ,θ ) +µtrain

�
. (61)

However, we are interested is the predictive mean ANN(x) after averaging over q(θ ). Because
the inverse mapping is a non-linear function, we must propagate the log-space uncertainty ex-
plicitly. Assuming that ℓ(x ,θ ) is Gaussian distributed with mean ℓNN(x) and varianceσ2

ℓ,tot(x),
following Ref. [62] we obtain

ANN(x) =

∫
dℓ̄ A(x ,θ )N

�
ℓ̄
��ℓNN(x),σℓ,tot(x)

�

=

∫
dℓ̄ exp

�
strain ℓ̄+µtrain

�
N
�
ℓ̄
��ℓNN(x),σℓ,tot(x)

�

= exp

�
strain ℓNN(x) +µtrain +

s2
trainσ

2
ℓ,tot(x)

2

�

≈ exp(strain ℓNN(x) +µtrain) , (62)

where the last line of approximation holds for s2
trainσ

2
ℓ,tot≪ strain ℓNN(x). In the same way, we

can then calculate the total predictive uncertainty of the amplitude A as given by

σ2
A,tot(x) =

∫
dℓ̄
�
A(x ,θ )− ANN(x)

�2 N
�
ℓ̄
��ℓNN(x),σℓ,tot(x)

�

= A2
NN(x)

�
exp

�
s2
trainσ

2
ℓ,tot(x)

�
− 1

�

≈ s2
train A2

NN(x)σ
2
ℓ,tot(x) . (63)

33



SciPost Physics Submission

We note that the approximate formula in the last line recovers the standard linearized error
propagation formula.

Beyond the linearized regime, the decomposition into systematic and statistical parts in
amplitude space is no longer strictly additive. We can first define

vtot = s2
trainσ

2
ℓ,tot vsyst = s2

trainσ
2
ℓ,syst vstat = s2

trainσ
2
ℓ,stat . (64)

Then expanding to second order in vtot yields

σ2
A,tot(x)

A2
NN(x)

≈ vsyst(x) + vstat(x) +
1
2

�
v2

syst(x) + v2
stat(x)

�
+ vsyst(x) vstat(x)︸ ︷︷ ︸

interaction

. (65)

In the regime relevant for this work, however, the log-space variances are extremely small,
with typical values vtot ∼ O(10−10). Consequently, all quadratic and interaction terms are
suppressed by many orders of magnitude relative to the linear contributions.

We have explicitly verified this by evaluating the full expression above and comparing
it to the linear approximation used in the main text, finding relative differences well below
numerical precision. We therefore conclude that, for all results presented in this paper, the
exponential back-transformation operates entirely in the linear regime and does not affect the
decomposition or interpretation of statistical and systematic uncertainties.

B Hyperparameters

Throughout this work, we use the same hyperparameter settings compiled in Tab. 2. The
settings are taken over from Ref. [78], in which the effect of different choices is discussed in
detail.

Parameter Value

Activation function GELU
Number of hidden layers 6
Hidden nodes 128
Batch size 1024
Scheduler One cycle
Max learning rate 10−3

Number of epochs 1000

Table 2: Network and training parameters.
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