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Abstract

We investigate the Sagnac and Mashhoon effects in graphene, taking into account both
the pseudospin and intrinsic spin of electrons, within a simplified model of a rotating
nanotube or infinitesimally narrow ring. Based on considerations of the relativistic phase
of the wave function and employing the effective Larmor theorem, we demonstrate that
the Sagnac fringe shift retains a form analogous to that for free electrons, governed by the
electron’s vacuum mass. In the case of a narrow ring, an additional rt-phase shift arises
due to the Berry phase associated with the honeycomb graphene lattice. The Mashhoon

fringe shift retains its conventional form, with its dependence on the Fermi velocity.
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1 Introduction

Matter-wave interferometry serves as a powerful method for exploring quantum phenomena
and their practical applications. A particularly clear manifestation of quantum interference in
solid-state systems is the observation of periodic conductance oscillations in ring-shaped struc-
tures subjected to a magnetic field (see Ref. [1]). These oscillations arise from the Aharonov—
Bohm effect, which reflects the phase difference accumulated by electron wavefunctions trav-
eling along two distinct paths enclosing a magnetic flux. This phase difference is directly
proportional to the magnetic flux enclosed by the paths and perpendicular to the plane of the
ring, normalized by the magnetic flux quantum &, = 27thc/e, where  is the reduced Planck
constant, —e < 0 is the electron charge, and c is the speed of light in vacuum. The Aharonov-
Bohm effect has been extensively studied in mesoscopic rings fabricated from metallic films
and semiconductor heterostructures, contributing significantly to the development of meso-
scopic physics.

Over the past two decades, graphene has emerged as an exceptional platform for study-
ing the Aharonov-Bohm effect and other quantum interference phenomena, thanks to its long
phase coherence length, on the order of several microns at temperatures below 4K [2] (see
also the reviews in Refs. [3,4]). The first experimental observation of the Aharonov-Bohm
effect in a two-terminal, gated ring structure fabricated from exfoliated single-layer graphene
was reported in Ref. [5]. Subsequent studies explored four-terminal resistance in similarly
structured rings with side and back gates, revealing high visibility of Aharonov—Bohm oscil-
lations, up to 10% in amplitude [6, 7]. The Aharonov-Bohm effect was also investigated in
graphene rings incorporating a p—n—p junction, where no significant change in the oscillation
period or amplitude was observed in this dipolar regime [8].

A notable advancement came with the realization of an electron interferometer defined
entirely by electrostatic gating in encapsulated bilayer graphene, which exhibited a phase co-
herence length exceeding that of etched devices [9]. More recently, Aharonov-Bohm oscilla-
tions were observed at 4 K in graphene rings fabricated from chemical vapor deposition-grown
graphene, marking a step forward in operational temperature compared to earlier exfoliated
devices [10]. Finally, Aharonov—Bohm oscillations have been demonstrated in magic-angle
twisted bilayer graphene for both dispersive and flat-band electrons [11]. The same moiré
device also enabled observation of the Little-Parks effect within the superconducting phase,
evidenced by oscillations in magnetoresistance and critical current, thereby confirming charge-
2e pairing.

It is worth noting that carbon nanotubes were studied well before the discovery of graphene
[12]. Single-walled carbon nanotubes have long served as a theoretical benchmark for model-
ing the Aharonov-Bohm effect, due to their effectively one-dimensional nature, which allows
the radial motion of electrons to be neglected [12-14]. The Aharonov—-Bohm effect was ex-
perimentally observed in a suspended chiral single-walled carbon nanotubes by measuring
its conductance under a magnetic field applied along the tube’s axis [15]. Aharonov-Bohm
conductance oscillations were also reported in ballistic multi-walled carbon nanotubes [16].
While carbon nanotube experiments are highly sophisticated and have provided key insights
into quantum interference, graphene offers a more versatile and tunable platform for exploring
such phenomena.
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While the Aharonov—-Bohm effect arises from a static magnetic field enclosed by and per-
pendicular to the electron paths, interference patterns can also result from the Sagnac ef-
fect. It refers to the phenomenon in which a phase shift occurs between two coherent beams
propagating in opposite directions within an interferometer that is rotating as a whole (see
Refs. [17-20] for reviews).

Although originally discovered for light waves [21,22], the Sagnac effect is a general in-
terference phenomenon that applies to matter waves of any kind. It has been experimen-
tally demonstrated with a wide range of quantum particles, including superconducting Cooper
pairs [23], neutrons [24], and neutral atoms such as “°Ca [25]. More recently, the effect was
observed in a Cesium atom interferometer [26]. In addition, Sagnac interference has been
realized with free electron waves in vacuum [27].

In 1988, Mashhoon suggested that spin-rotation coupling leads to a novel spin-rotation
effect, characterized by a special phase shift [28] (see also Ref. [29]). The existence of this
coupling was confirmed in a neutron interferometry experiment [30], in which a rotating
magnetic field was employed. The ratio of Mashhoon to Sagnac phase shift in this experiment
is of the order 10710,

It is well known that the rotational sensitivity of a matter-wave Sagnac interferometer for
particles with rest mass m is significantly enhanced compared to that of an optical interferom-
eter using light of frequency w, exceeding it by a factor of [31]

me*  wp

o w w )
Here, w,, = mc?/h denotes the de Broglie (or Compton) frequency of a particle with rest mass
m. The estimate in Eq. (1) corresponds to the ratio of the Sagnac phase shifts for matter-wave
and optical interferometers that enclose the same (projected) area and rotate with the same
angular velocity. The resulting enhancement factor is substantial: for atoms, it is on the order
of © ~ 10'°, while for electrons it reaches approximately 10°.

This amplification, together with recent advancements in Aharonov-Bohm interferome-
try, has motivated proposals to realize the Sagnac effect in solid-state systems using arrays
of mesoscopic, ring-shaped Mach-Zehnder electron interferometers, including those based on
graphene [32-35]. However, there is some controversy surrounding the estimate of the en-
hancement factor { presented in Refs. [32,34], where the effective carrier mass m* is used
in place of the rest mass. This issue is particularly evident in monolayer graphene, where
the charge carriers exhibit a linear dispersion relation and effectively zero mass, resembling
relativistic particles such as photons rather than massive ones.

In our recent work [36], we argued that the Sagnac effect in Dirac materials, despite their
relativistic-like quasiparticle dispersion, is nevertheless governed by the rest mass of a free
electron. In the present paper, we provide additional arguments and evidence supporting
this viewpoint. In particular, we employ the Larmor theorem to demonstrate a close connec-
tion between the Sagnac and Aharonov—-Bohm effects for electrons in arbitrary materials. We
then apply this result to provide an alternative derivation of the Sagnac effect for electrons in
graphene.

In our previous studies, we limited our analysis to the squared Dirac Hamiltonian, thereby
neglecting the pseudospin degree of freedom. In this paper, we extend our approach by explic-
itly incorporating pseudospin as well as the electron’s intrinsic spin. Within this framework,
the electron pseudospinor wave function in graphene acquires an additional Berry phase fac-
tor [37], which plays a significant role in governing interference phenomena. Furthermore,
we take into account the intrinsic spin of the electron and its possible splitting, which allows
us to consider a graphene-based analog of the Mashhoon effect [28].

The paper is organized as follows. In Sec. 2, we present a general description of the Sagnac
effect in materials and argue that it is characterized by the the vacuum electronic mass in
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solids. In Sec. 3, we describe the elementary excitation equations of graphene, and describe
our method for obtaining covariant wave equations in comoving reference frame. In Sec. 4,
we give a relativistic derivation of the Sagnac and Mashhoon effects for Dirac quasiparticles in
a rotating nanotube and rotating planar ring. In Sec. 5, we provide an alternative derivation
of these effects based on the non-relativistic Larmor theorem. We summarize and discuss our
results in Sec. 6. Appendix A provides the necessary details for deriving the Pauli equation in
a rotating frame, while Appendix B establishes and discusses the effective Larmor theorem.

2 Sagnac effect for material particles: rest vs effective mass

Consider a wave-like process occurring either in vacuum or within a medium and characterized
by a phase S, which is a scalar function of space and time, that is, unambiguously defined
at every point in space-time. The Sagnac effect for such a process can be derived from the
following two observations:

1. Let a detector follow a world line x*(7), where 7 is its proper time. Then the frequency
of the wave measured by this detector is given by
dS(x(7)) dx*(7)
w = =
dt dt

V,S=u'v,S, (2)

where u* = dx* /dt denotes the four-velocity of the detector.

2. In the instantaneous local inertial rest frame of a material element, the phase S satisfies
the relation )
§%/c?—(VS) = w?/c*—k?, (3)

where the overdot and V denote, respectively, the time and spatial derivatives in this
frame, and w and k denote the frequency and the corresponding wave number measured
in this frame. This relation can be generalized to an arbitrary coordinate frame, where
it takes the covariant form

8"V, SV, = w?/c?—k?, C)
with g"” being the space-time metric in this frame.

For a simple setup of the Sagnac experiment, consider a thin ring of radius R, either com-
posed of material or filled with vacuum, rotating uniformly with an angular velocity Q. A
source S, co-rotating with the ring, emits (or splits) waves that subsequently propagate in op-
posite directions along the ring’s circumference. After completing their respective paths, the
waves interfere at a detector D, which is also co-rotating with the system (see Fig. 1).

Let us examine the Sagnac effect from the perspective of the rotating frame. In this frame,
the space-time metric on the ring world sheet can be expressed in the form:

ds? =c2dT2—ZQR}dedx—dx2, (5

where 7 is the proper time of the ring material, y = (1 —Q2R?/ cz)_l/2 is the Lorentz factor
associated with rotation, and x is the spatial periodic coordinate along the ring with period
27R.

Note that the ring is made of a solid material and, therefore, should undergo Lorentz
contraction when set into rotational motion. Thus, the radius R refers to its value in this
rotating state as measured in the laboratory frame. For a free, unsupported ring, the relation
YR = Ry would hold, where R, is the radius of a non-rotating ring. However, if the ring is

4
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TN

=

S

Figure 1: Schematic of the Sagnac experiment. Waves originating in phase at
the source S propagate in opposite directions around a rotating loop, producing a
measurable phase shift at the detector D.

supported — as is typically the case —its deformation during rotation depends on the strain
in the supporting material and may be less pronounced.

Considering two waves that start with identical phases at the position x = 0 and propagate
in opposite directions, we seek a solution for their phases in the form

S, =wt—kyx, (6)

where k, > k_ are the corresponding wave vectors. Assuming, for simplicity, the dispersion
relation to be isotropic in the rest frame and applying relation (4) with metric (5) to both
phases S.., we obtain the expression for the wave vectors:

ki =7(QRw/c*+k). 7)

The Sagnac fringe shift g = S_ — S, , accumulated after both waves complete one full circle
around the ring, is given by

4TR*y Q2
Os=27R (k; +k )= T2 8)
c
The angular displacement of the interference fringes along the circular detection path is
® 21Rv, 2
ps = o =, ©)
R(k_—ky) c2

where v, = w/k is the phase velocity of the wave.
If the waves do not complete a full circle but instead interfere at an angle ¢, measured
along the path of the wave with wave vector k,, then the resulting fringe shift is given by

The first term in this expression depends linearly on the angular velocity Q of rotation, while
the second term is practically independent of Q and reflects the simple geometric fact that
counter-propagating waves traverse different path lengths before reaching the observation
point.

A notable feature of the Sagnac fringe shift (8) or (9) is that it depends on the frequency
of the corresponding wave measured in the rest frame of the medium. The dependence of
©g on the wavenumber k emerges only through the dispersion relation w(k). For a classical
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wave-like process, such as a sound or electromagnetic wave, the definition of frequency is
unambiguous, as it is a directly observable and measurable quantity. For quantum waves, the
issue is more subtle. In non-relativistic quantum mechanics, the phase of a wave function is
not a true scalar, as it transforms non-trivially under changes between inertial frames [38-40].
Consequently, one cannot directly substitute the non-relativistic expression w = hk?/2m into
(8) or (9) to derive the Sagnac effect for a free particle of mass m.

For particles in vacuum, the resolution is straightforward: one can either apply the Galilean
transformation to the phase [39], or alternatively, adopt a fully relativistic wave equation, such
as the Klein—-Gordon or Dirac equation, where the phase factor transforms as a true scalar. In
this latter case, we have

21,2

h°k
fHw = vV m2c4 + h2k2¢2 = mc? +
2m

+..., (11)

and the first term in this expansion dominates in the non-relativistic limit, leading to the well-
known result for the Sagnac effect [39,41-43]

47TR?*mQ 2mTRmMS

O X ———, Ps~— P

. (12)

Results regarding the Sagnac effect for electrons in mesoscopic systems remain limited
and controversial. In Refs. [32,34], it was suggested that Egs. (12) could be applied with the
effective mass m* substituted for the mass m. However, this substitution is not well-founded,
since the effective mass m* arises solely as a parameter in the low-energy expansion of the
band structure £(k) applied in the vicinity of the Fermi level. Furthermore, there exists a
broad class of Dirac materials which have charge carriers that behave like massless relativistic
particles, exhibiting a pseudo-relativistic dispersion £(k) o< k.

In this regard, it is useful to start with a relativistic field and recall the original Dirac
equation describing an electron with vacuum mass m, and charge —e in a crystalline lattice at
rest:

o (ihau + SA“) WY —myctp =0, (13)

where A, is the covector potential of the electromagnetic field of the crystal. This equation is
invariant with respect to local gauge transformations, and the observables such as the current
density 1py#1) are gauge-invariant. For a static crystalline lattice, there exists a unique gauge
in which A, is static and periodic in space, vanishing at spatial infinity outside the material.

Solutions to the Dirac equation are given by the Bloch theory and determine the one-
particle electronic spectrum, hence, the dispersion relation

hew(k) =m,c? —e(k). (14)

Here, (k) is the binding energy of electron in a state with Bloch wave number k. Note that
the phase of the wave function in the relativistic equation (13) is a scalar, and its temporal
derivative corresponds to the frequency defined in (14).

For real systems at low temperatures, only electrons at the Fermi level, with the correspond-
ing Bloch wavenumber kg, will participate in the Sagnac effect. Consequently, the Sagnac ef-
fect for electrons in a crystalline lattice can be derived by inserting k = ky into the general
expressions (8) and (9), in view of Eq. (14). In the non-relativistic limit, the result reduces to
Eq. (12), with the vacuum electron mass m, substituted for m.

These conclusions may appear puzzling, as they imply that the Sagnac effect in all materials
is overwhelmingly dominated by the large electron rest energy m,c2. However, this result can
also be derived using the effective Larmor theorem, which establishes the equivalence between
rotation and a uniform magnetic field [44]. The universality of the Sagnac effect for electrons

6
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in mesoscopic systems then follows from the universality of the Aharonov—Bohm effect. We
will use this approach in Sec. 5.

In this paper, we investigate the Sagnac effect for electrons in graphene. The unique struc-
ture of graphene introduces subtle yet significant complications: it requires treating the elec-
tron’s spinor amplitudes separately on the two sublattices, A and B, leading to the emergence of
an additional degree of freedom, the pseudospin. However, the main generic features of the
Sagnac effect outlined above — particularly its dependence on the vacuum electron mass—
remain valid.

In the following, we consistently treat the relevant spinors as relativistic and account for
the contribution of the electron mass to their phase frequency. Note that the role of particle
mass in the Sagnac effect has also been discussed in [45].

3 Model of rotating graphene

3.1 Graphene at rest

The low-energy quasiparticles in a pure non-deformed graphene at rest are described by the
the envelop wave function ¥, (t’ ,r’ ) which satisfies the following equation:

[0 (i3, — &p) +ifv (T8, + 123, ) — A ¥, (¢/,r') = 0. (15)

Here, the primes denote the inertial coordinates, r’ = (x’ Y ), and v is the Fermi velocity. The
4 x 4 matrices T*, u = 0,1, 2, 3, satisfy the anticommutation relations for the Dirac matrices
and are given in the Weyl (chiral) representation

0 . 0 —o.
F°=T1®00=(0 %0), Fl=—iT2®O'i=(o_ g) i=1,2,3, (16)
0 i

where the Pauli matrices 7;, 0;, 1 = 1,2, 3, as well as the 2 x 2 unit matrices 7, and o, act on
the valley (K,, with n = +£) and sublattice (A, B) indices, respectively, of the four-component
pseudospinor W' = (U7, W' ) = (Yax, s, Wi, s» Yok s> Wa_s)- Here, s = + labels the intrinsic
spin components.

This representation is derived from a tight-binding model for the 2p, (1) orbitals of carbon
atoms on the hexagonal graphene’s lattice (see, e.g., Ref. [46]). We consider both massless
Dirac-Weyl fermions in pristine graphene and massive Dirac fermions with a mass (gap) pa-
rameterized by A. We remind that the matrix y* for the description of graphene as well as
in QED,,, is used for the construction of the mass term rather than for the irrelevant spatial
coordinate z’.

The energy & represents the energy level of the Dirac point relative to a chosen reference
point. As discussed in Sec. 2 (see also Ref. [36]), Eq. (15) the envelope wave function origi-
nates from the Schrodinger equation for electrons in a crystalline lattice, which itself is derived
from the fundamental Dirac equation (13) governing electron—ion interactions in solids. This
implies that the full relativistic wave functions of electrons in solids include a rapidly oscillat-
ing factor exp (—imeczt / ﬁ). Although this term is typically unobservable and often omitted,
it plays a crucial role in the context of the Sagnac effect in our formalism. Therefore, when
analyzing Eq. (15), we set [see Eq. (14)]

Ep=m,c*—ep, 17)

where ¢y is the binding energy of electron at the Dirac point. It includes both the work function
and the electrostatic energy. This ensures that the frequency component is present in the
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solutions relevant to the Sagnac effect. The binding energy ep is negligible compared to the
electron’s rest energy m,c.

In thermodynamical considerations, one often also includes a chemical potential u in
Eq. (15). It characterizes the carrier imbalance, that is, the difference between the densities of
electrons and holes. In graphene, the value of u can be tuned by applying a gate voltage, allow-
ing for control over the type of charge carriers (electrons or holes). This technique is routinely
employed in experiments on Aharonov-Bohm oscillations [5-9,11]. The electron matter wave
responsible for the Sagnac effect is of the same nature as those observed in existing electron
interferometers exhibiting Aharonov—-Bohm oscillations. The corresponding wave numbers are
given by the Fermi wave vector kg, whose magnitude is determined by |u| = Avpky for A = 0.
The combination &, + u corresponds to the relativistic chemical potential [47] which differs
by the rest energy from the non-relativistic one.

By seeking a solution of Eq. (15) in the form ¥, (¢/,r’) o< exp(—i€t//hi+ik-r’), one
obtains the conventional spectrum of graphene

E(k)=+VR*V2K2 + A2+ & . (18)

Here, k denotes the wave vector measured from the Dirac point, K, and the signs & corre-
spond to the energy bands above and below this point. The energy £(0) corresponds to the
energy position of the Dirac point with the gap A taken into account.

Given that the K,, points are decoupled in Eq. (15), we proceed by analyzing a single point
and consider the following equation in the rest frame for the two-component pseudospinor
Y = W_,, omitting the valley and spin indices and the unit matrix o:

[i76, — &p +iv (010, + 028, ) — o3 Ay (¢, 77) =0. (19)

Multiplying this equation from the left by the operator ifd,, —Ep—ihv (01 Oy + 04 ay/)+03 A,
we arrive at the equation

(ih0, — Ep)* o + V2REVZ4p — A%p =0, (20)

which was the starting point of our previous work [36]. In that study, the spin and pseudospin
degrees of freedom of electrons in graphene were neglected. In the present work, we explicitly
include these degrees of freedom and base our analysis directly on Eq. (19).

3.2 Graphene in motion

Thus far, we have considered graphene at rest. We now turn to the case of intrinsically unde-
formed graphene rotating about an axis £ in the laboratory frame with angular velocity Q2. We
are interested in the effective wave equation at an arbitrary point in graphene. To derive this
equation, we adopt the method developed in Ref. [36], which is based on a covariant wave
equation formulated for a moving medium.

Let us denote by (eg s e’f , eg ) the orthonormal triad rigidly connected to the material, where
cey = u is the four-velocity, and e| and e} are unit vectors oriented along the specified
directions of the graphene lattice, for which our equation (19) is formulated.

[TV

Note that once the triad (eo, [ ez) is specified, the fourth vector eg that completes it to a

full space-time tetrad is uniquely determined by the orthonormality condition
g,uvegeg: Nab > (21)

together with the requirement of a consistent tetrad orientation. Here, g,,, is the space-time
metric in arbitrary coordinates, and 7,;, = diag (1,—1,—1,—1) denotes the Minkowski metric.
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We assume that the properties of the internal local structure (i.e., the crystalline lattice)
of the material in motion are insensitive to the small accelerations caused by its motion. This
means that the space-time (orbital) part of the effective equation, expressed in terms of the
comoving triad, can be obtained from Eq. (19) by replacing the partial derivatives with deriva-
tives along the corresponding comoving triad vectors.

We have the freedom to choose a separate tetrad with respect to which the intrinsic electron
spin is defined. The spin equations take their simplest form in a tetrad that is co-moving with
the laboratory frame but rotates about the axis of rotation with angular velocity 2. This tetrad
is described in Appendix A [see Eq. (A.5)], and it will also arise naturally in Sec. 5. Accordingly,
we adopt this tetrad throughout for the description of the intrinsic spin. In this tetrad, the spin
projection along the rotation axis is conserved.

The analysis of our approximation to the Dirac equation (13) in a crystal in a rotating
frame, presented in Appendix A, shows that the effect of rotation on the intrinsic spin in
the chosen tetrad takes a particularly simple form, identical to that for a free electron (see
Eq. (A.13) and Ref. [48]). This treatment of the electronic spin as that of a free electron is
justified insofar as the spin remains largely decoupled from the band structure. However, to
account for possible deviations from the free-electron case, we introduce an effective g-factor
gq characterizing the spin-rotation coupling. In pristine monolayer graphene, this factor is
expected to be close to 1, similarly to the effective magnetic g-factor gg, which is close to the
value of 2 [49,50]. Just as the magnetic g-factor, it may slightly depend on the orientation of
the rotation axis relative to the graphene plane. In other materials, where spin-orbit coupling
or other band effects are significant, it may deviate substantially from this value. Additional
aspects of this g-factor are discussed in Appendix B, where we also derive an approximate
relation g = gz — 1.

Under all these assumptions, Eq. (19) can be generalized to describe rotating graphene as

|:ifiu“3M —&p + goflsy + il (Ole‘f + aze‘;) Oy — G3A] Y =0, (22)

where Q = d¢/dr is the angular velocity of rotation with respect to the proper time 7 of
the graphene point under consideration, g, #~ 1 is the introduced effective g-factor, and
S = hazpm /2 is the operator of the electron’s intrinsic spin along the axis £ of rotation, which
is expressed through the Pauli matrices afp " acting on the intrinsic spin variable.

We emphasize that, in Eq. (22), rotation couples to the intrinsic (real) spin of the electron,
but not to the pseudospin associated with the sublattice degree of freedom. The pseudospinor
1 is defined with respect to the frame rigidly associated with the graphene lattice. Since the
components of 1) represent the probability amplitudes for occupying sublattices A and B, these
amplitudes remain invariant under the motion of the graphene sheet through space. This is
akin to an intrinsic spinor which, when associated with a specific tetrad, transforms as a scalar
under coordinate transformations.

The difference between intrinsic spin and pseudospin is that the latter is not associated
with any spin connection, provided the graphene lattice remains undeformed, as we assume
here. As aresult, it is not directly coupled to physical rotation of graphene in space. Pseudospin
arises from the lattice basis, and when the lattice rotates rigidly, the pseudospin basis rotates
with it.
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4 Sagnac and Mashhoon effects for Dirac quasiparticles

4.1 Rotating nanotube

As mentioned above, the case in which a magnetic field is applied parallel to the axis of a
carbon nanotube —i.e., when a magnetic flux ® threads its cross-section —was theoretically
studied in Ref. [13] (see also Refs. [12, 14] for reviews). For carbon nanotubes with large
diameters, the effects of graphene sheet curvature can be safely neglected. In this regime, the
electronic states near the Fermi level are well described by the same low-energy model as in a
flat graphene sheet, with the addition of periodic boundary conditions in the circumferential
direction, defined by the chiral vector L, imposed on the total wave function [12,14]. These
boundary conditions can be reformulated in terms of the envelope wave functions 1, and
Y. The presence of magnetic flux ¢ is incorporated by modifying the boundary conditions
with a phase factor exp(2mi®/®,), leading to Aharonov—-Bohm oscillations of the band gap,
as experimentally studied in [15]. The single-walled carbon nanotubes used in [15] had the
diameter d < 2nm and the observed Aharonov—-Bohm oscillations are dependent on their
chirality.

It is instructive to begin by considering the Sagnac effect in an analogous configuration,
where a nanotube rotates about its axis. This setup closely resembles the case of the Aharonov-
Bohm effect in a nanotube, where the coordinate along the circumferential direction is peri-
odic. The key distinction, however, is that the wave function need not satisfy periodic boundary
conditions. Furthermore, it is assumed that the radius R of the nanotube (or graphene cylin-
der) is sufficiently large, R > d /2, allowing one to safely neglect differences between zigzag,
armchair or chiral nanotubes thereby allowing the circumferential wave vector to be treated
as a continuous variable. The situation is more akin to the analysis of Aharonov—Bohm oscilla-
tions in systems with attached leads [1]. In the real experiment [15], it is not feasible to attach
the leads along the tube’s generatrix. Therefore, the following setup should be regarded as a
thought experiment. Nonetheless, it effectively illustrates the fundamental characteristics of
the Sagnac and Mashhoon effects.

Figure 2: Comoving coordinate system (x,y) in a nanotube of radius R rotating
around its symmetry axis with angular velocity Q relative to the laboratory frame.

Consider then a carbon nanotube of radius R rotating about its symmetry axis with angular
velocity Q, as illustrated in Fig. 2. We choose the local comoving coordinates (x,y) on the
surface of the rotating nanotube as illustrated in Fig. 2. Thus, the y coordinate runs along the
circumference of the cylinder, rendering it periodic with a period of 27R. The metric interval
on the graphene world hypersurface in the comoving coordinates (ct, x, y) is given by

ds? =y 2c2dt? —dx? —2QRdtdy —dy?, (23)

where y = (1 —Q%R?/ c2)_1/2 is the Lorentz factor.
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To write Eq. (22) in the chosen coordinates, it remains to determine the orthonormal triad
(eg , e‘f . eg ) This is straightforward because the four-velocity u* has only a temporal compo-
nent in comoving coordinates, and e‘l‘ is a unit vector directed along the x coordinate. The
remaining vector eg , tangent to the nanotube world hypersurface and pointing in the y coor-
dinate direction, is determined from the orthonormality condition (21), and the triad compo-

nents are

et =(r,0,0), ef=(0,1,0), eh=(yQR/c,0,y}). (24)

Using these components in Eq. (22), we obtain
. vQR . -1
lh')/ 1+_ZO-2 3t—5D+YgQQ.Sl+1ﬁV(O'13X+}f O'zay)_O-BA 'lp=0, (25)
c

where we have taken into account that Q = yQ and that the axis x of rotation is used for pro-
jecting the intrinsic spin. The calculated values of the resulting effects, whether or not they
include the Lorentz factor y, are not experimentally distinguishable [17], due to the minute-
ness of Q%R%/c? ~ 10721 (Q/Hz)? (R/cm)?. Nevertheless, we retain the factor y here and in
the following for the sake of formal consistency, as this factor enters the exact expressions for
the metric and tetrad components.

The electronic wave is supposed to enter the nanotube at y = 0, where it splits into two
components ', that propagate in opposite directions and later recombine after traversing the
circumference of the tube. First, we consider one particular component of the intrinsic spin
along the rotation axis. Then s; = const = £#/2.

Consider the case where the wave is not excited in the x direction so that its dependence
on x can be neglected. Solutions for the waves can be sought for in the form

Yi=yee %, Si=owt/y—kiy, (26)
where y. are constant pseudospinors, k, > k_ are the wave vectors, and w is the wave fre-
quency measured in the rotating frame, according to Eq. (2). Substituting this into Eq. (25),
we obtain an algebraic eigenvalue equation for pseudospinors y., which has a nontrivial solu-
tion if the determinant of the system vanishes. This gives the following equation for the wave
vectors k, :

YOQR)? _ 5
(ki 2 ) B H2y2 [(hw—é’D +78af2s1) _Az] : (27)
Its solution is OR
w
ky=7y [_cz + kn(w)] s (28)
where
1 5 5
kqo(w) = P \/(ﬁw —&p +78afs)” — A2, (29)

Equation (28) reproduces the universal expression (7) for our material and gives the usual
Sagnac fringe shift characterized by Egs. (8), (9) and (12), with electron’s mass in place of m,
if we recall that the frequency w contains a large contribution &,/h ~ m,c2 /.

As discussed in the Introduction, the electrons contributing to the Sagnac and Mashhoon
effects are those near the Fermi surface. For such electrons, the (relativistic) frequency is given
by Eq. (14) with k = kg, and is dominated by the electron’s rest mass, yielding w ~ m,c2 /.

The pseudospinors y., corresponding to distinct eigenvalues of the matrix operator in
Eq. (22), are intrinsically orthogonal. Consequently, interference between them cannot oc-
cur within the body of the nanotube. Instead, such interference arises only at the junctions
where the nanotube connects to external conductors —regions where the two modes begin to
propagate in parallel and are no longer pseudospin-orthogonal.
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One can show that the two solutions for pseudospinor in the case A = 0 are characterized
by the helicity condition

+0,8s =€xs, (30)

where € = sign(hw — &y + Y2afs1) corresponds to electrons (e = 1) or holes (¢ = —1), re-
spectively.

Let us now take into account possible non-trivial configurations of intrinsic spin. To sim-
plify the analysis, we set A = 0 in what follows. The corresponding wave numbers are then
given by

h B ( )

c
where k(w) is the expression (29) with Q =0 and A =0.
We consider the normalized initial state to be in the superposition given by

[Yin) =1+) + =), (32)

where |+) denote the (separately unnormalized) spin eigenstates with corresponding spin
projections along the rotation axis.

First, assume that the spin state remains unchanged as the two wave packets split equally
upon entering the nanotube. Then, after completing the round trip along the nanotube, the
corresponding wave functions, up to a common overall phase factor, take the form

1) = 502 (N2 ) + eOW2|))

1 (33)
|¢_> — Ee—165/2 (eieM/Z |+) + e—iGM/Z |_>) ,
where ) )
4Ry w2 27R Q
0=, Oy =t (34)

are, respectively, the Sagnac and Mashhoon fringe shifts. The final state is given by the super-
position

[Wand = 1) + ) = cos =2 (9972 ) + Ow/2 1), 35

We observe that the final state exhibits both the Sagnac effect, describing the probability
of detecting the electron and characterized by the fringe shift ©g, and the Mashhoon effect of
spin rotation, associated with the fringe shift ©,;. If the initial spin is in a mixed (unpolarized)
state, or if the spin is not observed, we must average over the spin projections, in which case
only the Sagnac effect remains observable.

Consider now a hypothetical situation in which the initial wave is split such that the
components with spin |+) in the superposition (32) propagate with wave vectors k., respec-
tively [28]. Then, after completing the round trip, the corresponding wave functions, up to a
common overall phase factor, take the form

py) =2 4) ) =02 ) (36)
where Ogy; = O5 + ;. The final state is given by their superposition
i) = [4) + [1h) = €O/2|4) + e On2 ) (37)

We observe that, in this case, there is no classical Sagnac interference effect, in the sense that
the probability of detecting the electron remains unity. The only observable phenomenon is
the Mashhoon effect of spin rotation, characterized by the combined fringe shift ©gy;.

Note that, while the nanotube configuration considered in this section is a gedankenex-
periment, the analogous setup for rotating graphene rings, considered in the next subsection,
is quite realistic.
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4.2 Rotating ring

As mentioned in the Introduction, numerous interference experiments have been conducted
on graphene ring structures. Consider then a thin planar ring made of graphene, rotating
about its symmetry axis while occupying an average radius R, as shown in Fig. 1. In the polar
coordinates (ct, 1, ¢) comoving with the ring, where x = rcos¢ and y = rsin ¢, the space-
time metric on the graphene hypersurface has the form

ds? =y 2c2dt? —2Qr2dtd¢p —dr? —r2d¢?, (38)

with the Lorentz factor y(r) = (1 — erz/cz)_l/z.
For a moment, consider graphene at rest, i.e., the case of Q = 0. In this case, it is convenient
to write Eq. (19) in the polar coordinates (Ref. [51]):

[iﬁ@t —&p +ihv (a,ar +0y rt 3¢) - U(r)og] Y =0. (39)

Here, we have introduced the polar Pauli matrices

. 0 ei®
O,=01C0s¢ +0,5in¢ = Ao o |
. (40)
_ [0 —ie?
Op =0,¢c08¢p —0sing = e 0 ,

and replaced the constant mass parameter A with a mass-type potential U(r), whose role is
to confine the electron’s wave function to the narrow ring (see [51-53]).

To obtain the wave equation in a rotating graphene in the polar coordinates of metric
(38), it is necessary to replace the orthonormal triad (8ct, o, r ! 8¢) present in (39) with a
new orthonormal triad rigidly attached to graphene, which we denote as (eo, e, e¢), and to
add a term connected with the intrinsic spin. We thus obtain [cf. Eq. (22)]

[i)‘icegaM —&p + goflsy + il (Uref +og eg) O — Uag] Y =0. (41)

As a side remark, we note that the locally observed energy £, and chemical potential in a
static gravitational field scale with position as 1/,/go0 = v [47, §,27], so they slightly depend
onr.

In the new triad, the timelike vector corresponds to the four-velocity of the material,
eg = u"/c; the radial vector remains unchanged; and the vector that points in the angular
spatial direction is determined by the orthonormality condition using metric (38) (the cor-
responding tetrad was adopted, e.g., in [54, 55] for the vacuum Dirac equation in rotating

frame):

Q
eg=(r,0,0), ¢=(0,1,0), e;’;:(%,o,y‘lr‘l). (42)

Substituting these tetrad components into Eq. (41) and taking into account that = yQ,
we obtain

Q
[ihy (1 + %(74,) 0; —Ep + 18aflss +ifv (arc?r + y_lr_10¢ 3¢) — UO-3:| Y =0, (43)
c
where the intrinsic spin is now projected along the z axis, which is the axis of rotation.

Similarly to the ansatz (26) of the previous case, we look for stationary solutions in the
rotating frame in the form

Yy = Xie_isi s Sy =wot—qs¢, (44)
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where w, is a constant frequency, and g, > g_ and y. are independent of t. As in the case of
nanotube, in the treatment of the Sagnac effect, the wave function need not satisfy periodic
angular boundary conditions, and our parameters g, are continuous.

Substituting (44) into (43), we obtain equations for the pseudospinors y. for a fixed z-
component s5 of the intrinsic spin:

vhiwQr
c2

(hw —&p +18qQlss + O'¢) X+ + iy (arc?r + y_lr_lod, 8¢) X+

— vy r_lqio¢ x+—Uo3x+ =0, (45)

where w = yw is the frequency observed in the rotating frame.
Given the structure of sigma-matrices (40), we look for solution in the form

(B0
*e = ( Epu(r) it /2 ) ' “o)

Then the pseudospinors

(80
2= (cn) “n

satisfy the equation

hwQr h 1
[ﬁw—5D+ngS253+(v 0)2 r——vqi)az]iiJrihval (8r+—)§i—U03§i=O. (48)
¢ Yr 2yr

Equation (48) is still exact, and we are now going to find its approximate solutions in
the limit of narrow ring. For a narrow ring (with width much smaller than the wavelengths
21mR/q.), we make an assumption that the radial pseudospinors &, (r) practically do not de-
pend on the state of circular motion, i.e., on q., having a universal confinement profile in
the narrow ring. Inspecting then Eq. (48), we conclude that the radial pseudospinors should
satisfy the equation

1
ihvol(ar+_)gi_UO'3€i:g€i, (49)
2yr

where £ is the energy eigenvalue for the confinement.
By virtue of Eq. (49), equation (48), in the limit of an infinitesimally narrow ring of radius
R, gives a purely algebraic relation:

vhiwQR Ry
T — 54+ |028+=0, (50)
c YR

(ﬁw _gD + YgQQS3) g:i: + (

where ED = &y — &, so that the energy £ simply shifts the value of the energy of the Dirac
point. We remember that &, in our approach contains a large contribution from the electron’s
rest energy m,c2, compared to which this energy shift is quite small.

Equations (49) and (50) effectively capture the freezing of radial momentum in Eq. (48),
in a manner analogous (but not identical) to the treatment of Aharonov—-Bohm oscillations a
non-rotating graphene ring (see [56] and references therein).

By setting 2 = 0 in Eq. (50), it is easy to see that it describes the waves with q. = *q
moving counterclockwise and clockwise, respectively. In the case of graphene, these waves
are protected by the conserved helicity [46,57], viz. qL0,§+ o< (hw —gD) &+. In terms of

the full pseudospinor (46), this reads .04 ¥+ o< (hw — ED) x+- Thus, depending on the sign

of icw — gD, we are dealing either with electrons (positive helicity) or with holes (negative
helicity).
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From the condition of the existence of non-trivial solutions of Eq. (50), we obtain

QR?’w YR ~
qe =7 iy_|hw_gD+YgQQSS| . (51
c hv

Substituting this back into Eq. (50), we obtain the helicity condition
+0,8: =€8y, Oy Xr = €Xx, (52)

where € = sign (ho) — ED + }ngng) corresponds to electrons (+1) or holes (—1), respectively.

Equation (51) reproduces the universal expression (7) for our material and gives the usual
Sagnac effect characterized by Egs. (8), (9) and (12), with electron’s mass in place of m, if we
recall that the frequency w contains a large contribution &y /f &~ m,c?/Hh.

Similarly to the case of a nanotube, the pseudospinors y. are orthogonal on the ring, as
corresponding to opposite eigenvalues of 0. As a result, interference between them cannot
occur during circular propagation within the body of the ring. Such interference arises only
at the junctions where the ring connects to external conductors—regions in which the two
modes begin to propagate in parallel and are no longer orthogonal. As discussed in the In-
troduction, the corresponding Mach-Zehnder electron interferometers are routinely used to
observe Aharonov-Bohm oscillations.

To give a full description of the interference effects in a ring, it is also necessary to take
the phases in the pseudospinor Eq. (46) into account. In the context of wave propagation, the
variable ¢ denotes the angle between the wave vector and the y-axis, which is rigidly aligned
with the graphene crystalline lattice.

Consider pseudospinor waves of the form (46) propagating along the ring circumference.
As we follow the waves y.(¢) that complete a full round trip along the ring, we observe that
they change sign:

Xz (F27) = —x:(0). (53)

In this sense, they accumulate the overall phase 7 or —, and this phase is commonly encoun-
tered in discussions of Aharonov—-Bohm effects in graphene [51,53,56] and is often referred
to as the Berry phase [58], owing to its topological nature [59]. For this reason, we will
also refer to the phase in (46) as the Berry phase. Due to the m-phase shift, conductance
minima in Aharonov-Bohm oscillations appear at integer values of ®/®, in Dirac materials,
in contrast to conventional systems with Schrodinger-type carriers, where they occur at half-
integer values [53,60]. These manifestations of the Berry phase have indeed been observed in
quasi-ballistic three-dimensional topological insulator nanowire devices that are gate-tunable
through the Dirac point [61].

Since both pseudospinors y. undergo a sign change (53) relative to their starting values,
no relative phase difference arises between the two waves from the round trip alone. Instead,
the relative phase factors between the waves emerge from the contribution of the points of
entry and exit from the ring, as illustrated in Fig. 3. The wave y,, propagating anticlockwise,
acquires an additional angular parameter change of A¢_, = —m upon entering and exiting the
ring, whereas the wave y_, propagating clockwise, experiences an angular parameter change
of A¢p_=m.

Therefore, the wave y ., propagating anticlockwise, acquires the total angular parameter
change ¢, = 2w — n = 7w between entering and exiting the ring, whereas the wave y_, prop-
agating clockwise, acquires the total change of ¢_ = —27 + © = —n. This angular parameter
change is constant and does not depend on the state of rotation.

To summarize, we consider the two waves y., which appear at the entrance to the ring in
the common pseudospin state: yy = (&1,&,)7 (this is actually just one wave before splitting).
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According to the reasoning above, at the exit of the ring, their pseudospin states take the form

gl e_1¢i/2
Xi:(gzeiqgi/z), (54)

where ¢, = +m. Thus, at the exit, we observe the relation y_ = e"y,, indicating a phase
difference of 7 between the two waves. This constant phase difference should be taken into
account when calculating the Sagnac phase shift.

S

NS 0% 8

A
RN

O -
..0‘8.’).0

Figure 3: Illustration of the Berry phase in a graphene ring. Left: Waves prop-
agating counterclockwise (+) and clockwise (—) around the full ring acquire Berry
phases ¢, = £ between entrance and exit. Right: For waves with entrance and exit
separated by an angular distance ¢ ,, both propagation directions acquire the same

Berry phase: ¢ = ¢, — .

The case of wave propagation along a planar ring involves an additional Berry phase be-
cause the wave vector k forms a varying angle with the underlying crystalline structure of the
graphene lattice. In contrast, for the case of nanotube discussed in Sec. 4.1, this angle remains
constant throughout propagation, and therefore no Berry phase is present in Eq. (26).

The initial and final states of the intrinsic spin in the case of propagation along a ring are
described by expressions quite analogous to Egs. (32) and (35), (37), but referred to the spin
projection s3 and incorporating a contribution due to the Berry phase.

Specifically, in the case of no spin splitting, the initial state (32), after the propagation
around the circle, becomes (up to a common irrelevant phase factor)

|'¢)+) — %ei(es—n)/Z (eiG)M/Z |+) + e—iGM/Z |_>) ,
(55)
) = %e—i(es—n)/z (/2 [4) + ¢71On/2|)) |

where the additional 7 in the phases is due to the Berry phase difference, and ©g and ©y; are
given by Eq. (34). The final state is given by the superposition

Oc — . .
[Wgn) = ) + ) = cos === (e'/2 ) + eiOw/2|))
=sin % (e'O/2|4) + e71OW/2|—)) (56)

This represents the Sagnac effect, with the fringe shifted by 7 relative to the previous case of
nanotube, along with the usual Mashhoon effect of spin rotation.
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In the case of spin splitting, the components with spin |+) in the superposition (32) prop-
agate with wave vectors q., respectively. Then, after completing the round trip, the corre-
sponding wave functions, up to a common overall phase factor, take the form

lp,) = el (@sy—7)/2 l+), ly_) = e 1(Osy—7)/2 -, (57)
where Og,; = ©g + ©);. The final state is given by their superposition
Wsin) = [1h3) + [p_) = OM/2 ) 4 T Omm2 ) (58)

Again, we observe that there is no classical Sagnac interference effect in this case, but only the
Mashhoon effect of spin rotation, characterized by the combined fringe shift Ogy; — 7.

4.3 Setup with two contacts

To facilitate comparison with the conventional treatment of the Sagnac and Mashhoon effects,
we have thus far considered a hypothetical setup in which waves propagating in opposite direc-
tions complete exactly one full loop around the material’s circumference. This configuration
corresponds to that of a classical Sagnac interferometer. In a different setup, the contacts are
placed at different angular positions around the graphene ring, with angular distance ¢, be-
tween them, as shown in the right image of Fig. 3. This corresponds to the aforementioned
Mach-Zehnder electron interferometers, where the input and output of the ring are usually
located directly opposite each other, with ¢, = m. Such interferometers are widely used to
study Aharonov—-Bohm oscillations and have been proposed as a platform for realizing the
Sagnac effect in graphene-based devices [32-35].

In the general case, for a wave propagating counterclockwise, the total Berry phase is given
by ¢, = ¢, — m. For a wave propagating clockwise, it becomes ¢p_ = 1 — (27— ) = ¢,.
Thus, in this configuration, both waves accumulate the same Berry phase. The Sagnac and
Mashhoon effects, under these conditions, are described as follows.

In the case of no splitting of intrinsic spin, the initial state (32), propagated along different
paths, at the exit point of the ring with angular position ¢, becomes, up to a common phase
factor exp[i©g (pp — ) /4],

i = 3% enpifg+ ‘j—M‘ a1 + e ia- @—M‘ ox) ).
T 4 (59)
) = Seioslt [exp (—i a+ f—M‘ (qu—zn)) 4) + exp (—i q- M (¢A—zn)) |—>] ,
7 4n

where the common Berry phase was omitted, and the Sagnac and Mashhoon fringe shifts ©¢
and ©,, respectively, are given by Eq. (34). In deriving this equation, we have used Eq. (51)
and made the notation

R -
q= ;—v (e — &) (60)

for the central angular momentum of the waves present in Eq. (51). The final state is given
by the superposition |Yg,) = [¢,) + |P_):

. €] e
) = ell™t O/ cos [ =2 4 |g + M| (pp—7) | |+)
4 4m
. e S
+ ellmaen/4l cog [ 25 4 g — Ml (g, — ) ||-) . (61)
4 4n

The spin-up and spin-down components differ only by the sign in front of ©y.
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For the pure Sagnac effect, one should average over the spin. We then use the identity
cos?(a+ b)+ cos?(a—b) =1+ cos2acos2b to calculate the electric current J o< |1/)ﬁn|2.
In the case |q| = ©);/4m, we obtain [cf. Eq. (10) noting that ¢ = kyR]

J o< 1+cos[% +2|q|(¢A—n)] cos[c;)—xw,\—n)} . (62)

In the case |q| < ©y;/4m, we have

Jocl +cos[% + ;)—;\T/I(qu—n)]cos[Zq((pA—n)] . (63)

All these expressions simplify in the case of the Mach-Zehnder interferometer when ¢, = T,
and become similar to the result (35). In the case of spin splitting (Mashhoon experiment),
the components with spin |+) in the superposition (32) propagate with angular momenta q,,
respectively. Then, after reaching the output, the corresponding wave functions, up to a com-
mon overall phase factor, take the form

lp,)=e®l+), [ )=eC-), (64)

where, depending on the value of g, we have

1 ]
2 (es+Len)ratou-m. 1=,
o= 1 (65)

Om Om
—(©s—0Oy)+ —0¢A +qm, <—,
4( S M) 4n¢A q lq] an

The final state is given by their superposition

W) = IP4) + [p_) =€ [+) + e €|-) . (66)

As before, we observe that there is no classical Sagnac interference effect in this case, but only
the Mashhoon effect of spin rotation.

5 Derivation based on the Larmor theorem

In Appendix B, we reproduced the Larmor theorem [44], demonstrating the (approximate)
mapping between the electron wave equation in a system rotating about some axis and the
wave equation in the system at rest but subject to a uniform external magnetic field along
the same axis. The relation between the angular velocity of rotation and the corresponding
magnetic field is given by

B=-— Q, (67)

where —e is the electron charge, and m, is the vacuum electron mass. The mapping also
includes an additional spin-rotation term, which is the last term in the Pauli equation (B.3).
For matter waves in vacuum, the Larmor theorem was previously employed in [42,62,63]
in the context of the Sagnac effect. It is also worth noting that the Larmor theorem has been
invoked to argue that the vacuum electron mass appears in the expression for the London mo-
ment — the magnetic moment acquired by a rotating superconductor [64] (see also Ref. [65]).
The Larmor theorem yields a universal prescription for calculating the electronic Sagnac
and Mashhoon effects in arbitrary systems: one first formulates an effective electronic Hamil-
tonian for the system at rest in a uniform magnetic field B, then replaces the magnetic field
with the effective field given by Eq. (67), and finally adds an additional spin term, s, to the
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Hamiltonian. Eventually, the spin-rotation coupling should be renormalized by the effective
g-factor gq.

Using this mapping, we will repeat the calculation of the Sagnac and Mashhoon effects
for a rotating ring and a nanotube in graphene to demonstrate consistency with the results
obtained in Sec. 4. This offers an alternative perspective on the emergence of the vacuum
electron mass in this effect, attributing it to its role in the Larmor equivalence expressed in
Eq. (67).

Our starting point is the one-electron equation for graphene at rest in a uniform magnetic
field, a generalization of Eq. (19), which takes the form

e

(ih@t &+ [01 (ih@x + SAl) + oy (ihay + SAZ)] — & Bs— Aag) Y=0, (68)

mec

where the electron’s spin is projected to the axis ¢ aligned with the magnetic field.

5.1 Rotating nanotube

Our nanotube rotates about the x axis, as illustrated in Fig. 2. The equivalent uniform magnetic
field should be aligned along the same axis. Consequently, the only nonvanishing component
of its covector potential in the basis of unit vectors (fc, qg, f') in polar coordinates can be chosen
as A, = —Br/2. At the surface of the nanotube, the only non-vanishing component of the
vector potential is then

1
A, = —EBR. (69)
Equation (68) then reads

e

(ihﬁt &yt [alihax + oy (iﬁay . ziBR)] — % Bs,— AU3) Y =0. (70)
C

m,c

Making the substitution (67), taking into account the last spin term in (B.3), and correcting
the spin-rotation coupling by the effective g-factor, g, we obtain the effective description of
an electron in a rotating graphene nanotube:

(170, — &p + gaS2sy +v[ 0110, + 05 (i3, + m,QR) ]| — Ac3)p =0. (71)

We compare this equation with Eq. (25) from the relativistic approach. Apart from the
appearance of the Lorentz factors y in (25), the only difference between the two equations is
the presence of the term with m,QR in (71), which replaces the operator ihyQR9,/ c? in (25).
When acting on the wave function (26), this operator yields the factor AiwQR/ c2.

Therefore, all solutions of Eq. (71) can be directly obtained from those in Sec. 4.1 by
replacing the combination w/c? with m,Q/k and setting the Lorentz factor everywhere to
unity. In particular, the wave vectors (31) will be given by

Q
+ k() + $251 72)
hv

m,QR
k:t: ¢

and the Sagnac and Mashhoon fringe shifts are given by

_ 4nR’m,Q o. - 2mRea0

C'-‘)S - h ) M v (73)

The interpretation of this result is, of course, identical to that presented at the end of Sec. 4.1.
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5.2 Rotating ring

Our ring now lies in a plane perpendicular to the z axis, which is the direction of a homoge-
neous magnetic field B with covector potential given by Eq. (A.9). In this case, the effective
equation for the graphene pseudospinor (68), with the electron’s intrinsic spin taken into ac-
count and with A replaced by the confining potential U, reads

(ihé‘t —&p+v [01 (ih(’}x + iBy) +0, (ih&’y - in)] - LBsg — Uag) Y=0. (74
2c 2c m,c

Proceeding to the polar coordinates by the substitution x = rcos¢, y = rsin¢, we write

Eq. (74) in the form

(iﬁ@t —&p+v [ih (Gr&’r +04 r—la¢) — Z%Brcr(p] - %Bsg — Uag)a,b =0, (75)

where the polar Pauli matrices o, and o4, are defined in Eq. (40). As a side note, we point out
that that the Landau levels obtained from Eq. (75) exhibit a relativistic-like nature, character-
ized by the energy scale +/fiv2|eB|/c, rather than the conventional scale for free nonrelativistic
electrons, fileB|/m,c.

Making the substitution (67), taking into account the last spin term in (B.3), and finally
correcting for the effective g-factor, we obtain the effective description of an electron in a
rotating ring:

[ih@t —&p + galsy + iy (a,ﬁr +0y r_18¢) +vm,Qrog — Ua3] Y =0. (76)

We compare this equation with Eq. (43) from the relativistic approach. Again, apart from
the appearance of the Lorentz factors y in Eq. (43), the only difference between the two equa-
tions is the presence of the term with m,Qr in Eq. (76), which replaces the operator iftyQr 3, /c?
in (43). When acting on the wave function (44), this operator yields the factor AiwQR/ c2.

Therefore, all solutions of Eq. (76) can be directly obtained from those in Sec. 4.2 by
replacing the combination wQ/c? with m,Q/f and setting the Lorentz factor everywhere to
unity. In particular, the wave vectors (51) will be given by

QOR?’m N R(hw—&p + gass3)
h hv ’

and the Sagnac and Mashhoon fringe shifts by Eq. (73). The interpretation of this result is
identical to that presented at the end of Sec. 4.2.

We conclude this section with an important remark. In the relativistic framework devel-
oped in Secs. 3 and 4, it was essential to define the Dirac point energy & relative to the
electron’s vacuum energy, specifically, by including the electron rest mass, as expressed in
Eq. (17). This requirement stems from the relativistic treatment and ensures that the spinor
phase transforms as a true space-time scalar.

In contrast, the effective non-relativistic equations (71) and (76), derived using the Larmor
theorem, inherently incorporate these relativistic elements through the explicit appearance of
the electron mass m, in the equivalence relation (67). In this non-relativistic context, &, can be
referenced to an arbitrary energy zero, as is customary in condensed-matter physics. Notably,
in the dispersion relation (29), which is common to both approaches, the frequency and the
Dirac-point energy enter only through their difference, fico — &p, allowing both quantities to
be shifted simultaneously by an arbitrary constant without affecting this expression.

As a consequence, the Sagnac fringe shift ©g given by Eq. (73), in which the electron’s
vacuum mass m, appears explicitly, remains invariant under such a shift. By contrast, the
relativistic expression in Eq. (34) involves the frequency w and therefore does not possess this
invariance.

q+ = 77)
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6 Conclusion

In this paper, we extend our previous analysis of the effects of spatial rotation in graphene [36]
to include both the pseudospin and the intrinsic spin of the propagating electron. Within this
extended framework, in addition to the standard Sagnac effect, we also account for a Berry
phase that is constant and independent of rotation. Furthermore, the intrinsic spin of the
electron and its possible splitting give rise to a graphene-based analog of the Mashhoon effect.

Building upon our earlier work, we presented more detailed arguments supporting the
conclusion that the Sagnac fringe shift in graphene is determined by the vacuum mass of the
electron. Our first argument is based on the relativistic phase of the electron’s wave function,
which transforms as a scalar and necessarily includes a dominant contribution from the elec-
tron’s rest energy. This rest energy then contributes to the Sagnac fringe shift via an effective
Lorentz transformation. As a second argument, we invoke the effective Larmor theorem, which
establishes the equivalence between rotational motion and a uniform magnetic field, with the
proportionality constant between the angular velocity of rotation and the corresponding mag-
netic field involving the vacuum electron mass.

The Mashhoon fringe shift, which characterizes the dynamics of intrinsic spin, retains its
standard form in graphene, with its dependence on the Fermi velocity appearing in the usual
way. The expressions for the Sagnac and Mashhoon fringe shifts are presented in Eq. (73).

In analyzing the Mashhoon effect, we have neglected the potential kinematic contribution
arising from the Thomas precession of the electron’s spin due to its circular motion in a ring
or nanotube. Similar to what occurs in neutron interferometry [28], this effect is likely to
contribute a constant (i.e., Q-independent) term to the Mashhoon fringe shift ®;, on the
order of (v/c)? ~ 107°. This issue requires special analysis [66].

We examined the Sagnac and Mashhoon effects in two systems. The first is a long nanotube
rotating about its axis, considered as a thought experiment. The second is a rotating ring,
assumed for simplicity to be infinitesimally narrow. This latter configuration offers a practical
realization, as Aharonov—Bohm oscillations have been extensively studied in graphene rings.
The descriptions of the Sagnac and Mashhoon effects are quite similar in both cases. However,
the ring geometry exhibits an additional nontrivial contribution from the Berry phase. This
stems from the fact that, in a ring, the wave vector of the propagating electron forms a varying
angle with the underlying crystalline structure of the graphene lattice, whereas in a nanotube,
this angle remains constant throughout propagation.

In the present work, we restrict ourselves to the simplest analytical treatment of the contin-
uum model of a graphene ring with frozen radial motion. This allowed us to reveal the main
features of the Sagnac and Mashhoon effects in graphene. More subtle features associated with
the role of edges, their geometry, disorder, mixture of types of edge termination, leading to
possible intervalley coupling and affecting pseudospin, require further investigation, perhaps,
on the basis of numerous existing studies; see, e.g., Refs. [3,51,53,56]. This will definitely
become necessary for practical realization of the Sagnac effect in graphene interferometers.

Let us now discuss the conditions required for observing the Sagnac and Mashhoon effects
in solid-state interferometers. It is convenient to express the Sagnac fringe shift from Eq. (73)
in terms of the Compton wavelength, A = 27f1/m,c ~ 0.0243 A, yielding the estimate:

8m2R%Q R} Q
Oy = L n 10—7(—) = (78)
cAc nm/ Hz

The Larmor theorem allows one to map the results obtained for Aharonov—-Bohm oscil-
lations by simply replacing the corresponding oscillatory expression exp (2i®/®,) with the
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expression exp (27id /®,), where the effective rotational flux is given by

21R%c m,Q
b =——"""—. (79)
e
The resulting phase 27 &, /®, corresponds to the rotational (Sagnac) phase accumulated by
an electron traveling around the ring [44].
However, the smallness of the estimate in Eq. (78), being a consequence of the extremely
weak effective Larmor magnetic field,
2m,c

Q
B Q~ 1.14 x 10_7(—)G, 80
Q e Hz (80)

makes it practically impossible to observe a rotational analog of the Aharonov—Bohm oscilla-
tions by varying the rotation frequency, since &, /%, < 1.

Existing Aharonov—Bohm interferometers have radii on the order of R ~ 0.5um [5, 9],
whereas experiment with electrons in vacuum have used enclosed areas of approximately
nR? ~ 3.9mm? [27] making it approximately 5 x 10° times more sensitive. This is why,
to enhance the Sagnac effect, it has been proposed to use a series of 10° to 107 rings in order
to achieve a signal-to-noise ratio greater than 1 for sub-Hertz rotations [32,34,35]. It is worth
noting that arrays of rings can also be realized experimentally [67].

The ratio of the Mashhoon to Sagnac fringe shifts can be estimated as

Ou _8acie m 81)
©s 4mv R v R

Taking into account that ¢/v & 300 for graphene, and using the same value R = 0.5 pm, we
estimate the ratio ©,,/©g ~ 10~*, which is six orders of magnitude larger than the value
reported in Ref. [30]. This ratio can be further increased by using materials with a low Fermi
velocity. For example, a 3D topological insulator Bi,Te; is a promising candidate due to its
notably low Fermi velocity [68], v ~ 3260m/s, which is over 300 times smaller than that of
graphene. As a result, the ratio ©,;/©g is estimated to be approximately 0.03.

This raises the question of whether the Mashhoon effect can also be realized in solid-state
systems. As discussed above, this requires that electron spins be oriented in opposite directions
for waves propagating clockwise and counterclockwise [28]. We propose that this configura-
tion can be realized by covering the two arms of the Mach-Zehnder interferometer with fer-
romagnetic layers having opposite magnetization directions. Techniques for controlling spin
orientation in this way are commonly employed in the fabrication of spintronic devices (see,
e.g., Refs. [69,70]).
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A Dirac and Pauli equations in a rotating frame

The Dirac equation for a bispinor ¥ describing an electron with vacuum mass m, and electric
charge —e in a gravitational field (or in arbitrary coordinates in flat space-time) reads

Y“eﬁ[iﬁ(8“+wu)+EAH]\If—mecq:o, (A1)
c

where e} is the tetrad basis, A, is the covector potential of the external electromagnetic field,
and

wy = %wzb [Ya’ Yb] (A.2)
is the spin connection. The Latin indices a = 0, 1, 2, 3 refer to the tangent space, and the Greek
indices yu = 0,1, 2,3 refer to the world coordinates. The matrices y® are the usual constant
Dirac gamma-matrices.

We denote the laboratory inertial coordinates by (c t',x",y' 2 ), and the coordinates of the
system rotating about the z’ axis with constant angular velocity Q by the same letters without
primes. They are related by the transformation

x' = xcosQt — ysinQt, ¥ = ycosQt + xsinQt, 2 =z, t'=t. (A.3)

The space-time metric in these coordinates reads
ds? = c2dt"? —dx"? —dy’? —dz’? = 2dt®> — (dx — Qydt)* — (dy + Qxdt)* —dz®. (A.4)

First of all, we need to choose the tetrad basis to which we refer the spinor. In a conven-
tional approach, the tetrad basis is chosen as that of the laboratory frame but rotating about
the 2’ direction with angular velocity €, so that the two basis vectors in the rotation plane
are directed along the (rotating) x and y axes. For the tetrad e, = e} d,, expressed in the
coordinates of the rotating frame, this gives (this tetrad was also adopted in [48,71,72])

ce0=8t+Q(y3x—x8y), e;=20,, e, =0

Yo €3 = 8z . (AS)

The spin connection in this tetrad frame can be readily calculated (e.g., by using Cartan’s struc-
ture equations). The only non-zero component of the spin connection form w? = wzb dx*
is

w?=—w?'=0dt. (A.6)

The covector potential A, in (A.1) is a superposition of the electromagnetic field induced
by the lattice and the external field. We assume the presence of an external homogeneous mag-
netic field with component B along the z’-axis in the non-rotating frame. The corresponding
electromagnetic field A = A‘;"tdx“ is then

ASXt — %B (y’dx’—x’dy’) — %B [ydx—xdy—ﬂ(x2+y2)dt:| . (A.7)

Note that AZ"teg =0.

In the rotating frame, both the metric and the crystal are stationary, so the electromagnetic
potential A, can also be chosen to be stationary. For the crystal electric field, we set Ay =V
independent of time, and we neglect other components of the intrinsic covector potential in
the rotating frame. The crystalline structure is rotating as a whole, and we assume that its
intrinsic form remains unchanged (in other words, we neglect its intrinsic deformation due to
local acceleration).

23



784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

SciPost Physics Submission

Combining all our previous expressions, we can write equation (A.1) in the rotating frame
in the form

i .
[YO (ih@t +QL, + IZQ [y1,72]+ eV) +eyt (ihé’i + SAi)] W—m,c2W =0, (A.8)
where L, =i ( yO, — xﬁy) is the operator of the z-component of angular momentum, and

Aidxt = %B (ydx —xdy) (A9)

is the covector potential of the external magnetic field as it appears in the rotating frame.
We are interested in the non-relativistic limit of Eq. (A.8). This is most conveniently done
in the so-called standard representation of the Dirac gamma-matrices [73, § 21]:

1 O ; 0 oy ; ; 0 o;
=0 _ i i i—.,0., 0 __ i
P=ry (o —1)’ 14 (—ai 0 ) “=ry (ai 0)’ (A.10)

where o; are the two-dimensional Pauli matrices. We have

. o 0
[vi7;]=—2i€n 2k, S = ( 0" Ok) . (A.11)

According to the standard derivation [73, § 33] of the leading non-relativistic limit, we
introduce the two-component spinors ¢ and y such that

O = eimec’t/h (;ﬁ) . (A.12)

Then, in the leading non-relativistic approximation, the spinor 1 satisfies the Pauli equation
in the rotating frame:

. 1 . e \2 eh
(1hat+mz)¢=[2 Z(lﬁ@i+zAi) —eV+> BGZ:|1/), (A.13)

e mec

with the operator of total angular momentum J, = L, + ho,/2, and 0, = 03.

B Equivalence of rotation and magnetic field

The Pauli equation (A.13) can be written in the form

W 2p2,.2 il
o) = | — vZ—eV—(Q— B)Lz+e L —(Q— ¢ B)hGZJr—QaZ P,
2m, 2m,c 8m,c? 2m,c 2
(B.1)
where 12 = x2 + y2.
Introducing the effective field
2
B =B — meCQ, (B.2)
we write Eq. (B.1) as
. 1 9 9 € 5 h
1h8t1/) = H(Beff)— Emeﬂ re+ Z—BQT' + EQO'Z ’t/) 5 (B.3)
c
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where H (B) denotes the electronic Hamiltonian in the material at rest in a magnetic field B:

2 2p2..2

h = B
H(B)=—3 F2oev+ 2 4 © B(L,+ho,). (B.4)

m, 8m,c2  2m,c

Equation (B.3) includes both the magnetic field-rotation and spin-rotation couplings, rep-
resented by the last two terms, respectively, which also appear in the non-relativistic treatment
presented in [44]. In the absence of an external magnetic field (B = 0), the operator on the
right-hand side of (B.3) differs from the Hamiltonian H (B.g) —defined in (B.4) and describ-
ing the material at rest in the effective external magnetic field B.;— only by the presence of
an additional centrifugal potential energy term —m,Q?r?2/2, which can be combined with the
electric potential energy —eV, and by the spin-rotation coupling term AQ20,/2. These minor
differences between the two Hamiltonians represent another form of the well-known Larmor
equivalence theorem [44]. It should be noted that the effective mass m* emerges as a result
of considering the electron motion within the lattice potential V.

By virtue of this Larmor theorem, the Sagnac effect for any system can be interpreted as
a spin-dependent Aharonov—Bohm effect in the presence of the effective magnetic field given
by (B.2), together with the extra terms in (B.3). Notably, it is the vacuum electron mass that
appears in (B.2). Similar conclusions were drawn in [44] by analyzing the classical form of a
non-relativistic electronic Hamiltonian in a rotating frame.

In general, equations (B.1) or (B.3) show that, to linear order in the field or rotation fre-
quency, the Larmor correspondence (B.2) holds for orbital motion. However, for spin, the
correspondence between the magnetic field and rotation has a different form due to the last
term in (B.1) or (B.3). This justifies our approach in Sec. 5, in which we apply the Larmor the-
orem to the orbital motion (extending spatial partial derivatives by the corresponding effective
vector potential), while introducing the g-factor for intrinsic spin.

We recall that the g-factor gz associated with the magnetic field appears in the effective
spin Hamiltonian, defined as

Hp e = upgpBS,/h, (B.5)

where up = efi/2m,c is the Bohr magneton, and S, = ho,/2 is the spin operator (see [1,50]
and references therein). It is measured in electron spin resonance experiments and should
meet the resonance condition

<Lz + gOSZ> =8B <Sz> E] (B6)

where g, = 2 is the magnetic g-factor for a free electron in Dirac’s theory, and the angle
brackets indicate the expectation value with respect to the electronic state in the solid.

In quite a similar way, we introduce a rotational g-factor g in the effective Hamiltonian
describing the coupling between rotation and spin:

HQeff:_gQQSZ' (B7)

Examining the Q-dependent coupling in Eq. (B.1), we observe that it will be given by a relation
similar to (B.6):
(Lz + gOSz _Sz> = &n (Sz> . (B.8)

Combining Egs. (B.6) and (B.8), we obtain a noteworthy relation between the magnetic
and rotational g-factors:

gao=¢g5—1. (B.9)

For a free electron, this relation is naturally satisfied: gz = 2 while g = 1.
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