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Abstract

We investigate the Sagnac and Mashhoon effects in graphene, taking into account both
the pseudospin and intrinsic spin of electrons, within a simplified model of a rotating
nanotube or infinitesimally narrow ring. Based on considerations of the relativistic phase
of the wave function and employing the effective Larmor theorem, we demonstrate that
the Sagnac fringe shift retains a form analogous to that for free electrons, governed by the
electron’s vacuum mass. In the case of a narrow ring, an additional π-phase shift arises
due to the Berry phase associated with the honeycomb graphene lattice. The Mashhoon
fringe shift retains its conventional form, with its dependence on the Fermi velocity.
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1 Introduction21

Matter-wave interferometry serves as a powerful method for exploring quantum phenomena22

and their practical applications. A particularly clear manifestation of quantum interference in23

solid-state systems is the observation of periodic conductance oscillations in ring-shaped struc-24

tures subjected to a magnetic field (see Ref. [1]). These oscillations arise from the Aharonov–25

Bohm effect, which reflects the phase difference accumulated by electron wavefunctions trav-26

eling along two distinct paths enclosing a magnetic flux. This phase difference is directly27

proportional to the magnetic flux enclosed by the paths and perpendicular to the plane of the28

ring, normalized by the magnetic flux quantum Φ0 = 2πħhc/e, where ħh is the reduced Planck29

constant, −e < 0 is the electron charge, and c is the speed of light in vacuum. The Aharonov–30

Bohm effect has been extensively studied in mesoscopic rings fabricated from metallic films31

and semiconductor heterostructures, contributing significantly to the development of meso-32

scopic physics.33

Over the past two decades, graphene has emerged as an exceptional platform for study-34

ing the Aharonov–Bohm effect and other quantum interference phenomena, thanks to its long35

phase coherence length, on the order of several microns at temperatures below 4 K [2] (see36

also the reviews in Refs. [3, 4]). The first experimental observation of the Aharonov–Bohm37

effect in a two-terminal, gated ring structure fabricated from exfoliated single-layer graphene38

was reported in Ref. [5]. Subsequent studies explored four-terminal resistance in similarly39

structured rings with side and back gates, revealing high visibility of Aharonov–Bohm oscil-40

lations, up to 10% in amplitude [6, 7]. The Aharonov–Bohm effect was also investigated in41

graphene rings incorporating a p–n–p junction, where no significant change in the oscillation42

period or amplitude was observed in this dipolar regime [8].43

A notable advancement came with the realization of an electron interferometer defined44

entirely by electrostatic gating in encapsulated bilayer graphene, which exhibited a phase co-45

herence length exceeding that of etched devices [9]. More recently, Aharonov–Bohm oscilla-46

tions were observed at 4 K in graphene rings fabricated from chemical vapor deposition-grown47

graphene, marking a step forward in operational temperature compared to earlier exfoliated48

devices [10]. Finally, Aharonov–Bohm oscillations have been demonstrated in magic-angle49

twisted bilayer graphene for both dispersive and flat-band electrons [11]. The same moiré50

device also enabled observation of the Little–Parks effect within the superconducting phase,51

evidenced by oscillations in magnetoresistance and critical current, thereby confirming charge-52

2e pairing.53

It is worth noting that carbon nanotubes were studied well before the discovery of graphene54

[12]. Single-walled carbon nanotubes have long served as a theoretical benchmark for model-55

ing the Aharonov–Bohm effect, due to their effectively one-dimensional nature, which allows56

the radial motion of electrons to be neglected [12–14]. The Aharonov–Bohm effect was ex-57

perimentally observed in a suspended chiral single-walled carbon nanotubes by measuring58

its conductance under a magnetic field applied along the tube’s axis [15]. Aharonov–Bohm59

conductance oscillations were also reported in ballistic multi-walled carbon nanotubes [16].60

While carbon nanotube experiments are highly sophisticated and have provided key insights61

into quantum interference, graphene offers a more versatile and tunable platform for exploring62

such phenomena.63
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While the Aharonov–Bohm effect arises from a static magnetic field enclosed by and per-64

pendicular to the electron paths, interference patterns can also result from the Sagnac ef-65

fect. It refers to the phenomenon in which a phase shift occurs between two coherent beams66

propagating in opposite directions within an interferometer that is rotating as a whole (see67

Refs. [17–20] for reviews).68

Although originally discovered for light waves [21, 22], the Sagnac effect is a general in-69

terference phenomenon that applies to matter waves of any kind. It has been experimen-70

tally demonstrated with a wide range of quantum particles, including superconducting Cooper71

pairs [23], neutrons [24], and neutral atoms such as 40Ca [25]. More recently, the effect was72

observed in a Cesium atom interferometer [26]. In addition, Sagnac interference has been73

realized with free electron waves in vacuum [27].74

In 1988, Mashhoon suggested that spin–rotation coupling leads to a novel spin-rotation75

effect, characterized by a special phase shift [28] (see also Ref. [29]). The existence of this76

coupling was confirmed in a neutron interferometry experiment [30], in which a rotating77

magnetic field was employed. The ratio of Mashhoon to Sagnac phase shift in this experiment78

is of the order 10−10.79

It is well known that the rotational sensitivity of a matter-wave Sagnac interferometer for80

particles with rest mass m is significantly enhanced compared to that of an optical interferom-81

eter using light of frequency ω, exceeding it by a factor of [31]82

ϑ =
mc2

ħhω
=
ωm

ω
. (1)

Here,ωm = mc2/ħh denotes the de Broglie (or Compton) frequency of a particle with rest mass83

m. The estimate in Eq. (1) corresponds to the ratio of the Sagnac phase shifts for matter-wave84

and optical interferometers that enclose the same (projected) area and rotate with the same85

angular velocity. The resulting enhancement factor is substantial: for atoms, it is on the order86

of ϑ ∼ 1010, while for electrons it reaches approximately 106.87

This amplification, together with recent advancements in Aharonov–Bohm interferome-88

try, has motivated proposals to realize the Sagnac effect in solid-state systems using arrays89

of mesoscopic, ring-shaped Mach–Zehnder electron interferometers, including those based on90

graphene [32–35]. However, there is some controversy surrounding the estimate of the en-91

hancement factor ϑ presented in Refs. [32, 34], where the effective carrier mass m∗ is used92

in place of the rest mass. This issue is particularly evident in monolayer graphene, where93

the charge carriers exhibit a linear dispersion relation and effectively zero mass, resembling94

relativistic particles such as photons rather than massive ones.95

In our recent work [36], we argued that the Sagnac effect in Dirac materials, despite their96

relativistic-like quasiparticle dispersion, is nevertheless governed by the rest mass of a free97

electron. In the present paper, we provide additional arguments and evidence supporting98

this viewpoint. In particular, we employ the Larmor theorem to demonstrate a close connec-99

tion between the Sagnac and Aharonov–Bohm effects for electrons in arbitrary materials. We100

then apply this result to provide an alternative derivation of the Sagnac effect for electrons in101

graphene.102

In our previous studies, we limited our analysis to the squared Dirac Hamiltonian, thereby103

neglecting the pseudospin degree of freedom. In this paper, we extend our approach by explic-104

itly incorporating pseudospin as well as the electron’s intrinsic spin. Within this framework,105

the electron pseudospinor wave function in graphene acquires an additional Berry phase fac-106

tor [37], which plays a significant role in governing interference phenomena. Furthermore,107

we take into account the intrinsic spin of the electron and its possible splitting, which allows108

us to consider a graphene-based analog of the Mashhoon effect [28].109

The paper is organized as follows. In Sec. 2, we present a general description of the Sagnac110

effect in materials and argue that it is characterized by the the vacuum electronic mass in111
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solids. In Sec. 3, we describe the elementary excitation equations of graphene, and describe112

our method for obtaining covariant wave equations in comoving reference frame. In Sec. 4,113

we give a relativistic derivation of the Sagnac and Mashhoon effects for Dirac quasiparticles in114

a rotating nanotube and rotating planar ring. In Sec. 5, we provide an alternative derivation115

of these effects based on the non-relativistic Larmor theorem. We summarize and discuss our116

results in Sec. 6. Appendix A provides the necessary details for deriving the Pauli equation in117

a rotating frame, while Appendix B establishes and discusses the effective Larmor theorem.118

2 Sagnac effect for material particles: rest vs effective mass119

Consider a wave-like process occurring either in vacuum or within a medium and characterized120

by a phase S, which is a scalar function of space and time, that is, unambiguously defined121

at every point in space-time. The Sagnac effect for such a process can be derived from the122

following two observations:123

1. Let a detector follow a world line xµ(τ), where τ is its proper time. Then the frequency124

of the wave measured by this detector is given by125

ω=
dS (x(τ))

dτ
=

d xµ(τ)
dτ
∇µS = uµ∇µS , (2)

where uµ = d xµ/dτ denotes the four-velocity of the detector.126

2. In the instantaneous local inertial rest frame of a material element, the phase S satisfies127

the relation128

Ṡ2/c2 −
�

∇S
�2
=ω2/c2 − k2 , (3)

where the overdot and ∇ denote, respectively, the time and spatial derivatives in this129

frame, andω and k denote the frequency and the corresponding wave number measured130

in this frame. This relation can be generalized to an arbitrary coordinate frame, where131

it takes the covariant form132

gµν∇µS∇νS =ω2/c2 − k2 , (4)

with gµν being the space-time metric in this frame.133

For a simple setup of the Sagnac experiment, consider a thin ring of radius R, either com-134

posed of material or filled with vacuum, rotating uniformly with an angular velocity Ω. A135

source S, co-rotating with the ring, emits (or splits) waves that subsequently propagate in op-136

posite directions along the ring’s circumference. After completing their respective paths, the137

waves interfere at a detector D, which is also co-rotating with the system (see Fig. 1).138

Let us examine the Sagnac effect from the perspective of the rotating frame. In this frame,139

the space-time metric on the ring world sheet can be expressed in the form:140

ds2 = c2dτ2 − 2ΩRγdτd x − d x2 , (5)

where τ is the proper time of the ring material, γ =
�

1−Ω2R2/c2
�−1/2

is the Lorentz factor141

associated with rotation, and x is the spatial periodic coordinate along the ring with period142

2πR.143

Note that the ring is made of a solid material and, therefore, should undergo Lorentz144

contraction when set into rotational motion. Thus, the radius R refers to its value in this145

rotating state as measured in the laboratory frame. For a free, unsupported ring, the relation146

γR = R0 would hold, where R0 is the radius of a non-rotating ring. However, if the ring is147
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R

D

S

u= ΩR

Figure 1: Schematic of the Sagnac experiment. Waves originating in phase at
the source S propagate in opposite directions around a rotating loop, producing a
measurable phase shift at the detector D.

supported — as is typically the case — its deformation during rotation depends on the strain148

in the supporting material and may be less pronounced.149

Considering two waves that start with identical phases at the position x = 0 and propagate150

in opposite directions, we seek a solution for their phases in the form151

S± =ωτ− k±x , (6)

where k+ > k− are the corresponding wave vectors. Assuming, for simplicity, the dispersion152

relation to be isotropic in the rest frame and applying relation (4) with metric (5) to both153

phases S±, we obtain the expression for the wave vectors:154

k± = γ
�

ΩRω/c2 ± k
�

. (7)

The Sagnac fringe shift ΘS = S− − S+, accumulated after both waves complete one full circle155

around the ring, is given by156

ΘS = 2πR (k+ + k−) =
4πR2γωΩ

c2
. (8)

The angular displacement of the interference fringes along the circular detection path is157

φS =
ΘS

R (k− − k+)
= −

2πRvphΩ

c2
, (9)

where vph =ω/k is the phase velocity of the wave.158

If the waves do not complete a full circle but instead interfere at an angle φA measured159

along the path of the wave with wave vector k+, then the resulting fringe shift is given by160

Θ = k+RφA + k−R (2π−φA) =
1
2
ΘS + 2kγR (φA −π) . (10)

The first term in this expression depends linearly on the angular velocity Ω of rotation, while161

the second term is practically independent of Ω and reflects the simple geometric fact that162

counter-propagating waves traverse different path lengths before reaching the observation163

point.164

A notable feature of the Sagnac fringe shift (8) or (9) is that it depends on the frequency165

of the corresponding wave measured in the rest frame of the medium. The dependence of166

ΘS on the wavenumber k emerges only through the dispersion relation ω(k). For a classical167
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wave-like process, such as a sound or electromagnetic wave, the definition of frequency is168

unambiguous, as it is a directly observable and measurable quantity. For quantum waves, the169

issue is more subtle. In non-relativistic quantum mechanics, the phase of a wave function is170

not a true scalar, as it transforms non-trivially under changes between inertial frames [38–40].171

Consequently, one cannot directly substitute the non-relativistic expression ω = ħhk2/2m into172

(8) or (9) to derive the Sagnac effect for a free particle of mass m.173

For particles in vacuum, the resolution is straightforward: one can either apply the Galilean174

transformation to the phase [39], or alternatively, adopt a fully relativistic wave equation, such175

as the Klein–Gordon or Dirac equation, where the phase factor transforms as a true scalar. In176

this latter case, we have177

ħhω=
p

m2c4 +ħh2k2c2 = mc2 +
ħh2k2

2m
+ . . . , (11)

and the first term in this expansion dominates in the non-relativistic limit, leading to the well-178

known result for the Sagnac effect [39,41–43]179

ΘS ≈
4πR2mΩ
ħh

, φS ≈ −
2πRmΩ
ħhk

. (12)

Results regarding the Sagnac effect for electrons in mesoscopic systems remain limited180

and controversial. In Refs. [32,34], it was suggested that Eqs. (12) could be applied with the181

effective mass m∗ substituted for the mass m. However, this substitution is not well-founded,182

since the effective mass m∗ arises solely as a parameter in the low-energy expansion of the183

band structure E(k) applied in the vicinity of the Fermi level. Furthermore, there exists a184

broad class of Dirac materials which have charge carriers that behave like massless relativistic185

particles, exhibiting a pseudo-relativistic dispersion E(k)∝ k.186

In this regard, it is useful to start with a relativistic field and recall the original Dirac187

equation describing an electron with vacuum mass me and charge −e in a crystalline lattice at188

rest:189

γµ
�

iħh∂µ +
e
c

Aµ
�

ψ−mecψ= 0 , (13)

where Aµ is the covector potential of the electromagnetic field of the crystal. This equation is190

invariant with respect to local gauge transformations, and the observables such as the current191

density ψ̄γµψ are gauge-invariant. For a static crystalline lattice, there exists a unique gauge192

in which Aµ is static and periodic in space, vanishing at spatial infinity outside the material.193

Solutions to the Dirac equation are given by the Bloch theory and determine the one-194

particle electronic spectrum, hence, the dispersion relation195

ħhω(k) = mec2 − ϵ(k) . (14)

Here, ϵ(k) is the binding energy of electron in a state with Bloch wave number k. Note that196

the phase of the wave function in the relativistic equation (13) is a scalar, and its temporal197

derivative corresponds to the frequency defined in (14).198

For real systems at low temperatures, only electrons at the Fermi level, with the correspond-199

ing Bloch wavenumber kF, will participate in the Sagnac effect. Consequently, the Sagnac ef-200

fect for electrons in a crystalline lattice can be derived by inserting k = kF into the general201

expressions (8) and (9), in view of Eq. (14). In the non-relativistic limit, the result reduces to202

Eq. (12), with the vacuum electron mass me substituted for m.203

These conclusions may appear puzzling, as they imply that the Sagnac effect in all materials204

is overwhelmingly dominated by the large electron rest energy mec2. However, this result can205

also be derived using the effective Larmor theorem, which establishes the equivalence between206

rotation and a uniform magnetic field [44]. The universality of the Sagnac effect for electrons207
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in mesoscopic systems then follows from the universality of the Aharonov–Bohm effect. We208

will use this approach in Sec. 5.209

In this paper, we investigate the Sagnac effect for electrons in graphene. The unique struc-210

ture of graphene introduces subtle yet significant complications: it requires treating the elec-211

tron’s spinor amplitudes separately on the two sublattices, A and B, leading to the emergence of212

an additional degree of freedom, the pseudospin. However, the main generic features of the213

Sagnac effect outlined above — particularly its dependence on the vacuum electron mass —214

remain valid.215

In the following, we consistently treat the relevant spinors as relativistic and account for216

the contribution of the electron mass to their phase frequency. Note that the role of particle217

mass in the Sagnac effect has also been discussed in [45].218

3 Model of rotating graphene219

3.1 Graphene at rest220

The low-energy quasiparticles in a pure non-deformed graphene at rest are described by the221

the envelop wave function Ψs

�

t ′, r ′
�

which satisfies the following equation:222

�

Γ 0 (iħh∂t ′ − ED) + iħhv
�

Γ 1∂x ′ + Γ
2∂y ′
�

− Γ 3∆
�

Ψs

�

t ′, r ′
�

= 0 . (15)

Here, the primes denote the inertial coordinates, r ′ =
�

x ′, y ′
�

, and v is the Fermi velocity. The223

4× 4 matrices Γµ, µ = 0, 1,2, 3, satisfy the anticommutation relations for the Dirac matrices224

and are given in the Weyl (chiral) representation225

Γ 0 = τ1 ⊗σ0 =

�

0 σ0
σ0 0

�

, Γ i = −iτ2 ⊗σi =

�

0 −σi
σi 0

�

, i = 1,2, 3 , (16)

where the Pauli matrices τi , σi , i = 1,2, 3, as well as the 2×2 unit matrices τ0 and σ0, act on226

the valley (Kη with η = ±) and sublattice (A, B) indices, respectively, of the four-component227

pseudospinor ΨT
s =
�

ΨT
+s,Ψ

T
−s

�

=
�

ψAK+s,ψBK+s,ψBK−s,ψAK−s

�

. Here, s = ± labels the intrinsic228

spin components.229

This representation is derived from a tight-binding model for the 2pz (π) orbitals of carbon230

atoms on the hexagonal graphene’s lattice (see, e.g., Ref. [46]). We consider both massless231

Dirac–Weyl fermions in pristine graphene and massive Dirac fermions with a mass (gap) pa-232

rameterized by ∆. We remind that the matrix γ3 for the description of graphene as well as233

in QED2+1 is used for the construction of the mass term rather than for the irrelevant spatial234

coordinate z′.235

The energy ED represents the energy level of the Dirac point relative to a chosen reference236

point. As discussed in Sec. 2 (see also Ref. [36]), Eq. (15) the envelope wave function origi-237

nates from the Schrödinger equation for electrons in a crystalline lattice, which itself is derived238

from the fundamental Dirac equation (13) governing electron–ion interactions in solids. This239

implies that the full relativistic wave functions of electrons in solids include a rapidly oscillat-240

ing factor exp
�

−imec2 t/ħh
�

. Although this term is typically unobservable and often omitted,241

it plays a crucial role in the context of the Sagnac effect in our formalism. Therefore, when242

analyzing Eq. (15), we set [see Eq. (14)]243

ED = mec2 − ϵD , (17)

where ϵD is the binding energy of electron at the Dirac point. It includes both the work function244

and the electrostatic energy. This ensures that the frequency component is present in the245
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solutions relevant to the Sagnac effect. The binding energy ϵD is negligible compared to the246

electron’s rest energy mec2.247

In thermodynamical considerations, one often also includes a chemical potential µ in248

Eq. (15). It characterizes the carrier imbalance, that is, the difference between the densities of249

electrons and holes. In graphene, the value of µ can be tuned by applying a gate voltage, allow-250

ing for control over the type of charge carriers (electrons or holes). This technique is routinely251

employed in experiments on Aharonov–Bohm oscillations [5–9,11]. The electron matter wave252

responsible for the Sagnac effect is of the same nature as those observed in existing electron253

interferometers exhibiting Aharonov–Bohm oscillations. The corresponding wave numbers are254

given by the Fermi wave vector kF, whose magnitude is determined by |µ|= ħhvF kF for ∆= 0.255

The combination ED + µ corresponds to the relativistic chemical potential [47] which differs256

by the rest energy from the non-relativistic one.257

By seeking a solution of Eq. (15) in the form Ψs

�

t ′, r ′
�

∝ exp
�

−iE t ′/ħh+ ik · r ′
�

, one258

obtains the conventional spectrum of graphene259

E(k) = ±
p

ħh2v2k2 +∆2 + ED . (18)

Here, k denotes the wave vector measured from the Dirac point, Kη, and the signs ± corre-260

spond to the energy bands above and below this point. The energy E(0) corresponds to the261

energy position of the Dirac point with the gap ∆ taken into account.262

Given that the Kη points are decoupled in Eq. (15), we proceed by analyzing a single point263

and consider the following equation in the rest frame for the two-component pseudospinor264

ψ= Ψ−s, omitting the valley and spin indices and the unit matrix σ0:265

�

iħh∂t ′ − ED + iħhv
�

σ1∂x ′ +σ2∂y ′
�

−σ3∆
�

ψ
�

t ′, r ′
�

= 0 . (19)

Multiplying this equation from the left by the operator iħh∂t ′−ED−iħhv
�

σ1∂x ′ +σ2∂y ′
�

+σ3∆,266

we arrive at the equation267

(iħh∂t ′ − ED)
2ψ+ v2ħh2∇2

r ′ψ−∆
2ψ= 0 , (20)

which was the starting point of our previous work [36]. In that study, the spin and pseudospin268

degrees of freedom of electrons in graphene were neglected. In the present work, we explicitly269

include these degrees of freedom and base our analysis directly on Eq. (19).270

3.2 Graphene in motion271

Thus far, we have considered graphene at rest. We now turn to the case of intrinsically unde-272

formed graphene rotating about an axis ℓ in the laboratory frame with angular velocity Ω. We273

are interested in the effective wave equation at an arbitrary point in graphene. To derive this274

equation, we adopt the method developed in Ref. [36], which is based on a covariant wave275

equation formulated for a moving medium.276

Let us denote by
�

eµ0 , eµ1 , eµ2
�

the orthonormal triad rigidly connected to the material, where277

ceµ0 = uµ is the four-velocity, and eµ1 and eµ2 are unit vectors oriented along the specified278

directions of the graphene lattice, for which our equation (19) is formulated.279

Note that once the triad
�

eµ0 , eµ1 , eµ2
�

is specified, the fourth vector eµ3 that completes it to a280

full space-time tetrad is uniquely determined by the orthonormality condition281

gµνeµa eνb = ηab , (21)

together with the requirement of a consistent tetrad orientation. Here, gµν is the space-time282

metric in arbitrary coordinates, and ηab = diag (1,−1,−1,−1) denotes the Minkowski metric.283
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We assume that the properties of the internal local structure (i.e., the crystalline lattice)284

of the material in motion are insensitive to the small accelerations caused by its motion. This285

means that the space-time (orbital) part of the effective equation, expressed in terms of the286

comoving triad, can be obtained from Eq. (19) by replacing the partial derivatives with deriva-287

tives along the corresponding comoving triad vectors.288

We have the freedom to choose a separate tetrad with respect to which the intrinsic electron289

spin is defined. The spin equations take their simplest form in a tetrad that is co-moving with290

the laboratory frame but rotates about the axis of rotation with angular velocity Ω. This tetrad291

is described in Appendix A [see Eq. (A.5)], and it will also arise naturally in Sec. 5. Accordingly,292

we adopt this tetrad throughout for the description of the intrinsic spin. In this tetrad, the spin293

projection along the rotation axis is conserved.294

The analysis of our approximation to the Dirac equation (13) in a crystal in a rotating295

frame, presented in Appendix A, shows that the effect of rotation on the intrinsic spin in296

the chosen tetrad takes a particularly simple form, identical to that for a free electron (see297

Eq. (A.13) and Ref. [48]). This treatment of the electronic spin as that of a free electron is298

justified insofar as the spin remains largely decoupled from the band structure. However, to299

account for possible deviations from the free-electron case, we introduce an effective g-factor300

gΩ characterizing the spin–rotation coupling. In pristine monolayer graphene, this factor is301

expected to be close to 1, similarly to the effective magnetic g-factor gB, which is close to the302

value of 2 [49,50]. Just as the magnetic g-factor, it may slightly depend on the orientation of303

the rotation axis relative to the graphene plane. In other materials, where spin-orbit coupling304

or other band effects are significant, it may deviate substantially from this value. Additional305

aspects of this g-factor are discussed in Appendix B, where we also derive an approximate306

relation gΩ = gB − 1.307

Under all these assumptions, Eq. (19) can be generalized to describe rotating graphene as308

�

iħhuµ∂µ − ED + gΩeΩsℓ + iħhv
�

σ1eµ1 +σ2eµ2
�

∂µ −σ3∆
�

ψ= 0 , (22)

where eΩ = dφ/dτ is the angular velocity of rotation with respect to the proper time τ of309

the graphene point under consideration, gΩ ≈ 1 is the introduced effective g-factor, and310

sℓ = ħhσ
spin
ℓ
/2 is the operator of the electron’s intrinsic spin along the axis ℓ of rotation, which311

is expressed through the Pauli matrices σspin
i acting on the intrinsic spin variable.312

We emphasize that, in Eq. (22), rotation couples to the intrinsic (real) spin of the electron,313

but not to the pseudospin associated with the sublattice degree of freedom. The pseudospinor314

ψ is defined with respect to the frame rigidly associated with the graphene lattice. Since the315

components ofψ represent the probability amplitudes for occupying sublattices A and B, these316

amplitudes remain invariant under the motion of the graphene sheet through space. This is317

akin to an intrinsic spinor which, when associated with a specific tetrad, transforms as a scalar318

under coordinate transformations.319

The difference between intrinsic spin and pseudospin is that the latter is not associated320

with any spin connection, provided the graphene lattice remains undeformed, as we assume321

here. As a result, it is not directly coupled to physical rotation of graphene in space. Pseudospin322

arises from the lattice basis, and when the lattice rotates rigidly, the pseudospin basis rotates323

with it.324
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4 Sagnac and Mashhoon effects for Dirac quasiparticles325

4.1 Rotating nanotube326

As mentioned above, the case in which a magnetic field is applied parallel to the axis of a327

carbon nanotube — i.e., when a magnetic flux Φ threads its cross-section — was theoretically328

studied in Ref. [13] (see also Refs. [12, 14] for reviews). For carbon nanotubes with large329

diameters, the effects of graphene sheet curvature can be safely neglected. In this regime, the330

electronic states near the Fermi level are well described by the same low-energy model as in a331

flat graphene sheet, with the addition of periodic boundary conditions in the circumferential332

direction, defined by the chiral vector L, imposed on the total wave function [12, 14]. These333

boundary conditions can be reformulated in terms of the envelope wave functions ψA and334

ψB. The presence of magnetic flux Φ is incorporated by modifying the boundary conditions335

with a phase factor exp(2πiΦ/Φ0), leading to Aharonov–Bohm oscillations of the band gap,336

as experimentally studied in [15]. The single-walled carbon nanotubes used in [15] had the337

diameter d < 2nm and the observed Aharonov–Bohm oscillations are dependent on their338

chirality.339

It is instructive to begin by considering the Sagnac effect in an analogous configuration,340

where a nanotube rotates about its axis. This setup closely resembles the case of the Aharonov–341

Bohm effect in a nanotube, where the coordinate along the circumferential direction is peri-342

odic. The key distinction, however, is that the wave function need not satisfy periodic boundary343

conditions. Furthermore, it is assumed that the radius R of the nanotube (or graphene cylin-344

der) is sufficiently large, R≫ d/2, allowing one to safely neglect differences between zigzag,345

armchair or chiral nanotubes thereby allowing the circumferential wave vector to be treated346

as a continuous variable. The situation is more akin to the analysis of Aharonov–Bohm oscilla-347

tions in systems with attached leads [1]. In the real experiment [15], it is not feasible to attach348

the leads along the tube’s generatrix. Therefore, the following setup should be regarded as a349

thought experiment. Nonetheless, it effectively illustrates the fundamental characteristics of350

the Sagnac and Mashhoon effects.351

Figure 2: Comoving coordinate system (x , y) in a nanotube of radius R rotating
around its symmetry axis with angular velocity Ω relative to the laboratory frame.

Consider then a carbon nanotube of radius R rotating about its symmetry axis with angular352

velocity Ω, as illustrated in Fig. 2. We choose the local comoving coordinates (x , y) on the353

surface of the rotating nanotube as illustrated in Fig. 2. Thus, the y coordinate runs along the354

circumference of the cylinder, rendering it periodic with a period of 2πR. The metric interval355

on the graphene world hypersurface in the comoving coordinates (c t, x , y) is given by356

ds2 = γ−2c2d t2 − d x2 − 2ΩRd td y − d y2 , (23)

where γ=
�

1−Ω2R2/c2
�−1/2

is the Lorentz factor.357
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To write Eq. (22) in the chosen coordinates, it remains to determine the orthonormal triad358
�

eµ0 , eµ1 , eµ2
�

. This is straightforward because the four-velocity uµ has only a temporal compo-359

nent in comoving coordinates, and eµ1 is a unit vector directed along the x coordinate. The360

remaining vector eµ2 , tangent to the nanotube world hypersurface and pointing in the y coor-361

dinate direction, is determined from the orthonormality condition (21), and the triad compo-362

nents are363

eµ0 = (γ, 0, 0) , eµ1 = (0, 1,0) , eµ2 =
�

γΩR/c, 0,γ−1
�

. (24)

Using these components in Eq. (22), we obtain364

�

iħhγ
�

1+
vΩR
c2
σ2

�

∂t − ED + γgΩΩs1 + iħhv
�

σ1∂x + γ
−1σ2∂y

�

−σ3∆

�

ψ= 0 , (25)

where we have taken into account that eΩ= γΩ and that the axis x of rotation is used for pro-365

jecting the intrinsic spin. The calculated values of the resulting effects, whether or not they366

include the Lorentz factor γ, are not experimentally distinguishable [17], due to the minute-367

ness of Ω2R2/c2 ≈ 10−21 (Ω/Hz)2 (R/cm)2. Nevertheless, we retain the factor γ here and in368

the following for the sake of formal consistency, as this factor enters the exact expressions for369

the metric and tetrad components.370

The electronic wave is supposed to enter the nanotube at y = 0, where it splits into two371

componentsψ± that propagate in opposite directions and later recombine after traversing the372

circumference of the tube. First, we consider one particular component of the intrinsic spin373

along the rotation axis. Then s1 = const= ±ħh/2.374

Consider the case where the wave is not excited in the x direction so that its dependence375

on x can be neglected. Solutions for the waves can be sought for in the form376

ψ± = χ±e−iS± , S± =ωt/γ− k± y , (26)

where χ± are constant pseudospinors, k+ > k− are the wave vectors, and ω is the wave fre-377

quency measured in the rotating frame, according to Eq. (2). Substituting this into Eq. (25),378

we obtain an algebraic eigenvalue equation for pseudospinors χ±, which has a nontrivial solu-379

tion if the determinant of the system vanishes. This gives the following equation for the wave380

vectors k±:381
�

k± −
γωΩR

c2

�2

=
γ2

ħh2v2

�

(ħhω− ED + γgΩΩs1)
2 −∆2
�

. (27)

Its solution is382

k± = γ
�

ωΩR
c2
± kΩ(ω)
�

, (28)

where383

kΩ(ω) =
1
ħhv

q

(ħhω− ED + γgΩΩs1)
2 −∆2 . (29)

Equation (28) reproduces the universal expression (7) for our material and gives the usual384

Sagnac fringe shift characterized by Eqs. (8), (9) and (12), with electron’s mass in place of m,385

if we recall that the frequency ω contains a large contribution ED/ħh≈ mec2/ħh.386

As discussed in the Introduction, the electrons contributing to the Sagnac and Mashhoon387

effects are those near the Fermi surface. For such electrons, the (relativistic) frequency is given388

by Eq. (14) with k = kF, and is dominated by the electron’s rest mass, yielding ω≈ mec2/ħh.389

The pseudospinors χ±, corresponding to distinct eigenvalues of the matrix operator in390

Eq. (22), are intrinsically orthogonal. Consequently, interference between them cannot oc-391

cur within the body of the nanotube. Instead, such interference arises only at the junctions392

where the nanotube connects to external conductors — regions where the two modes begin to393

propagate in parallel and are no longer pseudospin-orthogonal.394
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One can show that the two solutions for pseudospinor in the case ∆= 0 are characterized395

by the helicity condition396

±σ2ξ± = εχ± , (30)

where ε = sign (ħhω− ED + γgΩΩs1) corresponds to electrons (ε = 1) or holes (ε = −1), re-397

spectively.398

Let us now take into account possible non-trivial configurations of intrinsic spin. To sim-399

plify the analysis, we set ∆ = 0 in what follows. The corresponding wave numbers are then400

given by401

k± = γ
�

ωΩR
c2
± k(ω)±

γgΩΩs1

ħhv

�

, (31)

where k(ω) is the expression (29) with Ω= 0 and ∆= 0.402

We consider the normalized initial state to be in the superposition given by403

|ψin〉= |+〉 + |−〉 , (32)

where |±〉 denote the (separately unnormalized) spin eigenstates with corresponding spin404

projections along the rotation axis.405

First, assume that the spin state remains unchanged as the two wave packets split equally406

upon entering the nanotube. Then, after completing the round trip along the nanotube, the407

corresponding wave functions, up to a common overall phase factor, take the form408

|ψ+〉=
1
2

eiΘS/2
�

eiΘM/2 |+〉 + e−iΘM/2 |−〉
�

,

|ψ−〉=
1
2

e−iΘS/2
�

eiΘM/2 |+〉 + e−iΘM/2 |−〉
�

,
(33)

where409

ΘS =
4πR2γωΩ

c2
, ΘM =

2πRγ2 gΩΩ
v

(34)

are, respectively, the Sagnac and Mashhoon fringe shifts. The final state is given by the super-410

position411

|ψfin〉= |ψ+〉 + |ψ−〉= cos
ΘS

2

�

eiΘM/2 |+〉 + e−iΘM/2 |−〉
�

. (35)

We observe that the final state exhibits both the Sagnac effect, describing the probability412

of detecting the electron and characterized by the fringe shift ΘS, and the Mashhoon effect of413

spin rotation, associated with the fringe shift ΘM. If the initial spin is in a mixed (unpolarized)414

state, or if the spin is not observed, we must average over the spin projections, in which case415

only the Sagnac effect remains observable.416

Consider now a hypothetical situation in which the initial wave is split such that the417

components with spin |±〉 in the superposition (32) propagate with wave vectors k±, respec-418

tively [28]. Then, after completing the round trip, the corresponding wave functions, up to a419

common overall phase factor, take the form420

|ψ+〉= eiΘSM/2 |+〉 , |ψ−〉= e−iΘSM/2 |−〉 , (36)

where ΘSM = ΘS +ΘM. The final state is given by their superposition421

|ψfin〉= |ψ+〉 + |ψ−〉= eiΘSM/2 |+〉 + e−iΘSM/2 |−〉 . (37)

We observe that, in this case, there is no classical Sagnac interference effect, in the sense that422

the probability of detecting the electron remains unity. The only observable phenomenon is423

the Mashhoon effect of spin rotation, characterized by the combined fringe shift ΘSM.424

Note that, while the nanotube configuration considered in this section is a gedankenex-425

periment, the analogous setup for rotating graphene rings, considered in the next subsection,426

is quite realistic.427
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4.2 Rotating ring428

As mentioned in the Introduction, numerous interference experiments have been conducted429

on graphene ring structures. Consider then a thin planar ring made of graphene, rotating430

about its symmetry axis while occupying an average radius R, as shown in Fig. 1. In the polar431

coordinates (c t, r,φ) comoving with the ring, where x = r cosφ and y = r sinφ, the space-432

time metric on the graphene hypersurface has the form433

ds2 = γ−2c2d t2 − 2Ωr2d tdφ − dr2 − r2dφ2 , (38)

with the Lorentz factor γ(r) =
�

1−Ω2r2/c2
�−1/2

.434

For a moment, consider graphene at rest, i.e., the case ofΩ= 0. In this case, it is convenient435

to write Eq. (19) in the polar coordinates (Ref. [51]):436

�

iħh∂t − ED + iħhv
�

σr∂r +σφ r−1∂φ
�

− U(r)σ3

�

ψ= 0 . (39)

Here, we have introduced the polar Pauli matrices437

σr = σ1 cosφ +σ2 sinφ =

�

0 e−iφ

eiφ 0

�

,

σφ = σ2 cosφ −σ1 sinφ =

�

0 −ie−iφ

ieiφ 0

�

,

(40)

and replaced the constant mass parameter ∆ with a mass-type potential U(r), whose role is438

to confine the electron’s wave function to the narrow ring (see [51–53]).439

To obtain the wave equation in a rotating graphene in the polar coordinates of metric440

(38), it is necessary to replace the orthonormal triad
�

∂c t ,∂r , r−1∂φ
�

present in (39) with a441

new orthonormal triad rigidly attached to graphene, which we denote as
�

e0, er , eφ
�

, and to442

add a term connected with the intrinsic spin. We thus obtain [cf. Eq. (22)]443

�

iħhceµ0∂µ − ED + gΩeΩsℓ + iħhv
�

σr eµr +σφeµ
φ

�

∂µ − Uσ3

�

ψ= 0 . (41)

As a side remark, we note that the locally observed energy ED and chemical potential in a444

static gravitational field scale with position as 1/
p

g00 = γ [47, §,27], so they slightly depend445

on r.446

In the new triad, the timelike vector corresponds to the four-velocity of the material,447

eµ0 = uµ/c; the radial vector remains unchanged; and the vector that points in the angular448

spatial direction is determined by the orthonormality condition using metric (38) (the cor-449

responding tetrad was adopted, e.g., in [54, 55] for the vacuum Dirac equation in rotating450

frame):451

eα0 = (γ, 0, 0) , eαr = (0, 1, 0) , eαφ =
�

γΩr
c

, 0, γ−1r−1
�

. (42)

Substituting these tetrad components into Eq. (41) and taking into account that eΩ = γΩ,452

we obtain453

�

iħhγ
�

1+
vΩr
c2
σφ

�

∂t − ED + γgΩΩs3 + iħhv
�

σr∂r + γ
−1r−1σφ∂φ
�

− Uσ3

�

ψ= 0 , (43)

where the intrinsic spin is now projected along the z axis, which is the axis of rotation.454

Similarly to the ansatz (26) of the previous case, we look for stationary solutions in the455

rotating frame in the form456

ψ± = χ±e−iS± , S± =ω0 t − q±φ , (44)
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where ω0 is a constant frequency, and q+ > q− and χ± are independent of t. As in the case of457

nanotube, in the treatment of the Sagnac effect, the wave function need not satisfy periodic458

angular boundary conditions, and our parameters q± are continuous.459

Substituting (44) into (43), we obtain equations for the pseudospinors χ± for a fixed z-460

component s3 of the intrinsic spin:461

�

ħhω− ED + γgΩΩs3 +
vħhωΩr

c2
σφ

�

χ± + iħhv
�

σr∂r + γ
−1r−1σφ∂φ
�

χ±

−ħhvγ−1r−1q±σφχ± − Uσ3χ± = 0 , (45)

where ω= γω0 is the frequency observed in the rotating frame.462

Given the structure of sigma-matrices (40), we look for solution in the form463

χ± =

�

ξ1±(r) e−iφ/2

ξ2±(r) eiφ/2

�

. (46)

Then the pseudospinors464

ξ± =

�

ξ1±(r)
ξ2±(r)

�

(47)

satisfy the equation465

�

ħhω− ED + γgΩΩs3 +
�

vħhωΩr
c2
−
ħhv
γr

q±

�

σ2

�

ξ± + iħhvσ1

�

∂r +
1

2γr

�

ξ± − Uσ3ξ± = 0 . (48)

Equation (48) is still exact, and we are now going to find its approximate solutions in466

the limit of narrow ring. For a narrow ring (with width much smaller than the wavelengths467

2πR/q±), we make an assumption that the radial pseudospinors ξ±(r) practically do not de-468

pend on the state of circular motion, i.e., on q±, having a universal confinement profile in469

the narrow ring. Inspecting then Eq. (48), we conclude that the radial pseudospinors should470

satisfy the equation471

iħhvσ1

�

∂r +
1

2γr

�

ξ± − Uσ3ξ± = Eξ± , (49)

where E is the energy eigenvalue for the confinement.472

By virtue of Eq. (49), equation (48), in the limit of an infinitesimally narrow ring of radius473

R, gives a purely algebraic relation:474

�

ħhω− eED + γgΩΩs3

�

ξ± +
�

vħhωΩR
c2
−
ħhv
γR

q±

�

σ2ξ± = 0 , (50)

where eED = ED − E , so that the energy E simply shifts the value of the energy of the Dirac475

point. We remember that ED in our approach contains a large contribution from the electron’s476

rest energy mec2, compared to which this energy shift is quite small.477

Equations (49) and (50) effectively capture the freezing of radial momentum in Eq. (48),478

in a manner analogous (but not identical) to the treatment of Aharonov–Bohm oscillations a479

non-rotating graphene ring (see [56] and references therein).480

By setting Ω = 0 in Eq. (50), it is easy to see that it describes the waves with q± = ±q481

moving counterclockwise and clockwise, respectively. In the case of graphene, these waves482

are protected by the conserved helicity [46, 57], viz. q±σ2ξ± ∝
�

ħhω− eED

�

ξ±. In terms of483

the full pseudospinor (46), this reads q±σφχ±∝
�

ħhω− eED

�

χ±. Thus, depending on the sign484

of ħhω − eED, we are dealing either with electrons (positive helicity) or with holes (negative485

helicity).486
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From the condition of the existence of non-trivial solutions of Eq. (50), we obtain487

q± = γ
ΩR2ω

c2
±
γR
ħhv

�

�ħhω− eED + γgΩΩs3

�

� . (51)

Substituting this back into Eq. (50), we obtain the helicity condition488

±σ2ξ± = εξ± , ±σφχ± = εχ± , (52)

where ε= sign
�

ħhω− eED + γgΩΩs3

�

corresponds to electrons (+1) or holes (−1), respectively.489

Equation (51) reproduces the universal expression (7) for our material and gives the usual490

Sagnac effect characterized by Eqs. (8), (9) and (12), with electron’s mass in place of m, if we491

recall that the frequency ω contains a large contribution ED/ħh≈ mec2/ħh.492

Similarly to the case of a nanotube, the pseudospinors χ± are orthogonal on the ring, as493

corresponding to opposite eigenvalues of σφ . As a result, interference between them cannot494

occur during circular propagation within the body of the ring. Such interference arises only495

at the junctions where the ring connects to external conductors — regions in which the two496

modes begin to propagate in parallel and are no longer orthogonal. As discussed in the In-497

troduction, the corresponding Mach–Zehnder electron interferometers are routinely used to498

observe Aharonov–Bohm oscillations.499

To give a full description of the interference effects in a ring, it is also necessary to take500

the phases in the pseudospinor Eq. (46) into account. In the context of wave propagation, the501

variable φ denotes the angle between the wave vector and the y-axis, which is rigidly aligned502

with the graphene crystalline lattice.503

Consider pseudospinor waves of the form (46) propagating along the ring circumference.504

As we follow the waves χ±(φ) that complete a full round trip along the ring, we observe that505

they change sign:506

χ± (±2π) = −χ±(0) . (53)

In this sense, they accumulate the overall phase π or −π, and this phase is commonly encoun-507

tered in discussions of Aharonov–Bohm effects in graphene [51, 53, 56] and is often referred508

to as the Berry phase [58], owing to its topological nature [59]. For this reason, we will509

also refer to the phase in (46) as the Berry phase. Due to the π-phase shift, conductance510

minima in Aharonov–Bohm oscillations appear at integer values of Φ/Φ0 in Dirac materials,511

in contrast to conventional systems with Schrödinger-type carriers, where they occur at half-512

integer values [53,60]. These manifestations of the Berry phase have indeed been observed in513

quasi-ballistic three-dimensional topological insulator nanowire devices that are gate-tunable514

through the Dirac point [61].515

Since both pseudospinors χ± undergo a sign change (53) relative to their starting values,516

no relative phase difference arises between the two waves from the round trip alone. Instead,517

the relative phase factors between the waves emerge from the contribution of the points of518

entry and exit from the ring, as illustrated in Fig. 3. The wave χ+, propagating anticlockwise,519

acquires an additional angular parameter change of∆φ+ = −π upon entering and exiting the520

ring, whereas the wave χ−, propagating clockwise, experiences an angular parameter change521

of ∆φ− = π.522

Therefore, the wave χ+, propagating anticlockwise, acquires the total angular parameter523

change φ+ = 2π−π = π between entering and exiting the ring, whereas the wave χ−, prop-524

agating clockwise, acquires the total change of φ− = −2π+π = −π. This angular parameter525

change is constant and does not depend on the state of rotation.526

To summarize, we consider the two waves χ±, which appear at the entrance to the ring in527

the common pseudospin state: χ± = (ξ1,ξ2)
⊺ (this is actually just one wave before splitting).528
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According to the reasoning above, at the exit of the ring, their pseudospin states take the form529

χ± =

�

ξ1 e−iφ±/2

ξ2 eiφ±/2

�

, (54)

where φ± = ±π. Thus, at the exit, we observe the relation χ− = eiπχ+, indicating a phase530

difference of π between the two waves. This constant phase difference should be taken into531

account when calculating the Sagnac phase shift.532

φA

+−

+
−

Figure 3: Illustration of the Berry phase in a graphene ring. Left: Waves prop-
agating counterclockwise (+) and clockwise (−) around the full ring acquire Berry
phases φ± = ±π between entrance and exit. Right: For waves with entrance and exit
separated by an angular distance φA, both propagation directions acquire the same
Berry phase: φ± = φA −π.

The case of wave propagation along a planar ring involves an additional Berry phase be-533

cause the wave vector k forms a varying angle with the underlying crystalline structure of the534

graphene lattice. In contrast, for the case of nanotube discussed in Sec. 4.1, this angle remains535

constant throughout propagation, and therefore no Berry phase is present in Eq. (26).536

The initial and final states of the intrinsic spin in the case of propagation along a ring are537

described by expressions quite analogous to Eqs. (32) and (35), (37), but referred to the spin538

projection s3 and incorporating a contribution due to the Berry phase.539

Specifically, in the case of no spin splitting, the initial state (32), after the propagation540

around the circle, becomes (up to a common irrelevant phase factor)541

|ψ+〉=
1
2

ei(ΘS−π)/2
�

eiΘM/2 |+〉 + e−iΘM/2 |−〉
�

,
(55)

|ψ−〉=
1
2

e−i(ΘS−π)/2
�

eiΘM/2 |+〉 + e−iΘM/2 |−〉
�

,

where the additional π in the phases is due to the Berry phase difference, and ΘS and ΘM are542

given by Eq. (34). The final state is given by the superposition543

|ψfin〉= |ψ+〉 + |ψ−〉= cos
ΘS −π

2

�

eiΘM/2 |+〉 + e−iΘM/2 |−〉
�

= sin
ΘS

2

�

eiΘM/2 |+〉 + e−iΘM/2 |−〉
�

. (56)

This represents the Sagnac effect, with the fringe shifted by π relative to the previous case of544

nanotube, along with the usual Mashhoon effect of spin rotation.545
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In the case of spin splitting, the components with spin |±〉 in the superposition (32) prop-546

agate with wave vectors q±, respectively. Then, after completing the round trip, the corre-547

sponding wave functions, up to a common overall phase factor, take the form548

|ψ+〉= ei(ΘSM−π)/2 |+〉 , |ψ−〉= e−i(ΘSM−π)/2 |−〉 , (57)

where ΘSM = ΘS +ΘM. The final state is given by their superposition549

|ψfin〉= |ψ+〉 + |ψ−〉= ei(ΘSM−π)/2 |+〉 + e−i(ΘSM−π)/2 |−〉 . (58)

Again, we observe that there is no classical Sagnac interference effect in this case, but only the550

Mashhoon effect of spin rotation, characterized by the combined fringe shift ΘSM −π.551

4.3 Setup with two contacts552

To facilitate comparison with the conventional treatment of the Sagnac and Mashhoon effects,553

we have thus far considered a hypothetical setup in which waves propagating in opposite direc-554

tions complete exactly one full loop around the material’s circumference. This configuration555

corresponds to that of a classical Sagnac interferometer. In a different setup, the contacts are556

placed at different angular positions around the graphene ring, with angular distance φA be-557

tween them, as shown in the right image of Fig. 3. This corresponds to the aforementioned558

Mach–Zehnder electron interferometers, where the input and output of the ring are usually559

located directly opposite each other, with φA = π. Such interferometers are widely used to560

study Aharonov–Bohm oscillations and have been proposed as a platform for realizing the561

Sagnac effect in graphene-based devices [32–35].562

In the general case, for a wave propagating counterclockwise, the total Berry phase is given563

by φ+ = φA − π. For a wave propagating clockwise, it becomes φ− = π− (2π−φA) = φ+.564

Thus, in this configuration, both waves accumulate the same Berry phase. The Sagnac and565

Mashhoon effects, under these conditions, are described as follows.566

In the case of no splitting of intrinsic spin, the initial state (32), propagated along different567

paths, at the exit point of the ring with angular position φA becomes, up to a common phase568

factor exp [iΘS (φA −π)/4π],569

|ψ+〉=
1
2

eiΘS/4

�

exp

�

i

�

�

�

�

q+
ΘM

4π

�

�

�

�

φA

�

|+〉 + exp

�

i

�

�

�

�

q−
ΘM

4π

�

�

�

�

φA

�

|−〉
�

,
(59)

|ψ−〉=
1
2

e−iΘS/4

�

exp

�

−i

�

�

�

�

q+
ΘM

4π

�

�

�

�

(φA − 2π)

�

|+〉 + exp

�

−i

�

�

�

�

q−
ΘM

4π

�

�

�

�

(φA − 2π)

�

|−〉
�

,

where the common Berry phase was omitted, and the Sagnac and Mashhoon fringe shifts ΘS570

and ΘM, respectively, are given by Eq. (34). In deriving this equation, we have used Eq. (51)571

and made the notation572

q =
γR
ħhv

�

ħhω− eED

�

(60)

for the central angular momentum of the waves present in Eq. (51). The final state is given573

by the superposition |ψfin〉= |ψ+〉+ |ψ−〉:574

|ψfin〉= ei|πq+ΘM/4| cos

�

ΘS

4
+

�

�

�

�

q+
ΘM

4π

�

�

�

�

(φA −π)
�

|+〉

+ ei|πq−ΘM/4| cos

�

ΘS

4
+

�

�

�

�

q−
ΘM

4π

�

�

�

�

(φA −π)
�

|−〉 . (61)

The spin-up and spin-down components differ only by the sign in front of ΘM.575
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For the pure Sagnac effect, one should average over the spin. We then use the identity576

cos2 (a+ b) + cos2 (a− b) = 1+ cos 2a cos2b to calculate the electric current J∝ |ψfin|
2.577

In the case |q| ≥ ΘM/4π, we obtain [cf. Eq. (10) noting that q = kγR]578

J∝ 1+ cos
�

ΘS

2
+ 2|q| (φA −π)
�

cos
�

ΘM

2π
(φA −π)
�

. (62)

In the case |q| ≤ ΘM/4π, we have579

J∝ 1+ cos
�

ΘS

2
+
ΘM

2π
(φA −π)
�

cos [2q (φA −π)] . (63)

All these expressions simplify in the case of the Mach–Zehnder interferometer whenφA = π,580

and become similar to the result (35). In the case of spin splitting (Mashhoon experiment),581

the components with spin |±〉 in the superposition (32) propagate with angular momenta q±,582

respectively. Then, after reaching the output, the corresponding wave functions, up to a com-583

mon overall phase factor, take the form584

|ψ+〉= eiΘ |+〉 , |ψ−〉= e−iΘ |−〉 , (64)

where, depending on the value of q, we have585

Θ =











1
4

�

ΘS +
q
|q|
ΘM

�

+ q (φA −π) , |q| ≥
ΘM

4π
,

1
4
(ΘS −ΘM) +

ΘM

4π
φA + qπ , |q| ≤

ΘM

4π
,

(65)

The final state is given by their superposition586

|ψfin〉= |ψ+〉 + |ψ−〉= eiΘ |+〉 + e−iΘ |−〉 . (66)

As before, we observe that there is no classical Sagnac interference effect in this case, but only587

the Mashhoon effect of spin rotation.588

5 Derivation based on the Larmor theorem589

In Appendix B, we reproduced the Larmor theorem [44], demonstrating the (approximate)590

mapping between the electron wave equation in a system rotating about some axis and the591

wave equation in the system at rest but subject to a uniform external magnetic field along592

the same axis. The relation between the angular velocity of rotation and the corresponding593

magnetic field is given by594

B = −
2mec

e
Ω , (67)

where −e is the electron charge, and me is the vacuum electron mass. The mapping also595

includes an additional spin–rotation term, which is the last term in the Pauli equation (B.3).596

For matter waves in vacuum, the Larmor theorem was previously employed in [42,62,63]597

in the context of the Sagnac effect. It is also worth noting that the Larmor theorem has been598

invoked to argue that the vacuum electron mass appears in the expression for the London mo-599

ment — the magnetic moment acquired by a rotating superconductor [64] (see also Ref. [65]).600

The Larmor theorem yields a universal prescription for calculating the electronic Sagnac601

and Mashhoon effects in arbitrary systems: one first formulates an effective electronic Hamil-602

tonian for the system at rest in a uniform magnetic field B, then replaces the magnetic field603

with the effective field given by Eq. (67), and finally adds an additional spin term, Ωsℓ, to the604
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Hamiltonian. Eventually, the spin–rotation coupling should be renormalized by the effective605

g-factor gΩ.606

Using this mapping, we will repeat the calculation of the Sagnac and Mashhoon effects607

for a rotating ring and a nanotube in graphene to demonstrate consistency with the results608

obtained in Sec. 4. This offers an alternative perspective on the emergence of the vacuum609

electron mass in this effect, attributing it to its role in the Larmor equivalence expressed in610

Eq. (67).611

Our starting point is the one-electron equation for graphene at rest in a uniform magnetic612

field, a generalization of Eq. (19), which takes the form613

�

iħh∂t − ED + v
h

σ1

�

iħh∂x +
e
c

A1

�

+σ2

�

iħh∂y +
e
c

A2

�i

−
e

mec
Bsℓ −∆σ3

�

ψ= 0 , (68)

where the electron’s spin is projected to the axis ℓ aligned with the magnetic field.614

5.1 Rotating nanotube615

Our nanotube rotates about the x axis, as illustrated in Fig. 2. The equivalent uniform magnetic616

field should be aligned along the same axis. Consequently, the only nonvanishing component617

of its covector potential in the basis of unit vectors
�

x̂ , φ̂, r̂
�

in polar coordinates can be chosen618

as Aφ = −Br/2. At the surface of the nanotube, the only non-vanishing component of the619

vector potential is then620

A2 = −
1
2

BR . (69)

Equation (68) then reads621

�

iħh∂t − ED + v
h

σ1iħh∂x +σ2

�

iħh∂y −
e

2c
BR
�i

−
e

mec
Bs1 −∆σ3

�

ψ= 0 . (70)

Making the substitution (67), taking into account the last spin term in (B.3), and correcting622

the spin–rotation coupling by the effective g-factor, gΩ, we obtain the effective description of623

an electron in a rotating graphene nanotube:624

�

iħh∂t − ED + gΩΩs1 + v
�

σ1iħh∂x +σ2

�

iħh∂y +meΩR
��

−∆σ3

�

ψ= 0 . (71)

We compare this equation with Eq. (25) from the relativistic approach. Apart from the625

appearance of the Lorentz factors γ in (25), the only difference between the two equations is626

the presence of the term with meΩR in (71), which replaces the operator iħhγΩR∂t/c
2 in (25).627

When acting on the wave function (26), this operator yields the factor ħhωΩR/c2.628

Therefore, all solutions of Eq. (71) can be directly obtained from those in Sec. 4.1 by629

replacing the combination ωΩ/c2 with meΩ/ħh and setting the Lorentz factor everywhere to630

unity. In particular, the wave vectors (31) will be given by631

k± =
meΩR
ħh
± k(ω)±

gΩΩs1

ħhv
, (72)

and the Sagnac and Mashhoon fringe shifts are given by632

ΘS =
4πR2meΩ

ħh
, ΘM =

2πRgΩΩ
v

. (73)

The interpretation of this result is, of course, identical to that presented at the end of Sec. 4.1.633
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5.2 Rotating ring634

Our ring now lies in a plane perpendicular to the z axis, which is the direction of a homoge-635

neous magnetic field B with covector potential given by Eq. (A.9). In this case, the effective636

equation for the graphene pseudospinor (68), with the electron’s intrinsic spin taken into ac-637

count and with ∆ replaced by the confining potential U , reads638

�

iħh∂t − ED + v
h

σ1

�

iħh∂x +
e

2c
B y
�

+σ2

�

iħh∂y −
e

2c
Bx
�i

−
e

mec
Bs3 − Uσ3

�

ψ= 0 . (74)

Proceeding to the polar coordinates by the substitution x = r cosφ, y = r sinφ, we write639

Eq. (74) in the form640

�

iħh∂t − ED + v
h

iħh
�

σr∂r +σφ r−1∂φ
�

−
e

2c
Brσφ
i

−
e

mec
Bs3 − Uσ3

�

ψ= 0 , (75)

where the polar Pauli matrices σr and σφ are defined in Eq. (40). As a side note, we point out641

that that the Landau levels obtained from Eq. (75) exhibit a relativistic-like nature, character-642

ized by the energy scale
p

ħhv2|eB|/c, rather than the conventional scale for free nonrelativistic643

electrons, ħh|eB|/mec.644

Making the substitution (67), taking into account the last spin term in (B.3), and finally645

correcting for the effective g-factor, we obtain the effective description of an electron in a646

rotating ring:647

�

iħh∂t − ED + gΩΩs3 + iħhv
�

σr∂r +σφ r−1∂φ
�

+ vmeΩrσφ − Uσ3

�

ψ= 0 . (76)

We compare this equation with Eq. (43) from the relativistic approach. Again, apart from648

the appearance of the Lorentz factors γ in Eq. (43), the only difference between the two equa-649

tions is the presence of the term with meΩr in Eq. (76), which replaces the operator iħhγΩr∂t/c
2

650

in (43). When acting on the wave function (44), this operator yields the factor ħhωΩR/c2.651

Therefore, all solutions of Eq. (76) can be directly obtained from those in Sec. 4.2 by652

replacing the combination ωΩ/c2 with meΩ/ħh and setting the Lorentz factor everywhere to653

unity. In particular, the wave vectors (51) will be given by654

q± =
ΩR2m
ħh
±

R (ħhω− ED + gΩΩs3)
ħhv

, (77)

and the Sagnac and Mashhoon fringe shifts by Eq. (73). The interpretation of this result is655

identical to that presented at the end of Sec. 4.2.656

We conclude this section with an important remark. In the relativistic framework devel-657

oped in Secs. 3 and 4, it was essential to define the Dirac point energy ED relative to the658

electron’s vacuum energy, specifically, by including the electron rest mass, as expressed in659

Eq. (17). This requirement stems from the relativistic treatment and ensures that the spinor660

phase transforms as a true space-time scalar.661

In contrast, the effective non-relativistic equations (71) and (76), derived using the Larmor662

theorem, inherently incorporate these relativistic elements through the explicit appearance of663

the electron mass me in the equivalence relation (67). In this non-relativistic context, ED can be664

referenced to an arbitrary energy zero, as is customary in condensed-matter physics. Notably,665

in the dispersion relation (29), which is common to both approaches, the frequency and the666

Dirac-point energy enter only through their difference, ħhω− ED, allowing both quantities to667

be shifted simultaneously by an arbitrary constant without affecting this expression.668

As a consequence, the Sagnac fringe shift ΘS given by Eq. (73), in which the electron’s669

vacuum mass me appears explicitly, remains invariant under such a shift. By contrast, the670

relativistic expression in Eq. (34) involves the frequencyω and therefore does not possess this671

invariance.672
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6 Conclusion673

In this paper, we extend our previous analysis of the effects of spatial rotation in graphene [36]674

to include both the pseudospin and the intrinsic spin of the propagating electron. Within this675

extended framework, in addition to the standard Sagnac effect, we also account for a Berry676

phase that is constant and independent of rotation. Furthermore, the intrinsic spin of the677

electron and its possible splitting give rise to a graphene-based analog of the Mashhoon effect.678

Building upon our earlier work, we presented more detailed arguments supporting the679

conclusion that the Sagnac fringe shift in graphene is determined by the vacuum mass of the680

electron. Our first argument is based on the relativistic phase of the electron’s wave function,681

which transforms as a scalar and necessarily includes a dominant contribution from the elec-682

tron’s rest energy. This rest energy then contributes to the Sagnac fringe shift via an effective683

Lorentz transformation. As a second argument, we invoke the effective Larmor theorem, which684

establishes the equivalence between rotational motion and a uniform magnetic field, with the685

proportionality constant between the angular velocity of rotation and the corresponding mag-686

netic field involving the vacuum electron mass.687

The Mashhoon fringe shift, which characterizes the dynamics of intrinsic spin, retains its688

standard form in graphene, with its dependence on the Fermi velocity appearing in the usual689

way. The expressions for the Sagnac and Mashhoon fringe shifts are presented in Eq. (73).690

In analyzing the Mashhoon effect, we have neglected the potential kinematic contribution691

arising from the Thomas precession of the electron’s spin due to its circular motion in a ring692

or nanotube. Similar to what occurs in neutron interferometry [28], this effect is likely to693

contribute a constant (i.e., Ω-independent) term to the Mashhoon fringe shift ΘM, on the694

order of (v/c)2 ∼ 10−5. This issue requires special analysis [66].695

We examined the Sagnac and Mashhoon effects in two systems. The first is a long nanotube696

rotating about its axis, considered as a thought experiment. The second is a rotating ring,697

assumed for simplicity to be infinitesimally narrow. This latter configuration offers a practical698

realization, as Aharonov–Bohm oscillations have been extensively studied in graphene rings.699

The descriptions of the Sagnac and Mashhoon effects are quite similar in both cases. However,700

the ring geometry exhibits an additional nontrivial contribution from the Berry phase. This701

stems from the fact that, in a ring, the wave vector of the propagating electron forms a varying702

angle with the underlying crystalline structure of the graphene lattice, whereas in a nanotube,703

this angle remains constant throughout propagation.704

In the present work, we restrict ourselves to the simplest analytical treatment of the contin-705

uum model of a graphene ring with frozen radial motion. This allowed us to reveal the main706

features of the Sagnac and Mashhoon effects in graphene. More subtle features associated with707

the role of edges, their geometry, disorder, mixture of types of edge termination, leading to708

possible intervalley coupling and affecting pseudospin, require further investigation, perhaps,709

on the basis of numerous existing studies; see, e.g., Refs. [3, 51, 53, 56]. This will definitely710

become necessary for practical realization of the Sagnac effect in graphene interferometers.711

Let us now discuss the conditions required for observing the Sagnac and Mashhoon effects712

in solid-state interferometers. It is convenient to express the Sagnac fringe shift from Eq. (73)713

in terms of the Compton wavelength, λC = 2πħh/mec ≈ 0.0243 Å, yielding the estimate:714

ΘS =
8π2R2Ω

cλC
≈ 10−7
�

R
µm

�2 Ω

Hz
. (78)

The Larmor theorem allows one to map the results obtained for Aharonov–Bohm oscil-715

lations by simply replacing the corresponding oscillatory expression exp (2πiΦ/Φ0) with the716
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expression exp (2πiΦΩ/Φ0), where the effective rotational flux is given by717

ΦΩ =
2πR2c meΩ

e
. (79)

The resulting phase 2πΦΩ/Φ0 corresponds to the rotational (Sagnac) phase accumulated by718

an electron traveling around the ring [44].719

However, the smallness of the estimate in Eq. (78), being a consequence of the extremely720

weak effective Larmor magnetic field,721

BΩ ≡
2mec

e
Ω ≈ 1.14× 10−7

�

Ω

Hz

�

G, (80)

makes it practically impossible to observe a rotational analog of the Aharonov–Bohm oscilla-722

tions by varying the rotation frequency, since ΦΩ/Φ0≪ 1.723

Existing Aharonov–Bohm interferometers have radii on the order of R ∼ 0.5µm [5, 9],724

whereas experiment with electrons in vacuum have used enclosed areas of approximately725

πR2 ∼ 3.9mm2 [27] making it approximately 5 × 106 times more sensitive. This is why,726

to enhance the Sagnac effect, it has been proposed to use a series of 106 to 107 rings in order727

to achieve a signal-to-noise ratio greater than 1 for sub-Hertz rotations [32,34,35]. It is worth728

noting that arrays of rings can also be realized experimentally [67].729

The ratio of the Mashhoon to Sagnac fringe shifts can be estimated as730

ΘM

ΘS
=

gΩ
4π

c
v
λC

R
≈ 1.9× 10−7 c

v
µm
R

. (81)

Taking into account that c/v ≈ 300 for graphene, and using the same value R = 0.5µm, we731

estimate the ratio ΘM/ΘS ≈ 10−4, which is six orders of magnitude larger than the value732

reported in Ref. [30]. This ratio can be further increased by using materials with a low Fermi733

velocity. For example, a 3D topological insulator Bi2Te3 is a promising candidate due to its734

notably low Fermi velocity [68], v ≈ 3260m/s, which is over 300 times smaller than that of735

graphene. As a result, the ratio ΘM/ΘS is estimated to be approximately 0.03.736

This raises the question of whether the Mashhoon effect can also be realized in solid-state737

systems. As discussed above, this requires that electron spins be oriented in opposite directions738

for waves propagating clockwise and counterclockwise [28]. We propose that this configura-739

tion can be realized by covering the two arms of the Mach–Zehnder interferometer with fer-740

romagnetic layers having opposite magnetization directions. Techniques for controlling spin741

orientation in this way are commonly employed in the fabrication of spintronic devices (see,742

e.g., Refs. [69,70]).743
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A Dirac and Pauli equations in a rotating frame753

The Dirac equation for a bispinor Ψ describing an electron with vacuum mass me and electric754

charge −e in a gravitational field (or in arbitrary coordinates in flat space-time) reads755

γaeµa

h

iħh
�

∂µ +ωµ
�

+
e
c

Aµ
i

Ψ −mecΨ = 0 , (A.1)

where eµa is the tetrad basis, Aµ is the covector potential of the external electromagnetic field,756

and757

ωµ =
1
8
ωab
µ [γa,γb] (A.2)

is the spin connection. The Latin indices a = 0, 1,2, 3 refer to the tangent space, and the Greek758

indices µ = 0, 1,2, 3 refer to the world coordinates. The matrices γa are the usual constant759

Dirac gamma-matrices.760

We denote the laboratory inertial coordinates by
�

c t ′, x ′, y ′, z′
�

, and the coordinates of the761

system rotating about the z′ axis with constant angular velocity Ω by the same letters without762

primes. They are related by the transformation763

x ′ = x cosΩt − y sinΩt , y ′ = y cosΩt + x sinΩt , z′ = z , t ′ = t . (A.3)

The space-time metric in these coordinates reads764

ds2 = c2d t ′2 − d x ′2 − d y ′2 − dz′2 = c2d t2 − (d x −Ωyd t)2 − (d y +Ωxd t)2 − dz2 . (A.4)

First of all, we need to choose the tetrad basis to which we refer the spinor. In a conven-765

tional approach, the tetrad basis is chosen as that of the laboratory frame but rotating about766

the z′ direction with angular velocity Ω, so that the two basis vectors in the rotation plane767

are directed along the (rotating) x and y axes. For the tetrad ea ≡ eµa∂µ expressed in the768

coordinates of the rotating frame, this gives (this tetrad was also adopted in [48,71,72])769

ce0 = ∂t +Ω
�

y∂x − x∂y

�

, e1 = ∂x , e2 = ∂y , e3 = ∂z . (A.5)

The spin connection in this tetrad frame can be readily calculated (e.g., by using Cartan’s struc-770

ture equations). The only non-zero component of the spin connection form ωab ≡ ωab
µ d xµ771

is772

ω12 = −ω21 = Ω d t . (A.6)

The covector potential Aµ in (A.1) is a superposition of the electromagnetic field induced773

by the lattice and the external field. We assume the presence of an external homogeneous mag-774

netic field with component B along the z′-axis in the non-rotating frame. The corresponding775

electromagnetic field Aext ≡ Aext
µ d xµ is then776

Aext =
1
2

B
�

y ′d x ′ − x ′d y ′
�

=
1
2

B
�

yd x − xd y −Ω
�

x2 + y2
�

d t
�

. (A.7)

Note that Aext
µ eµ0 = 0.777

In the rotating frame, both the metric and the crystal are stationary, so the electromagnetic778

potential Aµ can also be chosen to be stationary. For the crystal electric field, we set A0 = V779

independent of time, and we neglect other components of the intrinsic covector potential in780

the rotating frame. The crystalline structure is rotating as a whole, and we assume that its781

intrinsic form remains unchanged (in other words, we neglect its intrinsic deformation due to782

local acceleration).783
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Combining all our previous expressions, we can write equation (A.1) in the rotating frame784

in the form785

�

γ0
�

iħh∂t +ΩLz +
iħh
4
Ω [γ1,γ2] + eV
�

+ cγi
�

iħh∂i +
e
c

Ai

�

�

Ψ −mec2Ψ = 0 , (A.8)

where Lz = iħh
�

y∂x − x∂y

�

is the operator of the z-component of angular momentum, and786

Aid x i =
1
2

B (yd x − xd y) (A.9)

is the covector potential of the external magnetic field as it appears in the rotating frame.787

We are interested in the non-relativistic limit of Eq. (A.8). This is most conveniently done788

in the so-called standard representation of the Dirac gamma-matrices [73, § 21]:789

β ≡ γ0 =

�

1 0
0 −1

�

, γi =

�

0 σi
−σi 0

�

, αi ≡ γ0γi =

�

0 σi
σi 0

�

, (A.10)

where σi are the two-dimensional Pauli matrices. We have790

�

γi ,γ j

�

= −2iεi jkΣk , Σk =

�

σk 0
0 σk

�

. (A.11)

According to the standard derivation [73, § 33] of the leading non-relativistic limit, we791

introduce the two-component spinors ψ and χ such that792

Ψ = e−imec2 t/ħh
�

ψ

χ

�

. (A.12)

Then, in the leading non-relativistic approximation, the spinor ψ satisfies the Pauli equation793

in the rotating frame:794

(iħh∂t +ΩJz)ψ=

�

1
2me

∑

i

�

iħh∂i +
e
c

Ai

�2
− eV +

eħh
2mec

Bσz

�

ψ , (A.13)

with the operator of total angular momentum Jz = Lz +ħhσz/2, and σz = σ3.795

B Equivalence of rotation and magnetic field796

The Pauli equation (A.13) can be written in the form797

iħh∂tψ=

�

−
ħh2

2me
∇⃗2 − eV −
�

Ω−
e

2mec
B
�

Lz +
e2B2r2

8mec2
−
�

Ω−
e

2mec
B
�

ħhσz +
ħh
2
Ωσz

�

ψ ,

(B.1)
where r2 = x2 + y2.798

Introducing the effective field799

Beff = B −
2mec

e
Ω , (B.2)

we write Eq. (B.1) as800

iħh∂tψ=
�

H (Beff)−
1
2

meΩ
2r2 +

e
2c

BΩr2 +
ħh
2
Ωσz

�

ψ , (B.3)
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where H (B) denotes the electronic Hamiltonian in the material at rest in a magnetic field B:801

H (B)≡ −
ħh2

2me
∇⃗2 − eV +

e2B2r2

8mec2
+

e
2mec

B (Lz +ħhσz) . (B.4)

Equation (B.3) includes both the magnetic field–rotation and spin–rotation couplings, rep-802

resented by the last two terms, respectively, which also appear in the non-relativistic treatment803

presented in [44]. In the absence of an external magnetic field (B = 0), the operator on the804

right-hand side of (B.3) differs from the Hamiltonian H (Beff)— defined in (B.4) and describ-805

ing the material at rest in the effective external magnetic field Beff — only by the presence of806

an additional centrifugal potential energy term −meΩ
2r2/2, which can be combined with the807

electric potential energy −eV , and by the spin–rotation coupling term ħhΩσz/2. These minor808

differences between the two Hamiltonians represent another form of the well-known Larmor809

equivalence theorem [44]. It should be noted that the effective mass m∗ emerges as a result810

of considering the electron motion within the lattice potential V .811

By virtue of this Larmor theorem, the Sagnac effect for any system can be interpreted as812

a spin-dependent Aharonov–Bohm effect in the presence of the effective magnetic field given813

by (B.2), together with the extra terms in (B.3). Notably, it is the vacuum electron mass that814

appears in (B.2). Similar conclusions were drawn in [44] by analyzing the classical form of a815

non-relativistic electronic Hamiltonian in a rotating frame.816

In general, equations (B.1) or (B.3) show that, to linear order in the field or rotation fre-817

quency, the Larmor correspondence (B.2) holds for orbital motion. However, for spin, the818

correspondence between the magnetic field and rotation has a different form due to the last819

term in (B.1) or (B.3). This justifies our approach in Sec. 5, in which we apply the Larmor the-820

orem to the orbital motion (extending spatial partial derivatives by the corresponding effective821

vector potential), while introducing the g-factor for intrinsic spin.822

We recall that the g-factor gB associated with the magnetic field appears in the effective823

spin Hamiltonian, defined as824

HB eff = µB gBBSz/ħh , (B.5)

where µB = eħh/2mec is the Bohr magneton, and Sz = ħhσz/2 is the spin operator (see [1, 50]825

and references therein). It is measured in electron spin resonance experiments and should826

meet the resonance condition827

〈Lz + g0Sz〉= gB 〈Sz〉 , (B.6)

where g0 = 2 is the magnetic g-factor for a free electron in Dirac’s theory, and the angle828

brackets indicate the expectation value with respect to the electronic state in the solid.829

In quite a similar way, we introduce a rotational g-factor gΩ in the effective Hamiltonian830

describing the coupling between rotation and spin:831

HΩeff = −gΩΩSz . (B.7)

Examining theΩ-dependent coupling in Eq. (B.1), we observe that it will be given by a relation832

similar to (B.6):833

〈Lz + g0Sz − Sz〉= gΩ 〈Sz〉 . (B.8)

Combining Eqs. (B.6) and (B.8), we obtain a noteworthy relation between the magnetic834

and rotational g-factors:835

gΩ = gB − 1 . (B.9)

For a free electron, this relation is naturally satisfied: gB = 2 while gΩ = 1.836
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