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Abstract

Estimating ground-state energies of quantum many-body systems is challenging due
to the exponential growth of Hilbert space. Sample-based diagonalization (SBD) ad-
dresses this by projecting the Hamiltonian onto a subspace of selected basis configura-
tions but works only for concentrated ground-state wave functions. We propose two
neural network-enhanced SBD methods: sample-based neural diagonalization (SND)
and adaptive-basis SND (AB-SND). Both leverage autoregressive neural networks for ef-
ficient sampling; AB-SND also optimizes a basis transformation to concentrate the wave
function. We explore classically tractable single- and two-spin rotations, and more ex-
pressive unitaries implementable on quantum computers. On quantum Ising models,
SND performs well for concentrated states, while AB-SND consistently outperforms SND
and standard SBD in less concentrated regimes.
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1 Introduction21

The accurate calculation of ground-state properties of quantum many-body systems is one of22

the central challenges in quantum chemistry and condensed matter physics. The exponen-23

tial growth of the Hilbert space with system size makes exact solutions intractable for large24

systems, necessitating the development of approximate computational methods. Deep learn-25

ing methods have emerged as promising tools to address this challenge [1–3]. For example,26

supervised learning approaches have been used to predict ground-state energies based on27

labeled training data [4–7]. On the other hand, the introduction of neural quantum states28

(NQS), which represent wave functions using neural network (NN) architectures, has opened29

new possibilities for variational Monte Carlo simulations, circumventing the need of labeled30

data [8–10].31

In quantum chemistry, a standard approach to tackle the problem of the Hilbert space size32

is represented by selected configuration interaction methods [11–14]. These employ prede-33

fined wave-function ansatzes, Monte Carlo sampling, or other empirical criteria to select a set34

of relevant basis configurations |x (l)〉, labeled by the index l. The corresponding Hamiltonian35

matrix elements 〈x (l)|H|x (m)〉 are evaluated to define a subspace Hamiltonian matrix. The36

ground-state energy is then approximated by computing the lowest eigenvalue of this matrix.37

Recently, these approaches have also been adopted in the context of quantum computing, un-38

der the name of Sample-based Diagonalization (SBD) [15–17]. The key idea is to employ39

quantum circuits to sample relevant configurations, leading to what is dubbed Sample-based40

Quantum Diagonalization (SQD). In principle, quantum circuits might allow for the sampling41

of classically intractable distributions [18]. Machine learning algorithms have also been used42

to select relevant configurations [19–22]. Yet, the problem of how to efficiently truncate the43

Hilbert space, while minimizing the introduced approximation, is still open. In fact, SBD ap-44

proaches are known to perform well only when the ground-state wave function is concentrated45

on the chosen computational basis [15], which means that its amplitudes are not negligible46

only on a small subset of basis elements. This strongly limits the regime of applicability of SBD47

methods.48

In this article, we introduce two NN enhanced SBD approaches: sample-based neural diag-49
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Figure 1: Scheme of the SND and AB-SND methods. In SND (top), an autoregressive
neural network generates the bitstrings that define the subspace for diagonalization.
In AB-SND (bottom), we also optimize some basis-transformation parameters θ , en-
abling us to perform sampling in a rotated basis where the ground state is more
concentrated.

onalization (SND) and its extension based on an adaptive basis, which we refer to as adaptive-50

basis SND (AB-SND). Both methods employ autoregressive NNs to efficiently sample basis51

configurations relevant for the estimation of the ground-state energy, as illustrated in Fig. 1.52

While SND operates in a fixed computational basis, AB-SND incorporates a basis transforma-53

tion, allowing for improved performance when the ground state is not concentrated in the54

original computational basis, a regime in which standard SBD techniques are doomed to fail.55

We also extend adaptive-basis strategies to the SQD protocol. In our implementation, the56

basis change is performed using parameterized single-spin and two-spin rotations, which are57

efficiently computable on classical hardware. Additionally, we explore more expressive ba-58

sis transformations, describing how quantum computers allow their implementation for large59

systems. The testbeds we consider are one-dimensional (1D) and two-dimensional (2D) fer-60

romagnetic quantum Ising models and a 2D quantum spin-glass model. These models are61

chosen because the concentration of their ground state can be tuned, allowing us to test SBD62

approaches in different regimes of computational hardness, and also because, despite the dis-63

ordered frustrated interactions in the spin glass model, the benchmark ground-state energy64

can be exactly computed using recently introduced quantum Monte Carlo algorithms [23],65

due to the absence of the negative sign problem. Notably, we find that the AB-SND approach66

allows us to considerably extend the regime of applicability of SBD methods, in particular,67

when performed with the more general basis transformations. To show that the SND tech-68

nique also extends naturally beyond spin models, we include a proof-of-principle application69

to a small quantum-chemistry Hamiltonian, namely, the LiH molecule in the STO-3G basis, in70

the Appendix.71

The rest of this article is organized as follows: Sec. 2 provides the details of the methodol-72

ogy of both SND and AB-SND. Sec. 3 presents our numerical results for different quantum Ising73

models, comparing the performance of the proposed approaches to standard SBD techniques.74
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In Sec. 4 we examine how AB-SND can be implemented on quantum hardware, covering both75

a classically optimized adaptive basis for SQD and a quantum circuit–based basis change for76

SND, highlighting the potential for hybrid quantum-classical schemes. In Sec. 5, we summarize77

our findings and discuss future directions. Finally, the Appendices provide additional details78

on: the definition of the loss functions and their gradient calculations for SND (Appendix A)79

and AB-SND (App. B); the failure of standard SBD when the ground state is not concentrated80

(App. C); the regime of maximum error in AB-SND (App. D); the optimization of angle param-81

eters via stochastic sampling (App. E); the effective temperature scaling for efficient sampling82

of unique configurations (App. F); the application of SND for the LiH molecule (App. G); the83

autoregressive NN architectures (App. H).84

2 Methods85

As in standard SBD approaches, the SND methods we introduce hereafter aim to approximate86

the ground-state energy of a quantum system by projecting the Hamiltonian onto a subspace87

spanned by a selected set of basis configurations. In our implementation, these configurations88

are selected from the standard computational basis, which consists of tensor products of the89

single-qubit basis states |0〉 and |1〉, namely, the eigenstates of the Pauli-Z operator. For a sys-90

tem of N spins, the computational basis states |x〉 = |x1 x2 . . . xN 〉 correspond to bitstrings x ,91

where each component x i ∈ {0, 1}. Given a set of S unique configurations, {|x (l)〉}l=1,...S , one92

constructs a subspace Hamiltonian by evaluating the matrix elements 〈x (l)|H|x (m)〉. The lowest93

eigenvalue E of this subspace matrix provides a variational upper bound for the ground-state94

energy, which converges to the exact value for S → 2N . Clearly, this limit is computation-95

ally impractical for system sizes N ≫ 10. Yet, suitable criteria to select the subset of basis96

configurations lead to accurate approximations for feasible value of S.97

In our framework, the selected configurations are sampled using autoregressive NNs, which98

can be trained to minimize E. More precisely, as in Ref. [15], we define the loss function to be99

minimized during training as100

L =
∑

k

P(S(k))E(k) , (1)

where S(k) represents a batch of bitstrings and E(k) is the lowest eigenvalue of the subspace101

Hamiltonian built on the k-th batch of bitstrings. In our case, the probability P(S(k)) of sam-102

pling S(k) is given by the autoregressive NN. The minimization is performed using stochastic103

gradient-based methods, and the derivation of the gradient of L with respect to the weights of104

the NN is shown in the Appendix A.105

The main testbeds considered in this article are quantum Ising models described by the106

following Hamiltonian:107

H = −
∑

〈i, j〉

Ji j Zi Z j − h
∑

i

X i , (2)

where Zi and X i are Pauli operators acting on spin i, Ji j represents the interaction strength108

between the nearest-neighbor spins i and j, and h is the transverse field strength. Specifically,109

we consider three variants of this model:110

1. 1D ferromagnetic transverse field Ising model (1D-TFIM), with Jii+1 = 1 for i = 1, . . . , N ,111

and periodic boundary conditions, i.e., the spin N + 1 is identified with the spin 1;112

2. 2D ferromagnetic TFIM (2D-TFIM), with Ji j = 1 for i and j nearest-neighbor spins on a113

square lattice, and open boundary conditions;114
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3. 2D Edward-Anderson model (2D-EAM) on a square lattice, with Ji j randomly sampled115

from a normal distribution N (0, 1) with zero mean and unit variance, and periodic116

boundary conditions.117

It is worth pointing out that quantum Monte Carlo simulations of quantum Ising models are118

not affected by the negative sign problem. Thus, by adopting these models as testbeds for the119

SBD approaches, we have the opportunity to make comparisons against unbiased estimates of120

the ground-state energy, even beyond the 1D case. In the latter case, the exact solution can121

be obtained via the Jordan-Wigner transformation, leading to a quadratic free fermion Hamil-122

tonian [24]. It is worth underlining that the 2D-EAM represents a challenging testbed due to123

the presence of disordered frustrated interactions. In fact, unbiased ground-state simulations124

have recently been performed thanks to the combination of projection quantum Monte Carlo125

algorithms with NQSs [25]. Importantly, tuning h allows us to control the concentration of the126

ground state [26], thus testing the SBD approaches in different regimes. Indeed, for h→∞,127

the ground state of these models tends to an equally weighted superposition of the computa-128

tional basis elements, i.e. |++ · · ·+〉 (with |+〉 = 1p
2
(|0〉+ |1〉)). In the opposite limit h→ 0,129

quantum fluctuations vanish, leading to a more concentrated ground-state wave function in130

the chosen computational basis. It is worth emphasizing that generic SBD methods, including131

our SND method without adaptive basis changes, are expected to perform well only for rel-132

atively small h. Numerical results confirming this expectation are shown in the Appendix A.133

Although the focus in the main text is on spin models, the same procedure applies to generic134

second-quantized fermionic Hamiltonians. We demonstrate this explicitly for the LiH molecule135

in Appendix G.136

To extend the regime of applicability of SBD approaches, we introduce the AB-SND method.137

AB-SND improves the SND strategy by incorporating a basis transformation defined by a pa-138

rameterized unitary operator U(θ ), which maps the original computational basis to a rotated139

basis in which the ground state is more concentrated. As in SND, an autoregressive NN gen-140

erates bitstring samples, but these are rotated by U(θ ). The subspace Hamiltonian is then141

constructed from transformed matrix elements 〈x (l)|U(θ )†HU(θ )|x (m)〉, as shown in Fig. 1. In142

most of our experiments, we use a combination of single-spin rotations U(θ ) =
⊗

i=1,...N Ui(θi),143

where144

Ui(θi) =

�

cos θi
2 − sin θi

2

sin θi
2 cos θi

2

�

, (3)

and each angle θi is an independent parameter for spin i. Because the rotations act indepen-145

dently on each spin and the Hamiltonian is composed of local Pauli operators, we can effi-146

ciently compute the transformed Hamiltonian U†HU using classical hardware. In addition to147

single-spin rotations, we also implement non-overlapping two-spin rotations, which increase148

the expressive power of the basis transformation while remaining classically tractable. The149

unitary operator is defined as a composition of RY , RZ Z , and RX gates that act on each spin in150
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Figure 2: Relative error ε as a function of the number of unique configurations S
used to build the subspace Hamiltonian. Panels (a), (b), and (c) display the relative
errors for the 1D-TFIM, the 2D-TFIM, and the 2D-EAM with N = 50, N = 100, and
N = 64 spins, respectively. The transverse field is h = 0.5 for the 1D-TFIM and the
2D-TFIM, while it is h = 1 for the 2D-EAM. In panel (b), we take into account the
statistical uncertainty of the quantum Monte Carlo simulations used to determine the
unbiased estimate of the ground-state energy.

the pair. The matrix representations of these gates are as follows:151

RY (α) =

�

cos α2 − sin α2
sin α2 cos α2

�

,

RX (β) =

�

cos β2 −i sin β2
−i sin β2 cos β2

�

,

RZ Z(γ) =









e−i γ2 0 0 0
0 ei γ2 0 0
0 0 ei γ2 0
0 0 0 e−i γ2









.

(4)

As mentioned above, the gates RZ Z(γ) act on non-overlapping spin pairs {0, 1}, {2, 3}, etc.152

However, the AB-SND framework is compatible with more general, potentially strongly entan-153

gling basis transformations, which could be implemented on quantum hardware. The use of154

quantum circuits for evaluating subspace matrix elements is discussed in Sec. 4. For AB-SND,155

the optimization of the angle parameter θ can be approached in different ways, as discussed156

in the Appendices B and E.157

3 Results158

Hereafter, we analyze the performances of SND and AB-SND powered by local basis transfor-159

mations on the three quantum spin models described in Sec. 2. As a benchmark, we consider160

a more standard SBD approach in which the configurations are sampled from the (squared161

modulus) exact ground-state wave function or from a very accurate approximation obtained162

via a variational Monte Carlo simulation. It is worth emphasizing that this procedure assumes163

that an accurate representation of the ground state can be obtained through a complemen-164

tary computational technique. This allows us to execute standard SBD under very favorable165
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Figure 3: Relative error ε as a function of the transverse field h, for different numbers
of unique configurations S. For AB-SND, darker colors correspond to larger S, with
S ∈ {10,101.5, 102, . . . , 104}, while for SBD from the NQS and SND we consider only
S = 104. Panel (a) represents the errors for the 1D-TFIM with N = 50 spins, panel (b)
corresponds to the 2D-TFIM with N = 100 spins, and panel (c) to the 2D-EAM with
N = 64 spins. The vertical dashed lines represent the corresponding quantum critical
points, namely, the ferromagnetic transitions in the 1D-TFIM and the 2D-TFIM, and
the spin-glass transition in the 2D-EAM. For the latter, the uncertainty is represented
by the gray bar [23].

conditions, thus representing a stringent benchmark for novel SND approaches. We sample166

configurations from an NQS in the form of a restricted Boltzmann machine. The latter is opti-167

mized using the NetKet library [27,28]. Our numerical tests show that, as a sampling engine168

for SBD approaches, the NQS ansatz performs essentially as well as the exact ground state,169

at least for the system sizes for which the latter can be computed. Thus, in the following, we170

mostly adopt NQS sampling, unless otherwise specified.171

To quantify the performance of the various SBD approaches, we compute the relative error172

ε = | y−E0
E0
|, where y represents the energy estimate from a given method, and E0 is the exact173

ground-state energy. The latter is computed by mapping interacting spins to a quadratic free174

fermion model via the Jordan-Wigner transformations for the 1D model [24,29], while for the175

2D models we employ continuous-time projection quantum Monte Carlo simulations [23,30].176

Despite of the presence of disordered frustrated interaction in the 2D-EA model, the latter177

algorithms provide unbiased estimates, affected only by very small statistical uncertainties.178

In Fig. 2, we analyze the relative errors in the three testbed models, considering relatively179

weak transverse fields h for which the ground state is concentrated in the chosen computa-180

tional basis. As expected, all three SBD techniques perform well, showing a systematic ac-181

curacy improvement with the number of unique configurations S used to build the subspace.182

However, the SND performance deteriorates for the 2D-EAM (not shown). This effect may183

be attributed to the rugged energy landscapes occurring in spin-glass phases [31]. In this184

testbed, the standard SBD method based on NQS-sampled configurations performs better, but185

still reaches errors as large as 10% for computationally practical values of S. Notably, thanks186

to the additional variational flexibility introduced by the learnable basis transformation, the187

AB-SND method displays a systematic performance improvement with S also in the 2D-EAM.188

In fact, it consistently outperforms the other SBD approaches we consider, in all three testbeds.189

In Fig. 3, the relative energy error is plotted as a function of the transverse field h, for190

different numbers of unique configurations S. As expected, the performance of SND and stan-191

dard NQS-based SBD methods rapidly deteriorates as h increases, denoting the limited regime192

of applicability of these approaches. Instead, the AB-SND method, here implemented with193

single-spin rotations, is accurate also at significantly larger transverse fields. In fact, it reaches194

small relative errors also in the large h limit. This indicates that adaptive single-spin rota-195

tions enable a continuous interpolation between the original computational basis, in which196
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Figure 4: Number of unique configurations S required to reach relative errors below
ε = 0.01 as a function of the number of spins N for the 1D-TFIM at different trans-
verse fields h. We compare the performance of a standard SBD approach powered by
NQS sampling (shades of blue) with the one of the AB-SND with single-spin rotations
(shades of red). The error-bars for the AB-SND method for h= 0.5 and h= 0.75 rep-
resent the estimated standard deviation of the average over five training processes.

the ground state is concentrated in the h → 0 limit, and the basis built using eigenstates of197

the X Pauli operator |+〉, |−〉, in which concentration occurs in the opposite limit. Sizable in-198

accuracies occur in the intermediate regime, approximately in the region around the quantum199

phase transitions occurring in the three testbed models, namely, the paramagnetic to ferro-200

magnetic transition in the 1D-TFIM and the 2D-TFIM, and the quantum spin-glass transition201

in the 2D-EAM [23]. In the Appendix D, we provide numerical evidence that in the large S202

limit, the peak of the energy error approaches the critical point hc = 1 of the 1D-TFIM.203

In Fig. 4, we analyze how the computational cost scales with the system size N . Specifi-204

cally, we determine the number of unique configurations S required to reach a relative error205

of 1%, considering the 1D-TFIM. A standard SBD approach based on NQS sampling displays a206

problematic scaling already for h ≳ 0.5, making it impractical to reach system sizes N ≃ 100207

keeping the target accuracy. In this regime, the number of configurations required by the AB-208

SND approach powered by single-spin rotations is still essentially independent of N , denoting209

the important role of the basis change. However, the scaling approaches an exponential behav-210

ior slightly beyond the critical point hc = 1, while it improves again for transverse fields h≫ 1.211

Better accuracies in the critical regime h ≃ 1 can be obtained within the AB-SND approach212

with more general basis transformations, as discussed below. Here, it is worth mentioning213

that, considering the currently available implementations, the training of the autoregressive214

networks used for sampling in SND implies a computational cost comparable to the training of215

the NQS ansatz used for SBD. The optimization of the adaptive basis does not involve a sub-216

stantial computational overhead. Hence, the qualitatively improved scaling of S with system217

size leads to a substantial suppression of computational costs.218

In Fig. 5, we compare the accuracies of the AB-SND approaches powered by single-spin219

rotations and by non-overlapping two-spin unitary operators. The latter approach allows in-220

troducing some entanglement and provides a more expressive basis transformation, while re-221

maining classically tractable. In fact, we find that, at and slightly beyond the critical regime222

h≳ 1, two-spin rotations lead to a sizable accuracy improvement compared to the single-spin223
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Figure 5: Relative error ε as a function of transverse field h, for S = 104 unique
configurations in the truncated basis. The testbed is the 1D-TFIM with N = 50 spins.
We compare the performances of the SND approach, with the ones of AB-SND ap-
proaches featuring single-spin and non-overlapping two-spin rotations.

case and, of course, compared to standard SBD based on the NQS-approximated ground-state224

sampling. Even better accuracies can be obtained by implementing classically intractable basis225

transformations using quantum hardware, as discussed in Section 4.226

An additional important challenge for all stochastic SBD methods is the decreasing ef-227

ficiency of sampling unique configurations as the number of samples increases. This phe-228

nomenon, also noted in Ref. [32], can be addressed in our framework through effective tem-229

perature scaling during inference. This procedure is discussed in Appendix F.230

4 Hybrid basis-adaptation methods for quantum computation231

4.1 Adaptive basis for SQD232

We present here an extension of the SQD algorithm that incorporates a classically optimized233

basis transformation, which we refer to as adaptive-basis SQD (AB-SQD). In this approach,234

the parametrized unitary operator U(θ ) used to rotate the computational basis is defined as a235

product of single-spin rotations, as in Eq. (3). The sampling of the bitstrings for building the236

subspace Hamiltonian is carried out on the quantum circuit used for the SQD procedure.237

To assess the performance of the AB-SQD approach, we make comparisons with the stan-238

dard SQD method and with the popular variational quantum eigensolver (VQE). The same239

quantum circuit architecture is employed in the VQE optimization and for the generation of240

samples for the SQD and AB-SQD estimations. Specifically, we adopt the architecture intro-241

duced in Ref. [33], originally designed for the 1D-TFIM at h = 1. In our case, we apply the242

same ansatz to the model at h = 0.5 and J = 1, allowing each gate within a layer to have an243

independent variational parameter. The circuit parameters are tuned by minimizing the expec-244

tation value of the Hamiltonian with the Adam optimizer. The resulting optimal parameters245

are then used to calculate the results for both the VQE and the SQD variants.246

Fig. 6 shows the relative error ε as a function of the total number of circuit evaluations247

Ns for the 1D-TFIM with N = 10 spins and transverse field h = 0.5. Notably, also analyze the248

role of hardware errors. Specifically, we compare the performance of VQE, standard SQD, and249
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Figure 6: Relative error ε as a function of the and total number of samples Ns of the
quantum circuit. The testbed model is the 1D-TFIM with N = 10 spins and h = 0.5.
We compare the accuracies of VQE, SQD and AB-SQD with single-spin rotations. The
depolarizing noise levels are λ= 0 for panel a) and λ= 10−3 for panel b).

AB-SQD for two different levels of depolarizing noise: the noiseless case λ = 0 and the noisy250

case λ= 10−3. The depolarizing noise is modeled by modifying the density matrix ρ after the251

application of two-qubit gates as follows [34]:252

ρ→ (1−λ)ρ +λ
I

2N
, (5)

where I is the identity operator, and the parameter λ ≥ 0 quantifies the noise strength. In253

the noiseless regime (λ = 0), where the only source of uncertainty is due to the finite num-254

ber of measurements Ns, VQE and SQD reach comparable accuracies for sufficiently large Ns.255

However, AB-SQD achieves the same precision with much fewer samples, demonstrating that256

the adaptive classical rotation concentrates the ground-state weight on fewer relevant basis257

elements, thus improving sampling efficiency. For λ = 10−3, VQE estimation is strongly af-258

fected by the noise, whereas SQD remains more stable. Nevertheless, AB-SQD provides the259

most accurate ground-state energy estimates in this noisy regime, confirming that the adap-260

tive basis reduces the impact of both depolarizing and shot noise on the subspace Hamiltonian261

estimation.262

4.2 Basis change using a quantum computer263

For the quantum Ising models we consider, which feature up to two-spin couplings, basis264

changes based on combinations of single-spin and non-overlapping two-spin transformations265

can be efficiently performed on classical computers. More expressive basis changes could be266

efficiently performed using quantum circuits. Such transformations could further improve267

the performance of AB-SND approaches, especially near critical points. Indeed, a VQE al-268

gorithm has been shown to be able to accurately solve the 1D-TFIM also at criticality by269

optimizing a unitary transformation U(θ ). This is achieved by minimizing the expectation270

value 〈0|U†(θ )HU(θ )|0〉 [33], which is estimated using (typically large) shot numbers. This271

is equivalent to a specific AB-SND strategy with only a single sampled configuration, namely,272

the state |0〉 = |00 . . . 0〉. The general AB-SND approach extends VQE by including the sam-273

pling of more basis elements, which leads to a finite matrix whose lowest eigenvalue is to274

be determined. Hereafter, we discuss how to implement a generic basis-change procedure275

using quantum computers. First, we set up a quantum circuit representing a parametrized276
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Figure 7: Relative error ε as a function of the transverse field h, for S = 16 unique
configurations. The testbed model is the 1D-TFIM with N = 6 spins. We compare the
accuracies of the SND approach with the ones of the AB-SND methods with single-
spin rotations and with a general basis change performed by the (simulated) quantum
circuit described in the text.

basis-change unitary operator U(θ ). Then, we can calculate the subspace-Hamiltonian el-277

ements 〈x (l)|U†(θ )HU(θ )|x (m)〉 using the approach introduced in Ref. [35]. The diagonal278

terms Hl = 〈x (l)|U†(θ )HU(θ )|x (l)〉 can be computed as standard expectation values. The279

off-diagonal terms can be calculated noticing that (using i =
p
−1)280

ℜ〈x (l)|U†(θ )HU(θ )|x (m)〉= Hl+m −
Hl

2
−

Hm

2
, (6)

and281

ℑ〈x (l)|U†(θ )HU(θ )|x (m)〉= −Hl+im +
Hl

2
+

Hm

2
, (7)

where282

Hl+m =
1
p

2
(〈x (l)|+ 〈x (m)|)U†(θ )HU(θ )

1
p

2
(|x (l)〉+ |x (m)〉) (8)

and283

Hl+im =
1
p

2
(〈x (l)| − i〈x (m)|)U†(θ )HU(θ )

1
p

2
(|x (l)〉+ i|x (m)〉) . (9)

Finally, in our framework, both the parameters θ and the weights of the autoregressive NN284

from which the bitstrings x (l) are sampled can be optimized as explained for the AB-SND285

procedure with single-spin rotations. To test this approach, we implement a small numerical286

experiment using a classical simulation of quantum circuits with N = 6 qubits for the 1D-TFIM.287

The circuit ansatz we choose is rather shallow. It features one layer of RY gates acting on each288

qubit, and two blocks including RZ Z operators acting on all nearest-neighbor pairs and RX289

rotations acting on each qubit. As shown in Fig. 7, the improvement of the AB-SND predictions290

based on the circuit-based basis change compared with the case of single-spin transformations291

is significant. With the more general transformation, appreciable inaccuracies occur only very292

close to the critical point hc = 1. We expect even better performances to be obtained by293

implementing basis transformations using deeper quantum circuits.294
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5 Conclusions295

In this article, we introduced SND and its basis-adaptive extension, dubbed AB-SND. These296

represent two NN-based techniques to boost the performance of both classical and quantum297

selected configuration interaction methods for estimating ground-state energies of quantum298

many-body systems. Our tests show that AB-SND offers significant improvements over con-299

ventional SBD methods, particularly in regimes where the ground state is delocalized in the300

computational basis. The adaptive strategy can be transferred to quantum sampling as well,301

where we introduce AB-SQD as a natural quantum analogue of AB-SND.302

To extend the AB-SND approach beyond basis changes based on single-spin and two-spin303

operators, we explored the integration of AB-SND with quantum computing. As we explained,304

this allows the implementation of more general basis transformations. To test this procedure,305

we implemented a small-scale proof-of-concept experiment using classically simulated quan-306

tum circuits. In this setting, we used parametrized entangling gates to define a more expressive307

unitary U(θ ), which led to improved performance compared to local spin rotations. Although308

these results are currently limited to small systems simulated classically, they suggest that AB-309

SND can be extended to hybrid quantum-classical workflows and could benefit from access310

to real quantum hardware in the future. In fact, the AB-SND approach driven by quantum311

circuits represents an extension of the VQE algorithm beyond the case of a single initial state.312

Further developments could include the use of more expressive basis-change circuits, im-313

proved optimization strategies in complex energy landscapes, and systematic explorations of314

the performance of AB-SND methods in larger or more strongly correlated systems. Future315

studies could also explore the use of different bases, adopt AB-SND methods for excited state316

as in recent SQD studies [36], attempt to further enhance the sampling imposing symme-317

tries and constraints [37, 38], and investigate the regime of applicability of sample-based ap-318

proaches in terms of entanglement properties. By combining neural sampling with learnable319

basis transformations, AB-SND provides a flexible and scalable framework for studying quan-320

tum many-body problems across a wide range of regimes.321

The essential scripts used in this study are available on GitHub [39].322
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A Loss function of SND and its gradient334

As in Eq. (1), one can write the probability of a set of configurations S(k) as P(S(k)) =
∏

x (l)∈S(k) P(x (l)),335

where P(x (l)) is the probability of sampling the bitstring x (l) defined by an autoregressive NN.336

The loss function L and its derivative with respect to a parameter of the network ω can be337
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calculated as follows:338

L =
∑

k

�

∏

x (l)∈S(k)
P(x (l))
�

E(k) =⇒

∂ L
∂ω
=
∑

k

∂

∂ω

�

∏

x (l)∈S(k)
P(x (l))
�

E(k)

=
∑

k

�

∑

x (l)∈S(k)

�

∂ P(x (l))
∂ω

∏

x (m) ̸=x (l)
P(x (m))
��

E(k) ,

(A.1)

where x (l) and x (m) are bitstrings in the batch S(k). With a straightforward rearrangement,339

the derivative can be rewritten as340

∂ L
∂ω
=
∑

k

�

∑

x (l)∈S(k)

�

∂ P(x (l))
∂ω

P(x (l))
P(x (l))

∏

x (m) ̸=x (l)
P(x (m))
��

E(k)

=
∑

k

P(S(k))
�

∑

x (l)∈S(k)

∂ log(P(x (l)))
∂ω

�

E(k) ,

(A.2)

and the stochastic estimator is given by341

∂ L
∂ω
≃

1
K

K
∑

k=1

�

∑

x (l)∈S(k)

∂ log(P(x (l)))
∂ω

�

E(k) , (A.3)

where the batches of bitstrings S(k) are sampled according to P(S(k)). A baseline term is useful342

to stabilize the training process [9,10]. In our framework, we set it equal to the average energy343

over the K batches E(k). Therefore, the loss function for SND reads:344

L =
1
K

K
∑

k=1

�

∑

x (l)∈S(k)
log(P(x (l)))
�

(E(k) − E(k)) . (A.4)

B Loss function of AB-SND and its gradient345

For the AB-SND method, the derivative with respect to the parameters of the NN used to sam-346

ple basis configurations ∂ L
∂ω is calculated as discussed in the previous section. However, here347

we also want to optimize the basis-change parameters θ in order to minimize the estimated348

ground-state energy. Notably, the rotation angles θ are also used as a condition for the NN349

that generates the spin configurations. For this, they are provided as inputs preceding the spin350

values. Similarly to the SND method, one obtains:351

∂ L
∂ θi

=
∑

k

∂

∂ θi

�

∏

x (l)∈S(k)
P(x (l)|θ )
�

E(k) +
�

∏

x (l)∈S(k)
P(x (l)|θ )
�

∂

∂ θi
E(k) . (B.1)

From the Hellmann–Feynman theorem, one can write352

∂ E(k)(θi)
∂ θi

=
­

ψ
(k)
0

�

�

�

�

∂ Ĥ
∂ θi

�

�

�

�

ψ
(k)
0

·

, (B.2)

where ψ(k)0 is the estimated ground-state wave function. In AB-SND, we use a basis-change353

unitary operator U(θ ), so354

∂ E(k)(θi)
∂ θi

=
­

ψ
(k)
0

�

�

�

�

∂ (U†(θ )ĤU(θ ))
∂ θi

�

�

�

�

ψ
(k)
0

·

. (B.3)
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Figure 8: Number of unique configurations S required to reach the relative error
ε = 0.01 as a function of number of spins N using a standard SBD approach with
configurations sampled from the exact ground state. Panels (a), (b), and (c) dis-
play results for the 1D-TFIM, the 2D-TFIM, and the 2D-EAM, respectively. Different
datasets in each panel correspond to different transverse fields h.

This quantity can be calculated using the parameter-shift rule [40, 41]. Alternatively, if U(θ )355

is implemented using classical algorithms, the gradient can be calculated using automatic356

differentiation, e.g., via the Pytorch library [42]. Finally, the derivative with respect to a357

generic rotation angle reads:358

∂ L
∂ θi
≃

1
K

K
∑

k=1

��

∑

x (l)∈S(k)

∂ log(P(x (l)|θ ))
∂ θi

�

E(k) +
­

ψ
(k)
0

�

�

�

�

∂ (U†(θ )ĤU(θ ))
∂ θi

�

�

�

�

ψ
(k)
0

·�

. (B.4)

We also implement an alternative approach to optimize the rotation angles, which avoids the359

multiple diagonalization steps used in the parameter-shift rule. This approach involves sam-360

pling the angles θ from an additional autoregressive NN. It is detailed in Appendix E.361

C Failure of standard SBD approaches at large transverse field362

The accuracy of SBD approaches noticeably depends on how the computational basis elements363

used to build the truncated Hamiltonian matrix are sampled. In Fig. 8, we show that even when364

the exact ground-state wave function is used for sampling, without adaptive basis rotations365

the SBD method fails when the ground-state wave function is not strongly concentrated in366

the chosen computational basis. In fact, beyond the small transverse field regime h≪ 1, the367

truncated basis size S required to reach the target accuracy of 1% approaches an exponential368

scaling with the system size N .369

D Most challenging regime for AB-SND370

In Fig. 9 we report numerical evidence showing that, in the large S limit, the peak of the371

energy error obtained via the AB-SND method drifts towards the critical point of the ferro-372

magnetic quantum phase transition. The chosen testbed is the 1D-TFIM with N = 10 spins.373

The configurations are sampled from the exact ground state.374
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Figure 9: Relative error ε as a function of the transverse field h, for differ-
ent numbers of unique configuration S. Darker colors mean higher S, with
S ∈ {4,8, 16,32, 64,128, 256,384, 512,640, 768,896, 1024}). The configurations
are sampled from the exact ground state. Adaptive single-spin rotations are then ap-
plied, as explained in the main text. These results are for the 1D-TFIM with N = 10
spins.

E Loss function of AB-SND with sampled rotational parameters375

Instead of optimizing the basis change using the Hellmann–Feynman theorem, one can em-376

ploy an additional autoregressive NN to sample the parameters θ that define the basis-change377

unitary operator. In this alternative procedure, the probability of a set of spin configurations378

is written as: P(S(k)) = Pν(θ
(k))Pω(S(k)|θ (k)) = Pν(θ

(k))
∏

x (l)∈S(k) Pω(x (l)|θ (k)), where ν de-379

notes the weights of the neural network responsible for sampling the parameters θ (k), while380

ω denotes the weights of the neural network responsible for sampling the bitstrings in the381

batch S(k). The former, is an autoregressive NN that provides the parameters µ and κ of a Von382

Mises distribution [43] from which the basis-change parameters θ (k) are sampled. Due to the383

autoregressive architecture, µi and κi depend on the angles θ j , with j < i. The rotation angles384

θ (k) are also used as conditions for the other autoregressive NN that defines the probabilities385

Pω(x (l)|θ (k)) of each bitstrings x (l). The loss function to be minimized is defined as:386

L =
∑

k

∫

dθ (k)
�

Pν(θ
(k))
∏

x (l)∈S(k)
Pω(x

(l)|θ (k))
�

E(k) (E.1)

and its derivatives are387

∂ L
∂ω
=
∑

k

∫

dθ (k)
�

Pν(θ
(k))

∂

∂ω

∏

x (l)∈S(k)
Pω(x

(l)|θ (k))
�

E(k)

=
∑

k

∫

dθ (k)
�

Pν(θ
(k))Pω(S

(k)|θ (k))
�

∑

x (l)∈S(k)

∂ log(Pω(x (l)|θ (k)))
∂ω

��

E(k)

≃
1
K

K
∑

k=1

�

∑

x (l)∈S(k)

∂ log(Pω(x (l)|θ (k)))
∂ω

�

E(k) ,

(E.2)
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Figure 10: Relative error ε as a function of the number of unique configurations
S used to build the subspace Hamiltonian. These results are for the 1D-TFIM with
h= 0.5 and N = 50. We compare the accuracies of a standard SBD approach powered
by NQS sampling, the SND approach, and two AB-SND approaches. The (green)
upside-down triangles refer to the AB-SND approach with rotation parameters θ (k)

sampled from an autoregressive NN, as explained in the text.

and388

∂ L
∂ ν
=
∑

k

∫

dθ (k)
�

∂ Pν(θ
(k))

∂ ν

∏

x (l)∈S(k)
Pω(x

(l)|θ (k))
�

E(k)

=
∑

k

∫

dθ (k)
�

∂ Pν(θ
(k))

∂ ν

Pν(θ
(k))

Pν(θ
(k))

∏

x (l)∈S(k)
Pω(x

(l)|θ (k))
�

E(k)

=
∑

k

∫

dθ (k)Pν(θ
(k))Pω(S

(k)|θ (k))
�

∂ log(Pν(θ
(k)))

∂ ν

�

E(k)

≃
1
K

K
∑

k=1

�

∂ log(Pν(θ
(k)))

∂ ν

�

E(k) ,

(E.3)

where ω ∈ω and ν ∈ ν denote single weights of the corresponding neural networks.389

Therefore, including the baseline term, the loss is evaluated as:390

L =
1
K

K
∑

k=1

�

log(Pν(θ
(k))) +
�

∑

x (l)∈S(k)
log(Pω(x

(l)|θ (k)))
��

(E(k) − E(k)) . (E.4)

Sampling θ (k) from a conditional autoregressive NN is conceptually and practically appealing.391

Yet, the test results visualized in Fig. 10 indicate that this approach does not perform better392

than the gradient-based optimization described in Appendix B. The accuracy shows a similar393

improvement rate as a function of S, with an approximately constant upward shift, denoting394

a marginally worse performance.395

F Problem of sampling unique configurations396

As the size S of the configuration set increases, the probability of sampling already included397

configurations rapidly rises. This leads to a problematic computational cost for sampling398
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Figure 11: Ratio between number of unique configurations S and total number of
samples Ns as a function of Ns for different values of the effective temperature T .
The samples are obtained via SND for the 1D-TFIM with N = 50 and h= 0.5.

unique configurations. To overcome this problem, we introduce the effective temperature399

parameter T [44]. This controls the shape of the output distribution by tuning the width of400

the softmax activation function in the final NN layer. The NN produces two outputs for each401

spin, and the softmax turns these outputs into probabilities of sampling 0 or 1. Specifically, if402

Y0 and Y1 are the two outputs, then403

Softmax(Yq) =
exp (Yq/T )
∑

r∈{0,1} exp (Yr/T )
. (F.1)

Complementary strategies were introduced in Ref. [32]. During training, we set T = 1, but in404

the inference phase we increase T to have a broader distribution, thus favoring the sampling405

of different outputs. This effect is demonstrated in Fig. 11. Indeed, while with T = 1 the406

ratio between the number of unique configurations S and of total configurations Ns decreases407

almost exponentially fast, slightly larger effective temperatures suffice to significantly increase408

the number of unique configurations, thus drastically decreasing the computational cost of409

sampling.410

Importantly, increasing T to values appropriate for efficient sampling does not reduce the411

performance of SND approaches. This is demonstrated in Fig. 12, where one observes that,412

for S ≳ 102, values of T ∈ [1, 1.6] provide comparable accuracies for the 1D-TFIM.413

G SND for a quantum chemistry testbed414

To complement the spin-model benchmarks presented in the main text, we report a proof-of-415

principle application of the SND approach to a minimal quantum chemistry problem. Specifi-416

cally, we consider the LiH molecule at different internuclear separations R in the STO-3G basis.417

The electronic Hamiltonian expressed in second quantization involves N = 12 qubit degrees of418

freedom and a total of four electrons. The fermionic operators are mapped to Pauli operators419

through a standard Jordan-Wigner transformation using the Qiskit Nature library [45].420

The autoregressive NN is trained to generate bitstrings x ∈ {0, 1}N subject to the physical421

constraints that all sampled configurations satisfy both the correct electron number and a total422

spin projection Sz = 0. These constraints are enforced by masking during the autoregressive423
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Figure 12: Energy per spin E/N obtained via SND as a function of the number
of unique configurations S used to build the subspace Hamiltonian. The different
datasets correspond to different effective temperatures T . The testbed model is the
1D-TFIM with N = 50 spin and transverse field h= 0.5.

sampling procedure, ensuring that exactly two spin-up and two spin-down spin-orbitals are424

occupied at the end of each sample sequence [10]. The resulting energies are compared to425

the Hartree-Fock result. The results shown in Fig. 13 confirm that the autoregressive model426

identifies physically relevant determinants, even in the absence of an adaptive basis trans-427

formation, and that the SND mechanism extends naturally from spin models to fermionic428

quantum-chemistry Hamiltonians.429

H Autoregressive neural network and hyperparameters430

We use a transformer encoder [46] with causal mask, two layers, four attention heads, and431

embedding size equal to 64. During training, we use K = 16 batches for SND and K = 4432

batches for AB-SND, and number of sampled bitstrings equal to BS = 128. It is worth em-433

phasizing that the latter does not coincide with the number of unique configurations S used434

during inference. Also, the rare repeated configurations are simply discarded. A comparison435

of the performances obtained with different values of K and BS is shown in Fig. 14. Notably,436

the accuracy of the SND method is not significantly affected by different choices for these437

parameters.438
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energy and the SND predictions with number of unique configurations S = 16. (b)
Relative error ε as a function of the number of unique configurations S used to build
the subspace Hamiltonian for the LiH molecule at interatomic distance R= 4Å.
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