

Adaptive-basis sample-based neural diagonalization for quantum many-body systems

Simone Cantori^{1,2*}, Luca Brodolini^{1,2}, Edoardo Recchi¹, Emanuele Costa^{3,4}, Bruno Juliá-Díaz^{3,4} and Sebastiano Pilati^{1,2}

1 School of Science and Technology, Physics Division, University of Camerino, I-62032 Camerino (MC), Italy

2 INFN-Sezione di Perugia, 06123 Perugia, Italy

3 Departament de Física Quàntica i Astrofísica, Facultat de Física, Universitat de Barcelona, 08028 Barcelona, Spain

4 Institut de Ciències del Cosmos de la Universitat de Barcelona, ICCUB, 08028 Barcelona, Spain

* simone.cantori@unicam.it

Abstract

Estimating ground-state energies of quantum many-body systems is challenging due to the exponential growth of Hilbert space. Sample-based diagonalization (SBD) addresses this by projecting the Hamiltonian onto a subspace of selected basis configurations but works only for concentrated ground-state wave functions. We propose two neural network-enhanced SBD methods: sample-based neural diagonalization (SND) and adaptive-basis SND (AB-SND). Both leverage autoregressive neural networks for efficient sampling; AB-SND also optimizes a basis transformation to concentrate the wave function. We explore classically tractable single- and two-spin rotations, and more expressive unitaries implementable on quantum computers. On quantum Ising models, SND performs well for concentrated states, while AB-SND consistently outperforms SND and standard SBD in less concentrated regimes.

Copyright attribution to authors.

This work is a submission to SciPost Physics.

License information to appear upon publication.

Publication information to appear upon publication.

Received Date

Accepted Date

Published Date

¹

Contents

3	1 Introduction	2
4	2 Methods	4
5	3 Results	6
6	4 Hybrid basis-adaptation methods for quantum computation	9
7	4.1 Adaptive basis for SQD	9
8	4.2 Basis change using a quantum computer	10
9	5 Conclusions	12

10	A Loss function of SND and its gradient	12
11	B Loss function of AB-SND and its gradient	13
12	C Failure of standard SBD approaches at large transverse field	14
13	D Most challenging regime for AB-SND	14
14	E Loss function of AB-SND with sampled rotational parameters	15
15	F Problem of sampling unique configurations	16
16	G SND for a quantum chemistry testbed	17
17	H Autoregressive neural network and hyperparameters	18
18	References	19

21 1 Introduction

22 The accurate calculation of ground-state properties of quantum many-body systems is one of
23 the central challenges in quantum chemistry and condensed matter physics. The exponential
24 growth of the Hilbert space with system size makes exact solutions intractable for large
25 systems, necessitating the development of approximate computational methods. Deep learning
26 methods have emerged as promising tools to address this challenge [1–3]. For example,
27 supervised learning approaches have been used to predict ground-state energies based on
28 labeled training data [4–7]. On the other hand, the introduction of neural quantum states
29 (NQS), which represent wave functions using neural network (NN) architectures, has opened
30 new possibilities for variational Monte Carlo simulations, circumventing the need of labeled
31 data [8–10].

32 In quantum chemistry, a standard approach to tackle the problem of the Hilbert space size
33 is represented by selected configuration interaction methods [11–14]. These employ predefined
34 wave-function ansatzes, Monte Carlo sampling, or other empirical criteria to select a set
35 of relevant basis configurations $|x^{(l)}\rangle$, labeled by the index l . The corresponding Hamiltonian
36 matrix elements $\langle x^{(l)}|H|x^{(m)}\rangle$ are evaluated to define a subspace Hamiltonian matrix. The
37 ground-state energy is then approximated by computing the lowest eigenvalue of this matrix.
38 Recently, these approaches have also been adopted in the context of quantum computing, under
39 the name of Sample-based Diagonalization (SBD) [15–17]. The key idea is to employ
40 quantum circuits to sample relevant configurations, leading to what is dubbed Sample-based
41 Quantum Diagonalization (SQD). In principle, quantum circuits might allow for the sampling
42 of classically intractable distributions [18]. Machine learning algorithms have also been used
43 to select relevant configurations [19–22]. Yet, the problem of how to efficiently truncate the
44 Hilbert space, while minimizing the introduced approximation, is still open. In fact, SBD approaches
45 are known to perform well only when the ground-state wave function is concentrated
46 on the chosen computational basis [15], which means that its amplitudes are not negligible
47 only on a small subset of basis elements. This strongly limits the regime of applicability of SBD
48 methods.

49 In this article, we introduce two NN enhanced SBD approaches: sample-based neural diag-

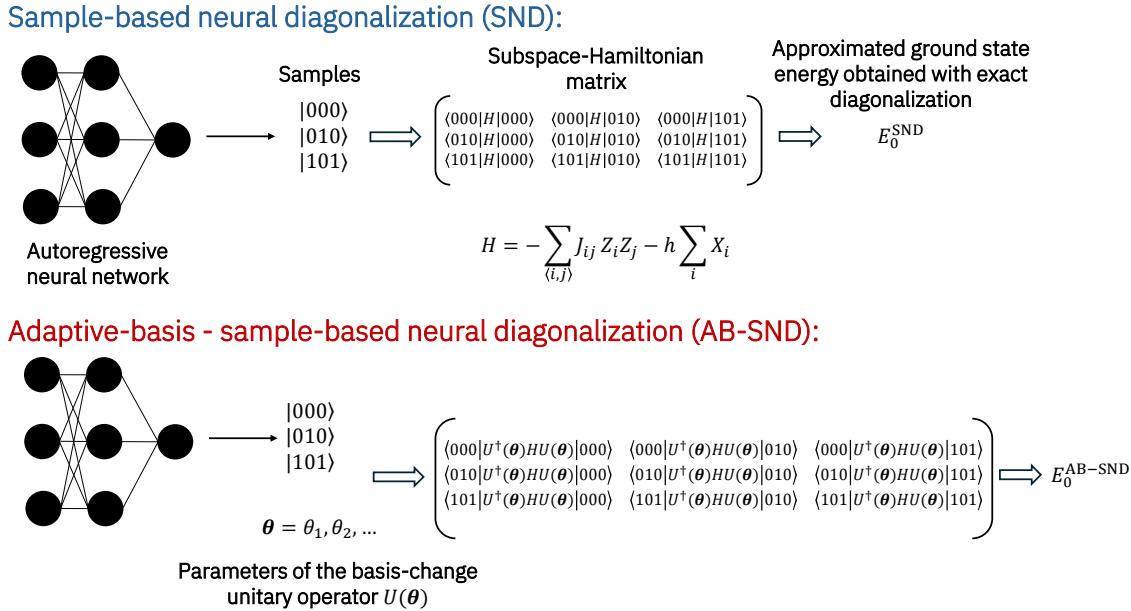


Figure 1: Scheme of the SND and AB-SND methods. In SND (top), an autoregressive neural network generates the bitstrings that define the subspace for diagonalization. In AB-SND (bottom), we also optimize some basis-transformation parameters θ , enabling us to perform sampling in a rotated basis where the ground state is more concentrated.

50 onalization (SND) and its extension based on an adaptive basis, which we refer to as adaptive-
 51 basis SND (AB-SND). Both methods employ autoregressive NNs to efficiently sample basis
 52 configurations relevant for the estimation of the ground-state energy, as illustrated in Fig. 1.
 53 While SND operates in a fixed computational basis, AB-SND incorporates a basis transformation,
 54 allowing for improved performance when the ground state is not concentrated in the
 55 original computational basis, a regime in which standard SBD techniques are doomed to fail.
 56 We also extend adaptive-basis strategies to the SQD protocol. In our implementation, the
 57 basis change is performed using parameterized single-spin and two-spin rotations, which are
 58 efficiently computable on classical hardware. Additionally, we explore more expressive ba-
 59 sis transformations, describing how quantum computers allow their implementation for large
 60 systems. The testbeds we consider are one-dimensional (1D) and two-dimensional (2D) fer-
 61 romagnetic quantum Ising models and a 2D quantum spin-glass model. These models are
 62 chosen because the concentration of their ground state can be tuned, allowing us to test SBD
 63 approaches in different regimes of computational hardness, and also because, despite the dis-
 64 ordered frustrated interactions in the spin glass model, the benchmark ground-state energy
 65 can be exactly computed using recently introduced quantum Monte Carlo algorithms [23],
 66 due to the absence of the negative sign problem. Notably, we find that the AB-SND approach
 67 allows us to considerably extend the regime of applicability of SBD methods, in particular,
 68 when performed with the more general basis transformations. To show that the SND tech-
 69 nique also extends naturally beyond spin models, we include a proof-of-principle application
 70 to a small quantum-chemistry Hamiltonian, namely, the LiH molecule in the STO-3G basis, in
 71 the Appendix.

72 The rest of this article is organized as follows: Sec. 2 provides the details of the methodol-
 73 ogy of both SND and AB-SND. Sec. 3 presents our numerical results for different quantum Ising
 74 models, comparing the performance of the proposed approaches to standard SBD techniques.

75 In Sec. 4 we examine how AB-SND can be implemented on quantum hardware, covering both
 76 a classically optimized adaptive basis for SQD and a quantum circuit-based basis change for
 77 SND, highlighting the potential for hybrid quantum-classical schemes. In Sec. 5, we summarize
 78 our findings and discuss future directions. Finally, the Appendices provide additional details
 79 on: the definition of the loss functions and their gradient calculations for SND (Appendix A)
 80 and AB-SND (App. B); the failure of standard SBD when the ground state is not concentrated
 81 (App. C); the regime of maximum error in AB-SND (App. D); the optimization of angle param-
 82 eters via stochastic sampling (App. E); the effective temperature scaling for efficient sampling
 83 of unique configurations (App. F); the application of SND for the LiH molecule (App. G); the
 84 autoregressive NN architectures (App. H).

85 2 Methods

86 As in standard SBD approaches, the SND methods we introduce hereafter aim to approximate
 87 the ground-state energy of a quantum system by projecting the Hamiltonian onto a subspace
 88 spanned by a selected set of basis configurations. In our implementation, these configurations
 89 are selected from the standard computational basis, which consists of tensor products of the
 90 single-qubit basis states $|0\rangle$ and $|1\rangle$, namely, the eigenstates of the Pauli-Z operator. For a sys-
 91 tem of N spins, the computational basis states $|x\rangle = |x_1 x_2 \dots x_N\rangle$ correspond to bitstrings x ,
 92 where each component $x_i \in \{0, 1\}$. Given a set of S unique configurations, $\{|x^{(l)}\rangle\}_{l=1,\dots,S}$, one
 93 constructs a subspace Hamiltonian by evaluating the matrix elements $\langle x^{(l)} | H | x^{(m)} \rangle$. The lowest
 94 eigenvalue E of this subspace matrix provides a variational upper bound for the ground-state
 95 energy, which converges to the exact value for $S \rightarrow 2^N$. Clearly, this limit is computa-
 96 tionally impractical for system sizes $N \gg 10$. Yet, suitable criteria to select the subset of basis
 97 configurations lead to accurate approximations for feasible value of S .

98 In our framework, the selected configurations are sampled using autoregressive NNs, which
 99 can be trained to minimize E . More precisely, as in Ref. [15], we define the loss function to be
 100 minimized during training as

$$101 \quad L = \sum_k P(S^{(k)}) E^{(k)}, \quad (1)$$

102 where $S^{(k)}$ represents a batch of bitstrings and $E^{(k)}$ is the lowest eigenvalue of the subspace
 103 Hamiltonian built on the k -th batch of bitstrings. In our case, the probability $P(S^{(k)})$ of sam-
 104 pling $S^{(k)}$ is given by the autoregressive NN. The minimization is performed using stochastic
 105 gradient-based methods, and the derivation of the gradient of L with respect to the weights of
 106 the NN is shown in the Appendix A.

107 The main testbeds considered in this article are quantum Ising models described by the
 108 following Hamiltonian:

$$109 \quad H = - \sum_{\langle i,j \rangle} J_{ij} Z_i Z_j - h \sum_i X_i, \quad (2)$$

110 where Z_i and X_i are Pauli operators acting on spin i , J_{ij} represents the interaction strength
 111 between the nearest-neighbor spins i and j , and h is the transverse field strength. Specifically,
 112 we consider three variants of this model:

- 113 1. 1D ferromagnetic transverse field Ising model (1D-TFIM), with $J_{ii+1} = 1$ for $i = 1, \dots, N$,
 114 and periodic boundary conditions, i.e., the spin $N + 1$ is identified with the spin 1;
- 115 2. 2D ferromagnetic TFIM (2D-TFIM), with $J_{ij} = 1$ for i and j nearest-neighbor spins on a
 116 square lattice, and open boundary conditions;

115 3. 2D Edward-Anderson model (2D-EAM) on a square lattice, with J_{ij} randomly sampled
 116 from a normal distribution $\mathcal{N}(0, 1)$ with zero mean and unit variance, and periodic
 117 boundary conditions.

118 It is worth pointing out that quantum Monte Carlo simulations of quantum Ising models are
 119 not affected by the negative sign problem. Thus, by adopting these models as testbeds for the
 120 SBD approaches, we have the opportunity to make comparisons against unbiased estimates of
 121 the ground-state energy, even beyond the 1D case. In the latter case, the exact solution can
 122 be obtained via the Jordan-Wigner transformation, leading to a quadratic free fermion Hamil-
 123 tonian [24]. It is worth underlining that the 2D-EAM represents a challenging testbed due to
 124 the presence of disordered frustrated interactions. In fact, unbiased ground-state simulations
 125 have recently been performed thanks to the combination of projection quantum Monte Carlo
 126 algorithms with NQSSs [25]. Importantly, tuning h allows us to control the concentration of the
 127 ground state [26], thus testing the SBD approaches in different regimes. Indeed, for $h \rightarrow \infty$,
 128 the ground state of these models tends to an equally weighted superposition of the computa-
 129 tional basis elements, i.e. $|+++ \dots +\rangle$ (with $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$). In the opposite limit $h \rightarrow 0$,
 130 quantum fluctuations vanish, leading to a more concentrated ground-state wave function in
 131 the chosen computational basis. It is worth emphasizing that generic SBD methods, including
 132 our SND method without adaptive basis changes, are expected to perform well only for rel-
 133 atively small h . Numerical results confirming this expectation are shown in the Appendix A.
 134 Although the focus in the main text is on spin models, the same procedure applies to generic
 135 second-quantized fermionic Hamiltonians. We demonstrate this explicitly for the LiH molecule
 136 in Appendix G.

137 To extend the regime of applicability of SBD approaches, we introduce the AB-SND method.
 138 AB-SND improves the SND strategy by incorporating a basis transformation defined by a pa-
 139 rameterized unitary operator $U(\theta)$, which maps the original computational basis to a rotated
 140 basis in which the ground state is more concentrated. As in SND, an autoregressive NN gen-
 141 erates bitstring samples, but these are rotated by $U(\theta)$. The subspace Hamiltonian is then
 142 constructed from transformed matrix elements $\langle x^{(l)} | U(\theta)^\dagger H U(\theta) | x^{(m)} \rangle$, as shown in Fig. 1. In
 143 most of our experiments, we use a combination of single-spin rotations $U(\theta) = \bigotimes_{i=1, \dots, N} U_i(\theta_i)$,
 144 where

$$U_i(\theta_i) = \begin{bmatrix} \cos \frac{\theta_i}{2} & -\sin \frac{\theta_i}{2} \\ \sin \frac{\theta_i}{2} & \cos \frac{\theta_i}{2} \end{bmatrix}, \quad (3)$$

145 and each angle θ_i is an independent parameter for spin i . Because the rotations act indepen-
 146 dently on each spin and the Hamiltonian is composed of local Pauli operators, we can effi-
 147 ciently compute the transformed Hamiltonian $U^\dagger H U$ using classical hardware. In addition to
 148 single-spin rotations, we also implement non-overlapping two-spin rotations, which increase
 149 the expressive power of the basis transformation while remaining classically tractable. The
 150 unitary operator is defined as a composition of R_Y , R_{ZZ} , and R_X gates that act on each spin in

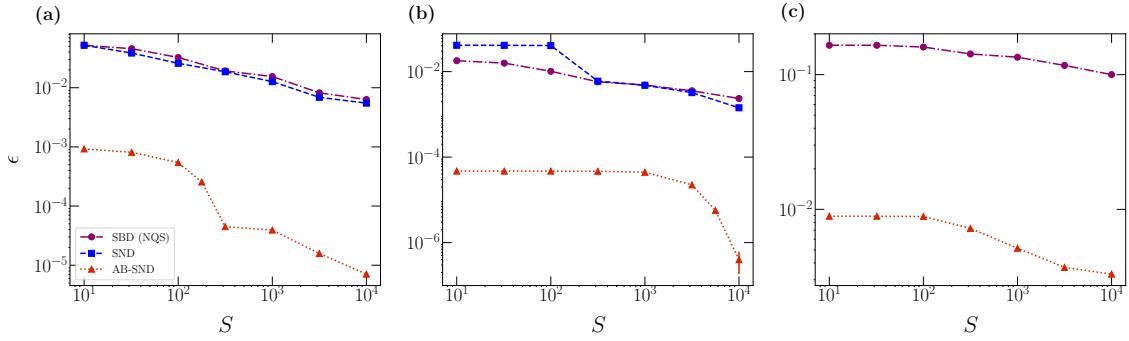


Figure 2: Relative error ϵ as a function of the number of unique configurations S used to build the subspace Hamiltonian. Panels (a), (b), and (c) display the relative errors for the 1D-TFIM, the 2D-TFIM, and the 2D-EAM with $N = 50$, $N = 100$, and $N = 64$ spins, respectively. The transverse field is $h = 0.5$ for the 1D-TFIM and the 2D-TFIM, while it is $h = 1$ for the 2D-EAM. In panel (b), we take into account the statistical uncertainty of the quantum Monte Carlo simulations used to determine the unbiased estimate of the ground-state energy.

151 the pair. The matrix representations of these gates are as follows:

$$\begin{aligned}
 R_Y(\alpha) &= \begin{bmatrix} \cos \frac{\alpha}{2} & -\sin \frac{\alpha}{2} \\ \sin \frac{\alpha}{2} & \cos \frac{\alpha}{2} \end{bmatrix}, \\
 R_X(\beta) &= \begin{bmatrix} \cos \frac{\beta}{2} & -i \sin \frac{\beta}{2} \\ -i \sin \frac{\beta}{2} & \cos \frac{\beta}{2} \end{bmatrix}, \\
 R_{ZZ}(\gamma) &= \begin{bmatrix} e^{-i \frac{\gamma}{2}} & 0 & 0 & 0 \\ 0 & e^{i \frac{\gamma}{2}} & 0 & 0 \\ 0 & 0 & e^{i \frac{\gamma}{2}} & 0 \\ 0 & 0 & 0 & e^{-i \frac{\gamma}{2}} \end{bmatrix}.
 \end{aligned} \tag{4}$$

152 As mentioned above, the gates $R_{ZZ}(\gamma)$ act on non-overlapping spin pairs $\{0, 1\}$, $\{2, 3\}$, etc.
153 However, the AB-SND framework is compatible with more general, potentially strongly entan-
154 gling basis transformations, which could be implemented on quantum hardware. The use of
155 quantum circuits for evaluating subspace matrix elements is discussed in Sec. 4. For AB-SND,
156 the optimization of the angle parameter θ can be approached in different ways, as discussed
157 in the Appendices B and E.

158 3 Results

159 Hereafter, we analyze the performances of SND and AB-SND powered by local basis transfor-
160 mations on the three quantum spin models described in Sec. 2. As a benchmark, we consider
161 a more standard SBD approach in which the configurations are sampled from the (squared
162 modulus) exact ground-state wave function or from a very accurate approximation obtained
163 via a variational Monte Carlo simulation. It is worth emphasizing that this procedure assumes
164 that an accurate representation of the ground state can be obtained through a complemen-
165 tary computational technique. This allows us to execute standard SBD under very favorable

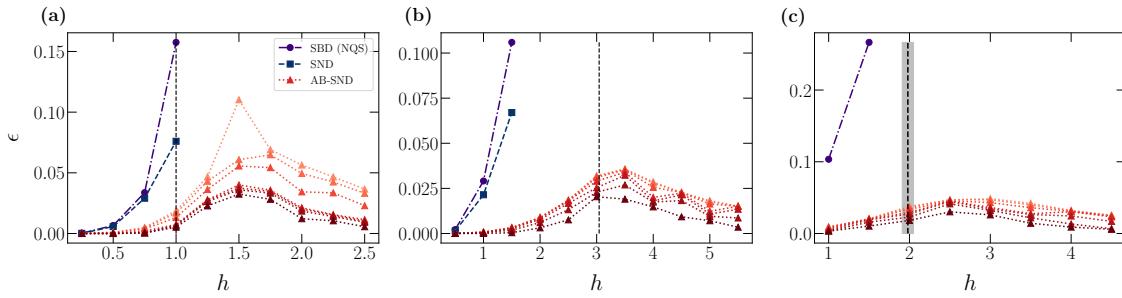


Figure 3: Relative error ϵ as a function of the transverse field h , for different numbers of unique configurations S . For AB-SND, darker colors correspond to larger S , with $S \in \{10, 10^{1.5}, 10^2, \dots, 10^4\}$, while for SBD from the NQS and SND we consider only $S = 10^4$. Panel (a) represents the errors for the 1D-TFIM with $N = 50$ spins, panel (b) corresponds to the 2D-TFIM with $N = 100$ spins, and panel (c) to the 2D-EAM with $N = 64$ spins. The vertical dashed lines represent the corresponding quantum critical points, namely, the ferromagnetic transitions in the 1D-TFIM and the 2D-TFIM, and the spin-glass transition in the 2D-EAM. For the latter, the uncertainty is represented by the gray bar [23].

166 conditions, thus representing a stringent benchmark for novel SND approaches. We sample
 167 configurations from an NQS in the form of a restricted Boltzmann machine. The latter is opti-
 168 mized using the NetKet library [27, 28]. Our numerical tests show that, as a sampling engine
 169 for SBD approaches, the NQS ansatz performs essentially as well as the exact ground state,
 170 at least for the system sizes for which the latter can be computed. Thus, in the following, we
 171 mostly adopt NQS sampling, unless otherwise specified.

172 To quantify the performance of the various SBD approaches, we compute the relative error
 173 $\epsilon = |\frac{y - E_0}{E_0}|$, where y represents the energy estimate from a given method, and E_0 is the exact
 174 ground-state energy. The latter is computed by mapping interacting spins to a quadratic free
 175 fermion model via the Jordan-Wigner transformations for the 1D model [24, 29], while for the
 176 2D models we employ continuous-time projection quantum Monte Carlo simulations [23, 30].
 177 Despite of the presence of disordered frustrated interaction in the 2D-EA model, the latter
 178 algorithms provide unbiased estimates, affected only by very small statistical uncertainties.

179 In Fig. 2, we analyze the relative errors in the three testbed models, considering relatively
 180 weak transverse fields h for which the ground state is concentrated in the chosen computa-
 181 tional basis. As expected, all three SBD techniques perform well, showing a systematic ac-
 182 curacy improvement with the number of unique configurations S used to build the subspace.
 183 However, the SND performance deteriorates for the 2D-EAM (not shown). This effect may
 184 be attributed to the rugged energy landscapes occurring in spin-glass phases [31]. In this
 185 testbed, the standard SBD method based on NQS-sampled configurations performs better, but
 186 still reaches errors as large as 10% for computationally practical values of S . Notably, thanks
 187 to the additional variational flexibility introduced by the learnable basis transformation, the
 188 AB-SND method displays a systematic performance improvement with S also in the 2D-EAM.
 189 In fact, it consistently outperforms the other SBD approaches we consider, in all three testbeds.

190 In Fig. 3, the relative energy error is plotted as a function of the transverse field h , for
 191 different numbers of unique configurations S . As expected, the performance of SND and stan-
 192 dard NQS-based SBD methods rapidly deteriorates as h increases, denoting the limited regime
 193 of applicability of these approaches. Instead, the AB-SND method, here implemented with
 194 single-spin rotations, is accurate also at significantly larger transverse fields. In fact, it reaches
 195 small relative errors also in the large h limit. This indicates that adaptive single-spin rota-
 196 tions enable a continuous interpolation between the original computational basis, in which

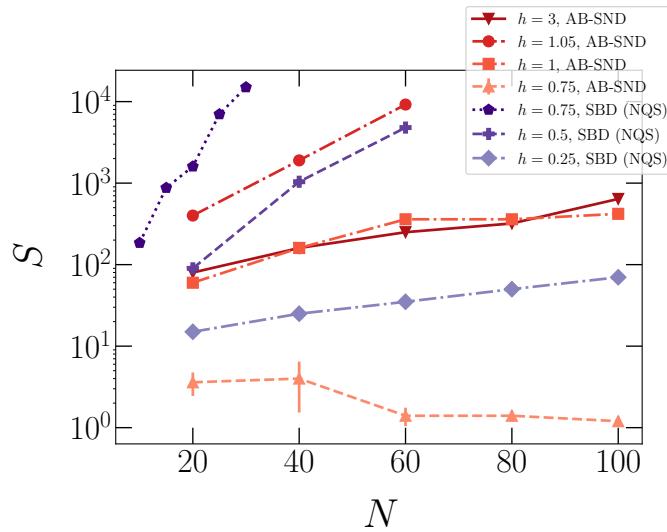


Figure 4: Number of unique configurations S required to reach relative errors below $\epsilon = 0.01$ as a function of the number of spins N for the 1D-TFIM at different transverse fields h . We compare the performance of a standard SBD approach powered by NQS sampling (shades of blue) with the one of the AB-SND with single-spin rotations (shades of red). The error-bars for the AB-SND method for $h = 0.5$ and $h = 0.75$ represent the estimated standard deviation of the average over five training processes.

197 the ground state is concentrated in the $h \rightarrow 0$ limit, and the basis built using eigenstates of
 198 the X Pauli operator $|+\rangle, |-\rangle$, in which concentration occurs in the opposite limit. Sizable in-
 199 accuracies occur in the intermediate regime, approximately in the region around the quantum
 200 phase transitions occurring in the three testbed models, namely, the paramagnetic to ferro-
 201 magnetic transition in the 1D-TFIM and the 2D-TFIM, and the quantum spin-glass transition
 202 in the 2D-EAM [23]. In the Appendix D, we provide numerical evidence that in the large S
 203 limit, the peak of the energy error approaches the critical point $h_c = 1$ of the 1D-TFIM.

204 In Fig. 4, we analyze how the computational cost scales with the system size N . Specifi-
 205 cally, we determine the number of unique configurations S required to reach a relative error
 206 of 1%, considering the 1D-TFIM. A standard SBD approach based on NQS sampling displays a
 207 problematic scaling already for $h \gtrsim 0.5$, making it impractical to reach system sizes $N \simeq 100$
 208 keeping the target accuracy. In this regime, the number of configurations required by the AB-
 209 SND approach powered by single-spin rotations is still essentially independent of N , denoting
 210 the important role of the basis change. However, the scaling approaches an exponential behav-
 211 ior slightly beyond the critical point $h_c = 1$, while it improves again for transverse fields $h \gg 1$.
 212 Better accuracies in the critical regime $h \simeq 1$ can be obtained within the AB-SND approach
 213 with more general basis transformations, as discussed below. Here, it is worth mentioning
 214 that, considering the currently available implementations, the training of the autoregressive
 215 networks used for sampling in SND implies a computational cost comparable to the training of
 216 the NQS ansatz used for SBD. The optimization of the adaptive basis does not involve a sub-
 217 stantial computational overhead. Hence, the qualitatively improved scaling of S with system
 218 size leads to a substantial suppression of computational costs.

219 In Fig. 5, we compare the accuracies of the AB-SND approaches powered by single-spin
 220 rotations and by non-overlapping two-spin unitary operators. The latter approach allows in-
 221 troducing some entanglement and provides a more expressive basis transformation, while re-
 222 maining classically tractable. In fact, we find that, at and slightly beyond the critical regime
 223 $h \gtrsim 1$, two-spin rotations lead to a sizable accuracy improvement compared to the single-spin

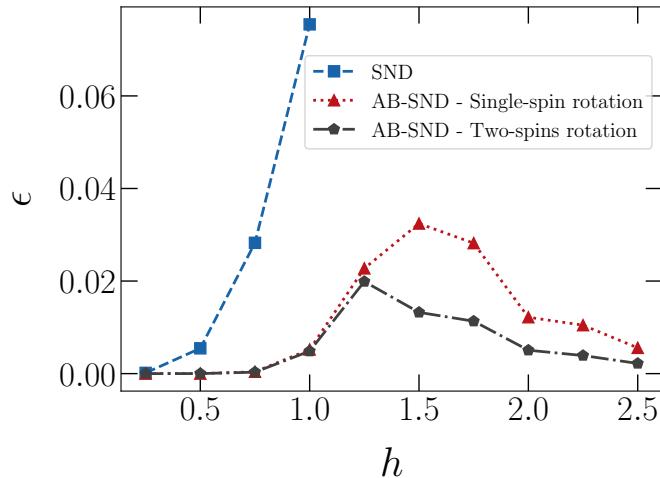


Figure 5: Relative error ϵ as a function of transverse field h , for $S = 10^4$ unique configurations in the truncated basis. The testbed is the 1D-TFIM with $N = 50$ spins. We compare the performances of the SND approach, with the ones of AB-SND approaches featuring single-spin and non-overlapping two-spin rotations.

case and, of course, compared to standard SBD based on the NQS-approximated ground-state sampling. Even better accuracies can be obtained by implementing classically intractable basis transformations using quantum hardware, as discussed in Section 4.

An additional important challenge for all stochastic SBD methods is the decreasing efficiency of sampling unique configurations as the number of samples increases. This phenomenon, also noted in Ref. [32], can be addressed in our framework through effective temperature scaling during inference. This procedure is discussed in Appendix F.

4 Hybrid basis-adaptation methods for quantum computation

4.1 Adaptive basis for SQD

We present here an extension of the SQD algorithm that incorporates a classically optimized basis transformation, which we refer to as adaptive-basis SQD (AB-SQD). In this approach, the parametrized unitary operator $U(\theta)$ used to rotate the computational basis is defined as a product of single-spin rotations, as in Eq. (3). The sampling of the bitstrings for building the subspace Hamiltonian is carried out on the quantum circuit used for the SQD procedure.

To assess the performance of the AB-SQD approach, we make comparisons with the standard SQD method and with the popular variational quantum eigensolver (VQE). The same quantum circuit architecture is employed in the VQE optimization and for the generation of samples for the SQD and AB-SQD estimations. Specifically, we adopt the architecture introduced in Ref. [33], originally designed for the 1D-TFIM at $h = 1$. In our case, we apply the same ansatz to the model at $h = 0.5$ and $J = 1$, allowing each gate within a layer to have an independent variational parameter. The circuit parameters are tuned by minimizing the expectation value of the Hamiltonian with the Adam optimizer. The resulting optimal parameters are then used to calculate the results for both the VQE and the SQD variants.

Fig. 6 shows the relative error ϵ as a function of the total number of circuit evaluations N_s for the 1D-TFIM with $N = 10$ spins and transverse field $h = 0.5$. Notably, also analyze the role of hardware errors. Specifically, we compare the performance of VQE, standard SQD, and

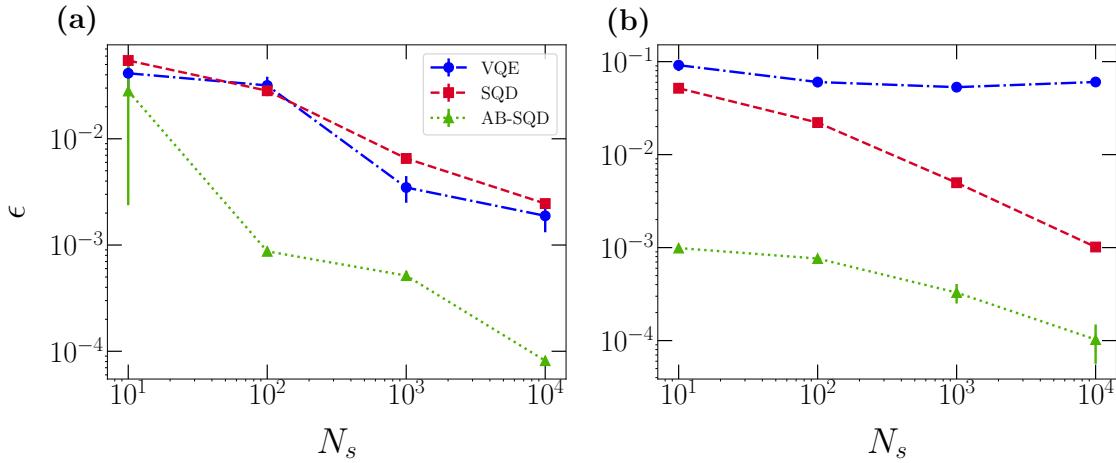


Figure 6: Relative error ϵ as a function of the total number of samples N_s of the quantum circuit. The testbed model is the 1D-TFIM with $N = 10$ spins and $h = 0.5$. We compare the accuracies of VQE, SQD and AB-SQD with single-spin rotations. The depolarizing noise levels are $\lambda = 0$ for panel a) and $\lambda = 10^{-3}$ for panel b).

250 AB-SQD for two different levels of depolarizing noise: the noiseless case $\lambda = 0$ and the noisy
 251 case $\lambda = 10^{-3}$. The depolarizing noise is modeled by modifying the density matrix ρ after the
 252 application of two-qubit gates as follows [34]:

$$\rho \rightarrow (1 - \lambda)\rho + \lambda \frac{I}{2^N}, \quad (5)$$

253 where I is the identity operator, and the parameter $\lambda \geq 0$ quantifies the noise strength. In
 254 the noiseless regime ($\lambda = 0$), where the only source of uncertainty is due to the finite num-
 255 ber of measurements N_s , VQE and SQD reach comparable accuracies for sufficiently large N_s .
 256 However, AB-SQD achieves the same precision with much fewer samples, demonstrating that
 257 the adaptive classical rotation concentrates the ground-state weight on fewer relevant basis
 258 elements, thus improving sampling efficiency. For $\lambda = 10^{-3}$, VQE estimation is strongly af-
 259 fected by the noise, whereas SQD remains more stable. Nevertheless, AB-SQD provides the
 260 most accurate ground-state energy estimates in this noisy regime, confirming that the adap-
 261 tive basis reduces the impact of both depolarizing and shot noise on the subspace Hamiltonian
 262 estimation.

263 4.2 Basis change using a quantum computer

264 For the quantum Ising models we consider, which feature up to two-spin couplings, basis
 265 changes based on combinations of single-spin and non-overlapping two-spin transformations
 266 can be efficiently performed on classical computers. More expressive basis changes could be
 267 efficiently performed using quantum circuits. Such transformations could further improve
 268 the performance of AB-SND approaches, especially near critical points. Indeed, a VQE al-
 269 gorithm has been shown to be able to accurately solve the 1D-TFIM also at criticality by
 270 optimizing a unitary transformation $U(\theta)$. This is achieved by minimizing the expectation
 271 value $\langle 0|U^\dagger(\theta)HU(\theta)|0\rangle$ [33], which is estimated using (typically large) shot numbers. This
 272 is equivalent to a specific AB-SND strategy with only a single sampled configuration, namely,
 273 the state $|0\rangle = |00\dots 0\rangle$. The general AB-SND approach extends VQE by including the sam-
 274 pling of more basis elements, which leads to a finite matrix whose lowest eigenvalue is to
 275 be determined. Hereafter, we discuss how to implement a generic basis-change procedure
 276 using quantum computers. First, we set up a quantum circuit representing a parametrized

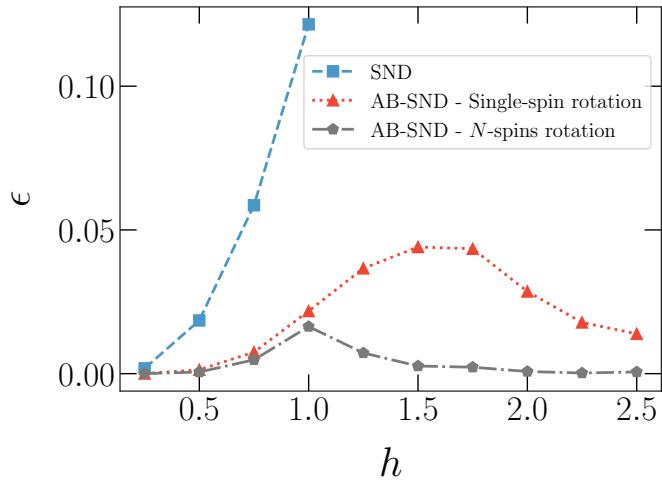


Figure 7: Relative error ϵ as a function of the transverse field h , for $S = 16$ unique configurations. The testbed model is the 1D-TFIM with $N = 6$ spins. We compare the accuracies of the SND approach with the ones of the AB-SND methods with single-spin rotations and with a general basis change performed by the (simulated) quantum circuit described in the text.

277 basis-change unitary operator $U(\theta)$. Then, we can calculate the subspace-Hamiltonian el-
 278 ements $\langle x^{(l)} | U^\dagger(\theta) H U(\theta) | x^{(m)} \rangle$ using the approach introduced in Ref. [35]. The diagonal
 279 terms $H_l = \langle x^{(l)} | U^\dagger(\theta) H U(\theta) | x^{(l)} \rangle$ can be computed as standard expectation values. The
 280 off-diagonal terms can be calculated noticing that (using $i = \sqrt{-1}$)

$$\Re \langle x^{(l)} | U^\dagger(\theta) H U(\theta) | x^{(m)} \rangle = H_{l+m} - \frac{H_l}{2} - \frac{H_m}{2}, \quad (6)$$

281 and

$$\Im \langle x^{(l)} | U^\dagger(\theta) H U(\theta) | x^{(m)} \rangle = -H_{l+im} + \frac{H_l}{2} + \frac{H_m}{2}, \quad (7)$$

282 where

$$H_{l+m} = \frac{1}{\sqrt{2}} (\langle x^{(l)} | + \langle x^{(m)} |) U^\dagger(\theta) H U(\theta) \frac{1}{\sqrt{2}} (|x^{(l)}\rangle + |x^{(m)}\rangle) \quad (8)$$

283 and

$$H_{l+im} = \frac{1}{\sqrt{2}} (\langle x^{(l)} | - i \langle x^{(m)} |) U^\dagger(\theta) H U(\theta) \frac{1}{\sqrt{2}} (|x^{(l)}\rangle + i|x^{(m)}\rangle). \quad (9)$$

284 Finally, in our framework, both the parameters θ and the weights of the autoregressive NN
 285 from which the bitstrings $x^{(l)}$ are sampled can be optimized as explained for the AB-SND
 286 procedure with single-spin rotations. To test this approach, we implement a small numerical
 287 experiment using a classical simulation of quantum circuits with $N = 6$ qubits for the 1D-TFIM.
 288 The circuit ansatz we choose is rather shallow. It features one layer of R_Y gates acting on each
 289 qubit, and two blocks including R_{ZZ} operators acting on all nearest-neighbor pairs and R_X
 290 rotations acting on each qubit. As shown in Fig. 7, the improvement of the AB-SND predictions
 291 based on the circuit-based basis change compared with the case of single-spin transformations
 292 is significant. With the more general transformation, appreciable inaccuracies occur only very
 293 close to the critical point $h_c = 1$. We expect even better performances to be obtained by
 294 implementing basis transformations using deeper quantum circuits.

295 5 Conclusions

296 In this article, we introduced SND and its basis-adaptive extension, dubbed AB-SND. These
 297 represent two NN-based techniques to boost the performance of both classical and quantum
 298 selected configuration interaction methods for estimating ground-state energies of quantum
 299 many-body systems. Our tests show that AB-SND offers significant improvements over con-
 300 ventional SBD methods, particularly in regimes where the ground state is delocalized in the
 301 computational basis. The adaptive strategy can be transferred to quantum sampling as well,
 302 where we introduce AB-SQD as a natural quantum analogue of AB-SND.

303 To extend the AB-SND approach beyond basis changes based on single-spin and two-spin
 304 operators, we explored the integration of AB-SND with quantum computing. As we explained,
 305 this allows the implementation of more general basis transformations. To test this procedure,
 306 we implemented a small-scale proof-of-concept experiment using classically simulated quan-
 307 tum circuits. In this setting, we used parametrized entangling gates to define a more expressive
 308 unitary $U(\theta)$, which led to improved performance compared to local spin rotations. Although
 309 these results are currently limited to small systems simulated classically, they suggest that AB-
 310 SND can be extended to hybrid quantum-classical workflows and could benefit from access
 311 to real quantum hardware in the future. In fact, the AB-SND approach driven by quantum
 312 circuits represents an extension of the VQE algorithm beyond the case of a single initial state.

313 Further developments could include the use of more expressive basis-change circuits, im-
 314 proved optimization strategies in complex energy landscapes, and systematic explorations of
 315 the performance of AB-SND methods in larger or more strongly correlated systems. Future
 316 studies could also explore the use of different bases, adopt AB-SND methods for excited state
 317 as in recent SQD studies [36], attempt to further enhance the sampling imposing symme-
 318 tries and constraints [37, 38], and investigate the regime of applicability of sample-based ap-
 319 proaches in terms of entanglement properties. By combining neural sampling with learnable
 320 basis transformations, AB-SND provides a flexible and scalable framework for studying quan-
 321 tum many-body problems across a wide range of regimes.

322 The essential scripts used in this study are available on GitHub [39].

323 Acknowledgements

324 **Funding information** Support from the following sources is acknowledged: PNRR MUR
 325 project PE0000023-NQSTI; PRIN 2022 MUR project “Hybrid algorithms for quantum simula-
 326 tors” – 2022H77XB7; PRIN-PNRR 2022 MUR project “UEFA” – P2022NMBAJ; National Cen-
 327 tre for HPC, Big Data and Quantum Computing (ICSC), CN00000013 Spoke 7 – Materials &
 328 Molecular Sciences, under project INNOVATOR; CINECA awards ISCRA IsCc2_REASON and
 329 INF25_lincoln, for the availability of high-performance computing resources and support; Eu-
 330 roHPC Joint Undertaking for awarding access to the EuroHPC supercomputer LUMI, hosted
 331 by CSC (Finland), through EuroHPC Development and Regular Access calls. E.R. acknowl-
 332 edges support from the Catalonia Quantum Academy Student Research Fellowship 2024 for
 333 his research internship at the University of Barcelona.

334 A Loss function of SND and its gradient

335 As in Eq. (1), one can write the probability of a set of configurations $S^{(k)}$ as $P(S^{(k)}) = \prod_{x^{(l)} \in S^{(k)}} P(x^{(l)})$,
 336 where $P(x^{(l)})$ is the probability of sampling the bitstring $x^{(l)}$ defined by an autoregressive NN.
 337 The loss function L and its derivative with respect to a parameter of the network ω can be

338 calculated as follows:

$$\begin{aligned}
 L &= \sum_k \left(\prod_{x^{(l)} \in S^{(k)}} P(x^{(l)}) \right) E^{(k)} \implies \\
 \frac{\partial L}{\partial \omega} &= \sum_k \frac{\partial}{\partial \omega} \left(\prod_{x^{(l)} \in S^{(k)}} P(x^{(l)}) \right) E^{(k)} \\
 &= \sum_k \left[\sum_{x^{(l)} \in S^{(k)}} \left(\frac{\partial P(x^{(l)})}{\partial \omega} \prod_{x^{(m)} \neq x^{(l)}} P(x^{(m)}) \right) \right] E^{(k)},
 \end{aligned} \tag{A.1}$$

339 where $x^{(l)}$ and $x^{(m)}$ are bitstrings in the batch $S^{(k)}$. With a straightforward rearrangement,
340 the derivative can be rewritten as

$$\begin{aligned}
 \frac{\partial L}{\partial \omega} &= \sum_k \left[\sum_{x^{(l)} \in S^{(k)}} \left(\frac{\partial P(x^{(l)})}{\partial \omega} \frac{P(x^{(l)})}{P(x^{(l)})} \prod_{x^{(m)} \neq x^{(l)}} P(x^{(m)}) \right) \right] E^{(k)} \\
 &= \sum_k P(S^{(k)}) \left(\sum_{x^{(l)} \in S^{(k)}} \frac{\partial \log(P(x^{(l)}))}{\partial \omega} \right) E^{(k)},
 \end{aligned} \tag{A.2}$$

341 and the stochastic estimator is given by

$$\frac{\partial L}{\partial \omega} \simeq \frac{1}{K} \sum_{k=1}^K \left(\sum_{x^{(l)} \in S^{(k)}} \frac{\partial \log(P(x^{(l)}))}{\partial \omega} \right) E^{(k)}, \tag{A.3}$$

342 where the batches of bitstrings $S^{(k)}$ are sampled according to $P(S^{(k)})$. A baseline term is useful
343 to stabilize the training process [9, 10]. In our framework, we set it equal to the average energy
344 over the K batches $\overline{E^{(k)}}$. Therefore, the loss function for SND reads:

$$L = \frac{1}{K} \sum_{k=1}^K \left(\sum_{x^{(l)} \in S^{(k)}} \log(P(x^{(l)})) \right) (E^{(k)} - \overline{E^{(k)}}). \tag{A.4}$$

345 B Loss function of AB-SND and its gradient

346 For the AB-SND method, the derivative with respect to the parameters of the NN used to sam-
347 ple basis configurations $\frac{\partial L}{\partial \omega}$ is calculated as discussed in the previous section. However, here
348 we also want to optimize the basis-change parameters θ in order to minimize the estimated
349 ground-state energy. Notably, the rotation angles θ are also used as a condition for the NN
350 that generates the spin configurations. For this, they are provided as inputs preceding the spin
351 values. Similarly to the SND method, one obtains:

$$\frac{\partial L}{\partial \theta_i} = \sum_k \frac{\partial}{\partial \theta_i} \left(\prod_{x^{(l)} \in S^{(k)}} P(x^{(l)}|\theta) \right) E^{(k)} + \left(\prod_{x^{(l)} \in S^{(k)}} P(x^{(l)}|\theta) \right) \frac{\partial}{\partial \theta_i} E^{(k)}. \tag{B.1}$$

352 From the Hellmann–Feynman theorem, one can write

$$\frac{\partial E^{(k)}(\theta_i)}{\partial \theta_i} = \left\langle \psi_0^{(k)} \left| \frac{\partial \hat{H}}{\partial \theta_i} \right| \psi_0^{(k)} \right\rangle, \tag{B.2}$$

353 where $\psi_0^{(k)}$ is the estimated ground-state wave function. In AB-SND, we use a basis-change
354 unitary operator $U(\theta)$, so

$$\frac{\partial E^{(k)}(\theta_i)}{\partial \theta_i} = \left\langle \psi_0^{(k)} \left| \frac{\partial (U^\dagger(\theta) \hat{H} U(\theta))}{\partial \theta_i} \right| \psi_0^{(k)} \right\rangle. \tag{B.3}$$

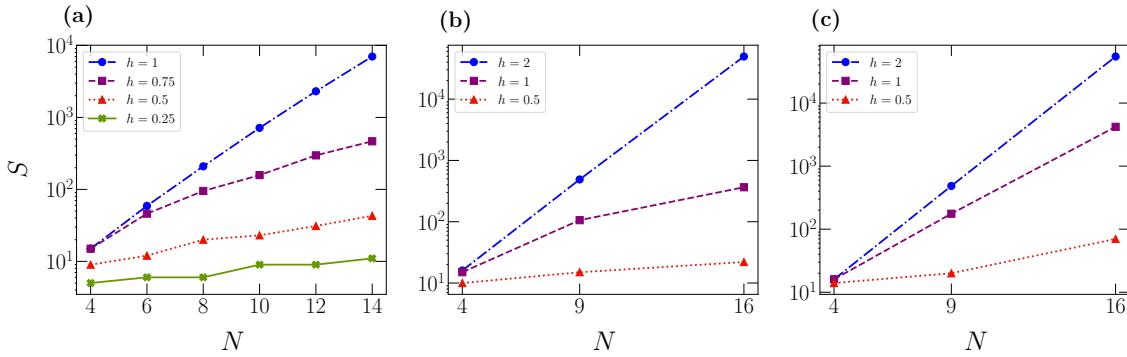


Figure 8: Number of unique configurations S required to reach the relative error $\epsilon = 0.01$ as a function of number of spins N using a standard SBD approach with configurations sampled from the exact ground state. Panels (a), (b), and (c) display results for the 1D-TFIM, the 2D-TFIM, and the 2D-EAM, respectively. Different datasets in each panel correspond to different transverse fields h .

355 This quantity can be calculated using the parameter-shift rule [40, 41]. Alternatively, if $U(\theta)$
 356 is implemented using classical algorithms, the gradient can be calculated using automatic
 357 differentiation, e.g., via the Pytorch library [42]. Finally, the derivative with respect to a
 358 generic rotation angle reads:

$$\frac{\partial L}{\partial \theta_i} \simeq \frac{1}{K} \sum_{k=1}^K \left[\left(\sum_{x^{(l)} \in S^{(k)}} \frac{\partial \log(P(x^{(l)}|\theta))}{\partial \theta_i} \right) E^{(k)} + \left\langle \psi_0^{(k)} \left| \frac{\partial (U^\dagger(\theta) \hat{H} U(\theta))}{\partial \theta_i} \right| \psi_0^{(k)} \right\rangle \right]. \quad (\text{B.4})$$

359 We also implement an alternative approach to optimize the rotation angles, which avoids the
 360 multiple diagonalization steps used in the parameter-shift rule. This approach involves sam-
 361 pling the angles θ from an additional autoregressive NN. It is detailed in Appendix E.

362 C Failure of standard SBD approaches at large transverse field

363 The accuracy of SBD approaches noticeably depends on how the computational basis elements
 364 used to build the truncated Hamiltonian matrix are sampled. In Fig. 8, we show that even when
 365 the exact ground-state wave function is used for sampling, without adaptive basis rotations
 366 the SBD method fails when the ground-state wave function is not strongly concentrated in
 367 the chosen computational basis. In fact, beyond the small transverse field regime $h \ll 1$, the
 368 truncated basis size S required to reach the target accuracy of 1% approaches an exponential
 369 scaling with the system size N .

370 D Most challenging regime for AB-SND

371 In Fig. 9 we report numerical evidence showing that, in the large S limit, the peak of the
 372 energy error obtained via the AB-SND method drifts towards the critical point of the ferro-
 373 magnetic quantum phase transition. The chosen testbed is the 1D-TFIM with $N = 10$ spins.
 374 The configurations are sampled from the exact ground state.

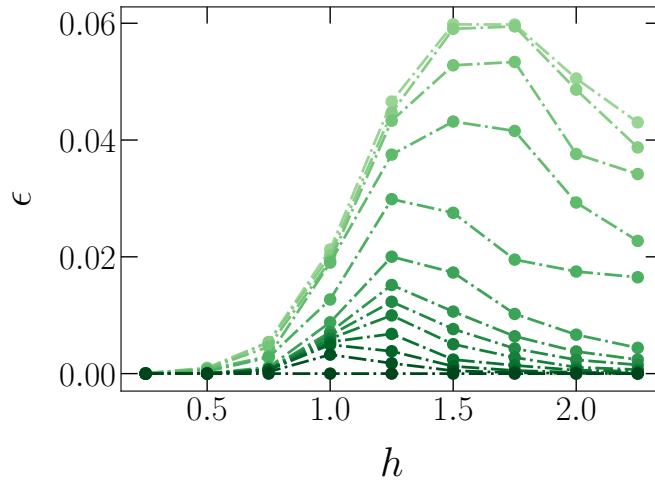


Figure 9: Relative error ϵ as a function of the transverse field h , for different numbers of unique configuration S . Darker colors mean higher S , with $S \in \{4, 8, 16, 32, 64, 128, 256, 384, 512, 640, 768, 896, 1024\}$). The configurations are sampled from the exact ground state. Adaptive single-spin rotations are then applied, as explained in the main text. These results are for the 1D-TFIM with $N = 10$ spins.

375 E Loss function of AB-SND with sampled rotational parameters

376 Instead of optimizing the basis change using the Hellmann–Feynman theorem, one can em-
 377 ploy an additional autoregressive NN to sample the parameters θ that define the basis-change
 378 unitary operator. In this alternative procedure, the probability of a set of spin configurations
 379 is written as: $P(S^{(k)}) = P_\nu(\theta^{(k)})P_\omega(S^{(k)}|\theta^{(k)}) = P_\nu(\theta^{(k)})\prod_{x^{(l)} \in S^{(k)}} P_\omega(x^{(l)}|\theta^{(k)})$, where ν de-
 380 notes the weights of the neural network responsible for sampling the parameters $\theta^{(k)}$, while
 381 ω denotes the weights of the neural network responsible for sampling the bitstrings in the
 382 batch $S^{(k)}$. The former, is an autoregressive NN that provides the parameters μ and κ of a Von
 383 Mises distribution [43] from which the basis-change parameters $\theta^{(k)}$ are sampled. Due to the
 384 autoregressive architecture, μ_i and κ_i depend on the angles θ_j , with $j < i$. The rotation angles
 385 $\theta^{(k)}$ are also used as conditions for the other autoregressive NN that defines the probabilities
 386 $P_\omega(x^{(l)}|\theta^{(k)})$ of each bitstrings $x^{(l)}$. The loss function to be minimized is defined as:

$$L = \sum_k \int d\theta^{(k)} \left[P_\nu(\theta^{(k)}) \prod_{x^{(l)} \in S^{(k)}} P_\omega(x^{(l)}|\theta^{(k)}) \right] E^{(k)} \quad (\text{E.1})$$

387 and its derivatives are

$$\begin{aligned} \frac{\partial L}{\partial \omega} &= \sum_k \int d\theta^{(k)} \left[P_\nu(\theta^{(k)}) \frac{\partial}{\partial \omega} \prod_{x^{(l)} \in S^{(k)}} P_\omega(x^{(l)}|\theta^{(k)}) \right] E^{(k)} \\ &= \sum_k \int d\theta^{(k)} \left[P_\nu(\theta^{(k)}) P_\omega(S^{(k)}|\theta^{(k)}) \left(\sum_{x^{(l)} \in S^{(k)}} \frac{\partial \log(P_\omega(x^{(l)}|\theta^{(k)}))}{\partial \omega} \right) \right] E^{(k)} \\ &\simeq \frac{1}{K} \sum_{k=1}^K \left[\sum_{x^{(l)} \in S^{(k)}} \frac{\partial \log(P_\omega(x^{(l)}|\theta^{(k)}))}{\partial \omega} \right] E^{(k)}, \end{aligned} \quad (\text{E.2})$$

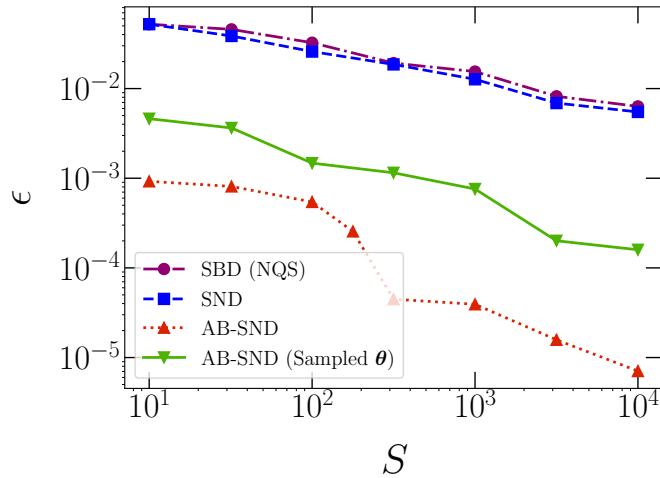


Figure 10: Relative error ϵ as a function of the number of unique configurations S used to build the subspace Hamiltonian. These results are for the 1D-TFIM with $h = 0.5$ and $N = 50$. We compare the accuracies of a standard SBD approach powered by NQS sampling, the SND approach, and two AB-SND approaches. The (green) upside-down triangles refer to the AB-SND approach with rotation parameters $\theta^{(k)}$ sampled from an autoregressive NN, as explained in the text.

388 and

$$\begin{aligned}
 \frac{\partial L}{\partial \nu} &= \sum_k \int d\theta^{(k)} \left[\frac{\partial P_\nu(\theta^{(k)})}{\partial \nu} \prod_{x^{(l)} \in S^{(k)}} P_\omega(x^{(l)} | \theta^{(k)}) \right] E^{(k)} \\
 &= \sum_k \int d\theta^{(k)} \left[\frac{\partial P_\nu(\theta^{(k)})}{\partial \nu} \frac{P_\nu(\theta^{(k)})}{P_\nu(\theta^{(k)})} \prod_{x^{(l)} \in S^{(k)}} P_\omega(x^{(l)} | \theta^{(k)}) \right] E^{(k)} \\
 &= \sum_k \int d\theta^{(k)} P_\nu(\theta^{(k)}) P_\omega(S^{(k)} | \theta^{(k)}) \left[\frac{\partial \log(P_\nu(\theta^{(k)}))}{\partial \nu} \right] E^{(k)} \\
 &\simeq \frac{1}{K} \sum_{k=1}^K \left[\frac{\partial \log(P_\nu(\theta^{(k)}))}{\partial \nu} \right] E^{(k)},
 \end{aligned} \tag{E.3}$$

389 where $\omega \in \omega$ and $\nu \in \nu$ denote single weights of the corresponding neural networks.

390 Therefore, including the baseline term, the loss is evaluated as:

$$L = \frac{1}{K} \sum_{k=1}^K \left[\log(P_\nu(\theta^{(k)})) + \left(\sum_{x^{(l)} \in S^{(k)}} \log(P_\omega(x^{(l)} | \theta^{(k)})) \right) \right] (E^{(k)} - \overline{E^{(k)}}). \tag{E.4}$$

391 Sampling $\theta^{(k)}$ from a conditional autoregressive NN is conceptually and practically appealing.
 392 Yet, the test results visualized in Fig. 10 indicate that this approach does not perform better
 393 than the gradient-based optimization described in Appendix B. The accuracy shows a similar
 394 improvement rate as a function of S , with an approximately constant upward shift, denoting
 395 a marginally worse performance.

396 F Problem of sampling unique configurations

397 As the size S of the configuration set increases, the probability of sampling already included
 398 configurations rapidly rises. This leads to a problematic computational cost for sampling

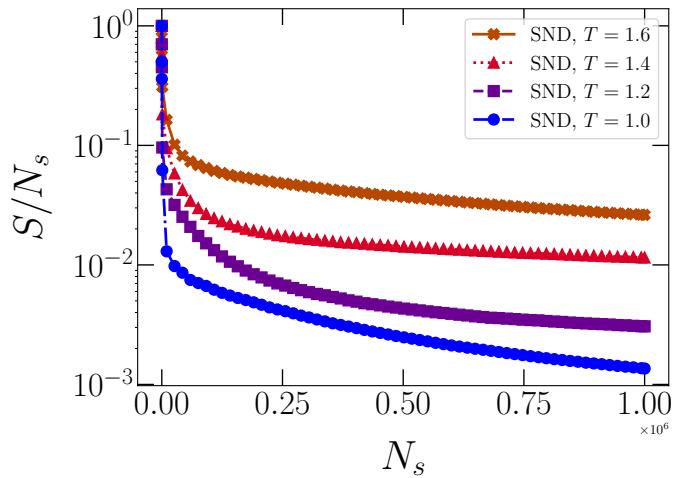


Figure 11: Ratio between number of unique configurations S and total number of samples N_s as a function of N_s for different values of the effective temperature T . The samples are obtained via SND for the 1D-TFIM with $N = 50$ and $h = 0.5$.

399 unique configurations. To overcome this problem, we introduce the effective temperature
 400 parameter T [44]. This controls the shape of the output distribution by tuning the width of
 401 the softmax activation function in the final NN layer. The NN produces two outputs for each
 402 spin, and the softmax turns these outputs into probabilities of sampling 0 or 1. Specifically, if
 403 Y_0 and Y_1 are the two outputs, then

$$\text{Softmax}(Y_q) = \frac{\exp(Y_q/T)}{\sum_{r \in \{0,1\}} \exp(Y_r/T)}. \quad (\text{E1})$$

404 Complementary strategies were introduced in Ref. [32]. During training, we set $T = 1$, but in
 405 the inference phase we increase T to have a broader distribution, thus favoring the sampling
 406 of different outputs. This effect is demonstrated in Fig. 11. Indeed, while with $T = 1$ the
 407 ratio between the number of unique configurations S and of total configurations N_s decreases
 408 almost exponentially fast, slightly larger effective temperatures suffice to significantly increase
 409 the number of unique configurations, thus drastically decreasing the computational cost of
 410 sampling.

411 Importantly, increasing T to values appropriate for efficient sampling does not reduce the
 412 performance of SND approaches. This is demonstrated in Fig. 12, where one observes that,
 413 for $S \gtrsim 10^2$, values of $T \in [1, 1.6]$ provide comparable accuracies for the 1D-TFIM.

414 G SND for a quantum chemistry testbed

415 To complement the spin-model benchmarks presented in the main text, we report a proof-of-
 416 principle application of the SND approach to a minimal quantum chemistry problem. Specifi-
 417 cally, we consider the LiH molecule at different internuclear separations R in the STO-3G basis.
 418 The electronic Hamiltonian expressed in second quantization involves $N = 12$ qubit degrees of
 419 freedom and a total of four electrons. The fermionic operators are mapped to Pauli operators
 420 through a standard Jordan-Wigner transformation using the Qiskit Nature library [45].

421 The autoregressive NN is trained to generate bitstrings $x \in \{0, 1\}^N$ subject to the physical
 422 constraints that all sampled configurations satisfy both the correct electron number and a total
 423 spin projection $S_z = 0$. These constraints are enforced by masking during the autoregressive

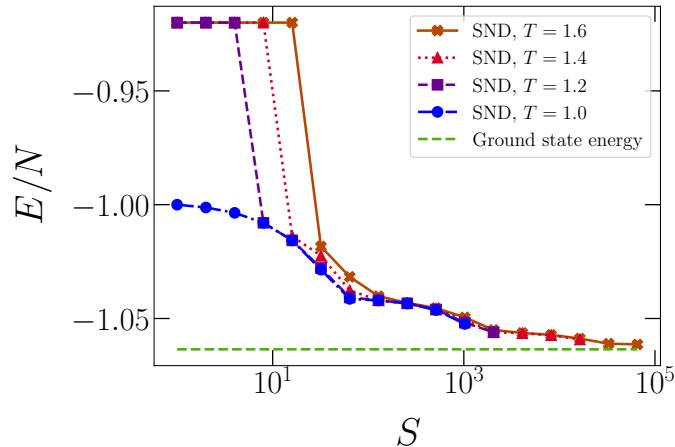


Figure 12: Energy per spin E/N obtained via SND as a function of the number of unique configurations S used to build the subspace Hamiltonian. The different datasets correspond to different effective temperatures T . The testbed model is the 1D-TFIM with $N = 50$ spin and transverse field $h = 0.5$.

424 sampling procedure, ensuring that exactly two spin-up and two spin-down spin-orbitals are
 425 occupied at the end of each sample sequence [10]. The resulting energies are compared to
 426 the Hartree-Fock result. The results shown in Fig. 13 confirm that the autoregressive model
 427 identifies physically relevant determinants, even in the absence of an adaptive basis trans-
 428 formation, and that the SND mechanism extends naturally from spin models to fermionic
 429 quantum-chemistry Hamiltonians.

430 H Autoregressive neural network and hyperparameters

431 We use a transformer encoder [46] with causal mask, two layers, four attention heads, and
 432 embedding size equal to 64. During training, we use $K = 16$ batches for SND and $K = 4$
 433 batches for AB-SND, and number of sampled bitstrings equal to $BS = 128$. It is worth em-
 434 phasizing that the latter does not coincide with the number of unique configurations S used
 435 during inference. Also, the rare repeated configurations are simply discarded. A comparison
 436 of the performances obtained with different values of K and BS is shown in Fig. 14. Notably,
 437 the accuracy of the SND method is not significantly affected by different choices for these
 438 parameters.

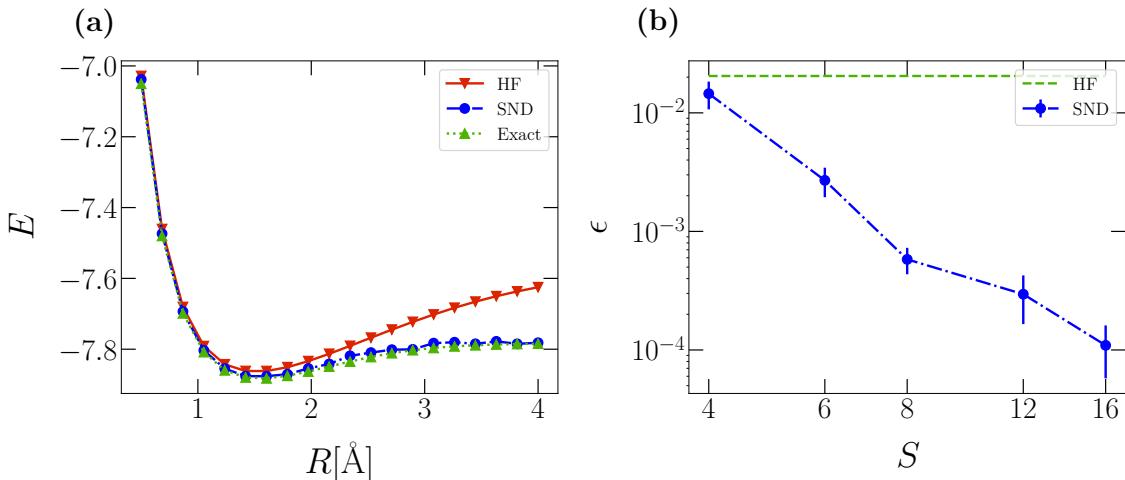


Figure 13: (a) Energy estimates obtained for the LiH molecule for different values of the interatomic separation R , in the STO-3G basis. We compare the Hartree-Fock energy and the SND predictions with number of unique configurations $S = 16$. (b) Relative error ϵ as a function of the number of unique configurations S used to build the subspace Hamiltonian for the LiH molecule at interatomic distance $R = 4\text{\AA}$.

439 References

440 [1] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto and
441 L. Zdeborová, *Machine learning and the physical sciences*, Rev. Mod. Phys. **91**, 045002
442 (2019), doi:[10.1103/RevModPhys.91.045002](https://doi.org/10.1103/RevModPhys.91.045002).

443 [2] J. Carrasquilla, *Machine learning for quantum matter*, Advances in Physics: X **5**(1),
444 1797528 (2020), doi:[10.1080/23746149.2020.1797528](https://doi.org/10.1080/23746149.2020.1797528).

445 [3] H. J. Kulik, T. Hammerschmidt, J. Schmidt, S. Botti, M. A. L. Marques, M. Boley, M. Schef-
446 fler, M. Todorović, P. Rinke, C. Osse, A. Smolyanyuk, S. Curtarolo *et al.*, *Roadmap*
447 on machine learning in electronic structure, Electronic Structure **4**(2), 023004 (2022),
448 doi:[10.1088/2516-1075/ac572f](https://doi.org/10.1088/2516-1075/ac572f).

449 [4] V. Dunjko and H. J. Briegel, *Machine learning & artificial intelligence in the quantum*
450 *domain: a review of recent progress*, Reports on Progress in Physics **81**(7), 074001 (2018),
451 doi:[10.1088/1361-6633/aab406](https://doi.org/10.1088/1361-6633/aab406).

452 [5] N. Saraceni, S. Cantori and S. Pilati, *Scalable neural networks for the effi-*
453 *cient learning of disordered quantum systems*, Phys. Rev. E **102**, 033301 (2020),
454 doi:[10.1103/PhysRevE.102.033301](https://doi.org/10.1103/PhysRevE.102.033301).

455 [6] K. Mills, K. Ryczko, I. Luchak, A. Domurad, C. Beeler and I. Tamblyn, *Extensive deep*
456 *neural networks for transferring small scale learning to large scale systems*, Chem. Sci. **10**,
457 4129 (2019), doi:[10.1039/C8SC04578J](https://doi.org/10.1039/C8SC04578J).

458 [7] F. A. Faber, L. Hutchison, B. Huang, J. Gilmer, S. S. Schoenholz, G. E. Dahl, O. Vinyals,
459 S. Kearnes, P. F. Riley and O. A. von Lilienfeld, *Prediction errors of molecular machine*
460 *learning models lower than hybrid DFT error*, Journal of Chemical Theory and Computation
461 **13**(11), 5255 (2017), doi:[10.1021/acs.jctc.7b00577](https://doi.org/10.1021/acs.jctc.7b00577), PMID: 28926232.

462 [8] G. Carleo and M. Troyer, *Solving the quantum many-body problem with artificial neural*
463 *networks*, Science **355**(6325), 602–606 (2017), doi:[10.1126/science.aag2302](https://doi.org/10.1126/science.aag2302).

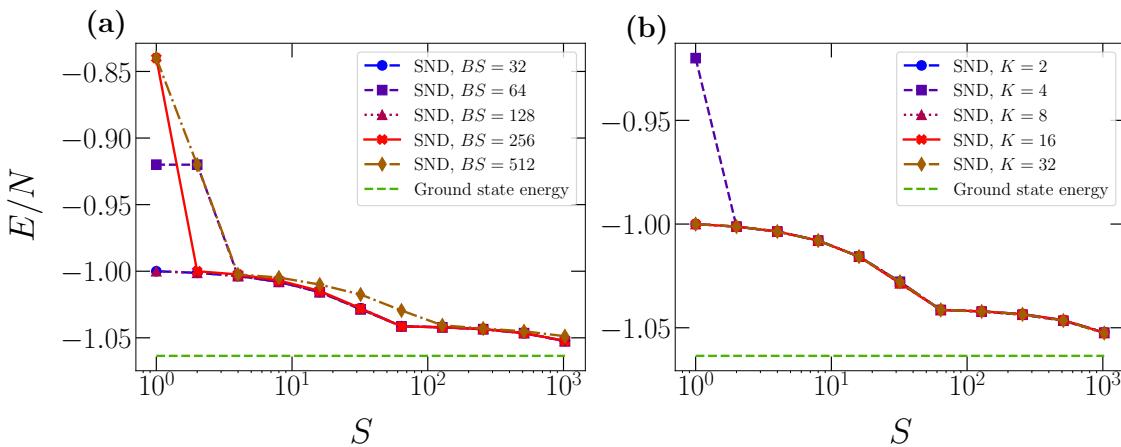


Figure 14: Energy per spin E/N obtained with SND as a function of the number of unique configurations S used to build the subspace Hamiltonian for the 1D-TFIM featuring $N = 50$ spins and $h = 0.5$. Panels (a) and (b) display results for different values of BS and K , respectively.

464 [9] O. Sharir, Y. Levine, N. Wies, G. Carleo and A. Shashua, *Deep autoregressive models for*
 465 *the efficient variational simulation of many-body quantum systems*, Phys. Rev. Lett. **124**,
 466 020503 (2020), doi:[10.1103/PhysRevLett.124.020503](https://doi.org/10.1103/PhysRevLett.124.020503).

467 [10] T. D. Barrett, A. Malyshev and A. I. Lvovsky, *Autoregressive neural-network wavefunc-*
 468 *tions for ab initio quantum chemistry*, Nature Machine Intelligence **4**(4), 351 (2022),
 469 doi:[10.1038/s42256-022-00461-z](https://doi.org/10.1038/s42256-022-00461-z).

470 [11] V. Abraham and N. J. Mayhall, *Selected configuration interaction in a basis of cluster*
 471 *state tensor products*, Journal of Chemical Theory and Computation **16**(10), 6098–6113
 472 (2020), doi:[10.1021/acs.jctc.0c00141](https://doi.org/10.1021/acs.jctc.0c00141).

473 [12] L. Craciunescu, A. W. Prentice and M. J. Paterson, *Selected configuration interaction for*
 474 *high accuracy and compact wave functions: Propane as a case study*, The Journal of Chem-
 475 *ical Physics* **162**(3), 034102 (2025), doi:[10.1063/5.0233542](https://doi.org/10.1063/5.0233542).

476 [13] E. Giner, A. Scemama and M. Caffarel, *Using perturbatively selected configuration inter-*
 477 *action in quantum Monte Carlo calculations*, Canadian Journal of Chemistry **91**(9), 879
 478 (2013), doi:[10.1139/cjc-2013-0017](https://doi.org/10.1139/cjc-2013-0017).

479 [14] T. Yanagisawa, *Quantum Monte Carlo diagonalization for many-fermion systems*, Phys.
 480 Rev. B **75**, 224503 (2007), doi:[10.1103/PhysRevB.75.224503](https://doi.org/10.1103/PhysRevB.75.224503).

481 [15] J. Robledo-Moreno, M. Motta, H. Haas, A. Javadi-Abhari, P. Jurcevic, W. Kirby, S. Martiel,
 482 K. Sharma, S. Sharma, T. Shirakawa, I. Sitzdikov, R.-Y. Sun *et al.*, *Chemistry beyond the scale*
 483 *of exact diagonalization on a quantum-centric supercomputer*, Science Advances **11**(25)
 484 (2025), doi:[10.1126/sciadv.adu9991](https://doi.org/10.1126/sciadv.adu9991).

485 [16] N. Yoshioka, M. Amico, W. Kirby, P. Jurcevic, A. Dutt, B. Fuller, S. Garion, H. Haas,
 486 I. Hamamura, A. Ivrii, R. Majumdar, Z. Minev *et al.*, *Krylov diagonalization of large*
 487 *many-body hamiltonians on a quantum processor*, Nature Communications **16**(1) (2025),
 488 doi:[10.1038/s41467-025-59716-z](https://doi.org/10.1038/s41467-025-59716-z).

489 [17] K. Kanno, M. Kohda, R. Imai, S. Koh, K. Mitarai, W. Mizukami and Y. O. Nakagawa,
490 *Quantum-selected configuration interaction: Classical diagonalization of Hamiltonians in*
491 *subspaces selected by quantum computers*, doi:<https://arxiv.org/abs/2302.11320>.

492 [18] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas,
493 S. Boixo, F. G. Brandao, D. A. Buell *et al.*, *Quantum supremacy using*
494 *a programmable superconducting processor*, *Nature* **574**(7779), 505 (2019),
495 doi:<https://doi.org/10.1126/sciadv.adu9991>.

496 [19] J. P. Coe, *Machine learning configuration interaction*, *Journal of Chemical Theory and*
497 *Computation* **14**(11), 5739–5749 (2018), doi:[10.1021/acs.jctc.8b00849](https://doi.org/10.1021/acs.jctc.8b00849).

498 [20] P. Bilous, L. Thirion, H. Menke, M. W. Haverkort, A. Pálffy and P. Hansmann, *Neural-*
499 *network-supported basis optimizer for the configuration interaction problem in quantum*
500 *many-body clusters: Feasibility study and numerical proof*, *Phys. Rev. B* **111**, 035124
501 (2025), doi:[10.1103/PhysRevB.111.035124](https://doi.org/10.1103/PhysRevB.111.035124).

502 [21] P. Bilous, A. Pálffy and F. Marquardt, *Deep-learning approach for the atomic configu-*
503 *ration interaction problem on large basis sets*, *Phys. Rev. Lett.* **131**, 133002 (2023),
504 doi:[10.1103/PhysRevLett.131.133002](https://doi.org/10.1103/PhysRevLett.131.133002).

505 [22] M. Rano and D. Ghosh, *Efficient machine learning configuration interaction for bond*
506 *breaking problems*, *The Journal of Physical Chemistry A* **127**(16), 3705 (2023),
507 doi:[10.1021/acs.jpca.2c09103](https://doi.org/10.1021/acs.jpca.2c09103).

508 [23] L. Brodolini and S. Pilati, *Zero-temperature Monte Carlo simulations of two-dimensional*
509 *quantum spin glasses guided by neural network states*, *Phys. Rev. E* **110**, 065305 (2024),
510 doi:[10.1103/PhysRevE.110.065305](https://doi.org/10.1103/PhysRevE.110.065305).

511 [24] A. P. Young and H. Rieger, *Numerical study of the random transverse-field Ising spin chain*,
512 *Phys. Rev. B* **53**, 8486 (1996), doi:[10.1103/PhysRevB.53.8486](https://doi.org/10.1103/PhysRevB.53.8486).

513 [25] S. Pilati and P. Pieri, *Simulating disordered quantum Ising chains via dense*
514 *and sparse restricted Boltzmann machines*, *Phys. Rev. E* **101**, 063308 (2020),
515 doi:[10.1103/PhysRevE.101.063308](https://doi.org/10.1103/PhysRevE.101.063308).

516 [26] J. Yu, J. R. Moreno, J. T. Iosue, L. Bertels, D. Claudino, B. Fuller, P. Groszkowski, T. S.
517 Humble, P. Jurcevic, W. Kirby, T. A. Maier, M. Motta *et al.*, *Quantum-centric algorithm for*
518 *sample-based Krylov diagonalization*, doi:<https://arxiv.org/abs/2501.09702>.

519 [27] G. Carleo, K. Choo, D. Hofmann, J. E. T. Smith, T. Westerhout, F. Alet, E. J. Davis,
520 S. Efthymiou, I. Glasser, S.-H. Lin, M. Mauri, G. Mazzola *et al.*, *Netket: A ma-*
521 *chine learning toolkit for many-body quantum systems*, *SoftwareX* p. 100311 (2019),
522 doi:[10.1016/j.softx.2019.100311](https://doi.org/10.1016/j.softx.2019.100311).

523 [28] F. Vicentini, D. Hofmann, A. Szabó, D. Wu, C. Roth, C. Giuliani, G. Pescia, J. Nys,
524 V. Vargas-Calderón, N. Astrakhantsev and G. Carleo, *NetKet 3: Machine Learning*
525 *Toolbox for Many-Body Quantum Systems*, *SciPost Phys. Codebases* p. 7 (2022),
526 doi:[10.21468/SciPostPhysCodeb.7](https://doi.org/10.21468/SciPostPhysCodeb.7).

527 [29] P. Pfeuty, *The one-dimensional Ising model with a transverse field*, *Annals of Physics* **57**(1),
528 79 (1970), doi:[https://doi.org/10.1016/0003-4916\(70\)90270-8](https://doi.org/10.1016/0003-4916(70)90270-8).

529 [30] F. Becca and S. Sorella, *Quantum Monte Carlo approaches for correlated systems*, Cambridge University Press (2017).

531 [31] C.-Y. Park and M. J. Kastoryano, *Geometry of learning neural quantum states*, Phys. Rev.
532 Res. **2**, 023232 (2020), doi:[10.1103/PhysRevResearch.2.023232](https://doi.org/10.1103/PhysRevResearch.2.023232).

533 [32] P. Reinholdt, K. M. Ziems, E. R. Kjellgren, S. Coriani, S. P. A. Sauer and J. Kong-
534 sted, *Fundamental limitations in sample-based quantum diagonalization methods*,
535 doi:<https://arxiv.org/abs/2501.07231>.

536 [33] W. W. Ho and T. H. Hsieh, *Efficient variational simulation of non-trivial quantum states*,
537 SciPost Physics **6**(3) (2019), doi:[10.21468/scipostphys.6.3.029](https://doi.org/10.21468/scipostphys.6.3.029).

538 [34] C. Developers, *Cirq*, doi:[10.5281/zenodo.16867504](https://doi.org/10.5281/zenodo.16867504) (2025).

539 [35] A. Asthana, A. Kumar, V. Abraham, H. Grimsley, Y. Zhang, L. Cincio, S. Tretiak,
540 P. A. Dub, S. E. Economou, E. Barnes and N. J. Mayhall, *Quantum self-consistent
541 equation-of-motion method for computing molecular excitation energies, ionization po-
542 tentials, and electron affinities on a quantum computer*, Chem. Sci. **14**, 2405 (2023),
543 doi:[10.1039/D2SC05371C](https://doi.org/10.1039/D2SC05371C).

544 [36] S. Barison, J. Robledo Moreno and M. Motta, *Quantum-centric computation of molec-
545 ular excited states with extended sample-based quantum diagonalization*, Quantum Sci.
546 Technol. **10**(2), 025034 (2025), doi:[10.1088/2058-9565/adb781](https://doi.org/10.1088/2058-9565/adb781).

547 [37] S. Bravyi, J. M. Gambetta, A. Mezzacapo and K. Temme, *Tapering off qubits to simulate
548 fermionic Hamiltonians*, doi:<https://arxiv.org/abs/1701.08213> (2017).

549 [38] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow and J. M. Gam-
550 betta, *Hardware-efficient variational quantum eigensolver for small molecules and quantum
551 magnets*, nature **549**(7671), 242 (2017), doi:<https://doi.org/10.1038/nature23879>.

552 [39] S. Cantori, *Adaptive-basis sample-based neural diagonalization for quantum
553 many-body systems*, GitHub repository, [Sample-based-Neural-Diagonalization](https://github.com/simonecantori/
554 <a href=).

555 [40] J. Li, X. Yang, X. Peng and C.-P. Sun, *Hybrid quantum-classical approach to quantum opti-
556 mal control*, Phys. Rev. Lett. **118**, 150503 (2017), doi:[10.1103/PhysRevLett.118.150503](https://doi.org/10.1103/PhysRevLett.118.150503).

557 [41] K. Mitarai, M. Negoro, M. Kitagawa and K. Fujii, *Quantum circuit learning*, Phys. Rev. A
558 **98**, 032309 (2018), doi:[10.1103/PhysRevA.98.032309](https://doi.org/10.1103/PhysRevA.98.032309).

559 [42] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
560 L. Antiga and A. Lerer, *Automatic differentiation in pytorch*, In *NIPS-W* (2017).

561 [43] K. Mardia and P. Jupp, *Directional Statistics*, Wiley Series in Probability and Statistics. Wi-
562 ley, ISBN 9780470317815 (2009), <https://books.google.it/books?id=PTNiCm4Q-M0C>.

563 [44] H. Xuan, B. Yang and X. Li, *Exploring the impact of temperature scaling in softmax for
564 classification and adversarial robustness*, doi:<https://arxiv.org/abs/2502.20604>.

565 [45] T. Q. N. developers and contributors, *Qiskit nature 0.6.0*, doi:[10.5281/zenodo.7828768](https://doi.org/10.5281/zenodo.7828768)
566 (2023).

567 [46] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser and
568 I. Polosukhin, *Attention is all you need*, doi:<https://arxiv.org/abs/1706.03762>.