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Abstract

Estimating ground-state energies of quantum many-body systems is challenging due
to the exponential growth of Hilbert space. Sample-based diagonalization (SBD) ad-
dresses this by projecting the Hamiltonian onto a subspace of selected basis configura-
tions but works only for concentrated ground-state wave functions. We propose two
neural network-enhanced SBD methods: sample-based neural diagonalization (SND)
and adaptive-basis SND (AB-SND). Both leverage autoregressive neural networks for ef-
ficient sampling; AB-SND also optimizes a basis transformation to concentrate the wave
function. We explore classically tractable single- and two-spin rotations, and more ex-
pressive unitaries implementable on quantum computers. On quantum Ising models,
SND performs well for concentrated states, while AB-SND consistently outperforms SND
and standard SBD in less concentrated regimes.
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1 Introduction

The accurate calculation of ground-state properties of quantum many-body systems is one of
the central challenges in quantum chemistry and condensed matter physics. The exponen-
tial growth of the Hilbert space with system size makes exact solutions intractable for large
systems, necessitating the development of approximate computational methods. Deep learn-
ing methods have emerged as promising tools to address this challenge [1-3]. For example,
supervised learning approaches have been used to predict ground-state energies based on
labeled training data [4-7]. On the other hand, the introduction of neural quantum states
(NQS), which represent wave functions using neural network (NN) architectures, has opened
new possibilities for variational Monte Carlo simulations, circumventing the need of labeled
data [8-10].

In quantum chemistry, a standard approach to tackle the problem of the Hilbert space size
is represented by selected configuration interaction methods [11-14]. These employ prede-
fined wave-function ansatzes, Monte Carlo sampling, or other empirical criteria to select a set
of relevant basis configurations |x(), labeled by the index [. The corresponding Hamiltonian
matrix elements (x(V|H|x(™) are evaluated to define a subspace Hamiltonian matrix. The
ground-state energy is then approximated by computing the lowest eigenvalue of this matrix.
Recently, these approaches have also been adopted in the context of quantum computing, un-
der the name of Sample-based Diagonalization (SBD) [15-17]. The key idea is to employ
quantum circuits to sample relevant configurations, leading to what is dubbed Sample-based
Quantum Diagonalization (SQD). In principle, quantum circuits might allow for the sampling
of classically intractable distributions [18]. Machine learning algorithms have also been used
to select relevant configurations [19-22]. Yet, the problem of how to efficiently truncate the
Hilbert space, while minimizing the introduced approximation, is still open. In fact, SBD ap-
proaches are known to perform well only when the ground-state wave function is concentrated
on the chosen computational basis [15], which means that its amplitudes are not negligible
only on a small subset of basis elements. This strongly limits the regime of applicability of SBD
methods.

In this article, we introduce two NN enhanced SBD approaches: sample-based neural diag-
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Figure 1: Scheme of the SND and AB-SND methods. In SND (top), an autoregressive
neural network generates the bitstrings that define the subspace for diagonalization.
In AB-SND (bottom), we also optimize some basis-transformation parameters 8, en-
abling us to perform sampling in a rotated basis where the ground state is more
concentrated.

onalization (SND) and its extension based on an adaptive basis, which we refer to as adaptive-
basis SND (AB-SND). Both methods employ autoregressive NNs to efficiently sample basis
configurations relevant for the estimation of the ground-state energy, as illustrated in Fig. 1.
While SND operates in a fixed computational basis, AB-SND incorporates a basis transforma-
tion, allowing for improved performance when the ground state is not concentrated in the
original computational basis, a regime in which standard SBD techniques are doomed to fail.
We also extend adaptive-basis strategies to the SQD protocol. In our implementation, the
basis change is performed using parameterized single-spin and two-spin rotations, which are
efficiently computable on classical hardware. Additionally, we explore more expressive ba-
sis transformations, describing how quantum computers allow their implementation for large
systems. The testbeds we consider are one-dimensional (1D) and two-dimensional (2D) fer-
romagnetic quantum Ising models and a 2D quantum spin-glass model. These models are
chosen because the concentration of their ground state can be tuned, allowing us to test SBD
approaches in different regimes of computational hardness, and also because, despite the dis-
ordered frustrated interactions in the spin glass model, the benchmark ground-state energy
can be exactly computed using recently introduced quantum Monte Carlo algorithms [23],
due to the absence of the negative sign problem. Notably, we find that the AB-SND approach
allows us to considerably extend the regime of applicability of SBD methods, in particular,
when performed with the more general basis transformations. To show that the SND tech-
nique also extends naturally beyond spin models, we include a proof-of-principle application
to a small quantum-chemistry Hamiltonian, namely, the LiH molecule in the STO-3G basis, in
the Appendix.

The rest of this article is organized as follows: Sec. 2 provides the details of the methodol-
ogy of both SND and AB-SND. Sec. 3 presents our numerical results for different quantum Ising
models, comparing the performance of the proposed approaches to standard SBD techniques.
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In Sec. 4 we examine how AB-SND can be implemented on quantum hardware, covering both
a classically optimized adaptive basis for SQD and a quantum circuit-based basis change for
SND, highlighting the potential for hybrid quantum-classical schemes. In Sec. 5, we summarize
our findings and discuss future directions. Finally, the Appendices provide additional details
on: the definition of the loss functions and their gradient calculations for SND (Appendix A)
and AB-SND (App. B); the failure of standard SBD when the ground state is not concentrated
(App. C); the regime of maximum error in AB-SND (App. D); the optimization of angle param-
eters via stochastic sampling (App. E); the effective temperature scaling for efficient sampling
of unique configurations (App. F); the application of SND for the LiH molecule (App. G); the
autoregressive NN architectures (App. H).

2 Methods

As in standard SBD approaches, the SND methods we introduce hereafter aim to approximate
the ground-state energy of a quantum system by projecting the Hamiltonian onto a subspace
spanned by a selected set of basis configurations. In our implementation, these configurations
are selected from the standard computational basis, which consists of tensor products of the
single-qubit basis states |0) and |1), namely, the eigenstates of the Pauli-Z operator. For a sys-
tem of N spins, the computational basis states |x) = |x;x5...Xxy) correspond to bitstrings x,
where each component x; € {0,1}. Given a set of S unique configurations, {|x()} |=1,.5> ONe
constructs a subspace Hamiltonian by evaluating the matrix elements (x O|H|x™). The lowest
eigenvalue E of this subspace matrix provides a variational upper bound for the ground-state
energy, which converges to the exact value for S — 2N. Clearly, this limit is computation-
ally impractical for system sizes N > 10. Yet, suitable criteria to select the subset of basis
configurations lead to accurate approximations for feasible value of S.

In our framework, the selected configurations are sampled using autoregressive NNs, which
can be trained to minimize E. More precisely, as in Ref. [15], we define the loss function to be

minimized during training as
L= Z P(SEHE® (1)
k

where S® represents a batch of bitstrings and E( is the lowest eigenvalue of the subspace
Hamiltonian built on the k-th batch of bitstrings. In our case, the probability P(S®) of sam-
pling S®) is given by the autoregressive NN. The minimization is performed using stochastic
gradient-based methods, and the derivation of the gradient of L with respect to the weights of
the NN is shown in the Appendix A.

The main testbeds considered in this article are quantum Ising models described by the
following Hamiltonian:

H=->0;ZZ—hY X, 2)
(i.j) i

where Z; and X; are Pauli operators acting on spin i, J;; represents the interaction strength
between the nearest-neighbor spins i and j, and h is the transverse field strength. Specifically,
we consider three variants of this model:

1. 1D ferromagnetic transverse field Ising model (1D-TFIM), with J;;;; = 1fori=1,...,N,
and periodic boundary conditions, i.e., the spin N + 1 is identified with the spin 1;

2. 2D ferromagnetic TFIM (2D-TFIM), with J;; =1 for i and j nearest-neighbor spins on a
square lattice, and open boundary conditions;
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3. 2D Edward-Anderson model (2D-EAM) on a square lattice, with J;; randomly sampled
from a normal distribution N(0,1) with zero mean and unit variance, and periodic
boundary conditions.

It is worth pointing out that quantum Monte Carlo simulations of quantum Ising models are
not affected by the negative sign problem. Thus, by adopting these models as testbeds for the
SBD approaches, we have the opportunity to make comparisons against unbiased estimates of
the ground-state energy, even beyond the 1D case. In the latter case, the exact solution can
be obtained via the Jordan-Wigner transformation, leading to a quadratic free fermion Hamil-
tonian [24]. It is worth underlining that the 2D-EAM represents a challenging testbed due to
the presence of disordered frustrated interactions. In fact, unbiased ground-state simulations
have recently been performed thanks to the combination of projection quantum Monte Carlo
algorithms with NQSs [25]. Importantly, tuning h allows us to control the concentration of the
ground state [26], thus testing the SBD approaches in different regimes. Indeed, for h — oo,
the ground state of these models tends to an equally weighted superposition of the computa-
tional basis elements, i.e. |+ +---+) (with |[+) = i2(|0) +11))). In the opposite limit h — 0,
quantum fluctuations vanish, leading to a more concentrated ground-state wave function in
the chosen computational basis. It is worth emphasizing that generic SBD methods, including
our SND method without adaptive basis changes, are expected to perform well only for rel-
atively small h. Numerical results confirming this expectation are shown in the Appendix A.
Although the focus in the main text is on spin models, the same procedure applies to generic
second-quantized fermionic Hamiltonians. We demonstrate this explicitly for the LiH molecule
in Appendix G.

To extend the regime of applicability of SBD approaches, we introduce the AB-SND method.
AB-SND improves the SND strategy by incorporating a basis transformation defined by a pa-
rameterized unitary operator U(), which maps the original computational basis to a rotated
basis in which the ground state is more concentrated. As in SND, an autoregressive NN gen-
erates bitstring samples, but these are rotated by U(6#). The subspace Hamiltonian is then
constructed from transformed matrix elements (x(0|U(0) HU(0)|x(™), as shown in Fig. 1. In
most of our experiments, we use a combination of single-spin rotations U(8) = @;=1__y U;(6;),
where

0, 0,
cos+ —sin=

U;i(6;) = [ ) 921 912:| 3)
sing  cos3

and each angle 6; is an independent parameter for spin i. Because the rotations act indepen-
dently on each spin and the Hamiltonian is composed of local Pauli operators, we can effi-
ciently compute the transformed Hamiltonian UTHU using classical hardware. In addition to
single-spin rotations, we also implement non-overlapping two-spin rotations, which increase
the expressive power of the basis transformation while remaining classically tractable. The
unitary operator is defined as a composition of Ry, R, and Ry gates that act on each spin in
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Figure 2: Relative error € as a function of the number of unique configurations S
used to build the subspace Hamiltonian. Panels (a), (b), and (c) display the relative
errors for the 1D-TFIM, the 2D-TFIM, and the 2D-EAM with N = 50, N = 100, and
N = 64 spins, respectively. The transverse field is h = 0.5 for the 1D-TFIM and the
2D-TFIM, while it is h = 1 for the 2D-EAM. In panel (b), we take into account the
statistical uncertainty of the quantum Monte Carlo simulations used to determine the
unbiased estimate of the ground-state energy.

the pair. The matrix representations of these gates are as follows:

_ [ cos 5 —sing
Ry(a) = |sing  cos§ ] ’
r B . B
_ | cos3 —ising
Rx(P) = —isinf  cosl i|
L 2 2 (4)
e 0 0 0
0 ez 0 0
Rzz(v)= O

As mentioned above, the gates R;,(y) act on non-overlapping spin pairs {0, 1}, {2, 3}, etc.
However, the AB-SND framework is compatible with more general, potentially strongly entan-
gling basis transformations, which could be implemented on quantum hardware. The use of
quantum circuits for evaluating subspace matrix elements is discussed in Sec. 4. For AB-SND,
the optimization of the angle parameter 6 can be approached in different ways, as discussed
in the Appendices B and E.

3 Results

Hereafter, we analyze the performances of SND and AB-SND powered by local basis transfor-
mations on the three quantum spin models described in Sec. 2. As a benchmark, we consider
a more standard SBD approach in which the configurations are sampled from the (squared
modulus) exact ground-state wave function or from a very accurate approximation obtained
via a variational Monte Carlo simulation. It is worth emphasizing that this procedure assumes
that an accurate representation of the ground state can be obtained through a complemen-
tary computational technique. This allows us to execute standard SBD under very favorable
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Figure 3: Relative error € as a function of the transverse field h, for different numbers
of unique configurations S. For AB-SND, darker colors correspond to larger S, with
S €{10,10'°,102,...,10%}, while for SBD from the NQS and SND we consider only
S =10*. Panel (a) represents the errors for the 1D-TFIM with N = 50 spins, panel (b)
corresponds to the 2D-TFIM with N = 100 spins, and panel (c) to the 2D-EAM with
N = 64 spins. The vertical dashed lines represent the corresponding quantum critical
points, namely, the ferromagnetic transitions in the 1D-TFIM and the 2D-TFIM, and
the spin-glass transition in the 2D-EAM. For the latter, the uncertainty is represented
by the gray bar [23].

conditions, thus representing a stringent benchmark for novel SND approaches. We sample
configurations from an NQS in the form of a restricted Boltzmann machine. The latter is opti-
mized using the NetKet library [27,28]. Our numerical tests show that, as a sampling engine
for SBD approaches, the NQS ansatz performs essentially as well as the exact ground state,
at least for the system sizes for which the latter can be computed. Thus, in the following, we
mostly adopt NQS sampling, unless otherwise specified.

To quantify the performance of the various SBD approaches, we compute the relative error
e=|2 Efo |, where y represents the energy estimate from a given method, and E, is the exact
ground-state energy. The latter is computed by mapping interacting spins to a quadratic free
fermion model via the Jordan-Wigner transformations for the 1D model [24,29], while for the
2D models we employ continuous-time projection quantum Monte Carlo simulations [23,30].
Despite of the presence of disordered frustrated interaction in the 2D-EA model, the latter
algorithms provide unbiased estimates, affected only by very small statistical uncertainties.

In Fig. 2, we analyze the relative errors in the three testbed models, considering relatively
weak transverse fields h for which the ground state is concentrated in the chosen computa-
tional basis. As expected, all three SBD techniques perform well, showing a systematic ac-
curacy improvement with the number of unique configurations S used to build the subspace.
However, the SND performance deteriorates for the 2D-EAM (not shown). This effect may
be attributed to the rugged energy landscapes occurring in spin-glass phases [31]. In this
testbed, the standard SBD method based on NQS-sampled configurations performs better, but
still reaches errors as large as 10% for computationally practical values of S. Notably, thanks
to the additional variational flexibility introduced by the learnable basis transformation, the
AB-SND method displays a systematic performance improvement with S also in the 2D-EAM.
In fact, it consistently outperforms the other SBD approaches we consider, in all three testbeds.

In Fig. 3, the relative energy error is plotted as a function of the transverse field h, for
different numbers of unique configurations S. As expected, the performance of SND and stan-
dard NQS-based SBD methods rapidly deteriorates as h increases, denoting the limited regime
of applicability of these approaches. Instead, the AB-SND method, here implemented with
single-spin rotations, is accurate also at significantly larger transverse fields. In fact, it reaches
small relative errors also in the large h limit. This indicates that adaptive single-spin rota-
tions enable a continuous interpolation between the original computational basis, in which
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Figure 4: Number of unique configurations S required to reach relative errors below
€ = 0.01 as a function of the number of spins N for the 1D-TFIM at different trans-
verse fields h. We compare the performance of a standard SBD approach powered by
NQS sampling (shades of blue) with the one of the AB-SND with single-spin rotations
(shades of red). The error-bars for the AB-SND method for h = 0.5 and h = 0.75 rep-
resent the estimated standard deviation of the average over five training processes.

the ground state is concentrated in the h — 0 limit, and the basis built using eigenstates of
the X Pauli operator |+), |—), in which concentration occurs in the opposite limit. Sizable in-
accuracies occur in the intermediate regime, approximately in the region around the quantum
phase transitions occurring in the three testbed models, namely, the paramagnetic to ferro-
magnetic transition in the 1D-TFIM and the 2D-TFIM, and the quantum spin-glass transition
in the 2D-EAM [23]. In the Appendix D, we provide numerical evidence that in the large S
limit, the peak of the energy error approaches the critical point h. = 1 of the 1D-TFIM.

In Fig. 4, we analyze how the computational cost scales with the system size N. Specifi-
cally, we determine the number of unique configurations S required to reach a relative error
of 1%, considering the 1D-TFIM. A standard SBD approach based on NQS sampling displays a
problematic scaling already for h 2 0.5, making it impractical to reach system sizes N ~ 100
keeping the target accuracy. In this regime, the number of configurations required by the AB-
SND approach powered by single-spin rotations is still essentially independent of N, denoting
the important role of the basis change. However, the scaling approaches an exponential behav-
ior slightly beyond the critical point h, = 1, while it improves again for transverse fields h > 1.
Better accuracies in the critical regime h ~ 1 can be obtained within the AB-SND approach
with more general basis transformations, as discussed below. Here, it is worth mentioning
that, considering the currently available implementations, the training of the autoregressive
networks used for sampling in SND implies a computational cost comparable to the training of
the NQS ansatz used for SBD. The optimization of the adaptive basis does not involve a sub-
stantial computational overhead. Hence, the qualitatively improved scaling of S with system
size leads to a substantial suppression of computational costs.

In Fig. 5, we compare the accuracies of the AB-SND approaches powered by single-spin
rotations and by non-overlapping two-spin unitary operators. The latter approach allows in-
troducing some entanglement and provides a more expressive basis transformation, while re-
maining classically tractable. In fact, we find that, at and slightly beyond the critical regime
h Z 1, two-spin rotations lead to a sizable accuracy improvement compared to the single-spin
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Figure 5: Relative error € as a function of transverse field h, for S = 10* unique
configurations in the truncated basis. The testbed is the 1D-TFIM with N = 50 spins.
We compare the performances of the SND approach, with the ones of AB-SND ap-
proaches featuring single-spin and non-overlapping two-spin rotations.

case and, of course, compared to standard SBD based on the NQS-approximated ground-state
sampling. Even better accuracies can be obtained by implementing classically intractable basis
transformations using quantum hardware, as discussed in Section 4.

An additional important challenge for all stochastic SBD methods is the decreasing ef-
ficiency of sampling unique configurations as the number of samples increases. This phe-
nomenon, also noted in Ref. [32], can be addressed in our framework through effective tem-
perature scaling during inference. This procedure is discussed in Appendix F.

4 Hybrid basis-adaptation methods for quantum computation

4.1 Adaptive basis for SQD

We present here an extension of the SQD algorithm that incorporates a classically optimized
basis transformation, which we refer to as adaptive-basis SQD (AB-SQD). In this approach,
the parametrized unitary operator U(6) used to rotate the computational basis is defined as a
product of single-spin rotations, as in Eq. (3). The sampling of the bitstrings for building the
subspace Hamiltonian is carried out on the quantum circuit used for the SQD procedure.

To assess the performance of the AB-SQD approach, we make comparisons with the stan-
dard SQD method and with the popular variational quantum eigensolver (VQE). The same
quantum circuit architecture is employed in the VQE optimization and for the generation of
samples for the SQD and AB-SQD estimations. Specifically, we adopt the architecture intro-
duced in Ref. [33], originally designed for the 1D-TFIM at h = 1. In our case, we apply the
same ansatz to the model at h = 0.5 and J = 1, allowing each gate within a layer to have an
independent variational parameter. The circuit parameters are tuned by minimizing the expec-
tation value of the Hamiltonian with the Adam optimizer. The resulting optimal parameters
are then used to calculate the results for both the VQE and the SQD variants.

Fig. 6 shows the relative error € as a function of the total number of circuit evaluations
N; for the 1D-TFIM with N = 10 spins and transverse field h = 0.5. Notably, also analyze the
role of hardware errors. Specifically, we compare the performance of VQE, standard SQD, and
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Figure 6: Relative error € as a function of the and total number of samples N, of the
quantum circuit. The testbed model is the 1D-TFIM with N = 10 spins and h = 0.5.
We compare the accuracies of VQE, SQD and AB-SQD with single-spin rotations. The
depolarizing noise levels are A = 0 for panel a) and A = 10~ for panel b).

AB-SQD for two different levels of depolarizing noise: the noiseless case A = 0 and the noisy
case A = 1073, The depolarizing noise is modeled by modifying the density matrix p after the
application of two-qubit gates as follows [34]:

I
P—’(l—)\)PJrlz—N, 5)

where [ is the identity operator, and the parameter A > 0 quantifies the noise strength. In
the noiseless regime (A = 0), where the only source of uncertainty is due to the finite num-
ber of measurements N, VQE and SQD reach comparable accuracies for sufficiently large N;.
However, AB-SQD achieves the same precision with much fewer samples, demonstrating that
the adaptive classical rotation concentrates the ground-state weight on fewer relevant basis
elements, thus improving sampling efficiency. For A = 1073, VQE estimation is strongly af-
fected by the noise, whereas SQD remains more stable. Nevertheless, AB-SQD provides the
most accurate ground-state energy estimates in this noisy regime, confirming that the adap-
tive basis reduces the impact of both depolarizing and shot noise on the subspace Hamiltonian
estimation.

4.2 Basis change using a quantum computer

For the quantum Ising models we consider, which feature up to two-spin couplings, basis
changes based on combinations of single-spin and non-overlapping two-spin transformations
can be efficiently performed on classical computers. More expressive basis changes could be
efficiently performed using quantum circuits. Such transformations could further improve
the performance of AB-SND approaches, especially near critical points. Indeed, a VQE al-
gorithm has been shown to be able to accurately solve the 1D-TFIM also at criticality by
optimizing a unitary transformation U(#). This is achieved by minimizing the expectation
value (0|UT(0)HU(0)|0) [33], which is estimated using (typically large) shot numbers. This
is equivalent to a specific AB-SND strategy with only a single sampled configuration, namely,
the state |0) = |00...0). The general AB-SND approach extends VQE by including the sam-
pling of more basis elements, which leads to a finite matrix whose lowest eigenvalue is to
be determined. Hereafter, we discuss how to implement a generic basis-change procedure
using quantum computers. First, we set up a quantum circuit representing a parametrized
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Figure 7: Relative error € as a function of the transverse field h, for S = 16 unique
configurations. The testbed model is the 1D-TFIM with N = 6 spins. We compare the
accuracies of the SND approach with the ones of the AB-SND methods with single-
spin rotations and with a general basis change performed by the (simulated) quantum
circuit described in the text.

basis-change unitary operator U(6). Then, we can calculate the subspace-Hamiltonian el-
ements (x(D|UT(0)HU(0)|x™) using the approach introduced in Ref. [35]. The diagonal
terms H, = (xO|UT(0)HU(0)|xV) can be computed as standard expectation values. The
off-diagonal terms can be calculated noticing that (using i = +/—1)

Hl Hm

R (xOUT(0)HU(0)|x™) =H,,,, — 55 (6)
and g H
3O OIHU(O0)x ™) = —Hpsim + = + )
where 1 ,
Hyym = E((X(”I + <x(m)|)U"‘(0)HU(0)E(|x(”> +]x(my) (8)
and ; .
Hyyim = E“’Cm' — i<x<’")|)U'*‘(0)HU(0)E(|x(”> +i]x(™)). 9)

Finally, in our framework, both the parameters 0 and the weights of the autoregressive NN
from which the bitstrings x© are sampled can be optimized as explained for the AB-SND
procedure with single-spin rotations. To test this approach, we implement a small numerical
experiment using a classical simulation of quantum circuits with N = 6 qubits for the 1D-TFIM.
The circuit ansatz we choose is rather shallow. It features one layer of Ry gates acting on each
qubit, and two blocks including R, operators acting on all nearest-neighbor pairs and Ry
rotations acting on each qubit. As shown in Fig. 7, the improvement of the AB-SND predictions
based on the circuit-based basis change compared with the case of single-spin transformations
is significant. With the more general transformation, appreciable inaccuracies occur only very
close to the critical point h, = 1. We expect even better performances to be obtained by
implementing basis transformations using deeper quantum circuits.
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s 5 Conclusions

206 In this article, we introduced SND and its basis-adaptive extension, dubbed AB-SND. These
207 represent two NN-based techniques to boost the performance of both classical and quantum
208 selected configuration interaction methods for estimating ground-state energies of quantum
200 many-body systems. Our tests show that AB-SND offers significant improvements over con-
300 ventional SBD methods, particularly in regimes where the ground state is delocalized in the
301 computational basis. The adaptive strategy can be transferred to quantum sampling as well,
302 where we introduce AB-SQD as a natural quantum analogue of AB-SND.

303 To extend the AB-SND approach beyond basis changes based on single-spin and two-spin
304 operators, we explored the integration of AB-SND with quantum computing. As we explained,
305 this allows the implementation of more general basis transformations. To test this procedure,
306 we implemented a small-scale proof-of-concept experiment using classically simulated quan-
307 tum circuits. In this setting, we used parametrized entangling gates to define a more expressive
308 unitary U(0), which led to improved performance compared to local spin rotations. Although
300 these results are currently limited to small systems simulated classically, they suggest that AB-
s10 SND can be extended to hybrid quantum-classical workflows and could benefit from access
s11  to real quantum hardware in the future. In fact, the AB-SND approach driven by quantum
312 circuits represents an extension of the VQE algorithm beyond the case of a single initial state.
313 Further developments could include the use of more expressive basis-change circuits, im-
314 proved optimization strategies in complex energy landscapes, and systematic explorations of
s15  the performance of AB-SND methods in larger or more strongly correlated systems. Future
s16 studies could also explore the use of different bases, adopt AB-SND methods for excited state
317 as in recent SQD studies [36], attempt to further enhance the sampling imposing symme-
s1s  tries and constraints [37,38], and investigate the regime of applicability of sample-based ap-
310 proaches in terms of entanglement properties. By combining neural sampling with learnable
320 basis transformations, AB-SND provides a flexible and scalable framework for studying quan-
321 tum many-body problems across a wide range of regimes.

322 The essential scripts used in this study are available on GitHub [39].
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1« A Loss function of SND and its gradient

335 AsinEq. (1), one can write the probability of a set of configurations S as P(S®)) = [ Liovesw P(x®),
336 where P(x() is the probability of sampling the bitstring x) defined by an autoregressive NN.
337 The loss function L and its derivative with respect to a parameter of the network w can be
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calculated as follows:

( 1 P(x(l)))E(k) —

x(Desk)

R
d
Zk:c?_( l_[ P(x(l))) E® (A.1)
2.
k

x(Desk)

[ S (M [ p(x(m)))ilE(k)’

xWesk) dw x(M£x D

where x( and x(™ are bitstrings in the batch S®). With a straightforward rearrangement,
the derivative can be rewritten as

oL aP(x") p(xM) m
%zzk:[ > (5 ooy |1 P i

xDes® x(m) oL (A2)
Q) '
_ ZP(S(k))( 3 M)E(k)
dw ’

k *xDes®

and the stochastic estimator is given by
K
aL L1 Z 3 log(P(xV)) Q) (A.3)
dw K dw ’ '
k=1 “x(Des

where the batches of bitstrings S®) are sampled according to P(S®). A baseline term is useful
to stabilize the training process [9,10]. In our framework, we set it equal to the average energy
over the K batches E(K), Therefore, the loss function for SND reads:

K

L= %Z( S 1og(p(x<l))))(E(kJ _E®). (A4)

k=1 “xWesk)

B Loss function of AB-SND and its gradient

For the AB-SND method, the derivative with respect to the parameters of the NN used to sam-
ple basis configurations g—f) is calculated as discussed in the previous section. However, here
we also want to optimize the basis-change parameters 0 in order to minimize the estimated
ground-state energy. Notably, the rotation angles 6 are also used as a condition for the NN
that generates the spin configurations. For this, they are provided as inputs preceding the spin
values. Similarly to the SND method, one obtains:

__Zae( 1 P(x(l)l()))E(k)+( [1 p(x(”w)) S E®. (B.1)

xDesk) xDesk)

From the Hellmann-Feynman theorem, one can write

3E(k)(9i)_< ()
26,  \'0

o
a0,

(0")>, (B.2)

where wgk) is the estimated ground-state wave function. In AB-SND, we use a basis-change
unitary operator U(8), so

3E(k)(9i)_< )
26;  \'0

a(UT(0)AU(0))
a0,

gk)>. (B.3)
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Figure 8: Number of unique configurations S required to reach the relative error
€ = 0.01 as a function of number of spins N using a standard SBD approach with
configurations sampled from the exact ground state. Panels (a), (b), and (c) dis-
play results for the 1D-TFIM, the 2D-TFIM, and the 2D-EAM, respectively. Different
datasets in each panel correspond to different transverse fields h.

This quantity can be calculated using the parameter-shift rule [40,41]. Alternatively, if U(6)
is implemented using classical algorithms, the gradient can be calculated using automatic
differentiation, e.g., via the Pytorch library [42]. Finally, the derivative with respect to a
generic rotation angle reads:

(k)

0 >] (B.4)

K
oL 1 ] 1og(p(x(l>|0))) @ < ®
s E® 4
L3[( 3 st o
xWesk)

We also implement an alternative approach to optimize the rotation angles, which avoids the
multiple diagonalization steps used in the parameter-shift rule. This approach involves sam-
pling the angles @ from an additional autoregressive NN. It is detailed in Appendix E.

a(UT(8)AU(8))
a0,

C Failure of standard SBD approaches at large transverse field

The accuracy of SBD approaches noticeably depends on how the computational basis elements
used to build the truncated Hamiltonian matrix are sampled. In Fig. 8, we show that even when
the exact ground-state wave function is used for sampling, without adaptive basis rotations
the SBD method fails when the ground-state wave function is not strongly concentrated in
the chosen computational basis. In fact, beyond the small transverse field regime h < 1, the
truncated basis size S required to reach the target accuracy of 1% approaches an exponential
scaling with the system size N.

D Most challenging regime for AB-SND
In Fig. 9 we report numerical evidence showing that, in the large S limit, the peak of the
energy error obtained via the AB-SND method drifts towards the critical point of the ferro-

magnetic quantum phase transition. The chosen testbed is the 1D-TFIM with N = 10 spins.
The configurations are sampled from the exact ground state.

14



375

376

377

378

379

380

381

382

383

384

385

386

387

Submission

SciPost Physics

|
0.06 -
0.04 -
w > e
/ .
: N
/ .
002_ / /.\'\.\ \.\-\._. |
! ., ~ —-0
AN
7 -/:‘.’.\.\\'o-'lt.;:'\.-\
0_00_._._.f;:.&‘::'.?.:'}'.:'-. =HS Sty el

Figure 9: Relative error e as a function of the transverse field h, for differ-
ent numbers of unique configuration S. Darker colors mean higher S, with
S € {4,8,16,32,64,128,256,384,512,640,768,896,1024}). The configurations
are sampled from the exact ground state. Adaptive single-spin rotations are then ap-
plied, as explained in the main text. These results are for the 1D-TFIM with N = 10
spins.

E Loss function of AB-SND with sampled rotational parameters

Instead of optimizing the basis change using the Hellmann-Feynman theorem, one can em-
ploy an additional autoregressive NN to sample the parameters @ that define the basis-change
unitary operator. In this alternative procedure, the probability of a set of spin configurations
is written as: P(S®)) = P,,(O(k))Pw(S(k)IB(k)) = P,,(O(k))]_[x(l)es(k) Pw(x(l)lﬂ(k)), where v de-
notes the weights of the neural network responsible for sampling the parameters 0%, while
w denotes the weights of the neural network responsible for sampling the bitstrings in the
batch S®. The former, is an autoregressive NN that provides the parameters wand x of a Von
Mises distribution [43] from which the basis-change parameters 0 are sampled. Due to the
autoregressive architecture, u; and x; depend on the angles 6;, with j < i. The rotation angles

0% are also used as conditions for the other autoregressive NN that defines the probabilities
Pw(x(l)le(k)) of each bitstrings x(!). The loss function to be minimized is defined as:

L:ZJd@(k)[pv(e(k)) l—[ pw(x(nw(k))]E(k) (E.1)
k xWDesk)
and its derivatives are

aL 3

9L _ (k) (k2 019ty | k)

aw_zk:fde [p,,(o )5 a])_[ P, (xD0 )]E

xWest)
3 log(P,(xV]e®y)
- de(k)[pv(e(k))pw(s(k)lg(k))( S 2l a1t | )]E(k) £.2)

xMesk)

[ 3 SO,

k=1"xesk) dw
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Figure 10: Relative error € as a function of the number of unique configurations
S used to build the subspace Hamiltonian. These results are for the 1D-TFIM with
h =0.5and N = 50. We compare the accuracies of a standard SBD approach powered
by NQS sampling, the SND approach, and two AB-SND approaches. The (green)
upside-down triangles refer to the AB-SND approach with rotation parameters 6%
sampled from an autoregressive NN, as explained in the text.

and
0
oL rdg(k)[% 1> (x(nw(k))]E(k)

ov J ov o @
xWes)

k
> rd(,vuo[f“"v("(k))P ) 1 Pw(x(”le(k>)]E(k)
k
>

k
) v P,,(B( )) *xDes® (E.3)

[ 3 log(P, (6%
_ d@(k)pv(g(k))pw(s(k)|0(k))|:%}E(k)

J

1 i[ 3 log(Pv(o“)))] 50

Kk=1 av

where w € w and v € v denote single weights of the corresponding neural networks.
Therefore, including the baseline term, the loss is evaluated as:

K

L= %Z[log(Py(o(k))) + ( > log(Pw(X(l)|g(k))))](E(k) _E®). (E.4)

k=1 xMesk)

Sampling 0% from a conditional autoregressive NN is conceptually and practically appealing.
Yet, the test results visualized in Fig. 10 indicate that this approach does not perform better
than the gradient-based optimization described in Appendix B. The accuracy shows a similar
improvement rate as a function of S, with an approximately constant upward shift, denoting
a marginally worse performance.

F Problem of sampling unique configurations

As the size S of the configuration set increases, the probability of sampling already included
configurations rapidly rises. This leads to a problematic computational cost for sampling
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Figure 11: Ratio between number of unique configurations S and total number of
samples N, as a function of N, for different values of the effective temperature T.
The samples are obtained via SND for the 1D-TFIM with N = 50 and h = 0.5.

unique configurations. To overcome this problem, we introduce the effective temperature
parameter T [44]. This controls the shape of the output distribution by tuning the width of
the softmax activation function in the final NN layer. The NN produces two outputs for each
spin, and the softmax turns these outputs into probabilities of sampling O or 1. Specifically, if
Y, and Y; are the two outputs, then

exp (Yy/T)
2irefoy €xp (¥;/T) '

Softmax(Y,) = (ED)

Complementary strategies were introduced in Ref. [32]. During training, we set T = 1, but in
the inference phase we increase T to have a broader distribution, thus favoring the sampling
of different outputs. This effect is demonstrated in Fig. 11. Indeed, while with T = 1 the
ratio between the number of unique configurations S and of total configurations N, decreases
almost exponentially fast, slightly larger effective temperatures suffice to significantly increase
the number of unique configurations, thus drastically decreasing the computational cost of
sampling.

Importantly, increasing T to values appropriate for efficient sampling does not reduce the
performance of SND approaches. This is demonstrated in Fig. 12, where one observes that,
for S 2 102, values of T € [1,1.6] provide comparable accuracies for the 1D-TFIM.

G SND for a quantum chemistry testbed

To complement the spin-model benchmarks presented in the main text, we report a proof-of-
principle application of the SND approach to a minimal quantum chemistry problem. Specifi-
cally, we consider the LiH molecule at different internuclear separations R in the STO-3G basis.
The electronic Hamiltonian expressed in second quantization involves N = 12 qubit degrees of
freedom and a total of four electrons. The fermionic operators are mapped to Pauli operators
through a standard Jordan-Wigner transformation using the Qiskit Nature library [45].

The autoregressive NN is trained to generate bitstrings x € {0, 1} subject to the physical
constraints that all sampled configurations satisfy both the correct electron number and a total
spin projection S, = 0. These constraints are enforced by masking during the autoregressive
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Figure 12: Energy per spin E/N obtained via SND as a function of the number
of unique configurations S used to build the subspace Hamiltonian. The different
datasets correspond to different effective temperatures T. The testbed model is the
1D-TFIM with N = 50 spin and transverse field h = 0.5.

sampling procedure, ensuring that exactly two spin-up and two spin-down spin-orbitals are
occupied at the end of each sample sequence [10]. The resulting energies are compared to
the Hartree-Fock result. The results shown in Fig. 13 confirm that the autoregressive model
identifies physically relevant determinants, even in the absence of an adaptive basis trans-

formation, and that the SND mechanism extends naturally from spin models to fermionic
quantum-chemistry Hamiltonians.

H Autoregressive neural network and hyperparameters

We use a transformer encoder [46] with causal mask, two layers, four attention heads, and
embedding size equal to 64. During training, we use K = 16 batches for SND and K = 4
batches for AB-SND, and number of sampled bitstrings equal to BS = 128. It is worth em-
phasizing that the latter does not coincide with the number of unique configurations S used
during inference. Also, the rare repeated configurations are simply discarded. A comparison
of the performances obtained with different values of K and BS is shown in Fig. 14. Notably,

the accuracy of the SND method is not significantly affected by different choices for these
parameters.
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